US3759383A - Apparatus for making abrasive articles - Google Patents

Apparatus for making abrasive articles Download PDF

Info

Publication number
US3759383A
US3759383A US00168092A US3759383DA US3759383A US 3759383 A US3759383 A US 3759383A US 00168092 A US00168092 A US 00168092A US 3759383D A US3759383D A US 3759383DA US 3759383 A US3759383 A US 3759383A
Authority
US
United States
Prior art keywords
particles
particle
orientation
apparatus defined
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00168092A
Inventor
K Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3759383A publication Critical patent/US3759383A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/346Sorting according to other particular properties according to radioactive properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S209/00Classifying, separating, and assorting solids
    • Y10S209/92Vibratory feed conveyor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means
    • Y10T156/1702For plural parts or plural areas of single part
    • Y10T156/1744Means bringing discrete articles into assembled relationship
    • Y10T156/1751At least three articles
    • Y10T156/1754At least two applied side by side to common base
    • Y10T156/1759Sheet form common base

Abstract

An apparatus for making abrasive articles, e.g., wheels, disks and the like abrasive particles wherein a train of the particles is displaced along a transport path and means is provided for automatically detecting the crystallographic orientation of the individual particles. Particles of appropriate orientation are withdrawn from the transport path and carried with fixed orientation to the wheel, disk or other substrate into which it is implanted. The individual particles are set in predetermined locations of the disk whose motion is governed by numerical control means.

Description

O I United States Patent 1 1 [11:1 3,759,383
lnoue 1 Sept. 18, 1973 1 1 APPARATUS FOR MAKING ABRASIVE 3,392,830 7/1968 Broderick et a1. 209/81 R I L I 3,410,401 1l/1968 Drop 2.09/81 R 7 3,503,500 3/1970 Klossika 209/81 R [76] Inventor: Kiyoshi lnoue, No. 16-8, 3-chome, V Kamlyoga, Setagayaku, y Primary Examiner--.Morris Kaplan J p Attorney-Karl F. Ross [22] Filed: Aug. 2, 1971 a [57] ABSTRACT [21 1 Appl' l68o92 An apparatus for making abrasive articles, e.g., wheels,
1 f disks and the like abrasive particles wherein a train of [52] US. Cl 209/1ll.5, 29/407, 118/6, the particles is displaced along a transport path and 1 18/9, 209/81 means is provided for automatically detecting the crys- [51] Int. Cl. B07c 5/342 tal g ap orientation of th indi idual particles. Par- [58] Field of Search 118/4, 6, 7, 9; ticles of ppr pri ri n i n r wi h wn from 209/1 1.5, 81 R; 29/407 the transport path and carried with fixed orientation to the wheel, disk or other substrate into which it is im- [56] References Cited planted. The individual particles are set in predeter- UNITED E PATENTS mined locations of the disk whose motion is governed 3,368,675 2/1968 Aiken et a1. 209/1115 by numercal Control means 1 3,384,236 5/1968 Best et al. 209/81 R 9 Claims, 4 Drawing Figures I u 4 a o I 7 la I ,2 J g 104- -n- 7 a gifpj 42-0 NC 1l\|\ ull- I I 7070,
9 39 f0 1! a a 1 w k ffla 3 y 12c I14 I Pmmmsmamn 759,3953
FIG. 3
' Kiyoshi Inoue INVENTOR.
55 ar 1b Attorney APPARATUS FOR MAKING ABRASIVE ARTICLES FIELD OF THE INVENTION My present invention relates to the production of abrasive articles and, more generally, to the production of articles in which a crystalline body is set with predetermined orientation in a substrate or support. The invention also relates to an apparatus for producing abrasive articles such as'grinding disks, wheels and the like.
BACKGROUND OF THE INVENTION While numerous methods have been proposed here tofore for the production of abrasive articles, e.g., grinding wheels and disks, substantially all of these techniques have disadvantages which are more or less apparent. For example, grinding wheels and disks have been provided heretofore, by mixing abrasive particles, e.g., particles of a crystalline material of high hardness, with a binder, and casting the resulting composition with or without pressure. When the binder sets, the par-' ticles appear to be more or less homogeneous throughout the body of the article and engage the workpiece along the surfacethereof. Since the binder wears more readily than the abrasive particles, fresh surfaces of the abrasive material are constantly exposed. However, such systems are characterized by poor utilization of the crystalline abrasive because the latterwears more or less rapidly depending upon the crystal orientation and has a greater or lesser cutting effect depending upon such orientation. Thus it is known that diamond particles, for example, form low-wearing, efficiency cutting members when held with the axes perpendicular to the direction of movement of the abrasive article and to the surface of the workpiece which is to be modified. When the particle is'rotated so that its axis lies parallel to the surface to be modified,
high- OBJECTS OF THE INVENTION It is the principal object of the present invention to provide an improved system for setting crystalline parwear of the particle increases with little cutting effect.
Furthermore, diamond and other particles of high crystallinity, e.g., alumina, ruby, must be provided with a predetermined orientation of the cutting faces of the crystal to the workpiece, the cutting faces having a fixed relationship for each crystal, to the predominant crystal axes. Thus, if the proper orientation of the particle is not observed, the cutting effect is reduced or rendered negligible. The aforedescribed techniquefor the production of abrasive articles randomly distributes the particles and does not permit of any predetermined orientation thereof.
Hence it has been proposed to produce abrasive articlescutting tools and the like by forming a wheel or similar member with individual pockets, recesses or notches adapted to receive individual high-hardness member which may be ofa crystalline configuration. In these systems, proper orientation of the facets of the cutting members is obtained by manually inserting them into the support. This arrangement has the obvious disadvantage of increased cost, high requirements of skilled labor, and sensitivity to human error.
Finally, I might suggest that an obvious method of producing abrasive articles with a pointed grain and crystal structure, is to position a large number of crystals in predetermined orientation upon a surface and then to introduce into the interstices between these particles a hardenable binder adapted to form a matrix which, when hardened, contains the particles in predetermined orientation. The system, however, likewise ticles so as to eliminate the disadvantages discussed hereinabove and to provideimproved articles having oriented crystalline particles fixed therein.
It is another object of the invention to provide an improved abrasive article with oriented abrasive particles, which can be made in a simple and automatic manner.
Still another object of the invention resides in the provision of a system for making abrasive articles at low cost, with high accuracy and with considerable uniformity.
SUMMARY OF THE INVENTION These objects and others which will become apparent hereinafter, are attained, in accordance with the present invention, by passing a succession of crystalline particles along a predetermined transport path, scanning the particles as they pass along the path, past a viewing station, detecting the orientation of the particles as they move along the path, and selecting particles of a predetermined orientation from a succession and transporting them, inturn, with fixed orientation, to a support in which the particle is planted.
According to an important feature of this invention, the transport means consists of an endless conveyer provided at one end with means for delivering a supply of the crystalline particles to the upper stretch of the conveyer, preferably in a row of spaced-apart particles. Trained on this row, at a location downstream of the detector station, is a guide tube having its mouth closely juxtaposed with the conveyor belt and leading to the substrate. The tube constitutes the guide means of the present invention and is activated to draw a selected crystal from the belt, retain its predetermined orientation with respect to a crystallographic axis and convey the crystal to the support into which it is to be implanted. i
Advantageously, the detector station comprises at least one and preferably two sources of electromagnetic radiation and/or high-energy particles capable of V projecting beams of subatomic particles at the successive crystals as they arrive at the detecting station. The
detector may respond to the diffraction effectof the crystal upon the respective beams. Alternatively, the detector may respond to refraction or some other characteristic related to the crystallographic orientation. Preferably, the sources of electromagnetic radiation are X-ray-beam sources arranged so that the respective beams intersect at the location traversed by the row of particles, thedetector being an X-ray-diffraction detector. In this case, the invention makes use of a principle long recognized in the crystallographic art, namely, that the crystal planes and axes can be established by sweeping the crystal with an X-ray beam and detecting the defraction pattern resulting from the X-ray scanning of the crystal. The sytem is based, in part, upon the fact that the respective crystal planes function as the lines of a diffraction grating and cause interference and reinforcement patterns. Either crystal or the beam is rotated in a conventional diffraction-pattern crystallographic analysis, but I have found that no such rotation is required where only proximity to the correct orientation of a crystallographic axis is desired. In other words, the beams may be fixed and may scan the individual particles as they move past the detection station, the sensor registering a predetermined output when the axis of the crystal is not in proper orientation vis-a-vis the desired orientation. At this point, the detector triggers the system for implanting the crystal in a support.
The control system of the present invention is preferably of the numerical type, e.g., may be provided with a memory in which are stored co-ordinates of the sites at which the individual crystals are to be implanted. In general, the menory may consist of a band, tape or the like in which the information is digitally recorded and represents two coordinates capable of defining any point in the plane of the surface in which the particles are to be seated. The inputs to the memory may be calculated mathematically but also can be establishd by mutually setting a stylus or pointer to the desired position over the surface and then registering the two coordinates of the stylus in the recording medium.
The present invention is applicable also to the production of articles with discrete crystal tips, e.g., scribers, glass cutters or the like. In this case, entire arrays of such elements may be provided in place of the disk or support wheel and the discharge end of the guide tube can be aligned with these tubes to receive individual particles also under numerical control.
To insure a random positioning of the particles upon the conveyer and to guarantee that the particles will remain in set'positions during their movement towardthe detection station, also to impart some relative movement to the particles and the detector station, I have found it to be advantageous to provide means for vibrating the conveyer. The patterns in which the crystal particles can be arrayed are, of course, variable within the-capabilities of numerical control. In this respect, I must-mention that the coordinates may be of the Cartesian type, (i.e., orthogonal to one another) or of the polar type, depending upon the results desired. When polar coordinates are employed, it is a simple matter to implant the particles in a spiral or concentric circular DESCRIPTION OF THE DRAWING The above and other objects, features and advantages of the present invention will become more readily apparent from the following description, reference being made to the accompanying drawing in which:
FIG. 1 is a diagonal perspective view of an apparatus for carrying out the method of the invention;
FIG. 2 is a plan view ofa grinding wheel in which the orthogonal arrays of particles have been illustrated diagrammatically;
FIG. 3 is a view similar to FIG. 2 wherein, however, the. particles lie in a spiral array; and
FIG. 4illustrates a system for producing diamongtipped styli according to the present invention.
SPECIFIC DESCRIPTION AND EXAMPLE In-FIG. 1 of the drawing, I have shown diagrammatically an apparatus for the production of diamond grinding, cutting, scraping and finishing wheels, as represented diagrammatically in FIG. 2., Each wheel is here shown to have an inner zone 21, surrounding a hub 22, and provided with seats 23 for the crystal particles according to the present invention. As can be seen from FIG. 2, moreover, each of the particles 23 lies at the intersection of a vertical coordinate 24 and the horizontal coordinate 25 and can be described by two number represented digitally in any conventional numerical control system. Taking the point 0 as the origin, therefore, the particle located at 23' will be described as having the coordinates (4,0) while the particles at 23" will have the coordinates (4, -2). Each of these numbers, of course, has a digital value which can be recorded and represents a translation of the wheel beneath the discharge end 8a of a guide tube, as will be apparent hereinafter. The matrix in which the particles are lodged, may be prepunched to form the seats for the particles, whereby a binder composition, preferably of metal, synthetic resin or an elastomer, is introduced into the interstices between the particles.
In FIG. 3, I have shown another wheel 30 wherein the particles 31 are located along a spiral pattern with the respective coordinates being defined by the angle 0 and the radius R. For example, a value of 0 and R willdefine each location on the surface of the disk.
In FIG. 1, a row of crystalparticles 3 is carries by the intermittently or continuously driven belt conveyer 1 having a pair of rolls la and lb which may be driven by a motor 10 from a stepping circuit of thenumerical control source 12 as represented by the dot-dash line 1d. The conveyer is slightly vibrated by means 32, 33 which permit the individual particles to reach stable conditions suitable for detection. At a location along the transport path, a guide tube 8 has a downwardly turned mouth 8b terminating just above the surface of the conveyer. A suction can be generated in this con veyer by a vacuum pump 9 andcan be cut off by a valve 7 39. The sides 80 and 8a ofthe guide tube 8 terminate on opposite sides of the disk which, as already noted,
is perforated to accommodate the particles. When the' I the angular displacement 0 andthe radialdisplacement R to be made with ease. I
The hopper 2 at the upstream side of the conveyer 1 opens in a narrow gap2a so that practically individual particles are discharged onto the .conveyer. Upstream of the scanning site, I provide a pair of X-raydiffraction sources 4 and 5 whose beams 40 and 5a intersect along-the row of particles 3. The beams 4a and 5a have been shown to be orthogonal in accordance with the preferred case. A detector 6 receives the refracted beam at 6a and operates. the numerical control system to energize the suction source 6, induce a properly oriented particle into the supporting matrix, and thereafter advance the support through an increment of each coordinate and position the next receptive site below the mouth of. the tube 8.
The numerical control system generally represented at 12 is shown to comprise a memory 12a, preferably in the form of a perforated band 12b, which is scanned by a detector 12c and which has its motor 12d stepped whenever a crystal is properly implanted in the support.
In operation, the locations of the particles to be formed on the disk are established in accordance with design criteria and are transofrmed into digital coordinates recorded upon the perforated or magnetic tape 1212. A row of diamond or other high-hardness crystalline particles is caused to pass downwardly along the conveyer belt as shown at 3 with slight vibration. As each particle intercepts the X-ray beams 40 and 5a, the diffraction pattern produced in detector 6 establishes whether, within the predetermined tolerances, the location of a crystal plane or a crystallographic axis of the particle is acceptable. If the response is in the affirmative, the numerical control device is triggered to operate valve 39 and draw the particle along the tube without varying its orientation, and emplace it in the support.
Numerical control devices of the type used herein are described generally at pages 25 ff. of Advances in Machine Tool Design and Research, MacMillan Co., New York, 1964, and in the papers by Monk & Catlin, International Journal of Machine Tool Design and Research, London, 1963. In general, the control devices comprises a memory which, as described earlier, can be constituted by a memory bank, a punched tape, a magnetic band or other information storage means, input means for tracing positions and converting them into digital signals representing two coordinates of movement, e.g. the X and Y coordinates when the disk is to have the layout shown in FIG. 3, and means for scanning the memory and for stepping same to generate digital output signals for operating respective servomotors controlling the two coordinates on the abrasive-setting apparatus shown in FIG. 1. In particular, the servomotors may drive a pair of mutually orthogonal lead screws of the longitudinal feed and the cross feed of a conventional machine tool carriage or may rotate the disk through the angle 0 as shown for the motor 10 and translate the disk through the distance R as produced by the motor 11. In either case, after implanting the abrasive particle in the support, the support is stepped to position another seat in line with the guide means and enable the next particle to be properly positioned.
It has already been observed that in place of a sensor input for the numerical control apparatus, a mathematically established input can be provided. The body of the wheel may be ofa self-bonding, e.g., a vulcanizable material, so that after implantation of the abrasive particles, the disk can be thermally activated to bond the particles to the support. It is also possible to cast over the implanted particles a thermosetting material, such as an epoxy resin, to form a binder. Any other conventional means of setting the abrasive may be used. Finally, I might note that the system can be employed for setting abrasive and other mineral particles in individual seats as illustrated in FIG. 4 by way of example. In this Figure, an entire array of styluses or scribers 50 is found in accordance with the coordinate system, here shown to be a rectangular array because rectangular coordinates are employed. The seats 51 of the scribers are turned upwardly and may be provided with a thermally activated layer of adjesive and the spacing between adjacent scribers is represented at AX and Al respectively. In this case, the scrih er may be held in a frame driven by a pair of lead screws in the X and Y directions through increments of AX and AY respectively. In this specific Example, the particles are industrial diamond.
Reverting to FIGS. 3, we should note that the numerical control apparatus may be provided with a clock-pulse generator which serves to step the servomotors and to initiate the driving of the conveyer belt to start the next cycle. The substrate, after implantation of the particle, may'also be coated by electrodeposition methods with a thin layer of metal serving as the bonding agent. i
The improvement described and illustrated is be lieved to admit of many modifications within the abilityof persons skilled in the art, all such modifications beingconsidered within the spirit: and scope of the invention except as limited by the appended claims.
I claim: 1. An apparatus for setting an oriented particle on a substrate, said apparatus comprising means for advancing a succession of particles along a predetermined transport path;
means for projecting a beam of energy affected by the orientation of the crystal lattice structure of said particles at said pathfor successively scanning each particle therealong;
means responsive to the effect of the orientation of each particle upon said beam for signaling the presence of a particle of predeterminedorientation; and
' means for removing said particle of predetermined orientation from said path and placing said removed crystal upon said substrate with said orientation maintained.
2. The apparatus defined in claim 1 wherein the means for projecting said beam includes an X-ray gener'ator trained at a location along said path.
3. The apparatus defined in claim 2 wherein a pair of such X-ray generators train mutually orthogonal beams of X-rays at a particular point along said path.
4. The apparatus defined in claim 1 wherein said means for detecting the effect of said energy includes X-ray diffraction means responsive to the orientation of the crystal axis of the, selected particle.
5. The apparatus defined in claim 1 wherein the means for displacing the selected particle fromjsaid path to said substrate includes a tube and means for generating suction in said tube.
6. The apparatus defined in claim 1 further comprising numerical control means for positioning said substrateto receive said selected one of said particles.
ticles at a substantially constant rate into same.

Claims (9)

1. An apparatus for setting an oriented particle on a substrate, said apparatus comprising means for advancing a succession of particles along a predetermined transport path; means for projecting a beam of energy affected by the orientation of the crystal lattice structure of said particles at said path for successively scanning each particle therealong; means rEsponsive to the effect of the orientation of each particle upon said beam for signaling the presence of a particle of predetermined orientation; and means for removing said particle of predetermined orientation from said path and placing said removed crystal upon said substrate with said orientation maintained.
2. The apparatus defined in claim 1 wherein the means for projecting said beam includes an X-ray generator trained at a location along said path.
3. The apparatus defined in claim 2 wherein a pair of such X-ray generators train mutually orthogonal beams of X-rays at a particular point along said path.
4. The apparatus defined in claim 1 wherein said means for detecting the effect of said energy includes X-ray diffraction means responsive to the orientation of the crystal axis of the selected particle.
5. The apparatus defined in claim 1 wherein the means for displacing the selected particle from said path to said substrate includes a tube and means for generating suction in said tube.
6. The apparatus defined in claim 1, further comprising numerical control means for positioning said substrate to receive said selected one of said particles.
7. The apparatus defined in claim 6 wherein said substrate is a disk, further comprising numerical control drive means for incrementally shifting said disk radially and incrementally.
8. The apparatus defined in claim 6 wherein said numerical control means includes mechanism for shifting said substrate incrementally about two mutually perpendicular axes.
9. The apparatus defined in claim 6, further comprising a conveyer forming said transport path and dispenser means along said conveyer for feeding said particles at a substantially constant rate into same.
US00168092A 1971-08-02 1971-08-02 Apparatus for making abrasive articles Expired - Lifetime US3759383A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16809271A 1971-08-02 1971-08-02

Publications (1)

Publication Number Publication Date
US3759383A true US3759383A (en) 1973-09-18

Family

ID=22610090

Family Applications (1)

Application Number Title Priority Date Filing Date
US00168092A Expired - Lifetime US3759383A (en) 1971-08-02 1971-08-02 Apparatus for making abrasive articles

Country Status (1)

Country Link
US (1) US3759383A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3877891A (en) * 1971-08-02 1975-04-15 Inoue K Method of orienting abrasive particles in making abrasive articles
US5007072A (en) * 1988-08-03 1991-04-09 Ion Track Instruments X-ray diffraction inspection system
US20060140343A1 (en) * 2003-08-04 2006-06-29 X-Ray Optical Systems, Inc. In-situ X-ray diffraction system using sources and detectors at fixed angular positions
US20090142435A1 (en) * 2007-12-03 2009-06-04 Toyoda Van Moppes Ltd. Superabrasive grain setting apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368675A (en) * 1965-10-04 1968-02-13 Aiken Ind Inc Automatic x-ray apparatus for crystal z-axis orientation determination and sorting
US3384236A (en) * 1966-08-31 1968-05-21 Corning Glass Works Machine for automatically testing and orienting miniature semiconductor chips
US3392830A (en) * 1965-06-29 1968-07-16 Ibm Electrical component tester with test multiplexing
US3410401A (en) * 1965-05-27 1968-11-12 Ibm Substrate rework control circuit for a chip positioning machine
US3503500A (en) * 1965-09-18 1970-03-31 Telefunken Patent Sorting apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410401A (en) * 1965-05-27 1968-11-12 Ibm Substrate rework control circuit for a chip positioning machine
US3392830A (en) * 1965-06-29 1968-07-16 Ibm Electrical component tester with test multiplexing
US3503500A (en) * 1965-09-18 1970-03-31 Telefunken Patent Sorting apparatus and method
US3368675A (en) * 1965-10-04 1968-02-13 Aiken Ind Inc Automatic x-ray apparatus for crystal z-axis orientation determination and sorting
US3384236A (en) * 1966-08-31 1968-05-21 Corning Glass Works Machine for automatically testing and orienting miniature semiconductor chips

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3877891A (en) * 1971-08-02 1975-04-15 Inoue K Method of orienting abrasive particles in making abrasive articles
US5007072A (en) * 1988-08-03 1991-04-09 Ion Track Instruments X-ray diffraction inspection system
US20060140343A1 (en) * 2003-08-04 2006-06-29 X-Ray Optical Systems, Inc. In-situ X-ray diffraction system using sources and detectors at fixed angular positions
US7236566B2 (en) * 2003-08-04 2007-06-26 Gibson David M In-situ X-ray diffraction system using sources and detectors at fixed angular positions
CN1864062B (en) * 2003-08-04 2011-11-02 X射线光学系统公司 In-situ x-ray diffraction system using sources and detectors at fixed angular positions
US20090142435A1 (en) * 2007-12-03 2009-06-04 Toyoda Van Moppes Ltd. Superabrasive grain setting apparatus
EP2067575A1 (en) * 2007-12-03 2009-06-10 Toyoda Van Moppes Ltd. Superabrasive grain setting apparatus
US8016579B2 (en) 2007-12-03 2011-09-13 Toyoda Van Moppes Ltd. Superabrasive grain setting apparatus

Similar Documents

Publication Publication Date Title
US5236092A (en) Method of an apparatus for X-radiation sorting of raw materials
US4027246A (en) Automated integrated circuit manufacturing system
US4046285A (en) Method and apparatus for producing single flows of grains
US3759383A (en) Apparatus for making abrasive articles
RU98100478A (en) SORTING MACHINE AND ACCESSORIES
US4662124A (en) Method of grinding a sapphire wafer
JPH05244858A (en) Mixture supply device feeding fish arranged in one vertical line and method for feeding fish arranged in one vertical line
US3877891A (en) Method of orienting abrasive particles in making abrasive articles
ES464081A1 (en) Multiple point feeder
GB2120625A (en) Sorting particulate material
DE58909457D1 (en) Method and device for equipping metal system carriers with electronic components.
GB1267524A (en) Chute device
ATE32331T1 (en) METHOD AND DEVICE FOR FEEDING A MELTING PROCESS BY SURFACE MELTING.
CN1112288C (en) Thermoforming apparatus for thermoformable materials in ribbon or sheet-form
ATE113173T1 (en) APPARATUS FOR FORMING A CONTINUOUS LAYER OF GRANULAR AND/OR POWDERY MATERIAL IN A BREADING MACHINE.
FR2351729A1 (en) Machine for mfg. wire mesh for reinforcing concrete - has single welding head to form all joints and feeds transverse wires or rods from magazine
US3576189A (en) Apparatus for moving, washing, drying, inspecting and packaging centerless ground ceramic bodies
US3796466A (en) Grooved fluid bearing bar
DE69027090T2 (en) System for the pneumatic transport of solids at high density
GB1026643A (en) Improvements in or relating to apparatus for use in the production of spherical particles
US4209959A (en) Magnetic storage system and method for an axial lead sorter
DE20010323U1 (en) Device for automatic quality control of test objects
US3704915A (en) Method and apparatus for anchoring bristle bundles in a brush block
US3904335A (en) Apparatus for felting wafers in waferboard production
GB8821299D0 (en) Method of & apparatus for controlling unloading from carriages/like units/items to be sorted in sorting plant