US3762882A - Wear resistant diamond coating and method of application - Google Patents

Wear resistant diamond coating and method of application Download PDF

Info

Publication number
US3762882A
US3762882A US00156090A US3762882DA US3762882A US 3762882 A US3762882 A US 3762882A US 00156090 A US00156090 A US 00156090A US 3762882D A US3762882D A US 3762882DA US 3762882 A US3762882 A US 3762882A
Authority
US
United States
Prior art keywords
particles
diamond particles
metal
bath
diamonds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00156090A
Inventor
Z Grutza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Di Coat Corp
Original Assignee
Di Coat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Di Coat Corp filed Critical Di Coat Corp
Application granted granted Critical
Publication of US3762882A publication Critical patent/US3762882A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/932Abrasive or cutting feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/934Electrical process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12639Adjacent, identical composition, components

Definitions

  • the zigllgs coating comprises a uniform electrolytic depositof a metal matrix having embedded therein diamonds and [56] References Cited diamond particles ranging between 0.01 micron to 30 UNITED STATES PATENTS m'cmns 2,360,798 10/1944 Seligman et a1 204/16 11 Claims, N0 Drawings WEAR RESISTANT DIAMOND COATING AND METHOD OF APPLICATION BACKGROUND OF THE INVENTION 1.
  • Field of the Invention The invention relates to the field of electroplating and more particularly to the electrodeposition of fine to micro-fine diamonds and diamond particles on a basis metal.
  • the imvention also relates to an electrolytic deposit of a metal matrix having occluded therein fine to micro-fine diamonds and diamond particles and to the plating baths from which the coating are deposited.
  • the present invention comprises a method of forming a wear resistant coating on an article by the electrodeposition of fine and micro-fine diamond particles upon said article.
  • the article to be plated is made a cathode and a layer which consists essentially of metal and of diamond particles is applied to the surface of the article by simultaneously electroplating said metal and electrophoretically depositing said diamonds from a bath consisting essentially of a salt or acid containing the metallic ion or radical in solution and of said diamonds in suspension.
  • the plate deposited by this method consists of a metal matrix containing occluded diamond particles.
  • the diamonds are evenly and uniformly distributed throughout the metal matrix thus forming a uniform and continuous plate.
  • the thickness of the deposit can be varied and is dependent on the factors of current strength and the time the article is left in the electrolyzed bath.
  • the density or concentration of the diamonds occluded in the metal matrix can be varied by varying the amount of diamonds present in the plating bath. It is possible to obtain a very thin metal coating containing one layer of diamond particles or a thicker metal coating containing a plurality of layers.
  • the plating baths of the present invention consist of aqueous solution of the common electroplating metals such as cadmium, antimony, bismuth, chromium, cobalt, copper, gold, indium, iron, lead, nickel, palladium, platinum, rhodium, silver, tungsten, tin, zinc and the like.
  • the metals are present in the form of soluble salts or acids.
  • Various additives such as leveling and brightening agents may be added to these baths.
  • the diamonds are suspended in the baths in the form of fine particles having an average diameter of from between sub-micron size to 30 microns, although sub-micron size particles, particles having an average diameter of less than 1 micron, are preferred as they produce fine and smooth plate.
  • Diamond particles above l5 microns in diameter produce some roughness, especially on shelf areas where the particles can settle. With most of the baths the maximum improvement in wear resistance of the articles is attained when about 50 to carats (10 to 30 grams) per liter of the fine diamond particles are dispersed in the baths.
  • the coating formed by this method is extremely tough and wear resistant due to the occluded diamonds. Any articles that come in contact with other surfaces, such as the wear, cutting .or grinding surfaces of tools, tool parts, taps, knives, saws, die punches, gauges, shears, engine components and the like can be coated with this coating to prolong their useful operating lives by reducing wear and to reduce friction.
  • a cigarette filter cutting blade coated with the diamond plate has a useful operating life up to four times greater than an untreated blade. It has also been found that the frictional forces between two surfaces coated with the coating of the present invention are substantially reduced.
  • the present invention also includes the electroplate comprising a metal matrix containing occluded diamond particles which is produced by the aforementioned method.
  • the various plating baths containing suspended therein the fine and micro-fine diamond particles.
  • This invention also relates to various articles, such as cutting blades, drills, die punches, bearings, and the like having deposited on their surface a plate comprising a metal matrix containing occluded diamond particles.
  • the present invention has many advantages over other previous types of coatings.
  • One of these lies in the extreme hardness possessed by the coating, said hardness due to the presence of diamond particles.
  • Another advantage is that the diamond particles are uniformly distributed throughout the metal matrix.
  • Still another advantage resides in the fact that the diamonds being deposited in the coating electrophorically rather than manually as in the prior art, they are generally of the same size, areaccurately positioned, and are identically oriented in the matrix.
  • the article to be coated is made the cathode and immersed in a plating bath containing soluble metal salts or acids of the matrix metal.
  • the cathode consists essentially of the matrix metal.
  • the diamonds, which have been pretreated, are suspended in the bath in the form of fine bath insoluble particles and are kept in suspension by a period of initial agitation which is terminated when the solution is electrolyzed.
  • the average particle diameter of the diamonds can be between 0.01 micron and 30 microns and preferably should not be greater than microns. This particle size has been found to be preferred and advantageous, with the most preferred particle being of sub-micron size averaging from about .01 to about 1 micron.
  • the concentrations of the diamond particles depend upon the type of bath in which they are dispersed and the density of the diamonds desired in the matrix. Thus in a Watts type nickel bath a concentration of 100 carats grams) per liter is found to give optimum results, producing a nickel matrix containing 40 percent diamond particles. In a chrome bath, on the other hand, it has been found that for optimum results a diamond concentration of about 150 carats per liter is necessary.
  • the untreated diamonds may tend in some instances to agglomerate in the solution and to fonn roughness and lumpiness in the plate.
  • the treatment consists of cleaning the diamonds by immersing them in hydrochloric acid.
  • the diamonds are then cleaned a second time by immersion in a solution of sodium hydroxide. After the diamonds have been cleaned they are soaked in a solution of coumarin sulfate and sulfuric acid.
  • the amount of time that the diamonds are soaked in the coumarin sulfate can be as long as 24 hours.
  • the diamonds are then rinsed several times in water and thereafter are soaked in a wetting agent of the anionic type. After exposure to the wetting agent the diamonds are again rinsed with water. Finally the diamonds are air-dried and added to a concentrated solution of metallic salt or acid of the bath to be added immediately to the bath or stored for a period of time. Alternatively the treated diamonds can be added directly to the bath rather than to a concentrated solution of metal salt or acid of the metal. The treated diamonds are suspended in the bath at random and do not tend to agglomerate but plate out as discrete and individual particles.
  • the preferred metal matrix is one consisting essentially of nickel. But other metals, depending upon the purpose to which the coated surface is to be put, can be used. Among these metals are those that are used in the more common types of plating baths: antimony, bismuth, cadmium, chromium, cobalt, copper, gold, indium, iron, lead, palladium, platinum, silver, tungsten, tin and zinc.
  • Both natural and synthetic or man-made diamonds can be used in the present invention. It has been found, however, that the man-made diamonds plate out faster than do the natural diamonds. Thus, under identical conditions a solution having suspended therein manmade diamonds will produce a plate having a slightly greater diamond density than a plate produced from a solution having suspended therein natural diamond particles. This phenomena is greatly increased when the cathode is polarized. In order to increase the density of the diamond'particles in the matrix, in other words to increase the rate of co-deposition of diamonds, a magnet is attached to the cathode. The synthetic diamonds will then plate out at a rate approximately 25 to 50 percent higher than if the cathode was not polarized.
  • the plate thus deposited will contain 25 to 50 percent more diamonds per unit area than one formed with an unpolarized electrode.
  • rate of co-deposition of the diamonds is not appreciably increased. This is thought to be a function of the mechanism by which the particles plate out. Although this mechanism is not clearly understood, it is possible that the adsorption of hydrogen ions and nickel ions by the particles would give the particles 21 positive charge and in this way they would tend to plate out.
  • naturally occurring diamonds are not semi-conductors, the manmade diamonds, due to the presence of small metal particles therein, are semi-conductors.
  • Adding a magnet to the cathode also tends to produce a situation wherein two forces are acting on the synthetic diamonds; magnetic and electrical, while with natural diamonds only the electrical force is acting upon the diamonds. Nevertheless, regardless of the mechanism of the co-deposition of these particles and independent of whether they are naturally occurring or made-made, the deposition of the particles starts immediately and they plate out as uniform dispersions in the metal plate. Thus at any point in the plating procss the surface of the metal plate has distributed over its surface very many fine diamond particles in various stages of being embedded in the surface.
  • EXAMPLE [I Grams/liter SbS, 40 60 Na,CO, ll0 Diamond particles. .0l to l5 microns average-diameter l 20 EXAMPLE lll Grams/liter BiO 30 50 HClO. I00 0 Diamond particles, .01 to 30 microns average diameter l 20 pH 2.0 5.0
  • the plating baths may also contain materials such as addition agents employed in small amounts to affect the crystalline nature of the deposit, brighteners, leveling agents, buffers to keep the solution at the desired pH, and salts which can increase the conductivity of the baths if the salt or acid containing the metallic ion or radical is not sufficiently conductive.
  • concentrations and proportions of the above, as well as the ingredients given in the foregoing examples, may be varied to produce different results.
  • a common nickel plating solution may have the metal ion in the shape of NiSO NI-I Cl, or (NHhd 4), S0 to increase the conductivity of the bath; NiCl, to assist anode corrosion; H 30 which acts as a buffer to maintain the pH of the solution; a wide range of highmolecular-weight organic addition agents" such as organic sulfon compounds, examples of which are 0 or P-Toluene sulfonamide, o-Benzoyl sulfamide, O- benzoyl sulfimide, naphthalene, mono-, di-, or trisulfonic acid, sulfonated aryl aldehydes, etc.
  • organic sulfon compounds examples of which are 0 or P-Toluene sulfonamide, o-Benzoyl sulfamide, O- benzoyl sulfimide, naphthalene, mono-, di-, or trisul
  • the tin salt may be furnished by Na,Sn0,, the conducting salt by NaOH which also assists anode corrosion, the addition agent to effect the deposit being glucose or other organic materials.
  • the bismuth bath may contain glue and cresol as addition agents; the cadmium bath may contain glue, casein, molasses and gorilac as addition agentsythe silver bath may contain small amounts of CS, as a brightener; and the tin bath may contain sodium acetate as a buffer.
  • the co-deposition rate of the diamonds is dependent on the size of the particles, their concentration in the solution, and the current density.
  • one carat of diamonds of microns average diameter in 5 milliliters of solution will plate out in such a manner that a 90 percent diamond concentration will result in a plate one mil thick.
  • Diamond particles up to microns in size can be plated out at a current density as low as 2 amps/sq. ft.
  • diamond particles larger than microns are deposited with greater difficulty, even at high current densities.
  • the preferred metal matrix is one consisting essentially of nickel.
  • the diamond particles can be suspended in a variety of nickel baths. However, all of these baths are of the same general type, i.e., nearly neutral or slightly acid solutions in which the nickel is present principally as a single salt, usually the sulfate.
  • One bath which has been found especially effective contains ounces per gallon of NiSO 5 6 ounces per gallon of NiCl,, 5 6 ounces per gallon of H 30 100 carats per liter of diamond particles of an average diameter of 0.01 to 15 microns, and a pH of 3 6. This bath is operated at a current density of 50 amps/sq. ft.
  • Another nickel bath which produces excellent results consists of 45 ounces per gallon of NiSO 8 10 ounces per gallon of NiCl S 6 ounces per gallon of H 1 ounce per gallon of NH CI, carats of diamond particles of 0.01 to 30 microns average diameter, and a brightening agent of the sulfonimide type.
  • the bath is operated at a current density of 40 amps/sq. ft., at a temperature of 150 160 F., and at a pH of 2.5 3.0.
  • Still another nickel bath which has been found to be useful contains 26 ounces per gallon of NiSO 3.3 ounces per gallon of NH Cl, 4 ounces per gallon of H -,BO l00 carats per liter of micro-fine diamond particles, and a pH of 5.6 5.9. This bath is operated at a current density of 25 50 amps/sq. ft. at a temperature of M0 F.
  • a nickel bath which has been found to produce extremely fine grained nickel is one which contains 26 ounces per gallon of NiSO 23 ounces per gallon of NiCl, 2 ounces per gallon of NH Cl, 5 6 ounces per gallon of H 80 and a pH of 1.5. This bath is operated at a current density of 25 100 amps/sq. ft. and contains 1 l5 carats per liter of fine to micro-fine diamond particles.
  • nickel baths have a high metal (nickel) ion content.
  • fine diamond particles are, for the purposes of this invention, defined as those particles having an average diameter of from 1 micron to 30 microns, while micro-fine diamonds are those having an average diameter of from 0.01 micron to 1 micron.
  • the plate produced from the above described nickel baths has excellent adhesion to the substrate surfaces. Microscopic examination of the surface of the plate shows an orange peel effect. That is to say, the surface of the plate resembles an orange peel in that rather than being uniformly even it possesses concavities and convexities.
  • the diamond particles are distributed evenly throughout the concave and convex surface areas. It is the presence of the concave and convex surface areas that is thought to be responsible for decreasing the frictional forces between a surface in contact with the electroplated article. It is believed that air or oil and other lubricating agents are trapped in the concavities and thus have a lubricating or buoying effect when the two surfaces are in contact with each other. It is also likely that the nickel oxidizes to form a thin film of nickel oxide, especially on the convex areas, which also acts as a lubricant, thereby further reducing the frictional force.
  • the diamond particles are found to be aligned in a uniform configuration throughout the entire matrix.
  • the diamond particles are all aligned with their sharp, uneven or ragged edges directed toward the substrate surface while their rounded or even ends are aligned facing outwardly from the substrate metal and the matrix.
  • it is the smooth or rounded ends of the diamond particles rather than the sharp or ragged edges which come into contact with a corresponding surface. This too reduces the frictional forces as well as insuring that the contacting surface will not be scored or scratched by the diamonds rough edges.
  • the diamond containing plate which can be as thin as .000039 inch or as thick as 0.25 inch but which is usually kept at a thickness of 0.0001 inch, can be given a final chromium plate of about 0.2 mil thickness to protect the softer nickel or other matrix metal.
  • a method for electrodepositing a composite wearresistant plate consisting essentially of metal and diamond particles on the surface of an element comprising making said element a cathode in an electroplating bath of said metal having suspended therein diamond particles in the form of fine powder having a particle size from about 0.0l to about 30 microns average diameter and electrolyzing said bath with externally applied current of sufficient density to electrophoretically deposit said diamond particles and said metal in a composite plate on said surface while said diamond particles are suspended in said bath and while at the same time keeping said bath in a quiescent state.
  • the metal is selected from the group consisting of antimony, bismuth, cadmium, chromium, cobalt, copper, gold, indium, iron, lead, nickel, palladium, platinum, silver, tungsten, tin and zinc.
  • the metal is essentially nickel and wherein said' bath comprises at least one nickel salt selected from the group consisting of nickel sulfate and nickel chloride.
  • said diamond particles are particles of synthetic diamonds and further including magnetizing the cathode.
  • a composite wear resistant electroplate on a metal surface comprising diamond particles in a metal matrix, said particles having relativelysmooth and ragged surfaces and having an average particle diameter of from about 0.01 to 30 microns and being electrophoretically deposited in the matrix in a spatially oriented pattern wherein said smooth surfaces of said particles are directed outwardly from said metal surface and said ragged surfaces are directed inwardly toward said metal surface,made by a method comprising making said metal surface a cathode in an electroplating bath of said metal having suspended therein said diamond particles and electrolyzing said bath while said particles are in suspension and while keeping said bath in a quiescent state with externally applied current of sufficient density to electrophoretically deposit said diamond particles and metal on said surface in a composite electroplate.

Abstract

A process for producing an extremely hard and wear resistant coating on a basis metal comprising the electro-deposition of fine grained diamonds and diamond particles in a metal matrix upon said basis metal. The coating comprises a uniform electrolytic deposit of a metal matrix having embedded therein diamonds and diamond particles ranging between 0.01 micron to 30 microns in size.

Description

United States Patent 119.
Grutza Oct. 2 1973 WEAR RESISTANT DIAMOND COATING 3.640,?99 2/1972 Stephan et a1. 204/16 x AND METHOD OF APPLICATION 3,061.525 10/1962 Grazen .1 2(14/9 3,298,802 1/1967 Odekcrken. 29/194 [75] Inventor: Zigm n R- Gr z D tr i M h- 2,900707 11 1959 Brown 1 i v a 204/49 )1 Assigneez Dbcoat corporafion, Detroit Mich 3,449,223 (1/1969 Odekerken 2(14/41 [22] Filed: June 1971 Primary Examiner-G. L. Kaplan/ [211 App]. N 156,090 Attorney-L. Gaylord Hulbert ct a1.
[52] US. Cl. 29/195 C, 204/16, 204/45 R, [57] ABSTRACT 204/45 A, 204/46, 204/47, 204/48, 204/49, I 20450 R 20451 204/52 R 204/53 20454 A process for producing an extremely hard and wear y R 20'4/55 2O4/l 81 resistant coating on a basis metal comprising the elec- [SH hm Cl. 323p 5/00 C53J 5/02 C23b 5/08 tro-deposition of fine grained diamonds and diamond [58] Field of Search IIIIIIIIII 204,16 1 particles in a metal matrix upon said basis metal. The zigllgs coating comprises a uniform electrolytic depositof a metal matrix having embedded therein diamonds and [56] References Cited diamond particles ranging between 0.01 micron to 30 UNITED STATES PATENTS m'cmns 2,360,798 10/1944 Seligman et a1 204/16 11 Claims, N0 Drawings WEAR RESISTANT DIAMOND COATING AND METHOD OF APPLICATION BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to the field of electroplating and more particularly to the electrodeposition of fine to micro-fine diamonds and diamond particles on a basis metal. The imvention also relates to an electrolytic deposit of a metal matrix having occluded therein fine to micro-fine diamonds and diamond particles and to the plating baths from which the coating are deposited.
2. Description of the Prior Art It is well known in the electroplating field that the dispersion of certain solid and bath insoluble particles in an electroplating bath will result in the deposition on the basis metal of a coating of the metal of the electroplating bath having dispersed therein the particles of the solid material. The usual procedure has been to suspend in a nickel electroplating bath finely divided particles of certain metals and/or the bath insoluble oxides or salts of these metals. The coating thus produced usually enhances the appearance of the plated article or serves to protect the basis metal from corrosion. However, prior to the present invention, it was not known in the art to electrodeposit a metal matrix having embedded therein very fine diamonds upon the surface of an element to produce an extremely hard and wear resistant coating.
Previously, when it was desired to apply a diamond containing coating to the surface of an article, such as a grinding wheel dresser or the like, the surface was first coated with an adhesive and diamond particles were then sprinkled thereon or manually embedded therein. The diamonds were then rolled or pressed through the adhesive up against the surface of the article. This method, as well as the coating produced thereby, have several major disadvantages. One of these is that minor irregularities may be produced because of the differences in particle size which are inherent in any screening or sizing operations of the diamond particles. Another is the difficulty encountered in accurately positioning the diamonds so that their apexes project the desired amount out of the surface of the adhesive. A third is the difficulty of producing a coating containing more than one layer of diamonds embedded therein.
SUMMARY OF THE INVENTION The present invention comprises a method of forming a wear resistant coating on an article by the electrodeposition of fine and micro-fine diamond particles upon said article. The article to be plated is made a cathode and a layer which consists essentially of metal and of diamond particles is applied to the surface of the article by simultaneously electroplating said metal and electrophoretically depositing said diamonds from a bath consisting essentially of a salt or acid containing the metallic ion or radical in solution and of said diamonds in suspension.
The plate deposited by this method consists of a metal matrix containing occluded diamond particles. The diamonds are evenly and uniformly distributed throughout the metal matrix thus forming a uniform and continuous plate. The thickness of the deposit can be varied and is dependent on the factors of current strength and the time the article is left in the electrolyzed bath. The density or concentration of the diamonds occluded in the metal matrix can be varied by varying the amount of diamonds present in the plating bath. It is possible to obtain a very thin metal coating containing one layer of diamond particles or a thicker metal coating containing a plurality of layers.
The plating baths of the present invention consist of aqueous solution of the common electroplating metals such as cadmium, antimony, bismuth, chromium, cobalt, copper, gold, indium, iron, lead, nickel, palladium, platinum, rhodium, silver, tungsten, tin, zinc and the like. The metals are present in the form of soluble salts or acids. Various additives such as leveling and brightening agents may be added to these baths. The diamonds are suspended in the baths in the form of fine particles having an average diameter of from between sub-micron size to 30 microns, although sub-micron size particles, particles having an average diameter of less than 1 micron, are preferred as they produce fine and smooth plate. Diamond particles above l5 microns in diameter produce some roughness, especially on shelf areas where the particles can settle. With most of the baths the maximum improvement in wear resistance of the articles is attained when about 50 to carats (10 to 30 grams) per liter of the fine diamond particles are dispersed in the baths.
The coating formed by this method is extremely tough and wear resistant due to the occluded diamonds. Any articles that come in contact with other surfaces, such as the wear, cutting .or grinding surfaces of tools, tool parts, taps, knives, saws, die punches, gauges, shears, engine components and the like can be coated with this coating to prolong their useful operating lives by reducing wear and to reduce friction. Thus, for example, it has been found that a cigarette filter cutting blade coated with the diamond plate has a useful operating life up to four times greater than an untreated blade. It has also been found that the frictional forces between two surfaces coated with the coating of the present invention are substantially reduced.
The present invention also includes the electroplate comprising a metal matrix containing occluded diamond particles which is produced by the aforementioned method. Likewise included in the present invention are the various plating baths containing suspended therein the fine and micro-fine diamond particles. This invention also relates to various articles, such as cutting blades, drills, die punches, bearings, and the like having deposited on their surface a plate comprising a metal matrix containing occluded diamond particles.
The present invention has many advantages over other previous types of coatings. One of these lies in the extreme hardness possessed by the coating, said hardness due to the presence of diamond particles. Another advantage is that the diamond particles are uniformly distributed throughout the metal matrix. Still another advantage resides in the fact that the diamonds being deposited in the coating electrophorically rather than manually as in the prior art, they are generally of the same size, areaccurately positioned, and are identically oriented in the matrix.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In practice the article to be coated is made the cathode and immersed in a plating bath containing soluble metal salts or acids of the matrix metal. The cathode consists essentially of the matrix metal. The diamonds, which have been pretreated, are suspended in the bath in the form of fine bath insoluble particles and are kept in suspension by a period of initial agitation which is terminated when the solution is electrolyzed. The average particle diameter of the diamonds can be between 0.01 micron and 30 microns and preferably should not be greater than microns. This particle size has been found to be preferred and advantageous, with the most preferred particle being of sub-micron size averaging from about .01 to about 1 micron.
The concentrations of the diamond particles depend upon the type of bath in which they are dispersed and the density of the diamonds desired in the matrix. Thus in a Watts type nickel bath a concentration of 100 carats grams) per liter is found to give optimum results, producing a nickel matrix containing 40 percent diamond particles. In a chrome bath, on the other hand, it has been found that for optimum results a diamond concentration of about 150 carats per liter is necessary.
It has been found that the untreated diamonds may tend in some instances to agglomerate in the solution and to fonn roughness and lumpiness in the plate. To overcome this problem the diamonds are subjected to a special treatment before being introduced into the plating bath. The treatment consists of cleaning the diamonds by immersing them in hydrochloric acid. The diamonds are then cleaned a second time by immersion in a solution of sodium hydroxide. After the diamonds have been cleaned they are soaked in a solution of coumarin sulfate and sulfuric acid. The amount of time that the diamonds are soaked in the coumarin sulfate can be as long as 24 hours. The diamonds are then rinsed several times in water and thereafter are soaked in a wetting agent of the anionic type. After exposure to the wetting agent the diamonds are again rinsed with water. Finally the diamonds are air-dried and added to a concentrated solution of metallic salt or acid of the bath to be added immediately to the bath or stored for a period of time. Alternatively the treated diamonds can be added directly to the bath rather than to a concentrated solution of metal salt or acid of the metal. The treated diamonds are suspended in the bath at random and do not tend to agglomerate but plate out as discrete and individual particles.
The preferred metal matrix is one consisting essentially of nickel. But other metals, depending upon the purpose to which the coated surface is to be put, can be used. Among these metals are those that are used in the more common types of plating baths: antimony, bismuth, cadmium, chromium, cobalt, copper, gold, indium, iron, lead, palladium, platinum, silver, tungsten, tin and zinc.
Both natural and synthetic or man-made diamonds can be used in the present invention. It has been found, however, that the man-made diamonds plate out faster than do the natural diamonds. Thus, under identical conditions a solution having suspended therein manmade diamonds will produce a plate having a slightly greater diamond density than a plate produced from a solution having suspended therein natural diamond particles. This phenomena is greatly increased when the cathode is polarized. In order to increase the density of the diamond'particles in the matrix, in other words to increase the rate of co-deposition of diamonds, a magnet is attached to the cathode. The synthetic diamonds will then plate out at a rate approximately 25 to 50 percent higher than if the cathode was not polarized. The plate thus deposited will contain 25 to 50 percent more diamonds per unit area than one formed with an unpolarized electrode. However, if natural diamonds are used in a plating bath having a magnet attached to the cathode, the rate of co-deposition of the diamonds is not appreciably increased. This is thought to be a function of the mechanism by which the particles plate out. Although this mechanism is not clearly understood, it is possible that the adsorption of hydrogen ions and nickel ions by the particles would give the particles 21 positive charge and in this way they would tend to plate out. In addition, while naturally occurring diamonds are not semi-conductors, the manmade diamonds, due to the presence of small metal particles therein, are semi-conductors. Adding a magnet to the cathode also tends to produce a situation wherein two forces are acting on the synthetic diamonds; magnetic and electrical, while with natural diamonds only the electrical force is acting upon the diamonds. Nevertheless, regardless of the mechanism of the co-deposition of these particles and independent of whether they are naturally occurring or made-made, the deposition of the particles starts immediately and they plate out as uniform dispersions in the metal plate. Thus at any point in the plating procss the surface of the metal plate has distributed over its surface very many fine diamond particles in various stages of being embedded in the surface.
Below are listed examples of the baths of this invention in which the diamond particles are used.
EXAMPLE I Grams/liter NiSO, 300 450 NC], 30 30 45 Diamond particles, .01 to l micron average diameter 1 20 pH 2.5 4.0
EXAMPLE [I Grams/liter SbS, 40 60 Na,CO, ll0 Diamond particles. .0l to l5 microns average-diameter l 20 EXAMPLE lll Grams/liter BiO 30 50 HClO. I00 0 Diamond particles, .01 to 30 microns average diameter l 20 pH 2.0 5.0
EXAMPLE IV Grams/liter CrO; 250 450 H,S0 1.25 2.5 Lead Anode Cathode current density, amp/sq.
it, 60 pH acidic diamond particles, .Ol to 30 microns average diameter [0 30 EXAMPLE V Grams/liter CoSO;7H,O 500 NaCl H,BO,
Cathode current density,
amplsq.ft., 30 I65 diamond particles. .Ol to 30 microns average diameter EXAMPLE VI Cathode current density,
diamond particles, .01 to 30 microns average diameter KAu (cm, KCN Na,iiP0,-12H,0
EXAMPLE VII Cathode current density,
amp/sq.ft., l
diamond particles, .Ol to 30 microns average diameter Platinum anodes EXAMPLE VIII Cathode current density, amp/sq.
Diamond particles, .01 to 30 microns average diameter EXAMPLE IX Cathode current density, amp/sq.
Pb (OH), PbCO, HF (50 per cent) l-LBO,
EXAMPLE X Diamond particles, .0] to 30 microns average diameter EXAMPLE XI Palladium diamino nitrite Diamond particles, .01 to 30 microns average diameter EXAMPLE XII Platinum diamino nitrite NI'LNO; NaNO, NI-LOI-l Diamond particles, .01 to 30 microns average diameter SnCl, NiCl,
EXAMPLE XIII Grams/liter Grams/liter 2.1
Grams/liter 200 l-ZO Grams/liter I60 Grams/liter 150 240 I05 Grams/liter I Grams/liter 50 240 320 NILHF, 60 NH.OH to pH of 2.0 2.5 Diamond particles, .()l to 30 microns average diameter 1 20 EXAMPLE XIV A Grams/liter AgCN 35 KCN 37 z a 38 Cathode current density, amp/sq.
ft., 1 2 Diamond particles, .01 to 30 microns average diameter l 20 EXAMPLE XV Grams/liter NaCN CdO 30 Cathode current density, amp/sq.
ft., l0 l5 Diamond particles, .()l to 30 microns average diameter l 20 EXAMPLE XVI Grams/liter Sodium tungstate 38 Sodium hydroxide 60 Dextrose 60 Diamond particles, .0] to 30 microns average diameter 1 20 EXAMPLE XVII Grams/liter Zn (CN 60 NaCN 23 NaOH 53 Cathode current density, amp/sq.
ft., 8 20 Diamond particles, .Ol to 30 microns average diameter 1 20 In addition to the contents of the various plating baths as set forth in the above examples, the plating baths may also contain materials such as addition agents employed in small amounts to affect the crystalline nature of the deposit, brighteners, leveling agents, buffers to keep the solution at the desired pH, and salts which can increase the conductivity of the baths if the salt or acid containing the metallic ion or radical is not sufficiently conductive. The concentrations and proportions of the above, as well as the ingredients given in the foregoing examples, may be varied to produce different results. Thus for example, a common nickel plating solution may have the metal ion in the shape of NiSO NI-I Cl, or (NHhd 4), S0 to increase the conductivity of the bath; NiCl, to assist anode corrosion; H 30 which acts as a buffer to maintain the pH of the solution; a wide range of highmolecular-weight organic addition agents" such as organic sulfon compounds, examples of which are 0 or P-Toluene sulfonamide, o-Benzoyl sulfamide, O- benzoyl sulfimide, naphthalene, mono-, di-, or trisulfonic acid, sulfonated aryl aldehydes, etc. to give smoother and finer grained deposits; and brighteners such as cadmium sulfate. In the case of a tin bath the tin salt may be furnished by Na,Sn0,, the conducting salt by NaOH which also assists anode corrosion, the addition agent to effect the deposit being glucose or other organic materials. The bismuth bath may contain glue and cresol as addition agents; the cadmium bath may contain glue, casein, molasses and gorilac as addition agentsythe silver bath may contain small amounts of CS, as a brightener; and the tin bath may contain sodium acetate as a buffer.
The co-deposition rate of the diamonds is dependent on the size of the particles, their concentration in the solution, and the current density. Thus, for example, one carat of diamonds of microns average diameter in 5 milliliters of solution will plate out in such a manner that a 90 percent diamond concentration will result in a plate one mil thick. Diamond particles up to microns in size can be plated out at a current density as low as 2 amps/sq. ft. However, diamond particles larger than microns are deposited with greater difficulty, even at high current densities.
As mentioned previously, the preferred metal matrix is one consisting essentially of nickel. The diamond particles can be suspended in a variety of nickel baths. However, all of these baths are of the same general type, i.e., nearly neutral or slightly acid solutions in which the nickel is present principally as a single salt, usually the sulfate. One bath which has been found especially effective contains ounces per gallon of NiSO 5 6 ounces per gallon of NiCl,, 5 6 ounces per gallon of H 30 100 carats per liter of diamond particles of an average diameter of 0.01 to 15 microns, and a pH of 3 6. This bath is operated at a current density of 50 amps/sq. ft. and leveling agents such as sulfonated aryl aldehydes are maintained at 0.7%. Another nickel bath which produces excellent results consists of 45 ounces per gallon of NiSO 8 10 ounces per gallon of NiCl S 6 ounces per gallon of H 1 ounce per gallon of NH CI, carats of diamond particles of 0.01 to 30 microns average diameter, and a brightening agent of the sulfonimide type. The bath is operated at a current density of 40 amps/sq. ft., at a temperature of 150 160 F., and at a pH of 2.5 3.0. Still another nickel bath which has been found to be useful contains 26 ounces per gallon of NiSO 3.3 ounces per gallon of NH Cl, 4 ounces per gallon of H -,BO l00 carats per liter of micro-fine diamond particles, and a pH of 5.6 5.9. This bath is operated at a current density of 25 50 amps/sq. ft. at a temperature of M0 F. A nickel bath which has been found to produce extremely fine grained nickel is one which contains 26 ounces per gallon of NiSO 23 ounces per gallon of NiCl, 2 ounces per gallon of NH Cl, 5 6 ounces per gallon of H 80 and a pH of 1.5. This bath is operated at a current density of 25 100 amps/sq. ft. and contains 1 l5 carats per liter of fine to micro-fine diamond particles.
It will be noticed that all four of these nickel baths have a high metal (nickel) ion content. Furthermore, fine diamond particles are, for the purposes of this invention, defined as those particles having an average diameter of from 1 micron to 30 microns, while micro-fine diamonds are those having an average diameter of from 0.01 micron to 1 micron. With the aforementioned nickel baths operated under the described conditions a plate is formed which comprises approximately 60 percent nickel and 40 percent diamonds. This ratio can be varied as desired by changing the concentration of the diamond particles. The thickness of the plate can also be varied by varying the time and current density.
The plate produced from the above described nickel baths has excellent adhesion to the substrate surfaces. Microscopic examination of the surface of the plate shows an orange peel effect. That is to say, the surface of the plate resembles an orange peel in that rather than being uniformly even it possesses concavities and convexities. The diamond particles are distributed evenly throughout the concave and convex surface areas. It is the presence of the concave and convex surface areas that is thought to be responsible for decreasing the frictional forces between a surface in contact with the electroplated article. It is believed that air or oil and other lubricating agents are trapped in the concavities and thus have a lubricating or buoying effect when the two surfaces are in contact with each other. It is also likely that the nickel oxidizes to form a thin film of nickel oxide, especially on the convex areas, which also acts as a lubricant, thereby further reducing the frictional force.
The diamond particles are found to be aligned in a uniform configuration throughout the entire matrix. The diamond particles are all aligned with their sharp, uneven or ragged edges directed toward the substrate surface while their rounded or even ends are aligned facing outwardly from the substrate metal and the matrix. Thus it is the smooth or rounded ends of the diamond particles rather than the sharp or ragged edges which come into contact with a corresponding surface. This too reduces the frictional forces as well as insuring that the contacting surface will not be scored or scratched by the diamonds rough edges.
If desired, the diamond containing plate, which can be as thin as .000039 inch or as thick as 0.25 inch but which is usually kept at a thickness of 0.0001 inch, can be given a final chromium plate of about 0.2 mil thickness to protect the softer nickel or other matrix metal.
1 claim:
1. A method for electrodepositing a composite wearresistant plate consisting essentially of metal and diamond particles on the surface of an element comprising making said element a cathode in an electroplating bath of said metal having suspended therein diamond particles in the form of fine powder having a particle size from about 0.0l to about 30 microns average diameter and electrolyzing said bath with externally applied current of sufficient density to electrophoretically deposit said diamond particles and said metal in a composite plate on said surface while said diamond particles are suspended in said bath and while at the same time keeping said bath in a quiescent state.
2. The method as set forth in claim 1 wherein the metal is selected from the group consisting of antimony, bismuth, cadmium, chromium, cobalt, copper, gold, indium, iron, lead, nickel, palladium, platinum, silver, tungsten, tin and zinc.
3. The method as set forth in claim 1 wherein said diamonds are from approximately 0.01 micron to 15 microns average diameter.
4. The method as set forth in claim 1 wherein said diamonds are from approximately 0.01 micron to 1 micron average diameter.
5. The method as set forth in claim 1 wherein said bath contains suspended therein about carats per liter of diamond particles.
6. The method as set forth in claim 1 and further including the step of pretreating the diamond particles by washing the diamond particles, soaking said particles in 7. The method as set forth in claim 1 wherein the metal is essentially nickel and wherein said' bath comprises at least one nickel salt selected from the group consisting of nickel sulfate and nickel chloride.
8. The method as set forth in claim 1 wherein said diamond particles are particles of synthetic diamonds and further including magnetizing the cathode.
9. A composite wear resistant electroplate on a metal surface comprising diamond particles in a metal matrix, said particles having relativelysmooth and ragged surfaces and having an average particle diameter of from about 0.01 to 30 microns and being electrophoretically deposited in the matrix in a spatially oriented pattern wherein said smooth surfaces of said particles are directed outwardly from said metal surface and said ragged surfaces are directed inwardly toward said metal surface,made by a method comprising making said metal surface a cathode in an electroplating bath of said metal having suspended therein said diamond particles and electrolyzing said bath while said particles are in suspension and while keeping said bath in a quiescent state with externally applied current of sufficient density to electrophoretically deposit said diamond particles and metal on said surface in a composite electroplate.
10. The electroplate as set forth in claim 9 wherein said diamond particles are washed before being suspended in said electroplating bath.
11. The electroplate as set forth in claim 9 wherein said diamond particles are particles of synthetic diamonds and the method of making includes magnetizing the cathode.
k i t t i

Claims (10)

  1. 2. The method as set forth in claim 1 wherein the metal is selected from the group consisting of antimony, bismuth, cadmium, chromium, cobalt, copper, gold, indium, iron, lead, nickel, palladium, platinum, silver, tungsten, tin and zinc.
  2. 3. The method as set forth in claim 1 wherein said diamonds are from approximately 0.01 micron to 15 microns average diameter.
  3. 4. The method as set forth in claim 1 wherein said diamonds are from approximately 0.01 micron to 1 micron average diameter.
  4. 5. The method as set forth in claim 1 wherein said bath contains suspended therein about 150 carats per liter of diamond particles.
  5. 6. The method as set forth in claim 1 and further including the step of pretreating the diamond particles by washing the diamond particles, soaking said particles in a wetting agent of the anionic type, and rinsing said particles in water before suspending said particles in said bath.
  6. 7. The method as set forth in claim 1 wherein the metal is essentially nickel and wherein said bath comprises at least one nickel salt selected from the group consisting of nickel sulfate and nickel chloride.
  7. 8. The method as set forth in claim 1 wherein said diamond particles are particles of synthetic diamonds and further including magnetizing the cathode.
  8. 9. A composite wear resistant electroplate on a metal surface comprising diamond particles in a metal matrix, said particles having relatively smooth and ragged surfaces and having an average particle diameter of from about 0.01 to 30 microns and being electrophoretically deposited in the matrix in a spatially oriented pattern wherein said smooth surfaces of said particles are directed outwardly from said metal surface and said ragged surfaces are directed inwardly toward said metal surface,made by a method comprising making said metal surface a cathode in an electroplating bath of said metal having suspended therein said diamond particles and eleCtrolyzing said bath while said particles are in suspension and while keeping said bath in a quiescent state with externally applied current of sufficient density to electrophoretically deposit said diamond particles and metal on said surface in a composite electroplate.
  9. 10. The electroplate as set forth in claim 9 wherein said diamond particles are washed before being suspended in said electroplating bath.
  10. 11. The electroplate as set forth in claim 9 wherein said diamond particles are particles of synthetic diamonds and the method of making includes magnetizing the cathode.
US00156090A 1971-06-23 1971-06-23 Wear resistant diamond coating and method of application Expired - Lifetime US3762882A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15609071A 1971-06-23 1971-06-23

Publications (1)

Publication Number Publication Date
US3762882A true US3762882A (en) 1973-10-02

Family

ID=22558053

Family Applications (1)

Application Number Title Priority Date Filing Date
US00156090A Expired - Lifetime US3762882A (en) 1971-06-23 1971-06-23 Wear resistant diamond coating and method of application

Country Status (6)

Country Link
US (1) US3762882A (en)
CA (1) CA1018474A (en)
DE (1) DE2230676A1 (en)
FR (1) FR2143332B1 (en)
GB (1) GB1391001A (en)
IT (1) IT958494B (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868311A (en) * 1971-11-09 1975-02-25 Citroen Sa Methods for the formation on a wall exposed to frictional forces and belonging to a light alloy element, of a wear-resistant composite coating metallic
US3904490A (en) * 1973-10-05 1975-09-09 Suzuki Motor Co Method of promoting the dispersion of solid particles in an electrolytic bath for composite electroplating of metals
US3945893A (en) * 1972-12-30 1976-03-23 Suzuki Motor Company Limited Process for forming low-abrasion surface layers on metal objects
US4197902A (en) * 1976-07-31 1980-04-15 Kabel-Und Metallwerke Gutehoffnungshuette Ag Molds for continuous casting of metals
US4659436A (en) * 1986-02-24 1987-04-21 Augustus Worx, Inc. Particulate diamond-coated metal article with high resistance to stress cracking and process therefor
US5334809A (en) * 1990-02-14 1994-08-02 Particle Interconnect, Inc. Particle enhanced joining of metal surfaces
US5453293A (en) * 1991-07-17 1995-09-26 Beane; Alan F. Methods of manufacturing coated particles having desired values of intrinsic properties and methods of applying the coated particles to objects
US5512163A (en) * 1992-06-08 1996-04-30 Motorola, Inc. Method for forming a planarization etch stop
US5614320A (en) * 1991-07-17 1997-03-25 Beane; Alan F. Particles having engineered properties
DE10125289A1 (en) * 2001-05-15 2002-11-28 Siemens Ag Production of an abrasion resistant galvanic layer on parts comprises dispersing nano-dispersants in water to form a nano-dispersant suspension, adding the suspension to a precious metal electrolyte
EP1398399A1 (en) * 2002-06-13 2004-03-17 Fujimura, Tadamasa A metal thin film comprising super-fine diamond particles, a metal material having the metal film, and a method for producing the same
US20040109787A1 (en) * 1999-05-04 2004-06-10 Haszler Alfred Johann Peter Exfoliation resistant aluminium-magnesium alloy
US20040124285A1 (en) * 2001-06-08 2004-07-01 Shigenobu Kushihashi Fluid application device
DE10125290B4 (en) * 2001-05-15 2005-04-14 Siemens Ag Process for the preparation of nano-dispersants
US20050112399A1 (en) * 2003-11-21 2005-05-26 Gray Dennis M. Erosion resistant coatings and methods thereof
US20050173834A1 (en) * 2004-02-11 2005-08-11 Diamond Innovations, Inc. Product forming molds and methods to manufacture same
EP1590099A1 (en) * 2003-02-07 2005-11-02 Diamond Innovations, Inc. Process equipment wear surfaces of extended resistance and methods for their manufacture
EP1685922A1 (en) * 2005-02-01 2006-08-02 Pace, Incorporated Soldering tip with wear- and corrosion resistant coating containing dispersed hard particles
US20060208151A1 (en) * 2005-03-16 2006-09-21 Diamond Innovations, Inc. Wear and texture coatings for components used in manufacturing glass light bulbs
US20070009731A1 (en) * 2005-03-16 2007-01-11 Dumm Timothy F Lubricious coatings
JP2009161850A (en) * 2007-08-28 2009-07-23 Rohm & Haas Electronic Materials Llc Electrochemically deposited indium composite
US20100068524A1 (en) * 2008-09-16 2010-03-18 Diamond Innovations, Inc. Abrasive particles having a unique morphology
US20100275522A1 (en) * 2009-05-01 2010-11-04 Shin-Etsu Chemical Co., Ltd. Method and jig assembly for manufacturing outer blade cutting wheel
US20100323213A1 (en) * 2009-06-19 2010-12-23 Trevor Aitchison Multilayer overlays and methods for applying multilayer overlays
US20120001360A1 (en) * 2010-07-01 2012-01-05 County Materials Corporation Concrete block mold with diamond insert
US8197661B1 (en) * 2003-08-05 2012-06-12 Leonard Nanis Method for fabricating sputter targets
US20120276403A1 (en) * 2010-02-04 2012-11-01 Kazushi Nakagawa Heat sink material
US20120304545A1 (en) * 2010-02-12 2012-12-06 Neoenbiz Nano-diamond dispersion solution and method for preparing same
US8459380B2 (en) 2008-08-22 2013-06-11 TDY Industries, LLC Earth-boring bits and other parts including cemented carbide
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US8697258B2 (en) 2006-10-25 2014-04-15 Kennametal Inc. Articles having improved resistance to thermal cracking
EP2269953A3 (en) * 2001-08-30 2014-04-16 Tadamasa Fujimura Stable aqueous suspension liquid of finely divided particles metallic film containing diamond particles and method of producing the same
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US8789625B2 (en) 2006-04-27 2014-07-29 Kennametal Inc. Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8800848B2 (en) 2011-08-31 2014-08-12 Kennametal Inc. Methods of forming wear resistant layers on metallic surfaces
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
US9095914B2 (en) 2008-09-16 2015-08-04 Diamond Innnovations Inc Precision wire saw including surface modified diamond
US20170044680A1 (en) * 2015-08-14 2017-02-16 University Of Cincinnati Additive manufacturing by localized electrochemical deposition
US9643236B2 (en) 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same
CN106947986A (en) * 2011-09-14 2017-07-14 克斯塔里克公司 Coat product, electrodeposition bath and related system
EP3266406A1 (en) * 2016-07-04 2018-01-10 Coltène/Whaledent AG Dental instrument
US9873827B2 (en) 2014-10-21 2018-01-23 Baker Hughes Incorporated Methods of recovering hydrocarbons using suspensions for enhanced hydrocarbon recovery
CH713746A1 (en) * 2017-04-28 2018-10-31 Montblanc Montre Sa Method of depositing a gold coating on an article and article obtained by this method
US10155899B2 (en) 2015-06-19 2018-12-18 Baker Hughes Incorporated Methods of forming suspensions and methods for recovery of hydrocarbon material from subterranean formations
US10167392B2 (en) 2014-10-31 2019-01-01 Baker Hughes Incorporated Compositions of coated diamond nanoparticles, methods of forming coated diamond nanoparticles, and methods of forming coatings
US10669635B2 (en) 2014-09-18 2020-06-02 Baker Hughes, A Ge Company, Llc Methods of coating substrates with composite coatings of diamond nanoparticles and metal

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2443238B2 (en) * 1974-09-10 1980-03-20 Fag Kugelfischer Georg Schaefer & Co, 8720 Schweinfurt Friction rotor for frictional false twisting of synthetic threads
DE2924507A1 (en) * 1979-06-18 1981-01-15 Rudolf Paul Fritsch MEASURING SCREW MACHINE FOR MACHINING SHEET-CAPABLE, PLASTIC OR TOOTH-VISCOSED
DE3531410A1 (en) * 1985-09-03 1987-03-05 Goetze Ag GALVANIC HARD CHROME LAYER
KR910003131B1 (en) * 1987-03-10 1991-05-20 미쯔비시주우고오교오 가부시기가이샤 Electro deposited grindstone
DE3912681A1 (en) * 1989-04-18 1990-10-25 Winter & Sohn Ernst METHOD FOR GALVANIC COATING OF SEGMENT SURFACES ARRANGED ON THE SURFACE OF A BASIC BODY AND PRODUCTS PRODUCED AFTER THAT
DE19521323A1 (en) * 1995-06-12 1996-12-19 Abb Management Ag Part with a galvanically applied coating and method for producing galvanic layers
EP0841414B2 (en) 1996-11-11 2005-03-02 Teikoku Piston Ring Co., LTd. Composite chromium plating film and sliding member covered thereof
DE102008056741A1 (en) * 2008-11-11 2010-05-12 Mtu Aero Engines Gmbh Wear protection layer for Tial
RU2487201C1 (en) * 2012-06-04 2013-07-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Method of producing galvanic composite coating containing nanodiamond powder
RU2585608C1 (en) * 2015-03-03 2016-05-27 Федеральное государственное унитарное предприятие "Специальное конструкторско-технологическое бюро "Технолог" Method of producing electrochemical chromium-diamond coating

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868311A (en) * 1971-11-09 1975-02-25 Citroen Sa Methods for the formation on a wall exposed to frictional forces and belonging to a light alloy element, of a wear-resistant composite coating metallic
US3945893A (en) * 1972-12-30 1976-03-23 Suzuki Motor Company Limited Process for forming low-abrasion surface layers on metal objects
US3904490A (en) * 1973-10-05 1975-09-09 Suzuki Motor Co Method of promoting the dispersion of solid particles in an electrolytic bath for composite electroplating of metals
US4197902A (en) * 1976-07-31 1980-04-15 Kabel-Und Metallwerke Gutehoffnungshuette Ag Molds for continuous casting of metals
US4659436A (en) * 1986-02-24 1987-04-21 Augustus Worx, Inc. Particulate diamond-coated metal article with high resistance to stress cracking and process therefor
WO1987005058A1 (en) * 1986-02-24 1987-08-27 Augustus Worx, Inc. Particulate diamond-coated metal article with high resistance to stress cracking and process therefor
US5835359A (en) * 1990-02-14 1998-11-10 Particle Interconnect Corporation Electrical interconnect using particle enhanced joining of metal surfaces
US5334809A (en) * 1990-02-14 1994-08-02 Particle Interconnect, Inc. Particle enhanced joining of metal surfaces
US5601924A (en) * 1991-07-17 1997-02-11 Materials Innovation Inc. Manufacturing particles and articles having engineered properties
US5614320A (en) * 1991-07-17 1997-03-25 Beane; Alan F. Particles having engineered properties
US5820721A (en) * 1991-07-17 1998-10-13 Beane; Alan F. Manufacturing particles and articles having engineered properties
US6162497A (en) * 1991-07-17 2000-12-19 Materials Innovation, Inc. Manufacturing particles and articles having engineered properties
US5453293A (en) * 1991-07-17 1995-09-26 Beane; Alan F. Methods of manufacturing coated particles having desired values of intrinsic properties and methods of applying the coated particles to objects
US5512163A (en) * 1992-06-08 1996-04-30 Motorola, Inc. Method for forming a planarization etch stop
US20040109787A1 (en) * 1999-05-04 2004-06-10 Haszler Alfred Johann Peter Exfoliation resistant aluminium-magnesium alloy
DE10125290B4 (en) * 2001-05-15 2005-04-14 Siemens Ag Process for the preparation of nano-dispersants
DE10125289B4 (en) * 2001-05-15 2005-04-07 Siemens Ag Method for producing an abrasion-resistant, galvanic layer on parts
DE10125289A1 (en) * 2001-05-15 2002-11-28 Siemens Ag Production of an abrasion resistant galvanic layer on parts comprises dispersing nano-dispersants in water to form a nano-dispersant suspension, adding the suspension to a precious metal electrolyte
US20040124285A1 (en) * 2001-06-08 2004-07-01 Shigenobu Kushihashi Fluid application device
US7101439B2 (en) * 2001-06-08 2006-09-05 Japan Tobacco Inc. Fluid application device
EP2269952A3 (en) * 2001-08-30 2014-04-16 Tadamasa Fujimura Stable aqueous suspension liquid of finely divided particles metallic film containing diamond particles and method of producing the same
EP2269953A3 (en) * 2001-08-30 2014-04-16 Tadamasa Fujimura Stable aqueous suspension liquid of finely divided particles metallic film containing diamond particles and method of producing the same
EP1398399A1 (en) * 2002-06-13 2004-03-17 Fujimura, Tadamasa A metal thin film comprising super-fine diamond particles, a metal material having the metal film, and a method for producing the same
EP1590099A1 (en) * 2003-02-07 2005-11-02 Diamond Innovations, Inc. Process equipment wear surfaces of extended resistance and methods for their manufacture
EP1590099A4 (en) * 2003-02-07 2009-08-05 Diamond Innovations Inc Process equipment wear surfaces of extended resistance and methods for their manufacture
US8105692B2 (en) 2003-02-07 2012-01-31 Diamond Innovations Inc. Process equipment wear surfaces of extended resistance and methods for their manufacture
US8197661B1 (en) * 2003-08-05 2012-06-12 Leonard Nanis Method for fabricating sputter targets
US20050112399A1 (en) * 2003-11-21 2005-05-26 Gray Dennis M. Erosion resistant coatings and methods thereof
US7377477B2 (en) * 2004-02-11 2008-05-27 Diamond Innovations, Inc. Product forming molds and methods to manufacture same
US20050173834A1 (en) * 2004-02-11 2005-08-11 Diamond Innovations, Inc. Product forming molds and methods to manufacture same
EP1685922A1 (en) * 2005-02-01 2006-08-02 Pace, Incorporated Soldering tip with wear- and corrosion resistant coating containing dispersed hard particles
US20060169744A1 (en) * 2005-02-01 2006-08-03 Pace, Incorporated Soldering tip with wear-and corrosion resistant coating
US7732058B2 (en) * 2005-03-16 2010-06-08 Diamond Innovations, Inc. Lubricious coatings
US20060208151A1 (en) * 2005-03-16 2006-09-21 Diamond Innovations, Inc. Wear and texture coatings for components used in manufacturing glass light bulbs
US7562858B2 (en) * 2005-03-16 2009-07-21 Diamond Innovations, Inc. Wear and texture coatings for components used in manufacturing glass light bulbs
US20070009731A1 (en) * 2005-03-16 2007-01-11 Dumm Timothy F Lubricious coatings
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US8808591B2 (en) 2005-06-27 2014-08-19 Kennametal Inc. Coextrusion fabrication method
US8789625B2 (en) 2006-04-27 2014-07-29 Kennametal Inc. Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8697258B2 (en) 2006-10-25 2014-04-15 Kennametal Inc. Articles having improved resistance to thermal cracking
US8841005B2 (en) 2006-10-25 2014-09-23 Kennametal Inc. Articles having improved resistance to thermal cracking
US9228092B2 (en) 2007-08-28 2016-01-05 Rohm And Haas Electronic Materials Llc Electrochemically deposited indium composites
JP2013127123A (en) * 2007-08-28 2013-06-27 Rohm & Haas Electronic Materials Llc Electrochemically deposited indium composites
JP2014209655A (en) * 2007-08-28 2014-11-06 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Electrochemically deposited indium composites
JP2009161850A (en) * 2007-08-28 2009-07-23 Rohm & Haas Electronic Materials Llc Electrochemically deposited indium composite
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US8459380B2 (en) 2008-08-22 2013-06-11 TDY Industries, LLC Earth-boring bits and other parts including cemented carbide
US9382463B2 (en) 2008-09-16 2016-07-05 Diamond Innovations Inc Abrasive particles having a unique morphology
US9982176B2 (en) 2008-09-16 2018-05-29 Diamond Innovations Inc. Abrasive particles having a unique morphology
US9095914B2 (en) 2008-09-16 2015-08-04 Diamond Innnovations Inc Precision wire saw including surface modified diamond
US8927101B2 (en) 2008-09-16 2015-01-06 Diamond Innovations, Inc Abrasive particles having a unique morphology
US20100068524A1 (en) * 2008-09-16 2010-03-18 Diamond Innovations, Inc. Abrasive particles having a unique morphology
US8753412B2 (en) 2009-05-01 2014-06-17 Shin-Etsu Chemical Co., Ltd. Method and jig assembly for manufacturing outer blade cutting wheel
EP2260963A1 (en) * 2009-05-01 2010-12-15 Shin-Etsu Chemical Co., Ltd. Method and jig assembly for manufacturing outer blade cutting wheel
US20100275522A1 (en) * 2009-05-01 2010-11-04 Shin-Etsu Chemical Co., Ltd. Method and jig assembly for manufacturing outer blade cutting wheel
US9156098B2 (en) 2009-05-01 2015-10-13 Shin-Etsu Chemical Co., Ltd. Method and jig assembly for manufacturing outer blade cutting wheel
US20100323213A1 (en) * 2009-06-19 2010-12-23 Trevor Aitchison Multilayer overlays and methods for applying multilayer overlays
US9050673B2 (en) 2009-06-19 2015-06-09 Extreme Surface Protection Ltd. Multilayer overlays and methods for applying multilayer overlays
US9643236B2 (en) 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same
US20120276403A1 (en) * 2010-02-04 2012-11-01 Kazushi Nakagawa Heat sink material
US9771268B2 (en) * 2010-02-12 2017-09-26 Neoenbiz Nano-diamond dispersion solution and method for preparing same
US20160002050A1 (en) * 2010-02-12 2016-01-07 Neoenbiz Nano-diamond dispersion solution and method for preparing same
US9096438B2 (en) * 2010-02-12 2015-08-04 Neoenbiz Nano-diamond dispersion solution and method for preparing same
US20120304545A1 (en) * 2010-02-12 2012-12-06 Neoenbiz Nano-diamond dispersion solution and method for preparing same
US20120001360A1 (en) * 2010-07-01 2012-01-05 County Materials Corporation Concrete block mold with diamond insert
US8800848B2 (en) 2011-08-31 2014-08-12 Kennametal Inc. Methods of forming wear resistant layers on metallic surfaces
CN106947986A (en) * 2011-09-14 2017-07-14 克斯塔里克公司 Coat product, electrodeposition bath and related system
CN106947986B (en) * 2011-09-14 2019-07-19 克斯塔里克公司 Coat product, electrodeposition bath and related system
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
US10669635B2 (en) 2014-09-18 2020-06-02 Baker Hughes, A Ge Company, Llc Methods of coating substrates with composite coatings of diamond nanoparticles and metal
US9873827B2 (en) 2014-10-21 2018-01-23 Baker Hughes Incorporated Methods of recovering hydrocarbons using suspensions for enhanced hydrocarbon recovery
US10167392B2 (en) 2014-10-31 2019-01-01 Baker Hughes Incorporated Compositions of coated diamond nanoparticles, methods of forming coated diamond nanoparticles, and methods of forming coatings
US10155899B2 (en) 2015-06-19 2018-12-18 Baker Hughes Incorporated Methods of forming suspensions and methods for recovery of hydrocarbon material from subterranean formations
US20170044680A1 (en) * 2015-08-14 2017-02-16 University Of Cincinnati Additive manufacturing by localized electrochemical deposition
US10501857B2 (en) * 2015-08-14 2019-12-10 University Of Cincinnati Additive manufacturing by localized electrochemical deposition
EP3266406A1 (en) * 2016-07-04 2018-01-10 Coltène/Whaledent AG Dental instrument
US10716644B2 (en) 2016-07-04 2020-07-21 Coltène/Whaledent Ag Dental instrument
WO2018198065A1 (en) * 2017-04-28 2018-11-01 Montblanc Montre Sa Method for hardening a layer of gold forming a coating on an item and item obtained by said method
CH713746A1 (en) * 2017-04-28 2018-10-31 Montblanc Montre Sa Method of depositing a gold coating on an article and article obtained by this method

Also Published As

Publication number Publication date
DE2230676A1 (en) 1973-01-11
GB1391001A (en) 1975-04-16
IT958494B (en) 1973-10-20
FR2143332B1 (en) 1977-12-23
FR2143332A1 (en) 1973-02-02
CA1018474A (en) 1977-10-04

Similar Documents

Publication Publication Date Title
US3762882A (en) Wear resistant diamond coating and method of application
US3152971A (en) Electrodeposition of fine-grained lustrous nickel
US3268307A (en) Process of electrodepositing a corrosion resistant nickel-chromium coating and products thereof
US3925170A (en) Method and composition for producing bright palladium electrodepositions
US4160707A (en) Process for applying coatings containing both a metal and a synthetic resin
GB1561907A (en) Electroplating methods
US3449223A (en) Method for covering objects with a decorative bright nickel/chromium coating,as well as objects covered by applying this method
Schwartz Deposition from aqueous solutions: an overview
US3866289A (en) Micro-porous chromium on nickel-cobalt duplex composite plates
US4554219A (en) Synergistic brightener combination for amorphous nickel phosphorus electroplatings
US4036709A (en) Electroplating nickel, cobalt, nickel-cobalt alloys and binary or ternary alloys of nickel, cobalt and iron
US3697391A (en) Electroplating processes and compositions
US3920468A (en) Electrodeposition of films of particles on cathodes
US3691027A (en) Method of producing corrosion resistant chromium plated articles
US3298802A (en) Method for covering objects with a decorative bright-nickel/chromium coating, as well as objects covered by applying this method
Srivastava et al. Electrodeposition of binary alloys: an account of recent developments
GB2030596A (en) Combined method of electroplating and deplating electroplated ferrous based wire
US3500537A (en) Method of making palladium coated electrical contacts
US3356467A (en) Article coated with a coelectrodeposit of nickel and plastic particles, an overlayerthereon, and method of making said article
US4610763A (en) Electrodeposition of chromium and chromium bearing alloys
US3687824A (en) Electrodeposition of films of particles on cathodes
CN115787012A (en) Preparation method of low-stress self-lubricating high-tungsten Ni-W alloy coating
US6827834B2 (en) Non-cyanide copper plating process for zinc and zinc alloys
US2694041A (en) Electrodeposition of nickel
US4435254A (en) Bright nickel electroplating