US3774856A - Ball mills with superellipsoidal balls - Google Patents

Ball mills with superellipsoidal balls Download PDF

Info

Publication number
US3774856A
US3774856A US00187049A US3774856DA US3774856A US 3774856 A US3774856 A US 3774856A US 00187049 A US00187049 A US 00187049A US 3774856D A US3774856D A US 3774856DA US 3774856 A US3774856 A US 3774856A
Authority
US
United States
Prior art keywords
balls
super
ball
drum
superellipsoidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00187049A
Inventor
F Hamilton
T Calcott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commonwealth Steel Co Pty Ltd
Original Assignee
Commonwealth Steel Co Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commonwealth Steel Co Pty Ltd filed Critical Commonwealth Steel Co Pty Ltd
Application granted granted Critical
Publication of US3774856A publication Critical patent/US3774856A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/20Disintegrating members

Definitions

  • ABSTRACT A ball type grinding mill, in which the balls are superellipsoids of such a shape that the Surface of the ball in each octant of a Cartesian coordinate system has x, y and z axes which are defined by the formula wherein a, b, c, 11,, n and n are constants, a is unequal to b, and n 11 and 11 each have a minimum value greater than 2.
  • n n and n each have a maximum value of 4 and most preferably in the range 2.1-4.0.
  • the ratio between at least two of-the constants a, b and c be greater than 1 and less than 2, and more particularly the ratio between a and b may advantageously equal 4 to 3 when b equals 6 Claims, 3 Drawing Figures
  • This application is a continuation-in-part of our copending application Ser. No. 789,719, filed Jan. 8, 1969, now abandoned.
  • the invention relates to ball type grinding mills for the grinding of materials in either wet or dry state.
  • ball is used as denoting the loose objects, also known as grinding media, within the rotating or otherwise moving part of the mill which perform the grinding operation.
  • Such balls have heretofore been used in a variety of shapes.
  • Such balls may be made in'various manners, including forging, upsetting or molding, and the materials used to make such objects may be steel, flint, ceramic,
  • the balls have to be replaced from time to time because they wear away mechanically and are also sub ject to chemical corrosion, and this replacement is a considerable item'of expense.
  • the object of the present invention is to provide balls of a ball mill with improved shape which are more economical to manufacture and more efficient in operation.
  • a circle when modified in shape by partial symmetrical deformation from four equally spaced directions (whilst retaining an approximately or totally convex form) is known and herein referred to as a supercircle".
  • a symmetrically deformed ellipse is known 'and referred to as a super-ellipse, the supercircle being a special form of super-ellipse.
  • Correspondingly shaped solid bodies are known and herein referred to as "super-spheres and super-ellipsoids.
  • x, y and: are rectangular Cartesian where a does not equal b but where b may equal c. This may be regarded as a special form of the more general super-ellipsoid. Also, as in the derivation of any ellipsoid or super-ellipsoid, the powers n n and n need not be equal one to another.
  • a superellipsoid may therefore be defined as a derivative of the above general formula for all conditions other than "where 1 b c and m, n, and n each have a value equal to or less than 2.
  • n is not equal to a mul iple of v if the rmula is employed tederlve super-ellipsoid octant by eetent. That is, a complete super-ellipsoid may be derived to occupy a complete Cartesian space by eonltruetlng one eetent of the super-ellipsoid and reflec in time into the remalnlng'seven ectantn of the Cartelill'i space.
  • Super-ellipsoids hereinafter referred to in conjunction with the general formula should be understood as so constructed.
  • the present invention therefore provides a ball type grinding mill in which the balls are of such ashape that the surface thereof in each octant ofta Cartesian coordinate system having x, y and z axes can be expressed by the formula drawings, in which FIG. 1 is an exemplary outline of a ball for use in a grinding mill according to the invention, and whichhas the shape of a super-ellipsoid,
  • FIG. 2 is a mathematical diagram embodying the outline of FIG. 1, and
  • FIG. 3 is a perspective view of an embodiment .ofa ball mill according to the invention, with partswcut away.
  • FIG. 1 may be regarded as a super-ellipse .perseuor as an elevation of a super-ellipsoid generated .by rotating the super-ellipse about its major axis. Also of course, it is a section on any plane passing through such major axis.
  • FIG. 2 a pair of Cartesian axesare depicted having two co-ordinates x and y, and a superellipse curve is depicted at 10.
  • FIG.3 An example of a ball mill suitable forthe purpose is shown in general outline in FIG.3 and comprises a drum D which is mounted in alined bearings 20,22 for rotation on a horizontal axis. The bearings are supported on base posts 24 and 26, respectively.
  • the drum D has an inlet or feed and portion 28 and an outlet or discharge end portion 30, and the portion of the drum between the bearings 20,22 comprises a middle cylindrical section 32 and twoconical end sections 34,36 which converge from said middle section 32 towards the inlet end portiortk28and the outletend portion 30, respectively.
  • a gearwheel 38-is secured to the drum Hand is concentrical therewith. Said, gear wheel 38 is adapted for mashing engagement with a tion 32 is providedwith an opening covered by. a removable cover member 40.
  • the drum D is tare-charged with a multiplicity of grinding mill balls 42 of the kind described above which may have been introduced through the feed end portion 28 or through the opening having the cover member 40 upon removal of said cover member.
  • the balls of the inventive shape tend to align themselves end to endand side by side which serves to delay wear and to preserve the shape even under wear.
  • the balls have a smaller peripheral dimension than spherical balls of the same weight and they thereby impart a greater amount of energy per unit area on impact with the material in the drum than spherical or avoid balls, as generally employed in the art.
  • the individual balls are readily subjected to rotational movements in the drum, particularly about their longer axes.
  • the invention is restricted to the use of balls in the shape of super-ellipsoids in which n,, n and u each has a value of 2.1 to 4.0, and the ratio between the larger and smaller of at least one pair of semi-axes (a, b, c) lies between I and 2.
  • a very desirable set of rati os is b/c; and a/b j/ We claim? l.
  • a ball type grinding mill in which the ballsare superellipsoids of such a shape that the surface of the ball in each octant of a Cartesian coordinate system has 1:, y and z axes which are defined by the formula a ll P ndi asset i i'thins a m 1,
  • n and n each have a maximum value of 4.

Abstract

A BALL TYPE GRINDING MILL, IN WHICH THE BALLS ARE SUPERLLIPSOIDS OF SUCH A SHAPE THAT THE SURFACE OF THE BALL IN EACH OCTANT OF A CARTESIAN COORDINATE SYSTEM HAS X,Y AND Z AXES WHICH ARE DEFINED BY THE FORMULA-

(X/A)N+(Y/B)N+(Z/X)N=1,

WHEREIN A, B, C, N1, N2 ARE CONSTANTS, A IS UNEQUAL TO B, AND N1 N2 AND N3 EACH HAVE A MINIMUM VALUE GREATER THAN 2, PREFERABLY N1, N2 AND N3 EACH HAVE A MAXIMUM VALUE OF 4 AND MOST PREFERABLY IN THE RANGE 2.1-4.0. IT IS ALSO PREFERABLE THATY THE RATIO BETWEEN AT LEAST TWO OF THE CONSTANTS A,B AND C BE GREATER THAN 1 AND LESS THAN 2, AND MORE PARTICULARLY THE RATIO BETWEEN A AND B MAY ADVANTAGEOUSLY EQUAL 4 TO 3 WHEN B EQUALS C.

Description

United States Patent 11 1 Hamilton et al.
[ BALL MILLS WITH SUPERELLIPSOIDAL BALLS [75] Inventors: Frank Alexander Hamilton, Dudley,
New South Wales; Thomas George Calcott, Mayfield, New South Wales, bothof Australia [73] Assignee: Commonwealth Steel Company Limited, Waratah, New South Wales, Australia 221 Filed: Oct. 6, 1971 211 Appl.No.: 187,049
[30] Foreign Application Priority Data Jan. 12,1968 Australia .......,,.32 310/6s [521 US. Cl. 241/176, 241/184 51] int. Cl. B026 17/10, B02 17/20 53 FieldofSearch.....241/170-178, 184;5l/164.5
[56] References Cited UNITED STATES PATENTS 1,133,368 3/1915 De Vilbiss 51/1645 FOREIGN PATENTS OR APPLICATIONS 246,653 4/1926 Italy 241/184 8/1961 Germany 51/1645 OTHER PUBLICATIONS Bell, R. J. T., An Elementary Treatise On Coordinate Geometry Of Three Dimensions, Macmillan & Co., Ltd., 1910, pp. 9 & 83, Sci. Lib. QA553B4.
Gardner, M.; Scientific American, ,Mathematical Games; Sept., 1965, pp. 222, 224, 226,228, 230, 232, 234; Sci. Lib. T1.S5.
Primary Examiner-Donald G. Ke lly Att0rney-Benjamin H. Sherman et al.
[57] ABSTRACT A ball type grinding mill, in which the balls are superellipsoids of such a shape that the Surface of the ball in each octant of a Cartesian coordinate system has x, y and z axes which are defined by the formula wherein a, b, c, 11,, n and n are constants, a is unequal to b, and n 11 and 11 each have a minimum value greater than 2. Preferably n n and n each have a maximum value of 4 and most preferably in the range 2.1-4.0. It is'also preferable that the ratio between at least two of-the constants a, b and c be greater than 1 and less than 2, and more particularly the ratio between a and b may advantageously equal 4 to 3 when b equals 6 Claims, 3 Drawing Figures This application is a continuation-in-part of our copending application Ser. No. 789,719, filed Jan. 8, 1969, now abandoned.
The invention relates to ball type grinding mills for the grinding of materials in either wet or dry state. The term ball is used as denoting the loose objects, also known as grinding media, within the rotating or otherwise moving part of the mill which perform the grinding operation. Such balls have heretofore been used in a variety of shapes.
Such balls may be made in'various manners, including forging, upsetting or molding, and the materials used to make such objects may be steel, flint, ceramic,
etc.
The balls have to be replaced from time to time because they wear away mechanically and are also sub ject to chemical corrosion, and this replacement is a considerable item'of expense.
The object of the present invention is to provide balls of a ball mill with improved shape which are more economical to manufacture and more efficient in operation.
A circle when modified in shape by partial symmetrical deformation from four equally spaced directions (whilst retaining an approximately or totally convex form) is known and herein referred to as a supercircle". Similarly, a symmetrically deformed ellipse is known 'and referred to as a super-ellipse, the supercircle being a special form of super-ellipse. Correspondingly shaped solid bodies are known and herein referred to as "super-spheres and super-ellipsoids.
Mathematically thegeneral formula for deriving a (three-dimensional) super-ellipsoid is as follows:
In this formula x, y and: are rectangular Cartesian where a does not equal b but where b may equal c. This may be regarded as a special form of the more general super-ellipsoid. Also, as in the derivation of any ellipsoid or super-ellipsoid, the powers n n and n need not be equal one to another.
For the purposes of the present invention a superellipsoid may therefore be defined as a derivative of the above general formula for all conditions other than "where 1 b c and m, n, and n each have a value equal to or less than 2.
The above stated general formula is valid, in such case! where n is not equal to a mul iple of v if the rmula is employed tederlve super-ellipsoid octant by eetent. That is, a complete super-ellipsoid may be derived to occupy a complete Cartesian space by eonltruetlng one eetent of the super-ellipsoid and reflec in time into the remalnlng'seven ectantn of the Cartelill'i space. Super-ellipsoids, hereinafter referred to in conjunction with the general formula should be understood as so constructed.
For the purpose of this invention, the value ofnn. is
e e t a .2. birtnrefe ah y. aetar e than 1 h;
shape of a super-ellipsoid for values of n greater than 4 approaching that of a cylinder.
The present invention therefore provides a ball type grinding mill in which the balls are of such ashape that the surface thereof in each octant ofta Cartesian coordinate system having x, y and z axes can be expressed by the formula drawings, in which FIG. 1 is an exemplary outline of a ball for use in a grinding mill according to the invention, and whichhas the shape of a super-ellipsoid,
FIG. 2 is a mathematical diagram embodying the outline of FIG. 1, and
FIG. 3 is a perspective view of an embodiment .ofa ball mill according to the invention, with partswcut away.
FIG. 1 may be regarded as a super-ellipse .perseuor as an elevation of a super-ellipsoid generated .by rotating the super-ellipse about its major axis. Also of course, it is a section on any plane passing through such major axis.
It is also possible to have the cross-section of the supenellipsoid along any plane at right angles to the longest axis as itself a super-circleuor .a supebellipse, although this may be more difficult to manufacture.
Referring now to FIG. 2, a pair of Cartesian axesare depicted having two co-ordinates x and y, and a superellipse curve is depicted at 10.
In such curve l0, and b are half axes of the curve, a being half of the major axis and b being half of the (minor) axis at right angles thereto.
The remaining Cartesian co'ordinate z and the remaining half axis c are not visible in FIG. 2,.being at right angles to the plane of the drawing sheet.
It has now been found in accordance with the invention that super-ellipsoids ashereinbefore definedare particularly efficient in the grinding of materialsin .ball mills. An example of a ball mill suitable forthe purpose is shown in general outline in FIG.3 and comprisesa drum D which is mounted in alined bearings 20,22 for rotation on a horizontal axis. The bearings are supported on base posts 24 and 26, respectively.
The drum D has an inlet or feed and portion 28 and an outlet or discharge end portion 30, and the portion of the drum between the bearings 20,22 comprises a middle cylindrical section 32 and twoconical end sections 34,36 which converge from said middle section 32 towards the inlet end portiortk28and the outletend portion 30, respectively. A gearwheel 38-is secured to the drum Hand is concentrical therewith. Said, gear wheel 38 is adapted for mashing engagement with a tion 32 is providedwith an opening covered by. a removable cover member 40. The drum D is tare-charged with a multiplicity of grinding mill balls 42 of the kind described above which may have been introduced through the feed end portion 28 or through the opening having the cover member 40 upon removal of said cover member.
In operation continuous rotary motion is imparted to the drum D by the motor (not shown) through the intermediary of the pinion (not shown) and the gear wheel 38. Material 44 to be treated in the ball mill, for example ore, is fed into the drum D through the feed end portion 28, usually continuously and with or without moistening liquid as required by the treatment process. Ordinarily the feed velocity is so adjusted that the combined volume of the grinding balls 42, the material 44 and any liquid that may be present is constantly less than approximately 45 percent of the interior volume of the drum D, whereby it is achieved that only smaller and lighter fractions of the material 44 escape through the discharge end portion 30 of the drum D, while heavier fractions gravitate toward the lower portion of the drum and are subjected to further grinding action.
I It may be mentioned that the actual grinding action caused by frictional surface engagement between the balls 42 and pieces of the material 44 and partially also between saidpieces themselves is usually augmented by a crushing impact action caused by balls 42 which are entrained by the interior walls of the rotating drum to a higher level and then drop down onto the main mass in the drum.
During the rotation of the ball mill the balls of the inventive shape tend to align themselves end to endand side by side which serves to delay wear and to preserve the shape even under wear. Also, the balls have a smaller peripheral dimension than spherical balls of the same weight and they thereby impart a greater amount of energy per unit area on impact with the material in the drum than spherical or avoid balls, as generally employed in the art. Furthermore, the individual balls are readily subjected to rotational movements in the drum, particularly about their longer axes.
For practical purposes the invention is restricted to the use of balls in the shape of super-ellipsoids in which n,, n and u each has a value of 2.1 to 4.0, and the ratio between the larger and smaller of at least one pair of semi-axes (a, b, c) lies between I and 2. A very desirable set of rati os is b/c; and a/b j/ We claim? l. A ball type grinding mill, in which the ballsare superellipsoids of such a shape that the surface of the ball in each octant of a Cartesian coordinate system has 1:, y and z axes which are defined by the formula a ll P ndi asset i i'thins a m 1,
wherein in, n and n each have a maximum value of 4.
3. A ball type grinding mill as set forth in claim 1, in which b equals 0.
4. A ball type grinding mill as set forth in claim 1, in which n n n 5. A ball type grinding mill as set forth claim 1, in which n,, n and u each have a value in the range 2.1-4.0 and the ratio between at least two of the constants a, b and c is greater than 1 and less than 2.
6. A ball type grinding mill as set forth in claim 3, in
US00187049A 1968-01-12 1971-10-06 Ball mills with superellipsoidal balls Expired - Lifetime US3774856A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU32310/68A AU431920B2 (en) 1968-01-12 1968-01-12 Improvements in ball mills andin balls for use therein

Publications (1)

Publication Number Publication Date
US3774856A true US3774856A (en) 1973-11-27

Family

ID=3719848

Family Applications (1)

Application Number Title Priority Date Filing Date
US00187049A Expired - Lifetime US3774856A (en) 1968-01-12 1971-10-06 Ball mills with superellipsoidal balls

Country Status (5)

Country Link
US (1) US3774856A (en)
AU (1) AU431920B2 (en)
BE (1) BE726748A (en)
DE (1) DE1900587A1 (en)
GB (1) GB1253867A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561597A (en) * 1982-06-22 1985-12-31 Anglo-American Clays Corp. Method for improving handleability of calcined kaolin clay products
US4593860A (en) * 1982-01-21 1986-06-10 Anglo American Clays Corporation Method for improving handleability of calcined kaolin clay products
US4693427A (en) * 1982-06-22 1987-09-15 E.C.C. America Inc. Method for improving handleability of calcined kaolin clay products
CN106040376A (en) * 2016-06-29 2016-10-26 昆明理工大学 Semi-self-grinding rod ball medium
IT201700024715A1 (en) * 2017-03-06 2018-09-06 Synecom S R L Thermal vector for heating raw materials in a reactor, plant for the pyrolysis of raw materials using the said thermal vector and method for the pyrolysis of raw material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU625288B2 (en) * 1988-04-08 1992-07-09 Magotteaux (Pty) Ltd Grinding media and method of grinding
RU2477659C2 (en) * 2010-05-25 2013-03-20 Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" Arrangement of ball mill grinding bodies

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593860A (en) * 1982-01-21 1986-06-10 Anglo American Clays Corporation Method for improving handleability of calcined kaolin clay products
US4561597A (en) * 1982-06-22 1985-12-31 Anglo-American Clays Corp. Method for improving handleability of calcined kaolin clay products
US4693427A (en) * 1982-06-22 1987-09-15 E.C.C. America Inc. Method for improving handleability of calcined kaolin clay products
CN106040376A (en) * 2016-06-29 2016-10-26 昆明理工大学 Semi-self-grinding rod ball medium
IT201700024715A1 (en) * 2017-03-06 2018-09-06 Synecom S R L Thermal vector for heating raw materials in a reactor, plant for the pyrolysis of raw materials using the said thermal vector and method for the pyrolysis of raw material
WO2018163015A1 (en) * 2017-03-06 2018-09-13 Synecom S.R.L. Heat carrier for heating raw material in a reactor, plant for the pyrolysis of raw material using said heat carrier and method for the pyrolysis of raw material
EA039017B1 (en) * 2017-03-06 2021-11-23 Синеком С.Р.Л. Heat carrier for heating raw material in a reactor, plant for the pyrolysis of raw material using said heat carrier and method for the pyrolysis of raw material

Also Published As

Publication number Publication date
GB1253867A (en) 1971-11-17
AU3231068A (en) 1970-03-05
AU431920B2 (en) 1973-01-23
BE726748A (en) 1969-06-16
DE1900587A1 (en) 1969-08-28

Similar Documents

Publication Publication Date Title
US3774856A (en) Ball mills with superellipsoidal balls
US2562753A (en) Anvil grinder
US2191095A (en) Centrifugal fluid jet pulverizer
US4211369A (en) Tumbling mills
US2221176A (en) Attrition mill
GB1099958A (en) Mixing and the like apparatus for the treatment
US2809789A (en) Ball mill liner
GB985764A (en) An oscillatory grinding mill
US3764079A (en) Roller or ball mill for the refining of cocoa and chocolate and the grinding of paints, enamels and the like
GB1069986A (en) Method of comminution and apparatus therefor
US1780915A (en) Apparatus for disintegrating ore and other material
GB807711A (en) Improvements relating to liners for tube or ball mills
US3735532A (en) Workpiece treating apparatus
US2171525A (en) Attrition mill
US1598933A (en) Pulverizing mill
US2824700A (en) Method of reducing materials
GB967495A (en) Improvements in or relating to vibratory crushing mills
SU733727A1 (en) Ball mill
GB1145067A (en) Multi-chamber mill
GB1502166A (en) Material reduction apparatus
US2118628A (en) Gravity impact roller mill
US2858991A (en) Pulverizing plate
US1202278A (en) Apparatus for disintegrating ores and other materials.
SU1276361A1 (en) Disintegrator for grinding rock
SU963549A1 (en) Centrifugal mill