US3776810A - Bonded nonwoven fabric - Google Patents

Bonded nonwoven fabric Download PDF

Info

Publication number
US3776810A
US3776810A US3776810DA US3776810A US 3776810 A US3776810 A US 3776810A US 3776810D A US3776810D A US 3776810DA US 3776810 A US3776810 A US 3776810A
Authority
US
United States
Prior art keywords
copolymer
fibers
acrylic acid
binder
resilience
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Louis E Kelley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Co
Original Assignee
Rohm and Haas Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Co filed Critical Rohm and Haas Co
Application granted granted Critical
Publication of US3776810A publication Critical patent/US3776810A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/50Aqueous dispersion, e.g. containing polymers with a glass transition temperature (Tg) above 20°C
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31739Nylon type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]

Definitions

  • Fibers in nonwoven fibrous products are bonded together by a binder comprising the heat-cured product of a water insoluble copolymer of (i) an N-methylolamide which is N-methylolacrylamide or N-methylolmethacrylamide, and (ii) an acrylic acid ester of acrylic acid or methacrylic acid and a C to C alkanol, modified with (iii) a polyalkylene glycol of the formula wherein R is an alkylene group of 2 to 6 carbon atoms and n is a number having an average value of 4 to 50.
  • a binder comprising the heat-cured product of a water insoluble copolymer of (i) an N-methylolamide which is N-methylolacrylamide or N-methylolmethacrylamide, and (ii) an acrylic acid ester of acrylic acid or methacrylic acid and a C to C alkanol, modified with (iii) a polyalkylene glycol of the formula wherein R is an al
  • Preferred acrylic acid esters are ethyl acrylate and butyl acrylate, and the preferred polyalkylene glycol is a polyethylene glycol characterized by a molecular weight in the range of 300 to 2000.
  • the copolymer may also contain units derived from unsaturated aliphatic carboxylic acids.
  • Preferably the copolymer contains units derived from itaconic acid. The itaconic acid stabilizes aqueous dispersions of the copolymer and adds stiffness to the treated fibrous products without detracting from resilience and solvent resistance.
  • the present invention relates to processes for bonding fibers of nonwoven fabrics.
  • the nonwoven fabrics are fibrous or filamentous productshaving a carded fiber structure or comprising fibrous mats in which the fibers or filaments are distributed haphazardly or in random array.
  • the expression random array is intended herein to include the array of fibers in a carded web wherein partial orientation is frequently present as well as other arrays in which the fibers are in a completely haphazard distributional relationship.
  • the bonded nonwoven fibrous products of this invention are useful in the production of articles of either flat or three-dimensional shape, including insulating material and the like.
  • Particularly the bonded fibrous products are used as textile products in articles of dress, for example, as interliners for the collars and cuffs of shirts, especially the relatively open-weave type used for summer wear.
  • Bonded fibrous products suitable for such uses must be resilient with crush resistance and shape retention; they must have a soft, but firm, feel or hand; and they must be of sufficient solvent resistance to withstand drycleaning operations. Upon drycleaning, some products of the type heretofore produced lose their soft hand and draping qualities and may show discoloration (yellowing) and loss of strength upon bleaching.
  • compositions used for bonding nonwoven fabrics in accordance with the present invention comprise the heat-cured product of a mixture: of a copolymer of an N-methylolamide and an acrylic, acidester and a polyalkylene glycol.
  • the resulting nonwoven fabrics have excellent resilience, are of a soft, but firm hand and exhibit excellent solvent-resistant properties
  • the present invention is a nonwoven fibrous product 're'sistant'to drycleaning and laundering, the fibers in the product being bonded together by a binder comprising a heat-cured product of a mixture of (1) a waterinsoluble copolymer of (i) an N-methyolamide which is N methylolacrylamide or N methylolmethacrylamide, and (ii) an acrylic acid ester of acrylic acid or methacrylic acid and a (C to C alkanol, and (2) a polyalkylene glycol of the formula wherein R is an alkylene group of 2 to 6 carbon atoms and n is
  • the copolymer may contain units derived from an unsaturated (C to C aliphatic carboxylic acid. Preferably the copolymer contains units derived from itaconic acid.
  • the process of the present invention is a process of making a nonwoven fabric which comprises associating in random array, within a web or mat, a mass of fibers, bringing into contact with the fibers a binder comprising an aqueous dispersion containing dispersed therein Waterinsoluble copolymer and glycol described above, drying the resulting fibrous mass to effect fusion of the polymer and bonding of the fibers, and then curing the fabric by heating the fibrous product at a temperature of 210 F. to 750 F. to produce a soft, resilient nonwoven fibrous product of excellent solvent-resistant properties.
  • N-methylolarnides include N-methylolacrylamide and N-methylolmethacrylamide
  • amide group-containing monomers include acrylamide and methacrylamide
  • esters include ethyl acrylate and butyl acrylate. All of the disclosed compositions contain the amide group-containing component and none of the compositions contains a polyalkylene glycol component.
  • the copolymers of thepresentinvention are water-insoluble copolymers obtained by emulsion copolymerization of a mixture of copolymerizable monoethylenically unsaturated molecules comprising (i) 1 to 8% by weight of N-methylolacrylamide or N-methylolmethacrylamide, ,and (ii) 92 to 99% by Weight of an acrylic acid esterof acrylic acid or methacrylic acid and a (C to C alkanol, modified with (iii) 0.5 to 10.0% by weight of a polyalkylene glycol of the formula
  • the compositions comprise 3,. to 4.5.
  • Fabric webs bonded with the ethyl acrylate-containing copolymers of the present invention exhibit excellent resilience and solvent-resistance. Fibrous products bonded with the butyl acrylate-containing copolymers of the present invention show excellent resilience but somewhat less solvent-resistance than the ethyl acrylate copolymer bonded webs. For this reason the ethyl acrylate copolymers are a preferred embodiment of the present invention. However, even better results are obtainable when both ethyl acrylate and butyl acrylate are in the copolymer.
  • An example of this is a copolymer of 48% by weight of butyl acrylate, 48% of ethyl acrylate, about 0.5 to 2% of itaconic acid, and about 2 to 3.5% by weight of a mixture of approximately equimolar amounts of acrylamide and N-methylolacrylamide.
  • the N-methylolamideacrylic acid ester copolymer migrates toward the surface of the fabric after removal from the padding bath or application dispersion thereby resulting in non-uniform application of the binder to the fibrous webs.
  • the present invention therefore resides in the cooperative and interdependent manner in which the components are combined to produce bonding compositions which impart resilience and solvent-resistance to fibrous products.
  • the copolymers of the present invention may be produced by conventional emulsion polymerization procedures employing a suitable emulsifier or mixtures of a non-ionic with a cationic or an anionic emulsifier in conjunction with a free-radical initiator which may be a component of any of the well-known redox systems.
  • a suitable emulsifier or mixtures of a non-ionic with a cationic or an anionic emulsifier in conjunction with a free-radical initiator which may be a component of any of the well-known redox systems.
  • Examp 9 Qt em s fiers that be uses! nclude um a y sulfate, t octylphenoxypolyethoxyethanols containing about 10 to 50 oxyethylene units per molecule and lauryl pyridinium chloride.
  • the amount of emulsifier may range from about 0.5 to 7.5% on the weight of monomers.
  • Any free-radical initiator such as azodiisobutyronitrile, t-butyl hydroperoxide, and ammonium or potassium persulfates may be employed.
  • the initiator may be present in amount from 0.1 to 2.0% on the weight of monomers, the amount preferably being sufficient to provide molecular weights of about a million or higher in the particles of the emulsion polymer produced.
  • the same procedure may be used in reverse order to graft the acrylic acid ester or N-methylolamide on to a previouslyformed homopolymer or copolymer of other monomeric units.
  • a plurality of monomeric units may be introduced in succession and the acrylic acid ester or N- methylolamide may be introduced at the beginning, at any intermediate stage, or at the end as desired.
  • the fibrous webs may be formed in any suitable manner such as by carding, garnetting, or by dry deposition from an air suspension of the fibers.
  • the thin web or fleece obtained from a single card may be treated in accordance with the present invention, but generally it is necessary and desirable to superpose a plurality of such webs to build up the mat to sufficient thickness for the end use intended, particularly in the making of heat insulation.
  • alternate layers of carded webs may be disposed with their fiber orientation directions disposed at 60 or angles with respect to intervening layers.
  • the fibers from which the webs may be made include cellulosic fibers such as cotton, rayon, jute, ramie, and linen; also cellulose esters such as cellulose acetate; silk, wool, casein, and other proteinaceous fibers; polyesters such as poly(ethylene glycol terephthalate); polyamides such as nylon; vinyl resin fibers such as the copolymer of vinyl chloride and vinyl acetate, polymers of acrylonitrile containing 70% to by weight of acrylonitrile including those available under the trademarks Orlon and Acri- Ian; and siliceous fibers such as glass and mineral wools.
  • cellulosic fibers such as cotton, rayon, jute, ramie, and linen
  • cellulose esters such as cellulose acetate
  • polyesters such as poly(ethylene glycol terephthalate); polyamides such as nylon
  • vinyl resin fibers such as the copolymer of vinyl chloride and
  • the aqueous dispersion of the water-insoluble copolymer of the present invention may be applied to the web or mat of fibers in any suitable fashion such as by spraying, dipping, roll-transfer, or the like.
  • the concentration may be from 5% to 60% by weight, and preferably from 5% to 25%, at the time of application as an aqueous dispersion.
  • the binder dispersion may be applied to the dry fibers after the formation or deposition of the web or mat so as to penetrate partially into or completely through the interior of the fibrous products.
  • the binder dispersion may be applied to the fibers as they fall through the settling chamber to their point of deposition. This is advantageously accomplished by spraying the binder dispersion into the settling chamber at some intermediate point between the top and the bottom thereof. By so sprayng the fibers as they descend to the point of collection, it is possible to effect a thorough distribution of the binder among the fibers before they are collected into the product.
  • the binder dispersion may be sprayed directly on the fibers While still hot and very shortly before their;
  • binder dispersion to the fibrous product is made at room temperature to facilitate cleaning of the, apparatus associated with the application of the binder dispersion.
  • the binder dispersion may be applied toone or both surfaces of the fibrous product or it may be distributed through the interior as well.
  • the binder of the present invention may be applied in conjunction with other binders, such as glue.
  • binders such as glue.
  • the use of potentiallyadhesive fibers within the fibrous product may also be resorted to in conjunction with the use of a binder of the present invention.
  • the aqueous dispersion of the polymer and condensate may also contain a wetting agent to assist penetration of the fibrous web or mat to which it is ap- 'plied, and it may contain either a foaming agent to pro- .vide the binder in a foamed condition in the final product or it may contain a defoamer when the ingredients of the aqueous dispersionshave a tendency to give rise to foaming and in a particular case such foaming is undesirable.
  • the conventional wetting agents such as the sodium salt of dioctylsulfosuccinic acid may be used and the conventional foaming and defoaming agents may be employed, such as sodium soaps, including sodium oleate for foaming and octylalcohol or certain silicones for defoaming.
  • An acid catalyst may be included in the aqueous dispersion at the time it is applied to the fibrous Web or it may be applied to the fibrous web before or after the copolymer is applied.
  • acidic catalysts include oxalic acid, dichloracetic acid, p-toluenesulfonic acid, andacidic salts such asammonium sulfate and amine salts, such as the hydrochloride of 2-methyl-2- effected at a temperature of about 210 to about 750 F.
  • the curing is effected at a temperature of 250 to 325 F.
  • the curing operation in some way causes reaction of the polymer molecules to effect crosslinking thereof to a condition in which the binder is highly resistant to laundering and drycleaning.
  • This reaction involves the N-methylolgroups of some polymer molecules with the reactive hydrogen-containing groups of others of the polymer molecules.
  • the curing causes some reactionbetween theN-methylol groups of the polymer molecules and-reactive groups in the fibers such as the hydroxyl groups of the cellulose fibers.
  • presence of the polyalkylene glycol in binder of the present invention appears to reduce or prevent migration of emulsion polymer particles resulting in greatly improved uniformity of distribtuion of binder in the bonded web. Consequently resilience and solvent-resistant properties are not adversely affected by irregularity of distribution of the binder.
  • the bonded fibrous products of the present invention are characterized by resilience, softness, flexibility, resistance to discoloration, resistance to chlorinated hydrocarbon dry-cleaning fluids, and resistance to laundering.
  • the products of the present invention are particularly Well-adapted for use in garments Where porosity, especially to moisture vapor, and soft hand and feel, make the products advantageous where contact with the skin of a wearer may be involved.
  • the products are quite stable dimensionally and have good resilience and shape-retention properties. They are adapted for use not only in garments but as padding or cushioning, and in moisture-absorbing articles, such as bibs and diapers. They are also useful as heatand sound-insulating materials and as filtration media, both for liquids and gases. They can be laminated with paper, textile fabrics, or leather to modify one or both surfaces of the latter materials.
  • Mylar polyethylene glycol terephthalate
  • metallic foils such as of aluminum
  • the products obtained from nonwoven fibrous webs employing the aqueous dispersion of the composition of the present invention impart good resistance to laundering and drycleaning when applied as the sole binder and cured in the manner stated hereinabove.
  • Such products are also free of any tendency to become discolored on chlorination and ironing.
  • the composition of the present invention may be employed in conjunction with a thermosetting resin condensate, such as an aminoplast or polyepoxide.
  • the amount of such condensate that may be included in the binder compositions may be as high as 20% by weight of the copolymer, a proportion of 3% to 10% being preferred when such condensate is used.
  • aminoplast condensates which may be employed are the low molecular weight or monomeric reaction products of formaldehyde with urea, thiourea, biuret, or other homologs or derivatives thereof, such as N,N- ethyleneurea, N,N'-dimethylurea, N,N'-diethylurea, N,N'- dimethoxymethylurea, N,N-dimethoxymethylurea, N,N'- diethoxyethylurea, tetramethoxymethylurea, and tetraethoxyethylurea.
  • Similar reaction products of formaldehyde with triazines, such as melamine may also be employed, such as N,N-dimethylmelamine and alcohol-modified melamine-formaldehyde thermosetting resin condensates, e.g. of methyl and ethyl alcohols, for example, dimethoxymethyl-monomethyl-olmelamine.
  • the extent of condensation of these resin-forming aminoplast condensates is such that they are still soluble in water or self-dispersible therein to a colloidal condition.
  • the epoxy thermosetting resin-forming condensates may be either ether-soluble or self-dispersible in water.
  • the water-soluble types may be any of those having the Formulas III, IV, V, and VI:
  • the water-insoluble but self-dispersible condensates containing epoxide groups include the compounds of Formula IV above wherein y has an average value of 5 to to 10 and also compounds of Formula VI:
  • the binder may be preferentially applied, if desired, to portions of the fibrous product, such as one or both of the faces thereof, it is characteristic of the binder of the present invention that, if such preferential treatment is not desired, substantially uniform distribution may be obtained because of the reduced tendency of the binder after initial distribution throughout the body of the fibrous product to migrate to the surfaces thereof during drying. As pointed out above, it is thought that this reduced tendency of the binder to migrate is due to the presence of the polyalkylene glycol component.
  • EXAMPLE A Fibrous Webs are formed by cross laying polyester fibers, 1.5 denier and 1.5 inches in length. The webs, weighing from 1 ounce to 2 ounces per square yard are placed between two screens of open mesh glass cloth and are dipped into shallow baths of an aqueous dispersion containing 10% by weight of an emulsion copolymer of 96.5 parts ethyl acrylate and 3.5 parts N-methylolacrylamide and containing 4.3 percent of a sodium do decyl benzene sulfonate emulsifier and prepared by emulsion copolymerization.
  • the bath is prepared by admixing in an aqueous medium 143 parts of a 35% solids dispersion of the copolymer, 1.5 parts of a mixture of 60% di-capryl sodium sulfosuccinate, 20% isopropanol and 20% water, 5.0 parts ammonium nitrate and 347.0 parts water, and diluting to 10% solids.
  • the supported webs are floated and allowed to wet thoroughly and are then submerged and rolled while beneath the surface of the bath to insure complete wetting and to insure displacement of air which may be trapped among the fibers.
  • the wet web while still supported on the screens is passed between squeeze rolls to remove excess dispersion and is partially dried in infra-red heat to a condition where the wet fibrous web is strong enough to support itself and can be removed from the glass screens.
  • the web is dried in circulating air and cured for 5 minutes at 300 F.
  • the webs are finally conditioned for a minimum of 24 hours at 72 F. and 65% relative humidity.
  • the resulting fabric web has weak areas and imperfections.
  • Visual observation of the padding operation on fabric webs prepared as above, indicates that during the drying operation, the polymer dispersions tend to migrate to the surface of the webs causing non uniform distribution and weak areas and imperfections in the final web. This observation is a'ifirmed by determining migration by staining the polyester fiber webs with Sevron Brilliant Red 46, a dye which stains the polymer but not the polyester fiber. The stained webs are then observed in a low power, 30 magnifications microscope and the distribution of the polymer assessed. Poor polymer distribution, caused by poor migration control, is indicated by polymer concentration at the surfaces of the web while the interioras seen on edges and cut sectionsis starved of polymer.
  • This example shows a fibrous product which is not of the present invention.
  • a comparison between this example and the following examples illustrates the criticality of the polyalkylene glycol component in the compositions of the present invention.
  • this process comprises subjecting the fabric specimen to a longitudinal tensile load, twisting the specimen through an angle of rotation by applying a releasable torque load around the longitudinal axis of the specimen while retaining one end of the specimen in a fixed position, and releasing the specimen from the applied torque to cause the specimen to oscillate around its axis of rotation and measuring the tensile load required and time for an initial complete oscillation at an applied tensile load at which A /A is between 2.5 and 3.5, preferably 2.7, A and A being respectively the amplitude of a first and second oscillation peak.
  • the load that causes oscillation at which A /A 2.7 is determined by increasing tensile loads in 5 gram increments up to 25 and in 25 gram increments thereabove.
  • Alexander and Sioma invention the minimum tensile load required to give this oscillation and the period of oscillation at this load are relatable to resilience and stiffness respectively of a fabric specimen.
  • Resilience and stiffness may then generally be related to tensile load and period as follows:
  • Example A Tensile load range EXAMPLES B, C AND 1-4
  • Example C 2.5 parts of ethylene glycol or of an aqueous 25% solution of polyethylene glycol is added to the bath before impregnation of the web.
  • Example C 6.2 parts of an aqueous 10% polyethylene glycol solution is added. Properties of the resulting fibrous webs are shown in Table 2.
  • Example Glycol (range) control Resilience Stifiness resistance A 7 None Poor- 25 17-23 166-183 B Ethylene glycol 62 d 40 28 187-244 Polyethylene glycol... 285-315 Good 20 21-23 176-234 do 500 do 10 19-21 187-208 --do 1, 300-1, 600 .do 10 19-23 171-028 3, 000-3, 700 Fair 20 21-23 173-207 d 15, 000 Poor 20 19-21 135-170 EXAMPLES -8 The procedure of Example 2 is repeated using varying proportions of the polyethylene glycol of Example 2. The results obtained are shown in Table 3.
  • the baths are prepared by admixing in an aqueous medium 143 parts of a 35% solids dispersion of the copolymer, 2.5 parts of a 25% solids solution of a polyethylene glycol of 300 molecular weight, 1.5 parts of a mixture of 60% di-capryl sodium sulfosuccinate, 20% isopropanol and 20% water, 0.5 part ammonium nitrate and 347.0 parts water, and diluting to 10% solids.
  • the webs are padded, cured and conditioned per the procedure of Example A. Properties of the fabric webs produced are given in Table 4.
  • Example 13-15 The procedure of Example 1 is repeated using webs of rayon fibers, nylon fibers and webs of a blend of 1 part viscose rayon, 1 part acetate and 1 part nylon. Results similar to those of Example 1 are obtained.
  • EXAMPLE 24 The procedures of Example 23 (a), (b), and (c) are repeated except that the amount of the polyethylene glycol is raised to 4%, based on the weight of the copolymer.
  • An article of manufacture comprising a nonwoven fibrous product, fibers in the product being bonded to gether by a binder comprising a heat-cured product of a mixture of (l) a water-insoluble emulsion copolymer consisting essentially of 1 to 8% by weight of an N- methylolamide selected from N-methylolacrylamide or N-methylolmethacrylamide, and for the balance to make 100 percent, at least one ester of acrylic acid or methacrylic acid and a C to C alkanol and optionally up to about 5% by weight, based on the copolymer weight, of

Abstract

FIBERS IN NONWOVEN FIBROUS PRODUCTS ARE BONDED TOGETHER BY A BINDER COMPRISING THE HEAT-CURED PRODUCT OF A WATER INSOLUBLE COPOLYMER OF (I) AN N-METHYLOLAMIDE WHICH IS N-METHYLOLACRYLAMIDE OR N-METHYLOLMETHACRYLAMIDE, AND (II) AN ACRYLIC ACID ESTER OF ACRYLIC ACID OR METHACRYLIC ACID AND A C1 TO C8 ALKANOL, MODIFIED WITH (III) A POLYALKYLENE GLYCOL OF THE FORMULA

HO-(RO)N-H

WHEREIN R IS AN ALKYLENE GROUP OF 2 TO 6 CARBON ATOMS AND N IS A NUMBER HAVING AN AVERAGE VALUE OF 4 TO 50. PREFERRED ACRYLIC ACID ESTERS ARE ETHYL ACRYLATE AND BUTYL ACRYLATE, AND THE PREFERRED POLYALKYLENE GLYCOL IS A POLYETHYLENE GLYCOL CHARACTERIZED BY A MOLECULAR WEIGHT IN THE RANGE OF 300 TO 2000. THE COPOLYMER MAY ALSO CONTAIN UNITS DERIVED FROM UNSATURATED ALIPHATIC CARBOXYLIC ACIDS. PREFERABLY THE COPOLYMER CONTAINS UNITS DERIVED FROM ITACONIC ACID. THE ITACONIC ACID STABILIZES AQUEOUS DISPERSIONS OF THE COPOLYMER AND ADDS STIFFNESS TO THE TREATED FIBROUS PRODUCTS WITHOUT DETRACTING FROM RESILIENCE AND SOLVENT RESISTANCE.

Description

United States Patent 015cc 3,776,810 Patented Dec. 4, 1973 3,776,810 BONDED NONWOVEN'FABRIC Louis 1E1. Kelley, Philadelphia, Pa., assignor to Rohm and r Haas Company, Philadelphia, Pa. NoDrawing. Continuation-impart of abandoned application Ser. No. 36,499, May 11,1970. This application Sept. 22, 1971, Ser. No. 182,877
Int. Cl. 133% 27/08 U.S. Cl. 161--170 g 2 Claims ABSTRACT OF THE DISCLOSURE Fibers in nonwoven fibrous products are bonded together by a binder comprising the heat-cured product of a water insoluble copolymer of (i) an N-methylolamide which is N-methylolacrylamide or N-methylolmethacrylamide, and (ii) an acrylic acid ester of acrylic acid or methacrylic acid and a C to C alkanol, modified with (iii) a polyalkylene glycol of the formula wherein R is an alkylene group of 2 to 6 carbon atoms and n is a number having an average value of 4 to 50. Preferred acrylic acid esters are ethyl acrylate and butyl acrylate, and the preferred polyalkylene glycol is a polyethylene glycol characterized by a molecular weight in the range of 300 to 2000. The copolymer may also contain units derived from unsaturated aliphatic carboxylic acids.. Preferably the copolymer contains units derived from itaconic acid. The itaconic acid stabilizes aqueous dispersions of the copolymer and adds stiffness to the treated fibrous products without detracting from resilience and solvent resistance.
This application is a continuation-in-part of my copending U.S. patent application Ser. No. 36,499, filed May 11, 1970, now abandoned.
The present invention relates to processes for bonding fibers of nonwoven fabrics. The nonwoven fabrics are fibrous or filamentous productshaving a carded fiber structure or comprising fibrous mats in which the fibers or filaments are distributed haphazardly or in random array. The expression random array is intended herein to include the array of fibers in a carded web wherein partial orientation is frequently present as well as other arrays in which the fibers are in a completely haphazard distributional relationship.
The bonded nonwoven fibrous products of this invention are useful in the production of articles of either flat or three-dimensional shape, including insulating material and the like. Particularly the bonded fibrous products are used as textile products in articles of dress, for example, as interliners for the collars and cuffs of shirts, especially the relatively open-weave type used for summer wear.
Bonded fibrous products suitable for such uses must be resilient with crush resistance and shape retention; they must have a soft, but firm, feel or hand; and they must be of sufficient solvent resistance to withstand drycleaning operations. Upon drycleaning, some products of the type heretofore produced lose their soft hand and draping qualities and may show discoloration (yellowing) and loss of strength upon bleaching.
The compositions used for bonding nonwoven fabrics in accordance with the present invention comprise the heat-cured product of a mixture: of a copolymer of an N-methylolamide and an acrylic, acidester and a polyalkylene glycol. The resulting nonwoven fabrics have excellent resilience, are of a soft, but firm hand and exhibit excellent solvent-resistant properties In its broadest description, the present invention is a nonwoven fibrous product 're'sistant'to drycleaning and laundering, the fibers in the product being bonded together by a binder comprising a heat-cured product of a mixture of (1) a waterinsoluble copolymer of (i) an N-methyolamide which is N methylolacrylamide or N methylolmethacrylamide, and (ii) an acrylic acid ester of acrylic acid or methacrylic acid and a (C to C alkanol, and (2) a polyalkylene glycol of the formula wherein R is an alkylene group of 2 to 6 carbon atoms and n is a number having an average value of 4 to 50. The copolymer may contain units derived from an unsaturated (C to C aliphatic carboxylic acid. Preferably the copolymer contains units derived from itaconic acid. The process of the present invention is a process of making a nonwoven fabric which comprises associating in random array, within a web or mat, a mass of fibers, bringing into contact with the fibers a binder comprising an aqueous dispersion containing dispersed therein Waterinsoluble copolymer and glycol described above, drying the resulting fibrous mass to effect fusion of the polymer and bonding of the fibers, and then curing the fabric by heating the fibrous product at a temperature of 210 F. to 750 F. to produce a soft, resilient nonwoven fibrous product of excellent solvent-resistant properties.
Kine et al., U.S. Pat. 3,157,562, issued Nov. 17, 1964, discloses nonwoven fibrous products bonded by the heatcured product of a Water-insoluble linear copolymer of an N-methylolamide, and amide groupcontaining monomer, and an acrylic acid ester, among others. Specifically disclosed N-methylolarnides include N-methylolacrylamide and N-methylolmethacrylamide; specifically disclosed amide group-containing monomers include acrylamide and methacrylamide, and specifically disclosed esters include ethyl acrylate and butyl acrylate. All of the disclosed compositions contain the amide group-containing component and none of the compositions contains a polyalkylene glycol component.
British patent specification 1,100,240 relates to a process for bonding fleeces with an aqueous dispersion which contains (a) a polymer or copolymer prepared from a. vinyl or divinyl monomer and containing groups capable of reacting with isocyanate groups and (b) and isocyanate group-containing reaction product of a compound carrying at least 2 hydroxyl groups and a stoichiometric excess of a polyisocyanate. For example, the British patent teaches bonding compositions which are aqueous dispersions of butadiene-butyl acrylate-isocyanate/polyethylene glycol copolymers.
In accordance with the present invention, it has been found that particular copolymers of N-methylolamides and acrylic acid esters modified with polyalkylene glycols when applied to non-woven fabrics and cured by heating at elevated temperatures, impart resilience, soft hand, resistance to laundering operations such as may be performed with modern detergents, .as well as resistance 'to drycleaning by chlorinated hydrocarbons, such ascarbon tetrachloride. The copolymers of thepresentinvention are water-insoluble copolymers obtained by emulsion copolymerization of a mixture of copolymerizable monoethylenically unsaturated molecules comprising (i) 1 to 8% by weight of N-methylolacrylamide or N-methylolmethacrylamide, ,and (ii) 92 to 99% by Weight of an acrylic acid esterof acrylic acid or methacrylic acid and a (C to C alkanol, modified with (iii) 0.5 to 10.0% by weight of a polyalkylene glycol of the formula Preferably, the compositions comprise 3,. to 4.5. weight pefcent of the N-methylolamide'and'95.5"to 97 weight percent of acrylic acid ester modified by admixture with 2 to 5 weight percent polyalkylene glycol. These weight percents are optimum amounts and result in compositions which impart the most desired properties to non-woven fibrous products. The components however may be used in percentages outside of the ranges given.
As pointed out above, the mixture of copolymerizable monoethylenically unsaturated molecules may include an unsaturated (C to C aliphatic carboxylic acid. Preferably the unsaturated aliphatic carboxylic acid is itaconic acid. The unsaturated aliphatic carboxylic acid, particularly itaconic acid, stabilizes aqueous dispersions of the copolymer and adds stiffness to the treated fibrous products without detracting from resilience and solvent-resistance. The acid is preferably present in quantities by weight of 0.5 to 5.0% based on the total weight of the copolymer. Examples of suitable acids other than itaconic acid include acrylic acid, methacrylic acid, citraconic acid, etc.
Examples of the acrylic acid esters (ii) include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, octyl methacrylate, octadecyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, octyl acrylate, and octadecyl acrylate.
Fabric webs bonded with the ethyl acrylate-containing copolymers of the present invention exhibit excellent resilience and solvent-resistance. Fibrous products bonded with the butyl acrylate-containing copolymers of the present invention show excellent resilience but somewhat less solvent-resistance than the ethyl acrylate copolymer bonded webs. For this reason the ethyl acrylate copolymers are a preferred embodiment of the present invention. However, even better results are obtainable when both ethyl acrylate and butyl acrylate are in the copolymer. An example of this is a copolymer of 48% by weight of butyl acrylate, 48% of ethyl acrylate, about 0.5 to 2% of itaconic acid, and about 2 to 3.5% by weight of a mixture of approximately equimolar amounts of acrylamide and N-methylolacrylamide.
Examples of suitable polyalkylene glycols include polyethylene glycols, polypropylene glycols, polybutylene glycols and polyhexylene glycols. Polyalkylene glycols with a molecular weight 194 to 4000 are suitable in the present invention while polyalkylene glycols with a molecular weight in the range of 300 to 2000 are preferred. Polyethylene glycols within these molecular weight ranges are the most preferred polyalkylene glycols.
It should be noted that the copolymer in the aqueous dispersion of the present invention must be obtained by emulsion copolymerization of a mixture of the copolymerizable molecules described above for satisfactory results. Omission of any one of the groups of copolymerizable molecules or substitution for any one of the groups will produce a copolymer which is not completely satisfactory as the copolymers of the present invention for bonding nonwoven fibers. It has surprisingly been found that omission of the polyalkylene glycol modifier results in bonding compositions which produce nonwoven fibrous products characterized by poor resilience, stiffness and solvent resistance. It appears that in the absence of the polyalkylene glycol modifier, the N-methylolamideacrylic acid ester copolymer migrates toward the surface of the fabric after removal from the padding bath or application dispersion thereby resulting in non-uniform application of the binder to the fibrous webs. The present invention therefore resides in the cooperative and interdependent manner in which the components are combined to produce bonding compositions which impart resilience and solvent-resistance to fibrous products.
The copolymers of the present invention may be produced by conventional emulsion polymerization procedures employing a suitable emulsifier or mixtures of a non-ionic with a cationic or an anionic emulsifier in conjunction with a free-radical initiator which may be a component of any of the well-known redox systems. Examp 9 Qt em s fiers that be uses! nclude um a y sulfate, t octylphenoxypolyethoxyethanols containing about 10 to 50 oxyethylene units per molecule and lauryl pyridinium chloride. The amount of emulsifier may range from about 0.5 to 7.5% on the weight of monomers. Any free-radical initiator such as azodiisobutyronitrile, t-butyl hydroperoxide, and ammonium or potassium persulfates may be employed. The initiator may be present in amount from 0.1 to 2.0% on the weight of monomers, the amount preferably being sufficient to provide molecular weights of about a million or higher in the particles of the emulsion polymer produced.
The polymers used as binders of the present invention may also be graft or block copolymers wherein one or more, but not all, of the monomers are copolymerized within the first polymer obtained. Thus, the acrylic acid ester or the N-methylolamide may first be homopolymerized or copolymerized with one or more, but less than all, of the comonomers to be introduced into the ultimate copolymer, and then the last monomer or monomers can be added to the system and copolymerized or grafted on to the first homopolymer or copolymer formed. The same procedure may be used in reverse order to graft the acrylic acid ester or N-methylolamide on to a previouslyformed homopolymer or copolymer of other monomeric units. Again, a plurality of monomeric units may be introduced in succession and the acrylic acid ester or N- methylolamide may be introduced at the beginning, at any intermediate stage, or at the end as desired.
The fibrous webs may be formed in any suitable manner such as by carding, garnetting, or by dry deposition from an air suspension of the fibers. The thin web or fleece obtained from a single card may be treated in accordance with the present invention, but generally it is necessary and desirable to superpose a plurality of such webs to build up the mat to sufficient thickness for the end use intended, particularly in the making of heat insulation. In building up such a mat, alternate layers of carded webs may be disposed with their fiber orientation directions disposed at 60 or angles with respect to intervening layers.
The fibers from which the webs may be made include cellulosic fibers such as cotton, rayon, jute, ramie, and linen; also cellulose esters such as cellulose acetate; silk, wool, casein, and other proteinaceous fibers; polyesters such as poly(ethylene glycol terephthalate); polyamides such as nylon; vinyl resin fibers such as the copolymer of vinyl chloride and vinyl acetate, polymers of acrylonitrile containing 70% to by weight of acrylonitrile including those available under the trademarks Orlon and Acri- Ian; and siliceous fibers such as glass and mineral wools.
The aqueous dispersion of the water-insoluble copolymer of the present invention may be applied to the web or mat of fibers in any suitable fashion such as by spraying, dipping, roll-transfer, or the like. The concentration may be from 5% to 60% by weight, and preferably from 5% to 25%, at the time of application as an aqueous dispersion.
The binder dispersion may be applied to the dry fibers after the formation or deposition of the web or mat so as to penetrate partially into or completely through the interior of the fibrous products. Alternatively, the binder dispersion may be applied to the fibers as they fall through the settling chamber to their point of deposition. This is advantageously accomplished by spraying the binder dispersion into the settling chamber at some intermediate point between the top and the bottom thereof. By so sprayng the fibers as they descend to the point of collection, it is possible to effect a thorough distribution of the binder among the fibers before they are collected into the product. In the production of certain fibrous products wherein a hot molten mass of a polymer, such as nylon or a fused siliceous mass or glass, is disrupted by jets of heated air or steam, the binder dispersion may be sprayed directly on the fibers While still hot and very shortly before their;
amino'propanol-ll deposition so that quickly after deposition the binder is set to bond the fibers in proper relationship. Preferably, however, application-of the binder dispersion to the fibrous product is made at room temperature to facilitate cleaning of the, apparatus associated with the application of the binder dispersion. The binder dispersion may be applied toone or both surfaces of the fibrous product or it may be distributed through the interior as well.
The binder of the present invention may be applied in conjunction with other binders, such as glue. Similarly, the use of potentiallyadhesive fibers within the fibrous product may also be resorted to in conjunction with the use of a binder of the present invention.
If desired, the aqueous dispersion of the polymer and condensate may also contain a wetting agent to assist penetration of the fibrous web or mat to which it is ap- 'plied, and it may contain either a foaming agent to pro- .vide the binder in a foamed condition in the final product or it may contain a defoamer when the ingredients of the aqueous dispersionshave a tendency to give rise to foaming and in a particular case such foaming is undesirable. The conventional wetting agents, such as the sodium salt of dioctylsulfosuccinic acid may be used and the conventional foaming and defoaming agents may be employed, such as sodium soaps, including sodium oleate for foaming and octylalcohol or certain silicones for defoaming.
An acid catalyst may be included in the aqueous dispersion at the time it is applied to the fibrous Web or it may be applied to the fibrous web before or after the copolymer is applied. Examples of acidic catalysts that may be employed include oxalic acid, dichloracetic acid, p-toluenesulfonic acid, andacidic salts such asammonium sulfate and amine salts, such as the hydrochloride of 2-methyl-2- effected at a temperature of about 210 to about 750 F.
for a period which may range from about one-half hour at the lower temperatures to as low as five seconds at the upper temperatures. The conditions of baking and curing are controlled so that no appreciable deterioration or degradation of the fibers or copolymer occurs. Preferably,
the curing is effected at a temperature of 250 to 325 F.
for a period of 2 to minutes.
It is believed that the curing operation in some way causes reaction of the polymer molecules to effect crosslinking thereof to a condition in which the binder is highly resistant to laundering and drycleaning. This reaction involves the N-methylolgroups of some polymer molecules with the reactive hydrogen-containing groups of others of the polymer molecules. It is also" believed that the curing causes some reactionbetween theN-methylol groups of the polymer molecules and-reactive groups in the fibers such as the hydroxyl groups of the cellulose fibers. Also, presence of the polyalkylene glycol in binder of the present invention appears to reduce or prevent migration of emulsion polymer particles resulting in greatly improved uniformity of distribtuion of binder in the bonded web. Consequently resilience and solvent-resistant properties are not adversely affected by irregularity of distribution of the binder.
The bonded fibrous products of the present invention are characterized by resilience, softness, flexibility, resistance to discoloration, resistance to chlorinated hydrocarbon dry-cleaning fluids, and resistance to laundering. Be-
cause of the softness" and'flexibility and good draping qualities of the products of the present invention, they are particularly Well-adapted for use in garments Where porosity, especially to moisture vapor, and soft hand and feel, make the products advantageous where contact with the skin of a wearer may be involved. In general, the products are quite stable dimensionally and have good resilience and shape-retention properties. They are adapted for use not only in garments but as padding or cushioning, and in moisture-absorbing articles, such as bibs and diapers. They are also useful as heatand sound-insulating materials and as filtration media, both for liquids and gases. They can be laminated with paper, textile fabrics, or leather to modify one or both surfaces of the latter materials. They may be adhered to films of cellophane, polyethylene, Saran, polyethylene glycol terephthalate (Mylar) or metallic foils, such as of aluminum, to improve the tear strength of such films and foils, to make the latter more amenable to stitching, and to modify other characteristics including strength, toughness, stiffness, appearance, and handle.
As stated hereinabove, the products obtained from nonwoven fibrous webs employing the aqueous dispersion of the composition of the present invention impart good resistance to laundering and drycleaning when applied as the sole binder and cured in the manner stated hereinabove. Such products are also free of any tendency to become discolored on chlorination and ironing. However, for some purposes, particularly where chlorination and/or ironing are not encountered, the composition of the present invention may be employed in conjunction with a thermosetting resin condensate, such as an aminoplast or polyepoxide. The amount of such condensate that may be included in the binder compositions may be as high as 20% by weight of the copolymer, a proportion of 3% to 10% being preferred when such condensate is used.
The aminoplast condensates which may be employed are the low molecular weight or monomeric reaction products of formaldehyde with urea, thiourea, biuret, or other homologs or derivatives thereof, such as N,N- ethyleneurea, N,N'-dimethylurea, N,N'-diethylurea, N,N'- dimethoxymethylurea, N,N-dimethoxymethylurea, N,N'- diethoxyethylurea, tetramethoxymethylurea, and tetraethoxyethylurea. Similar reaction products of formaldehyde with triazines, such as melamine may also be employed, such as N,N-dimethylmelamine and alcohol-modified melamine-formaldehyde thermosetting resin condensates, e.g. of methyl and ethyl alcohols, for example, dimethoxymethyl-monomethyl-olmelamine. Preferably, the extent of condensation of these resin-forming aminoplast condensates is such that they are still soluble in water or self-dispersible therein to a colloidal condition.
The epoxy thermosetting resin-forming condensates may be either ether-soluble or self-dispersible in water. The water-soluble types may be any of those having the Formulas III, IV, V, and VI:
H CCHCHzO(CI-I:GH(OH)CH 0 CH CH-CH 2 n z o 0 (III) where x is a number having an average value of 1 to 3;
H2o oHoH,0 onn ocmoiL-cm 0 0 (IV) where y is a number having an average value of 2 t0 '4; and Y 0 l O where m is an integer having a value of 2 to 4', and z is a number having an average value of l-to S.
. The water-insoluble but self-dispersible condensates containing epoxide groups include the compounds of Formula IV above wherein y has an average value of 5 to to 10 and also compounds of Formula VI:
where is the p-phenylene group, and p is a number having an average value of 1 to 3.
While the binder may be preferentially applied, if desired, to portions of the fibrous product, such as one or both of the faces thereof, it is characteristic of the binder of the present invention that, if such preferential treatment is not desired, substantially uniform distribution may be obtained because of the reduced tendency of the binder after initial distribution throughout the body of the fibrous product to migrate to the surfaces thereof during drying. As pointed out above, it is thought that this reduced tendency of the binder to migrate is due to the presence of the polyalkylene glycol component.
In the examples, parts and percentages are by weight unless otherwise indicated.
EXAMPLE A Fibrous Webs are formed by cross laying polyester fibers, 1.5 denier and 1.5 inches in length. The webs, weighing from 1 ounce to 2 ounces per square yard are placed between two screens of open mesh glass cloth and are dipped into shallow baths of an aqueous dispersion containing 10% by weight of an emulsion copolymer of 96.5 parts ethyl acrylate and 3.5 parts N-methylolacrylamide and containing 4.3 percent of a sodium do decyl benzene sulfonate emulsifier and prepared by emulsion copolymerization. The bath is prepared by admixing in an aqueous medium 143 parts of a 35% solids dispersion of the copolymer, 1.5 parts of a mixture of 60% di-capryl sodium sulfosuccinate, 20% isopropanol and 20% water, 5.0 parts ammonium nitrate and 347.0 parts water, and diluting to 10% solids. The supported webs are floated and allowed to wet thoroughly and are then submerged and rolled while beneath the surface of the bath to insure complete wetting and to insure displacement of air which may be trapped among the fibers. The wet web while still supported on the screens is passed between squeeze rolls to remove excess dispersion and is partially dried in infra-red heat to a condition where the wet fibrous web is strong enough to support itself and can be removed from the glass screens. The web is dried in circulating air and cured for 5 minutes at 300 F. The webs are finally conditioned for a minimum of 24 hours at 72 F. and 65% relative humidity.
The resulting fabric web has weak areas and imperfections. Visual observation of the padding operation on fabric webs prepared as above, indicates that during the drying operation, the polymer dispersions tend to migrate to the surface of the webs causing non uniform distribution and weak areas and imperfections in the final web. This observation is a'ifirmed by determining migration by staining the polyester fiber webs with Sevron Brilliant Red 46, a dye which stains the polymer but not the polyester fiber. The stained webs are then observed in a low power, 30 magnifications microscope and the distribution of the polymer assessed. Poor polymer distribution, caused by poor migration control, is indicated by polymer concentration at the surfaces of the web while the interioras seen on edges and cut sectionsis starved of polymer. Additionally the webs show random areas of polymer concentration and other areas free of polymer. This example shows a fibrous product which is not of the present invention. A comparison between this example and the following examples illustrates the criticality of the polyalkylene glycol component in the compositions of the present invention.
In this and the following examples, migration control is determined by this preceding described method. Resilience where indicated in the following examples also reflectsdistribution of the polymer since areas which have little or no binder are dead spots which do not re cover. Resilience and stiffness are determined by the apparatus and process of Kelley, Alexander and Sioma described in their US. application Ser. No. 43,874, filed June 5, 1970. Generally this process comprises subjecting the fabric specimen to a longitudinal tensile load, twisting the specimen through an angle of rotation by applying a releasable torque load around the longitudinal axis of the specimen while retaining one end of the specimen in a fixed position, and releasing the specimen from the applied torque to cause the specimen to oscillate around its axis of rotation and measuring the tensile load required and time for an initial complete oscillation at an applied tensile load at which A /A is between 2.5 and 3.5, preferably 2.7, A and A being respectively the amplitude of a first and second oscillation peak. In the examples of this specification, the load that causes oscillation at which A /A 2.7 is determined by increasing tensile loads in 5 gram increments up to 25 and in 25 gram increments thereabove. As per the Kelley, Alexander and Sioma invention the minimum tensile load required to give this oscillation and the period of oscillation at this load are relatable to resilience and stiffness respectively of a fabric specimen. The resilience is inversely proportional to the tensile load and the period is relatable to stiflness by the expression Stiifness=1/P where P is the period required for a complete oscillation in seconds. Resilience and stiffness may then generally be related to tensile load and period as follows:
TABLE 1 Resilience Tensile load Resilience 1-30 rams 20100 gr m gr Fast recovery. Medium recovery.- Slow recovery.
Stiffness Soft. Medium. Stiff. Soft. Medium. Stifl.
Tensile load range EXAMPLES B, C AND 1-4 In these examples, the procedure of Example A is repeated. In these examples, however, except for Example C, 2.5 parts of ethylene glycol or of an aqueous 25% solution of polyethylene glycol is added to the bath before impregnation of the web. In Example C, 6.2 parts of an aqueous 10% polyethylene glycol solution is added. Properties of the resulting fibrous webs are shown in Table 2.
Under the heading Resilience in this and the following tables, the numerical value is the load in grams required to make A /A 22.7 and the lower the value, the greater the resilience; the numerical values under stiffness are those obtained by substituting the time in seconds of a complete oscillation for P in the relationship UP, the higher the values, the greater the stiffness; and the values given under the heading Solvent Resistance" are the tensile strength in oz./in. width of the fabric after soaking in perchloroethylene for 15 minutes, the higher the value, the more solvent-resistant the fabric.
TABLE 2 Mole weight Relative migration Solvent Example Glycol (range) control Resilience Stifiness resistance A 7 None Poor- 25 17-23 166-183 B Ethylene glycol 62 d 40 28 187-244 Polyethylene glycol... 285-315 Good 20 21-23 176-234 do 500 do 10 19-21 187-208 --do 1, 300-1, 600 .do 10 19-23 171-028 3, 000-3, 700 Fair 20 21-23 173-207 d 15, 000 Poor 20 19-21 135-170 EXAMPLES -8 The procedure of Example 2 is repeated using varying proportions of the polyethylene glycol of Example 2. The results obtained are shown in Table 3.
TABLE 3 Weight percent of polyethylene glycol base on weight of Migration Example dryeopoly'mer control Resilience Stifiness These examples illustrate compositions of the present invention using various amounts of polyethylene glycol component.
EXAMPLES 9-12 In these examples fibrous webs are formed by crosslaying polyester fibers, 1.5 denier and 1.5 inches in length. The webs are placed between two screens of open mesh glass cloth and are dipped into shallow baths of an aqueous dispersion containing 10% by weight of an emulsion copolymer of a high molecular weight (about 1 million) having various proportions of ethyl acrylate and N-methylolacrylamide and containing 4.3% of the sodium salt of dodecyl benzene sulfonate as an emulsifier. The baths are prepared by admixing in an aqueous medium 143 parts of a 35% solids dispersion of the copolymer, 2.5 parts of a 25% solids solution of a polyethylene glycol of 300 molecular weight, 1.5 parts of a mixture of 60% di-capryl sodium sulfosuccinate, 20% isopropanol and 20% water, 0.5 part ammonium nitrate and 347.0 parts water, and diluting to 10% solids. The webs are padded, cured and conditioned per the procedure of Example A. Properties of the fabric webs produced are given in Table 4.
TABLE 4 Amount of methylol acrylamide, Properties of bonded fabrics percent based on Solvent Example the polymer Resilience Stifiness resistance These examples indicate compositions of the present invention containing various proportions of the N-methylolamide component.
EXAMPLES 13-15 The procedure of Example 1 is repeated using webs of rayon fibers, nylon fibers and webs of a blend of 1 part viscose rayon, 1 part acetate and 1 part nylon. Results similar to those of Example 1 are obtained.
EXAMPLES 16 AND 17 The one-million molecular weight ethyl acrylate polymers demonstrated in Examples 9 to 12 impart a high degree of solvent resistance with adequate resilience as indicated in Table 4. A polymer of composition similar to those of Examples 9 to 12 and produced by a procedure analogous to that of those preceding examples but altered to produce a polymer of lower molecular weight is compared to a polymer of higher molecular The preceding and other runs indicate that the preferred molecular weight of the ethyl acrylate N-methylolacrylamide copolymer is at about 1 million. Higher molecular weight copolymers produce improved bonded fabrics but the improvements are generally small.
EXAMPLES 18-22 In these examples, the procedure of Example A is repeated. Fibrous webs are formed by crosslaying polyester fibers, l.5 denier and 1.5 inches in length and submerging the webs in a bath prepared as in Example A. In these examples, however, the emulsion copolymer is prepared by emulsion copolymerization of 3.5 parts N- methylolacrylamide and the amount of ethyl acrylate and itaconic acid indicated in Table 6 as Examples 18 to 22. Properties of the resulting fibrous webs are shown in Table 6.
These examples show the increase in stiffness in the bonded fabric with increased amount of itaconic acid in the bonding copolymer. It can be seen from these examples that any desired stiffness can easily be incorporated into a bonded non-woven fabric by controlling the proportion of itaconic acid in the emulsion copolymer.
TABLE 6 Percent Properties of bonded fabrics Solvent Example IA EA Resilience Stifiness resistance EXAMPLE 23 The procedure of Example 3 is repeated except that emulsion copolymers are used of the following compositions:
(a) 48% of ethyl acrylate, 48% of butyl acrylate, 3.5%
of N-methylolacrylamide, and 0.5% of itaconic acid, (b) 25% methyl acrylate, 71% butyl acrylate, 3% N- methylolmethacrylamide and 1.0% methacrylic acid,
and
11 (c) 75% ethyl acrylate, 22% 2-ethylhexy1 acrylate, and
3.0% of N-methylolacrylamide.
EXAMPLE 24 The procedures of Example 23 (a), (b), and (c) are repeated except that the amount of the polyethylene glycol is raised to 4%, based on the weight of the copolymer.
I claim:
1. An article of manufacture comprising a nonwoven fibrous product, fibers in the product being bonded to gether by a binder comprising a heat-cured product of a mixture of (l) a water-insoluble emulsion copolymer consisting essentially of 1 to 8% by weight of an N- methylolamide selected from N-methylolacrylamide or N-methylolmethacrylamide, and for the balance to make 100 percent, at least one ester of acrylic acid or methacrylic acid and a C to C alkanol and optionally up to about 5% by weight, based on the copolymer weight, of
12 carbon atoms and (2) about 0.5 to 10% by weight, based on the weight of the copolymer of a polyalkylene glycol of the formula wherein R is an alkylene group of 2 to 6 carbon atoms and n is a number having an average value of 4 to' 50.
2. The article of manufacture of claim 1 in which the fibrous product is a polyester fibrous product.
References Cited 7 V .1 7.
UNITED STATES PATENTS 3,101,292 8/1963 Kine et al. 161227 3,157,562 11/1964 Kine et a1. 151-170 WILLIAM J. VAN BALEN, Primary Examiner an unsaturated aliphatic carboxylic acid having 3 to 6 20 US. Cl. X.R. 161-227
US3776810D 1970-05-11 1971-09-22 Bonded nonwoven fabric Expired - Lifetime US3776810A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US3649970A 1970-05-11 1970-05-11
US18287771A 1971-09-22 1971-09-22
ZA725611A ZA725611B (en) 1970-05-11 1972-08-15 Non-woven fabric

Publications (1)

Publication Number Publication Date
US3776810A true US3776810A (en) 1973-12-04

Family

ID=27365046

Family Applications (1)

Application Number Title Priority Date Filing Date
US3776810D Expired - Lifetime US3776810A (en) 1970-05-11 1971-09-22 Bonded nonwoven fabric

Country Status (2)

Country Link
US (1) US3776810A (en)
ZA (1) ZA725611B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940537A (en) * 1973-07-12 1976-02-24 Ici United States Inc. Fibrous mats
US4659595A (en) * 1985-10-07 1987-04-21 National Starch And Chemical Corporation Ethylene vinyl acetate compositions for paper saturation
US4684689A (en) * 1986-06-02 1987-08-04 National Starch And Chemical Corporation Compositions for dielectric sealing applications comprising terpolymer emulsions of ethylene, vinyl esters and n-methylol comonomers blended with PVC emulsions buffered at a pH greater than 7
US4964989A (en) * 1986-12-23 1990-10-23 Pall Corporation Membranes with low protein adsorbability
EP0405464A2 (en) * 1989-06-28 1991-01-02 Ajinomoto Co., Inc. Polyether acrylamide derivatives and active energy ray curable resin composition
CN101845253A (en) * 2009-03-25 2010-09-29 罗门哈斯公司 Be used for preparing the composition of porous ethylene-vinyl-acetic ester coating

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940537A (en) * 1973-07-12 1976-02-24 Ici United States Inc. Fibrous mats
US4659595A (en) * 1985-10-07 1987-04-21 National Starch And Chemical Corporation Ethylene vinyl acetate compositions for paper saturation
US4684689A (en) * 1986-06-02 1987-08-04 National Starch And Chemical Corporation Compositions for dielectric sealing applications comprising terpolymer emulsions of ethylene, vinyl esters and n-methylol comonomers blended with PVC emulsions buffered at a pH greater than 7
US4746579A (en) * 1986-06-02 1988-05-24 National Starch And Chemical Corporation Ethylene vinyl acetate compositions for dielectric sealing applications
US4964989A (en) * 1986-12-23 1990-10-23 Pall Corporation Membranes with low protein adsorbability
EP0405464A2 (en) * 1989-06-28 1991-01-02 Ajinomoto Co., Inc. Polyether acrylamide derivatives and active energy ray curable resin composition
EP0405464A3 (en) * 1989-06-28 1991-10-23 Ajinomoto Co., Inc. Polyether acrylamide derivatives and active energy ray curable resin composition
US5317080A (en) * 1989-06-28 1994-05-31 Ajinomto Co., Inc. Polyether acrylamide and active energy ray curable resin composition
CN101845253A (en) * 2009-03-25 2010-09-29 罗门哈斯公司 Be used for preparing the composition of porous ethylene-vinyl-acetic ester coating
US20100247788A1 (en) * 2009-03-25 2010-09-30 Ansar Firdosi Composition for producing porous eva coatings
US8323746B2 (en) * 2009-03-25 2012-12-04 Rohm And Haas Company Composition for producing porous EVA coatings

Also Published As

Publication number Publication date
ZA725611B (en) 1973-09-26

Similar Documents

Publication Publication Date Title
US3157562A (en) Bonded non-woven fibrous products and methods of making them
US4406660A (en) Non woven fabrics suitable for diaper and diaper coverstock
US2931749A (en) Bonded non-woven fibrous products and methods for making them
US2923653A (en) Bonded non-woven fibrous products and methods for manufacturing them
US2982682A (en) Non-woven bonded fibrous products and methods for their production
US4683165A (en) Binder for fibers or fabrics
US4356229A (en) Bonded nonwoven fabrics suitable for diaper coverstock
EP0021693B1 (en) Process for making non-woven fabrics
US4059665A (en) Bonded non-woven fabric and method for making it
US4518649A (en) Soil releasing textiles containing fluorochemical soil release agents and method for producing same
US5021529A (en) Formaldehyde-free, self-curing interpolymers and articles prepared therefrom
US3658579A (en) Flame-retardant, bonded nonwoven fibrous product employing a binder comprising an ethylene/vinyl chloride interpolymer and an ammonium polyphosphate
US3752733A (en) Bonded nonwoven fibrous product
US3812070A (en) Composition comprised of a water-in-soluble n-methylol-amide-acrylic acid ester copolymer with a polyalkylene glycol
US3810775A (en) Process for making fibrous material water-repellent
US3074834A (en) Non-woven fibrous products and methods for their production
US4119600A (en) Migration-resistant binder compositions for bonding nonwoven fibers; also methods and articles
US3705053A (en) Highly absorbent bonded nonwoven fabrics
US3776810A (en) Bonded nonwoven fabric
US3015595A (en) Bonded non-woven fibrous products
US3012911A (en) Bonded non-woven fibrous products and methods of producing them
US2900291A (en) Production of non-woven fabrics
US2715591A (en) Sheet material
EP0264869B1 (en) Nonwoven fabric with an acrylate interpolymer binder and a process of making the nonwoven fabric
EP0012033B2 (en) Nonwoven fabrics and their preparation