US3779602A - Process for solution mining nahcolite - Google Patents

Process for solution mining nahcolite Download PDF

Info

Publication number
US3779602A
US3779602A US00278407A US3779602DA US3779602A US 3779602 A US3779602 A US 3779602A US 00278407 A US00278407 A US 00278407A US 3779602D A US3779602D A US 3779602DA US 3779602 A US3779602 A US 3779602A
Authority
US
United States
Prior art keywords
nahcolite
zone
pressure
liquid
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00278407A
Inventor
T Beard
Meurs P Van
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Application granted granted Critical
Publication of US3779602A publication Critical patent/US3779602A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/28Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
    • E21B43/281Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent using heat

Definitions

  • ABSTRACT The process of solution mining sodium bicarbonate (e.g., nahcolite) from a subsurface sodium bicarbonate containing, oil shale formation with water is im proved by conducting leaching operations at a selected temperature greater than 250F and adjusting pressure to a particular preferred value for the selected leaching temperature.
  • sodium bicarbonate e.g., nahcolite
  • PROCESS FOR SOLUTION MINING NAHCOLITE BACKGROUND OF THE INVENTION Field of the Invention This invention relates to the field of producing minerals from subsurface formations; and more particularly, to a process for solution mining nahcolite from subsurface oil shale formations.
  • aqueous fluid is flowed downa well into contact with a subsurface deposit.
  • the solution dissolves some of the soluble mineral.
  • the mineral-containing solvent is then flowed to the surface where it is treated to remove the dissolved mineral, e.g., by evaporation.
  • No. 75,009 filed Sept. 24, 1970, teaches a method of producing oil from such mineral-containing oil-shale formations which includes permeabilization of the formation by dissolution of mineral with hot aqueous solution.
  • the optimum pressure is that pressure at which the sodium mineral-carrying capacity of the aqueous leaching fluid is at a maximum. At pressures below the optimum, excessive conversion of bicarbonate material to carbonate with attendant precipitation of carbonate leads'to a reduced mineral-carrying capacity. At higher pressures than the optimum, conversion of bicarbonate material to carbonate is inhibited and the mineralcarrying capacity of the leaching fluid is thereby reduced.
  • FIG. I is a graphical representation of cavity growth rate versus cavity temperature for a nahcolite leaching operation conducted in a nahcolite-containing oil shale formation.
  • FIG. 2 is a graph of sodium content expressed as equivalent pounds of nahcolite per pound of water for a sodium carbonate saturated, sodium bicarbonatewater system as a function of temperature.
  • FIG. 3 is a schematic view, partly in cross section, of a solution-mining well equipped for the practice of this invention.
  • FIG. 4 is a schematic view, partly in cross-section, of another well system for use in the practice of this invention.
  • a solution-mining well 13 extends into the oil shale formation 10 from the earth surface.
  • the well 13 has been completed in a conventional manner with casing 14 sealed in place with cement 15.
  • a solution-mining fluid injection tubing string 16 and a solution-mining fluid production tubing string 17 are extended into the well 13.
  • the lower end of the injection tubing 16 is preferably positioned adjacent the top of a zone 9 of the oil shale formation 10 to be solution-mined.
  • the lower end of the production tubingstring is preferably positioned near the bottom of the zone 9.
  • Pack-off means such as packer 18 may be positioned in the casing 14 above the lower end of the tubing string 16.
  • Production tubing string 17 is provided with suitable means for lifting solution-mining fluid to the surface.
  • pumping apparatus may be positioned adjacent the bottom of production string 17 or the production string 17 may be equipped for gas lift as shown in FIG. 3.
  • a pressure actuated gas lift valve 19 is operatively connected to production tubing 17 at a point above packer 18.
  • a conduit 20 for injection gas is connected to the casing 14 at the surface.
  • gas is injected through conduit 20 into casing 14.
  • valve 19 opens and admits gas into the interior of tubing 17. This gas lightens the column of fluid in tubing 17 thereby reducing the pressure necessary to cause fluid to flow from the bottom of tubing 17 to the earth surface.
  • hot aqueous solution-mining fluid preferably low quality steam
  • This fluid contacts water-soluble minerals in the formation 10 and dissolves them thereby forming a leached zone and, eventually, a cavity 21.
  • the cavity 21 may be at least partially filled with fragmented particles of oil shale and nahcolite 22.
  • the cavity growth rate varies logarithmically with the cavity temperature as shown in FIG. 1 and that cavity growth rate is only slightly dependent upon the rate of fluid injection. It is believed that this increase in cavity growth rate with temperature is at least in part due to more rapid thermal fracturing at higher temperatures of oil shale surrounding discreet nahcolite nodules. Such fracturing allows injected aqueous fluid to reach the nahcolite nodule and leach it from the formation leaving an exposed oil shale face which is in turn thermally fractured opening up communication to yet another nodule.
  • cavity temperature should be maintained above 250F and preferably above 300F.
  • the rate of mineral recovery can be maximized by selecting an operating temperature for maximum desired cavity growth rate as by reference to FIG. 1, and then during operation adjusting cavity pressure to a pressure at which the sodium carrying capacity of the aqueous leaching fluid is a maximum for the selected cavity temperature.
  • This pressure is less than that required to bydraulically fracture the formation and is greater than the pressure at which nahcolite decomposition to sodium carbonite, carbon dioxide and water is maximized.
  • the particular selected leaching temperature will vary from operation to operation depending upon economic conditions and the desired cavity growth rate for each particular case.
  • Operating pressure for a particular selected temperature is determined from pressure, temperature, saturation relationships such as those given in FIG. 2. That figure shows total sodium concentration in pounds of nahcolite per pound of water for a sodium carbonate saturated, sodium carbonate/- sodium bicarbonatewater system.
  • the graph reflects the amount of nahcolite removed from a nabcolite formation which is present in the solution even though the actual composition of the solution includes both sodium bicarbonate and sodium carbonate generated by nahcolite decomposition. Best results are obtained by operating at the pressure for which the isobar intersects the upper dashed curve at the selected operating temperature. Good results are obtained at pressures varying as much as percent above or below this pressure.
  • FIG. 2 for a temperature of 400, it can be seen that at that temperature and about 200 psi only sodium bicarbonate is present in the solution (as given by the lower dotted line of the Figure) and that the total amount of equivalent nahcolite dissolved is around 0.55 pounds per pound of water. However as pressure is increased, the amount of sodium bicarbonate in the system increases until at about 1,000 psi, the total sodium content is equivalent to about 1.25 pounds per pound of water even though sodium carbonate saturation remains the same. Further pressure increase to a pressure for which the extention of an isobar would intersect the 400F isotherm above the upper dotted line results in the precipitation of sodium bicarbonate and an effective reduction in the equivalent nahcolite saturation of the system.
  • leaching operations can be maximized if pressure in the cavity 21 is maintained at about 1,000 psi. To maintain this pressure, it is necessary to artiflcally lift fluid from the cavity 21 if the fluid head of solution-mining fluid in production tubing 17 is greater than 1,800 psi. Therefore, the well 13 is provided with a gas lift system as heretofore described.
  • FIG. 4 shows a well 22 extending into the formation 10 that is completed in a manner particularly advantageous for the practice of this invention.
  • the well 22 is completed with casing 23 which extends into the nahcolite-containing formation 10.
  • the casing 23 is cemented in place with cement 24 and perforated adjacent formation 10 with perforations 25 to open the interior of the casing into communication with the formation 10.
  • a liquid production tubing string 26 and a gas production tubing string 27 extend into the well from the surface.
  • the liquid production tubing string 26 preferably terminates at the point adjacent the bottom of the interval of the formation 10 to be treated whereas the gas production tubing string 27 terminates at a point above the lower end of the liquid production tubing 26 but below the perforations 25.
  • the interior of the casing is preferably sealed to fluid flow by pack-off means such as packer 28 at a point above the terminal ends of the two tubing strings 26 and 27 and below the perforations 25.
  • the liquid production tubing string is provided with means for lifting liquid from the formation 10 to the surface.
  • This may be a down-hole pump or gas lift means (as illustrated in FIG. 4) in which a gas injection string extends into the well 22 and is connected in communication with production tubing 26 at a point near the lower end of that tubing. The particular point of intersection will be determined by the fluid head desired to be maintained in liquid production string 26.
  • hot aqueous fluid having a temperature greater than 250 and preferably greater than 300F is injected into casing 23 through conduit 30 and then down the casing until it passes through perforations 25 into the formation 10.
  • This fluid leaches nahcolite from the formation creating a cavity 31 which may be filled with fragmented particles of oil shale and nahcolite 32.
  • the aqueous fluid advantageously contains high proportion of steam which upon contacting the formation 10 condenses to form a liquid phase capable of carrying dissolved mineral in solution.
  • liquid is produced from the lower part of the cavern 31 through production tubing string 26 and gas is produced from the cavern 31 through gas production tubing string 27.
  • the production rate of these fluids is preferably adjusted to maintain the pressure in the cavern 31 at a particular preferred value for the selected temperature operation.
  • the removal of gas through the tubing 26 draws both steam and CO from the cavern 31. This results in a reduction of the partial pressure of CO in the cavern and further promotes the decomposition of nahcolite (NaHCO to sodium carbonate, CO and water (e.g., 2 NaHCO, Na CO3 C0, H O).
  • FIGS. 3 and 4 illustrates single well systems for the practice of this invention. However, it should be understood that two or more wells may at any one time be in communication with any particular cavern 21 or 31 or other permeabilized zone. In such a case, aqueous fluid may be injected into the formation through one well and produced from the formation through a separate well.
  • FIGS. 3 and 4 illustrate the process after a cavity 21 or 31 has been formed. It should be understood that in many cases, initial treatment will be confined to a substantially cylindrical wellbore and that the cavern is formed only after a period of leaching has expanded the wellbore radically.
  • the method of claim 1 further comprising producing liquid containing dissolved sodium bicarbonate from a liquid layer adjacent the bottom of the leached zone through a production tubing string using artificial lift means to lift the liquid to the surface.
  • a method for solution-mining nahcolite from a subsurface oil-shale formation comprising the steps of:

Abstract

The process of solution mining sodium bicarbonate (e.g., nahcolite) from a subsurface sodium bicarbonate containing, oil shale formation with water is improved by conducting leaching operations at a selected temperature greater than 250*F and adjusting pressure to a particular preferred value for the selected leaching temperature.

Description

United States Patent [191 Beard et al.
[451 Dec. 18, 1973 PROCESS FOR SOLUTION MINING NAI-ICOLITE Thomas N. Beard, Denver, Colo.; Peter Van Meurs, Houston, Tex.
[75] Inventors:
Shell Oil Company, Houston, Tex.
Aug. 7, 1972 Assignee:
Filed:
Appl. No.:
U.S. Cl. 299/5, 166/303 Int. Cl E2lb 43/28 Field of Search 299/4, 5; 166/272,
References Cited UNlTED STATES PATENTS 2,388,009 Pike 299 5 x Pike et a1 299/5 X Papadopoulos et a1 299/5 Primary ExaminerErnest R; Purser Attorney-Theodore E. Bieber [57] ABSTRACT The process of solution mining sodium bicarbonate (e.g., nahcolite) from a subsurface sodium bicarbonate containing, oil shale formation with water is im proved by conducting leaching operations at a selected temperature greater than 250F and adjusting pressure to a particular preferred value for the selected leaching temperature.
6 Claims, 4 Drawing Figures I i-viii 7 I 1 EU um; I 8 I975 sum in; 3
0 0 0% @wwmm w 0 0 0 0 0 Q\.-m.wh; WD Q Q \CSQG KO MEQQ IREOID PATENIED DEC 18 I975 SHEET 2 BF 3 Dam saw Dom QQN ou z E zocqmEqm 252m 0% oux z I 3G9 8 2 m5 815 SE 8 2 E8 E 295%: 3 a
PROCESS FOR SOLUTION MINING NAHCOLITE BACKGROUND OF THE INVENTION Field of the Invention This invention relates to the field of producing minerals from subsurface formations; and more particularly, to a process for solution mining nahcolite from subsurface oil shale formations Description of the Prior Art The recovery of water-soluble minerals from subsurface deposits by solution mining with aqueous fluids is well known. In such a process, aqueous fluid is flowed downa well into contact with a subsurface deposit. The solution dissolves some of the soluble mineral. The mineral-containing solvent is then flowed to the surface where it is treated to remove the dissolved mineral, e.g., by evaporation.
The solubility of most commercially interesting water soluble minerals increases with increasing temperature. Therefore, aqueous solution-mining fluid is often heated to increase its mineral carrying capacity before it is injected into a subsurface mineral deposit. For example, U.S. Pat. No. 1,649,385 issued Nov. 15, 1927, to H. Blumenberg, Jr. teaches a method of solution-mining crystallized boron compounds by using a mixture of hot air and steam.
In the western United States, there are large subsurface oil shale formations which contain substantial amounts of water-soluble, heat-sensitive bicarbonate minerals such as trona and nahcolite. These minerals are present both in inter-bedded substantially pure soluble mineral layers and as dispersed nodules in certain layers which predominently contain oil shale.
It is known that theseheat-sensitive, water-soluble minerals can be solution-mined with hot aqueous solutions. *See, for example, U.S. Pat. 3,050,290, issued Aug. 21, 1962, to N. A. Caldwell et al. A co-pending commonly assigned application of T. N. Beard, Ser.
No. 75,009, filed Sept. 24, 1970, teaches a method of producing oil from such mineral-containing oil-shale formations which includes permeabilization of the formation by dissolution of mineral with hot aqueous solution.
SUMMARY OF THE INVENTION We have now found that the process of removing heat-sensitive, water-soluble bicarbonate minerals from subsurface oil shale deposits by solution-mining with hot aqueous solutions is improved by injecting steam into the formation at a selected temperature greater than 250F, and advantageously, greater than 300F, to leach water-soluble mineral from the formation; maintaining the temperature of fluid in the leached zone greater than 250F; and adjusting pressure in the leached zone to a particular optimum pressure for the selected temperature.
The optimum pressure is that pressure at which the sodium mineral-carrying capacity of the aqueous leaching fluid is at a maximum. At pressures below the optimum, excessive conversion of bicarbonate material to carbonate with attendant precipitation of carbonate leads'to a reduced mineral-carrying capacity. At higher pressures than the optimum, conversion of bicarbonate material to carbonate is inhibited and the mineralcarrying capacity of the leaching fluid is thereby reduced.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a graphical representation of cavity growth rate versus cavity temperature for a nahcolite leaching operation conducted in a nahcolite-containing oil shale formation.
FIG. 2 is a graph of sodium content expressed as equivalent pounds of nahcolite per pound of water for a sodium carbonate saturated, sodium bicarbonatewater system as a function of temperature.
FIG. 3 is a schematic view, partly in cross section, of a solution-mining well equipped for the practice of this invention. FIG. 4 is a schematic view, partly in cross-section, of another well system for use in the practice of this invention.
DESCRIPTION OF A PREFERRED EMBODIMENT Referring to FIG. 3, we see a subsurface oil shale formation 10 containing strata 11 of substantially pure nahcolite (NaHCO and strata 12 which are predominantly oil shale but which contain a substantial amount of nahcolite, e.g. 20 to 40 percent nahcolite dispersed in discreet nodules.
A solution-mining well 13 extends into the oil shale formation 10 from the earth surface. The well 13 has been completed in a conventional manner with casing 14 sealed in place with cement 15. A solution-mining fluid injection tubing string 16 and a solution-mining fluid production tubing string 17 are extended into the well 13. The lower end of the injection tubing 16 is preferably positioned adjacent the top of a zone 9 of the oil shale formation 10 to be solution-mined. The lower end of the production tubingstring is preferably positioned near the bottom of the zone 9.
Pack-off means such as packer 18 may be positioned in the casing 14 above the lower end of the tubing string 16. Production tubing string 17 is provided with suitable means for lifting solution-mining fluid to the surface. For example, pumping apparatus may be positioned adjacent the bottom of production string 17 or the production string 17 may be equipped for gas lift as shown in FIG. 3. In the embodiment illustrated, a pressure actuated gas lift valve 19 is operatively connected to production tubing 17 at a point above packer 18. A conduit 20 for injection gas is connected to the casing 14 at the surface. To lift fluid in the tubing 17, gas is injected through conduit 20 into casing 14. When the pressure of this gas exceeds a certain threshold value, valve 19 opens and admits gas into the interior of tubing 17. This gas lightens the column of fluid in tubing 17 thereby reducing the pressure necessary to cause fluid to flow from the bottom of tubing 17 to the earth surface.
To solution mine nahcolite from formation 10, hot aqueous solution-mining fluid, preferably low quality steam, is injected down tubing 16. This fluid contacts water-soluble minerals in the formation 10 and dissolves them thereby forming a leached zone and, eventually, a cavity 21. The cavity 21 may be at least partially filled with fragmented particles of oil shale and nahcolite 22.
We have found that in leaching formations similar to that shown in FIG. 1 with steam, the cavity growth rate varies logarithmically with the cavity temperature as shown in FIG. 1 and that cavity growth rate is only slightly dependent upon the rate of fluid injection. It is believed that this increase in cavity growth rate with temperature is at least in part due to more rapid thermal fracturing at higher temperatures of oil shale surrounding discreet nahcolite nodules. Such fracturing allows injected aqueous fluid to reach the nahcolite nodule and leach it from the formation leaving an exposed oil shale face which is in turn thermally fractured opening up communication to yet another nodule.
As can be seen in FIG. 1, for temperatures below 250F, growth rate of cavity radius is quite low, less than 0.08 feet per day; whereas at 300F, growth rate is almost doubled to 0.15 feet per day. Thus, for maximum mineral removal, cavity temperature should be maintained above 250F and preferably above 300F.
We have also found that in solution-mining nahcolite from an oil shale formation with aqueous fluid, the rate of mineral recovery can be maximized by selecting an operating temperature for maximum desired cavity growth rate as by reference to FIG. 1, and then during operation adjusting cavity pressure to a pressure at which the sodium carrying capacity of the aqueous leaching fluid is a maximum for the selected cavity temperature. This pressure is less than that required to bydraulically fracture the formation and is greater than the pressure at which nahcolite decomposition to sodium carbonite, carbon dioxide and water is maximized.
Operating in this manner can significantly reduce the energy requirement for carrying out the process since heat can be carried to the formation by relatively low pressure steam. Additionally, water requirements are reduced because the total amount of sodium mineral removed from the cavity 21 by a given volume of leaching luid is maximized.
The particular selected leaching temperature will vary from operation to operation depending upon economic conditions and the desired cavity growth rate for each particular case. Operating pressure for a particular selected temperature is determined from pressure, temperature, saturation relationships such as those given in FIG. 2. That figure shows total sodium concentration in pounds of nahcolite per pound of water for a sodium carbonate saturated, sodium carbonate/- sodium bicarbonatewater system. The graph reflects the amount of nahcolite removed from a nabcolite formation which is present in the solution even though the actual composition of the solution includes both sodium bicarbonate and sodium carbonate generated by nahcolite decomposition. Best results are obtained by operating at the pressure for which the isobar intersects the upper dashed curve at the selected operating temperature. Good results are obtained at pressures varying as much as percent above or below this pressure.
Looking at FIG. 2 for a temperature of 400, it can be seen that at that temperature and about 200 psi only sodium bicarbonate is present in the solution (as given by the lower dotted line of the Figure) and that the total amount of equivalent nahcolite dissolved is around 0.55 pounds per pound of water. However as pressure is increased, the amount of sodium bicarbonate in the system increases until at about 1,000 psi, the total sodium content is equivalent to about 1.25 pounds per pound of water even though sodium carbonate saturation remains the same. Further pressure increase to a pressure for which the extention of an isobar would intersect the 400F isotherm above the upper dotted line results in the precipitation of sodium bicarbonate and an effective reduction in the equivalent nahcolite saturation of the system. Thus at 400F, leaching operations can be maximized if pressure in the cavity 21 is maintained at about 1,000 psi. To maintain this pressure, it is necessary to artiflcally lift fluid from the cavity 21 if the fluid head of solution-mining fluid in production tubing 17 is greater than 1,800 psi. Therefore, the well 13 is provided with a gas lift system as heretofore described.
FIG. 4 shows a well 22 extending into the formation 10 that is completed in a manner particularly advantageous for the practice of this invention. The well 22 is completed with casing 23 which extends into the nahcolite-containing formation 10. The casing 23 is cemented in place with cement 24 and perforated adjacent formation 10 with perforations 25 to open the interior of the casing into communication with the formation 10.
A liquid production tubing string 26 and a gas production tubing string 27 extend into the well from the surface. The liquid production tubing string 26 preferably terminates at the point adjacent the bottom of the interval of the formation 10 to be treated whereas the gas production tubing string 27 terminates at a point above the lower end of the liquid production tubing 26 but below the perforations 25. The interior of the casing is preferably sealed to fluid flow by pack-off means such as packer 28 at a point above the terminal ends of the two tubing strings 26 and 27 and below the perforations 25.
The liquid production tubing string is provided with means for lifting liquid from the formation 10 to the surface. This may be a down-hole pump or gas lift means (as illustrated in FIG. 4) in which a gas injection string extends into the well 22 and is connected in communication with production tubing 26 at a point near the lower end of that tubing. The particular point of intersection will be determined by the fluid head desired to be maintained in liquid production string 26.
In operation, hot aqueous fluid having a temperature greater than 250 and preferably greater than 300F is injected into casing 23 through conduit 30 and then down the casing until it passes through perforations 25 into the formation 10. This fluid leaches nahcolite from the formation creating a cavity 31 which may be filled with fragmented particles of oil shale and nahcolite 32. The aqueous fluid advantageously contains high proportion of steam which upon contacting the formation 10 condenses to form a liquid phase capable of carrying dissolved mineral in solution. Simultaneously with the injection of steam down the casing 22, liquid is produced from the lower part of the cavern 31 through production tubing string 26 and gas is produced from the cavern 31 through gas production tubing string 27. The production rate of these fluids is preferably adjusted to maintain the pressure in the cavern 31 at a particular preferred value for the selected temperature operation. The removal of gas through the tubing 26 draws both steam and CO from the cavern 31. This results in a reduction of the partial pressure of CO in the cavern and further promotes the decomposition of nahcolite (NaHCO to sodium carbonate, CO and water (e.g., 2 NaHCO, Na CO3 C0, H O).
Both FIGS. 3 and 4 illustrates single well systems for the practice of this invention. However, it should be understood that two or more wells may at any one time be in communication with any particular cavern 21 or 31 or other permeabilized zone. In such a case, aqueous fluid may be injected into the formation through one well and produced from the formation through a separate well.
Both FIGS. 3 and 4 illustrate the process after a cavity 21 or 31 has been formed. It should be understood that in many cases, initial treatment will be confined to a substantially cylindrical wellbore and that the cavern is formed only after a period of leaching has expanded the wellbore radically.
We claim as our invention:
1. In a method for solution-mining heat sensitive water-soluble sodium bicarbonate minerals from a subsurface bicarbonate mineral containing oil-shale formation of the type wherein a hot aqueous fluid is injected into the formation to leach bicarbonate mineral therefrom, the improvement comprising:
injecting steam into the formation at a temperature greater than 250F to leach water-soluble mineral from the formation and thereby create a leached zone; maintaining the temperature of fluid in the leached zone at a temperature greater than 250F; and
adjusting pressure in the leached zone to an optimum pressure at which the sodium mineral carrying capacity of water at the selected temperature is a maximum.
2. The method of claim 1 further comprising producing liquid containing dissolved sodium bicarbonate from a liquid layer adjacent the bottom of the leached zone through a production tubing string using artificial lift means to lift the liquid to the surface.
3. The method of claim 2 further comprising withdrawing gas containing CO from a gas layer adjacent the top of the leached zone.
4. A method for solution-mining nahcolite from a subsurface oil-shale formation comprising the steps of:
traversing a nahcolite-containing zone of the oilshale formation with a well;
extending a production string of tubing into the well to a point adjacent the bottom of the nahcolitecontaining zone;
extending an injection tubing string into the well to a point adjacent the top of the nahcolite-containing zone; injecting steam into contact with the nahcolite containing zone through the injection tubing at a temperature such that upon contacting the formation at least some of the steam condenses to liquid which liquid flows to the bottom of the nahcolite zone leaching nahcolite therefrom; producing nahcolite-containing aqueous liquid from the nahcolite zone through the production tubing;
controlling the rate and temperature of steam injection to maintain a selected temperature of aqueous liquid adjacent the bottom of the nahcolite zone;
adjusting the pressure in the aqueous liquid adjacent the bottom of the nahcolite zone to an operating pressure substantially equal to that pressure at which the amount of sodium mineral the aqueous liquid can carry at the selected temperature is a maximum; and
maintaining the pressure in the aqueous liquid adjacent the bottom of the nahcolite zone substantially constant at the operating pressure.
5. The method of claim 4 wherein the operating pressure is a pressure less than that required to hydraulically fracture the formation.
6. The method of claim 5 wherein the operating pressure is greater than the pressure at which the rate of nahcolite decomposition is a maximum at the selected temperature.

Claims (5)

  1. 2. The method of claim 1 further comprising producing liquid containing dissolved sodium bicarbonate from a liquid layer adjacent the bottom of the leached zone through a production tubing string using artificial lift means to Lift the liquid to the surface.
  2. 3. The method of claim 2 further comprising withdrawing gas containing CO2 from a gas layer adjacent the top of the leached zone.
  3. 4. A method for solution-mining nahcolite from a subsurface oil-shale formation comprising the steps of: traversing a nahcolite-containing zone of the oil-shale formation with a well; extending a production string of tubing into the well to a point adjacent the bottom of the nahcolite-containing zone; extending an injection tubing string into the well to a point adjacent the top of the nahcolite-containing zone; injecting steam into contact with the nahcolite containing zone through the injection tubing at a temperature such that upon contacting the formation at least some of the steam condenses to liquid which liquid flows to the bottom of the nahcolite zone leaching nahcolite therefrom; producing nahcolite-containing aqueous liquid from the nahcolite zone through the production tubing; controlling the rate and temperature of steam injection to maintain a selected temperature of aqueous liquid adjacent the bottom of the nahcolite zone; adjusting the pressure in the aqueous liquid adjacent the bottom of the nahcolite zone to an operating pressure substantially equal to that pressure at which the amount of sodium mineral the aqueous liquid can carry at the selected temperature is a maximum; and maintaining the pressure in the aqueous liquid adjacent the bottom of the nahcolite zone substantially constant at the operating pressure.
  4. 5. The method of claim 4 wherein the operating pressure is a pressure less than that required to hydraulically fracture the formation.
  5. 6. The method of claim 5 wherein the operating pressure is greater than the pressure at which the rate of nahcolite decomposition is a maximum at the selected temperature.
US00278407A 1972-08-07 1972-08-07 Process for solution mining nahcolite Expired - Lifetime US3779602A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US27840772A 1972-08-07 1972-08-07

Publications (1)

Publication Number Publication Date
US3779602A true US3779602A (en) 1973-12-18

Family

ID=23064857

Family Applications (1)

Application Number Title Priority Date Filing Date
US00278407A Expired - Lifetime US3779602A (en) 1972-08-07 1972-08-07 Process for solution mining nahcolite

Country Status (1)

Country Link
US (1) US3779602A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880238A (en) * 1974-07-18 1975-04-29 Shell Oil Co Solvent/non-solvent pyrolysis of subterranean oil shale
US3957306A (en) * 1975-06-12 1976-05-18 Shell Oil Company Explosive-aided oil shale cavity formation
US3967853A (en) * 1975-06-05 1976-07-06 Shell Oil Company Producing shale oil from a cavity-surrounded central well
US3987851A (en) * 1975-06-02 1976-10-26 Shell Oil Company Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale
US4033412A (en) * 1976-06-18 1977-07-05 Barrett George M Fluid carrier recovery system and method
US4264104A (en) * 1979-07-16 1981-04-28 Ppg Industries Canada Ltd. Rubble mining
US4557910A (en) * 1982-03-29 1985-12-10 Intermountain Research & Development Corporation Production of soda ash from nahcolite
US4815790A (en) * 1988-05-13 1989-03-28 Natec, Ltd. Nahcolite solution mining process
US5588713A (en) * 1995-12-20 1996-12-31 Stevenson; Tom D. Process for making sodium bicarbonate from Nahcolite-rich solutions
US5607018A (en) * 1991-04-01 1997-03-04 Schuh; Frank J. Viscid oil well completion
US5955043A (en) * 1996-08-29 1999-09-21 Tg Soda Ash, Inc. Production of sodium carbonate from solution mine brine
US6322767B1 (en) 1996-05-21 2001-11-27 Fmc Corporation Process for making sodium carbonate decahydrate from sodium carbonate/bicarbonate liquors
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US20020038711A1 (en) * 2000-04-24 2002-04-04 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20030050736A1 (en) * 2001-08-31 2003-03-13 Mark Nelson Diluting system and method
WO2003035801A2 (en) * 2001-10-24 2003-05-01 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials from a hydrocarbon containing formation
US20030102130A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation with quality control
US20030131994A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing and solution mining of an oil shale formation
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US6609761B1 (en) 1999-01-08 2003-08-26 American Soda, Llp Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale
US6699447B1 (en) * 1999-01-08 2004-03-02 American Soda, Llp Sodium bicarbonate production from nahcolite
US20040177966A1 (en) * 2002-10-24 2004-09-16 Vinegar Harold J. Conductor-in-conduit temperature limited heaters
US20050051327A1 (en) * 2003-04-24 2005-03-10 Vinegar Harold J. Thermal processes for subsurface formations
US20060039842A1 (en) * 2004-08-17 2006-02-23 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US20110084030A1 (en) * 2009-10-12 2011-04-14 Force Flow Method and system for monitoring and/or tracking sodium hypochlorite use
US20110127825A1 (en) * 2008-08-01 2011-06-02 Solvay Chemicals, Inc. Traveling undercut solution mining systems and methods
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9433894B2 (en) 2013-05-09 2016-09-06 Tronox Alkali Wyoming Corporation Removal of hydrogen sulfide from gas streams
US9803458B2 (en) 2013-03-13 2017-10-31 Tronox Alkali Wyoming Corporation Solution mining using subterranean drilling techniques
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US10422210B1 (en) 2018-05-04 2019-09-24 Sesqui Mining, Llc. Trona solution mining methods and compositions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2388009A (en) * 1943-10-19 1945-10-30 Robert D Pike Solution mining of trona
US2625384A (en) * 1949-07-01 1953-01-13 Fmc Corp Mining operation
US3700280A (en) * 1971-04-28 1972-10-24 Shell Oil Co Method of producing oil from an oil shale formation containing nahcolite and dawsonite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2388009A (en) * 1943-10-19 1945-10-30 Robert D Pike Solution mining of trona
US2625384A (en) * 1949-07-01 1953-01-13 Fmc Corp Mining operation
US3700280A (en) * 1971-04-28 1972-10-24 Shell Oil Co Method of producing oil from an oil shale formation containing nahcolite and dawsonite

Cited By (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880238A (en) * 1974-07-18 1975-04-29 Shell Oil Co Solvent/non-solvent pyrolysis of subterranean oil shale
US3987851A (en) * 1975-06-02 1976-10-26 Shell Oil Company Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale
US3967853A (en) * 1975-06-05 1976-07-06 Shell Oil Company Producing shale oil from a cavity-surrounded central well
US3957306A (en) * 1975-06-12 1976-05-18 Shell Oil Company Explosive-aided oil shale cavity formation
US4033412A (en) * 1976-06-18 1977-07-05 Barrett George M Fluid carrier recovery system and method
US4264104A (en) * 1979-07-16 1981-04-28 Ppg Industries Canada Ltd. Rubble mining
US4557910A (en) * 1982-03-29 1985-12-10 Intermountain Research & Development Corporation Production of soda ash from nahcolite
US4815790A (en) * 1988-05-13 1989-03-28 Natec, Ltd. Nahcolite solution mining process
US5607018A (en) * 1991-04-01 1997-03-04 Schuh; Frank J. Viscid oil well completion
US5588713A (en) * 1995-12-20 1996-12-31 Stevenson; Tom D. Process for making sodium bicarbonate from Nahcolite-rich solutions
US6322767B1 (en) 1996-05-21 2001-11-27 Fmc Corporation Process for making sodium carbonate decahydrate from sodium carbonate/bicarbonate liquors
US5955043A (en) * 1996-08-29 1999-09-21 Tg Soda Ash, Inc. Production of sodium carbonate from solution mine brine
US6609761B1 (en) 1999-01-08 2003-08-26 American Soda, Llp Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale
US7410627B2 (en) * 1999-01-08 2008-08-12 American Soda, Llp Sodium carbonate and sodium bicarbonate production
US7128886B2 (en) * 1999-01-08 2006-10-31 Solvay Chemicals, Inc. Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale
US20060120942A1 (en) * 1999-01-08 2006-06-08 American Soda, Llp Sodium carbonate and sodium bicarbonate production
US20040231109A1 (en) * 1999-01-08 2004-11-25 Nielsen Kurt R. Sodium bicarbonate production from nahcolite
US6699447B1 (en) * 1999-01-08 2004-03-02 American Soda, Llp Sodium bicarbonate production from nahcolite
US20040026982A1 (en) * 1999-01-08 2004-02-12 American Soda, Llp Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale
US20020043365A1 (en) * 2000-04-24 2002-04-18 Berchenko Ilya Emil In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20020038711A1 (en) * 2000-04-24 2002-04-04 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20020040780A1 (en) * 2000-04-24 2002-04-11 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce a selected mixture
US20020056551A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US20020084074A1 (en) * 2000-04-24 2002-07-04 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020057905A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020077515A1 (en) * 2000-04-24 2002-06-20 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20030102130A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation with quality control
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US20030102124A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal processing of a blending agent from a relatively permeable formation
US20030102125A1 (en) * 2001-04-24 2003-06-05 Wellington Scott Lee In situ thermal processing of a relatively permeable formation in a reducing environment
US20030209348A1 (en) * 2001-04-24 2003-11-13 Ward John Michael In situ thermal processing and remediation of an oil shale formation
US7040397B2 (en) 2001-04-24 2006-05-09 Shell Oil Company Thermal processing of an oil shale formation to increase permeability of the formation
US20030131994A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing and solution mining of an oil shale formation
US6845298B2 (en) * 2001-08-31 2005-01-18 Force Flow Diluting system and method
US20050102067A1 (en) * 2001-08-31 2005-05-12 Force Flow Diluting system and method
US20030050736A1 (en) * 2001-08-31 2003-03-13 Mark Nelson Diluting system and method
US7110861B2 (en) 2001-08-31 2006-09-19 Force Flow Diluting system and method
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
WO2003035801A2 (en) * 2001-10-24 2003-05-01 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials from a hydrocarbon containing formation
WO2003035801A3 (en) * 2001-10-24 2005-02-17 Shell Oil Co Producing hydrocarbons and non-hydrocarbon containing materials from a hydrocarbon containing formation
US20030205378A1 (en) * 2001-10-24 2003-11-06 Wellington Scott Lee In situ recovery from lean and rich zones in a hydrocarbon containing formation
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US20040177966A1 (en) * 2002-10-24 2004-09-16 Vinegar Harold J. Conductor-in-conduit temperature limited heaters
US8200072B2 (en) 2002-10-24 2012-06-12 Shell Oil Company Temperature limited heaters for heating subsurface formations or wellbores
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US20050051327A1 (en) * 2003-04-24 2005-03-10 Vinegar Harold J. Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US20060039842A1 (en) * 2004-08-17 2006-02-23 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
US20100066153A1 (en) * 2004-08-17 2010-03-18 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
US8057765B2 (en) 2004-08-17 2011-11-15 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
US8899691B2 (en) 2004-08-17 2014-12-02 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
US7611208B2 (en) * 2004-08-17 2009-11-03 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
US9260918B2 (en) 2004-08-17 2016-02-16 Sesqui Mining LLC. Methods for constructing underground borehole configurations and related solution mining methods
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
CN102112699B (en) * 2008-08-01 2014-07-09 索尔维化学有限公司 Traveling undercut solution mining systems and methods
US8678513B2 (en) * 2008-08-01 2014-03-25 Solvay Chemicals, Inc. Traveling undercut solution mining systems and methods
US9581006B2 (en) 2008-08-01 2017-02-28 Solvay Chemicals, Inc. Traveling undercut solution mining systems and methods
US9234416B2 (en) 2008-08-01 2016-01-12 Solvay Chemicals, Inc. Traveling undercut solution mining systems and methods
US20110127825A1 (en) * 2008-08-01 2011-06-02 Solvay Chemicals, Inc. Traveling undercut solution mining systems and methods
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US20110084030A1 (en) * 2009-10-12 2011-04-14 Force Flow Method and system for monitoring and/or tracking sodium hypochlorite use
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US9803458B2 (en) 2013-03-13 2017-10-31 Tronox Alkali Wyoming Corporation Solution mining using subterranean drilling techniques
US9433894B2 (en) 2013-05-09 2016-09-06 Tronox Alkali Wyoming Corporation Removal of hydrogen sulfide from gas streams
US10422210B1 (en) 2018-05-04 2019-09-24 Sesqui Mining, Llc. Trona solution mining methods and compositions
US10995598B2 (en) 2018-05-04 2021-05-04 Sesqui Mining, Llc Trona solution mining methods and compositions
US11193362B2 (en) 2018-05-04 2021-12-07 Sesqui Mining, Llc Trona solution mining methods and compositions
US11746639B2 (en) 2018-05-04 2023-09-05 Sesqui Mining, Llc. Trona solution mining methods and compositions

Similar Documents

Publication Publication Date Title
US3779602A (en) Process for solution mining nahcolite
US3502372A (en) Process of recovering oil and dawsonite from oil shale
CA1277590C (en) Disposal of produced formation fines during oil recovery
US3759574A (en) Method of producing hydrocarbons from an oil shale formation
US4163580A (en) Pressure swing recovery system for mineral deposits
US3779601A (en) Method of producing hydrocarbons from an oil shale formation containing nahcolite
US3739851A (en) Method of producing oil from an oil shale formation
US3967853A (en) Producing shale oil from a cavity-surrounded central well
US3878884A (en) Formation fracturing method
US3804172A (en) Method for the recovery of oil from oil shale
US3759328A (en) Laterally expanding oil shale permeabilization
US3804169A (en) Spreading-fluid recovery of subterranean oil
US3741306A (en) Method of producing hydrocarbons from oil shale formations
US3572838A (en) Recovery of aluminum compounds and oil from oil shale formations
CA1122113A (en) Fracture preheat oil recovery process
US2952449A (en) Method of forming underground communication between boreholes
US3500913A (en) Method of recovering liquefiable components from a subterranean earth formation
US4815790A (en) Nahcolite solution mining process
CA1130201A (en) Method for continuously producing viscous hydrocarbons by gravity drainage while injecting heated fluids
US2946382A (en) Process for recovering hydrocarbons from underground formations
US3893511A (en) Foam recovery process
US3498378A (en) Oil recovery from fractured matrix reservoirs
US8528989B2 (en) Method for simultaneously mining vertically disposed beds
US4026359A (en) Producing shale oil by flowing hot aqueous fluid along vertically varied paths within leached oil shale
US3303883A (en) Thermal notching technique