Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3785368 A
Tipo de publicaciónConcesión
Fecha de publicación15 Ene 1974
Fecha de presentación23 Ago 1971
Fecha de prioridad23 Ago 1971
Número de publicaciónUS 3785368 A, US 3785368A, US-A-3785368, US3785368 A, US3785368A
InventoresLumb D, Mc Carthy T
Cesionario originalLumb D, Mc Carthy T
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Abnormal nerve pressure locus detector and method
US 3785368 A
Resumen
A system, device and method for readily detecting the locus of a subluxated or pinched nerve along the spinal column and particularly for identifying which particular pair of vertebrae are pressing upon a pinched nerve has been disclosed so that a medical person can relieve the pressure as by adjusting alignment of one of the pair of vertebrae. A T-shaped scanning probe is employed to explore along the regions directly over and also flanking the spinal column while another probe is held tightly in the patient's hand whereby a low voltage circuit can be provided which develops fluctuations in a meter reading the current or voltage through the circuit as the T-shaped probe is drawn along the back of the patient. A method for detecting nerve root pressure subluxations of the body of a patient in the regions of the spinal column in a manner which identifies the locus of the subluxation comprises a number of manipulative steps characterized by drawing the cross-piece of the probe along the back of the patient while directing the current in the circuit to emerge from the back of the patient into the T-shaped probe.
Imágenes(1)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

States McCarthy et a1.

[ 1 Jan. 15, 1974 [76] Inventors: Thomas M. McCarthy, 940 Linden Dr., No. 130, Sunnyvale, Calif. 94087; Dale R. Luml), 1054 Bluebird Ave., Santa Clara, Calif. 95051 [22] Filed: Aug. 23, 1971 [21] Appl. No.: 173,935

[52] U.S. Cl. l28/2.1 Z, 128/2 N [51] Int. Cl ..A61b 5/05 [58] Field of Search 128/2 A, 2 H, 2 N, 128/2 R, 2.1 E, 2.1 R, 2.1 Z

[56] References Cited UNITED STATES PATENTS 2,669,986 2/1954 Crawley l28/2.l R

1,610,271 12/1926 Evins 128/2 H 3.306282 2/1967 Pierce 128/2 H 2,535,249 12/1950 Wilhelm et a1 128/21 Z 3,605,722 9/1971 Riseman et al. 128/2.1 R

Primary Examiner-William E. Kamm AlmrneyFlehr, Hohbach, Test, Albritton & Herbert [S 7] ABSTRACT A system, device and method for readily detecting the locus of a subluxated or pinched nerve along the spinal column and particularly for identifying which particular pair of vertebrae are pressing upon a pinched nerve has been disclosed so that a medical person can relieve the pressure as by adjusting alignment of one of the pair of vertebrae. A T-shaped scanning probe is employed to explore along the regions directly over and also flanking the spinal column while another probe is held tightly in the patients hand whereby a low voltage circuit can be provided which develops fluctuations in a meter reading the current or voltage through the circuit as the T-shaped probe is drawn along the back of the patient. A method for detecting nerve root pressure subluxations of the body of a patient in the regions of the spinal column in a manner which identifies the locus of the subluxation comprises a number of manipulative steps characterized by drawing the cross-piece of the probe along the back of the patient while directing the current in the circuit to emerge from the back of the patient into the T-shaped probe.

5 Claims, 4 Drawing Figures PATENTED 1 5 4 INVENTOR, TH AS M. MCCARTHY DA R. LUMB BY mz max, @J;

W ZX W ATTORNEYS ABNORMAL NERVE PRESSURE LOCUS DETECTOR AND METHOD BACKGROUND OF THE INVENTION This invention relates to a scanning system, device and method for readily detecting the locus of a subluxated or pinched nerve along the spinal column and more particularly for identifying which particular pair of vertebrae are pressing upon a pinched nerve so that a medical person can relieve the pressure as by adjusting alignment of one of the pair of vertebrae.

In the spinal column, nerves extend outwardly between confronting parts of adjacent pairs of vertebrae whereby, if one vertebra become cocked at an angle relative to the other, a nerve can become pinched. Pressure on the nerve in this manner can cause the nerve to become hyperactive whereby it develops more than its usual number of excitations or pulses. If the pressure becomes great enough, the nerve then may become hypoactive whereby its function is substantially diminished and the nerve becomes essentially deadened to a greater or lesser degree. It is not always readily evident as to which pair of vertebrae may be causing the nerve to be pinched, however.

It has been observed that sweat gland activity is generally affected by the nerves. Thus, where a nerve is hyperactive, there will be an excessively active sweat gland associated with that nerve. Conversely, hypoactive nerves tend to diminish the activity for their related sweat glands.

SUMMARY OF THE INVENTION AND OBJECTS As disclosed herein, a method and means are provided for not only locating the sweat glands which have been affected by nerve pressure, but also for locating those sweat glands which indicate the particular pair of vertebrae which are causing the nerve pressure so that the pressure can be relieved by treatment.

Thus, in general, a vertebral subluxation locus detector system has been provided characterized by an elongated electrode element having a predetermined polarity and adapted to be pressed against and wiped substantially in line contact with the skin of a patient along a path flanking the patients spinal column. The electrode element is formed with a length serving to contact and span the average distance between the sympathetic ganglionic chain of nerves of the spinal column and the midline of the spinal column. Another electrode is adapted to be held in the hand of the patient so as to form an electrical path via the patient between the first and second electrodes. Further, means for detecting impedance changes in the electrical path while wiping the first named electrode along the spinal path indicates changes in sweat gland avtivity of the patient along the first named path which sweat gland activity is directly related to the subluxation regions. Preferably, the polarities are such as to provide current flow from the hand held electrode via the body of the patient and to the exploratory electrode noted above. Further, the exploratory electrode or scanning electrode is comprised of a T-shaped member wherein the cross-piece thereof has an arcuate outer surface for engaging the skin of a patient along a line contact notwithstanding varying angular orientations of the stem portion of the T-shaped electrode.

A method for detecting nerve root pressure subluxations of the body of a patient in the regions flanking the spinal column in a manner identifying the locus of the subluxation comprises the steps as disclosed further below.

In general, it is an object of the present invention to provide an improved method and means for identifying the locus of a vertebral subluxation or pinched nerve region whereby the particular pair of vertebrae causing the pinching of the nerve can be treated.

It is a further object of the invention to provide a method and means for so identifying the locus of a vertebral subluxation using relatively simple techniques with minimum discomfiture to the patient.

The foregoing and other objects of the invention will become more readily evident from the following detailed description of a preferred embodiment when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic circuit diagram of a system according to the invention;

FIG. 2 is a diagrammatic representation of the back of a patient being examined pursuant to the method disclosed herein;

FIG. 3 is a graph showing comparative meter readings at 3.0 volts potential as between cathodal (C) and anodal (A) currents;

FIG; 4 is a graph similar to FIG. 3 at 4.0 volts potential on power supply 16.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT A vertebral subluxation locus detecting system 10 comprises an elongated electrode 11, preferably of nickel plated brass, adapted to be held in the fist 12 of a patient in order to minimize unwanted voltage drops in the interface defined between electrode 11 and the skin of the palm of the hand of the patient holding electrode 11. Thus, the probe contact area is relatively large and the contact location in the palm of the hand provides a maximum natural low impedance electrolyte in the form of perspiration from the sweat glands in the hand. Thus, the palm of the hand has a much higher density of sweat glands than on the arms or back, for example, and these glands are usually active under most conditions.

Electrode 11 is connected, as by means of lead 14, to the positive side of a variable voltage source 16 whereby electrode 11 has the characteristics of an anode and a T-shaped exploratory probe 13 forms a second electrode having the characteristics of a cathode connected, via an ammeter or other suitable meter 17 such as a voltage measuring means, to the negative side of the D.C. power supply 16.

It has been observed that a prolonged voltage applied across the skin eventually causes a decline in the probe/skin interface resistance so as to make it difficult to identify regions of hyperactive or hypoactive sweat gland activity on the skin by reading the skins resistance. Thus, the exploratory probe herein is a movable one and has a cylindrical elongated rod-shaped contact portion or element 18 having a length serving to contact and span the average distance between the sympathetic ganglionic chain of nerves of the spinal column and the midline 19 of the spinal column so as to define a path 21. It has been observed that by making the examination along path 21 as described herein, the responses obtained (indicative of nerve root pressure) will occur at locations along the path having a direct lateral relationship or displacement from the offending pair of vertebrae which are causing the detected nerve root pressure.

Thus, for most purposes, the rod-shaped element 18 of probe 13 extends approximately 32mm in length and has a diameter on the order of 4mm with rounded ends. The arcuate outer surface of element 18 provides line contact with the skin as it is wiped along path 21 flanking the centerline of the spinal column 19. The line contact provided by element 18 will exist notwithstanding varying angular orientations of the insulated stem portion 22 of probe 13. Preferably, element 18 is, of course, cylindrical in order to readily maintain such line contact as above described.

The above diameter must be small enough to provide relatively precise discrimination in detecting sweat gland activity since the resistance at the interface between element 18 and the skin of the patient is approximately inversely proportional to the contact area between the probe and the skin, the larger the exploratory probe, the smaller will be the difference in resistances as measured between the subluxation regions and normal regions. Accordingly, the probe would then, if larger, be less likely to detect a subluxation. Since the typical subluxation region is commonly circular and 2 to mm in diameter, the probe diameter of 4mm provides a relatively precise detection of the subluxation.

The tips of element 18 may be used in exploratory fashion in order to locate the precise sweat gland activity, if desired.

An electrical path 23 is formed via the patient 25 between the first and second electrodes 11, 13 and this path is indicated in dotted lines with a number of separate resistances indicated representative of the double layer resistances 24, 29 providing the major amount of resistance in path 23, the hand skin resistance 26, bulk tissue resistance 27, and back skin resistance 28.

It has been observed that, by causing the current flow in the circuit shown to move in the direction indicated by the lower case letters i, greater definition, particularly on moist skin, can be achieved since the interface resistance appears to be more stable when the steady current is outwardly moving toward exploratory probe 13.

Further, as shown in FIGS. 3 and 4, vertebral subluxation areas with anodal (A) and cathodal (C) currents at probe 13 are shown. The term anodal is used herein as representing the condition wherein current in the system shown in FIG. 1 moves in a direction opposite to the direction shown by the is therein. A cathodal current represents a current flowing in the direction shown in FIG. 1.

By a comparison of FIGS. 3 and 4, the inability to distinguish the subluxation area when using anodal current for probe 13 is readily apparent. Further, increasing the application potential fails to materially change the sensitivity of the detection method.

For a subluxation causing localized hyperactivity of the sweat glands, the distinguishability between normal and subluxation area measurement readings on meter 17 is, in part, due to the large difference in electrolyte provided at the skin/probe l3 interface where the subluxation area reduces this component of resistance 29 in the measurement circuit. If an A.C. potential is applied for a similar type of detection measurement, the skin/probe resistance is less than the corresponding DC. resistance in the normal skin areas. However, the subluxation area interface resistance decreases at much smaller proportions for an applied A.C. potential. Although the direction of potential can be reversed as in the DC. case to take advantage of the cathodal current characteristic, the difference in resistance between the two directions is much less. Thus, the DC. measurement technique has been observed to be much superior to an equivalent A.C. technique.

In operation, when it is desired to examine a patient to determine the locus of a vertebral subluxation or pinched nerve, the method for detecting the locus of nerve root pressure subluxations of the body is pursued in the regions flanking the spinal column in a manner comprising the steps of: cleaning those surface areas of a patients back flanking the spinal column so as to remove dirt, dead skin and contaminants if necessary. The skin is then dried along these surface areas and permitted to adjust to room temperature. Electrode 11 is disposed tightly held in the patient's hand and an electric potential is applied to electrode 11. The next step is to press a second electrode, such as the T- shaped probe 13, with moderate pressure against the skin in the surface areas such as 21 spanning the average distance between the sympathetic ganglionic chain of nerves of the spinal column and the midline of the spinal column to form a portion of an electrical circuit via the body of the patient between the first electrode 11 and a second electrode, such as probe 13. The second electrode 13 is formed with an elongated rod-like skin-engaging portion 18 of predetermined length and having an arcuate outer surface for contacting the skin, the radius of which lies in a range to make substantially a line contact with the skin of a width of the order of the sweat gland pores. The next step is to orient that portion 18 of probe 13 to extend laterally of the spinal column followed by drawing probe 13 along surface areas 21 in line contact therewith while measuring electrical resistance in circuit portion 23 to detect, as by means of meter 17, any abrupt substantial change therein, and marking the skin at the locus (e.g., 30) of such resistance changes so as to identify the related pair of vertebrae causing nerve root pressure.

Thus, it has been observed that the marked locii on the skin representing nerve root pressure detected in the foregoing manner typically lie laterally adjacent the confronting misaligned pair of vertebrae causing the nerve root pressure detected and marked by the above technique and apparatus.

From the foregoing, it will be readily evident that there has been provided an improved device, system and method of identifying the locus of a given pair of vertebrae causing nerve root pressure so that treatment can be readily effected.

We claim:

1. A system for detecting abnormal nerve pressure along the spinal column characterized by a DC. power supply having means for supplying both a positive and negative D.C. polarity, an elongated electrode element coupled to said means to be conditioned to a predetermined one of said polarities and adapted to be pressed against and wiped substantially in line contact with the skin ofa patient along a path adjacent and flanking the patients spinal column, the electrode element being adapted to contact the patient's back and span the average distance between the sympathetic ganglionic chain of nerves of the spinal column and the midline of the spinal column and having an arcuate outer peripheral surface means for providing a line contact with said skin, another electrode adapted to be held in the hand of the patient and coupled to the first said means to have a D.C. polarity opposite said predetermined polarity for forming an electrical path via the patient between the first and second named electrodes, and means for detecting impedance changes in said electrical path while wiping the first named electrode along the first named path for indicating changes in specific sweat gland activity of the patient along said first named path.

2. A system according to claim 1 further including means serving to establish said polarites to provide D.C. current flow from the hand-held electrode via the body of the patient and from the body to the first named electrode.

3. A system according to claim 1 wherein the first named electrode comprises a T-shaped member having a stem portion and wherein said element comprises the cross-piece of the T-shaped member, said cross-piece being adapted for engaging the skin of a patient, said cross-piece forming a line contact with said skin notwithstanding varying angular orientations of the stem portion of the T-member, said cross-piece having a length of the order of 32mm and an arcuate outer surface portion formed from a cylinder having a diameter of the order of 4mm.

4. A method for detecting nerve pressure in the body of a patient in the region ofthe spinal column in a manner identifying the vertebral level at which abnormal nerve pressure exists in the patient comprising the steps of disposing an electrode tightly held in the patient's hand, applying a D.C. electric potential to said electrode, applying a D.C. potential of opposite polarity to and pressing a second electrode with moderate pressure against the skin in said surface areas to form a portion of an electrical circuit via the body of the patient between the first named electrode and said second electrode, said second electrode having an elongated rod-like skin-engaging portion of predetermined length and an arcuate outer surface for contacting the skin, the radius of said arcuate surface lying in a range to make a line contact with the skin of a width of the order of the specific sweat gland pores of the skin, orienting said portion of said second electrode to extend laterally of the spinal column, drawing said second electrode along said surface areas while measuring the electrical resistance in said circuit portion to detect abrupt substantial changes therein, and marking the skin at the locus of such resistance changes to identify the vertebral level at which the indicated nerve pressure exists.

5. A method for detecting the vertebral level at which abnormal nerve pressure exists in the body of a patient according to Claim 4 wherein the current flow in said circuit portion is oriented to pass from the hand-held electrode to said second electrode via the patients body for completing an electric path leading out of the patients body via said skin surfaces directly over or flanking the spinal column.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US1610271 *25 Ago 192414 Dic 1926Frank W ElliottTemperature detector
US2535249 *26 Feb 194826 Dic 1950Donald Burns FrankElectric psychometer
US2669986 *1 Feb 195023 Feb 1954Crawley James BApparatus for electronically locating nerve irritations
US3306282 *3 Abr 196428 Feb 1967Walter V PierceMethod for charting temperature deviations
US3605722 *18 Nov 196920 Sep 1971Orion ResearchMethod of diagnosing cystic fibrosis
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3980073 *12 Ago 197514 Sep 1976Neeley, Carletta M.Method and apparatus for aiding diagnostic scanning of the body of a patient
US3980077 *20 Feb 197514 Sep 1976Carletta M. NeeleyMethod for aiding diagnostic scanning of the body of a patient
US4817628 *18 Oct 19854 Abr 1989David L. ZealearSystem and method for evaluating neurological function controlling muscular movements
US4940060 *9 Sep 198710 Jul 1990Hansen GuApparatus for detecting bioelectric signals
US6553245 *2 Nov 200022 Abr 2003Lawrence J. GraceMethod and apparatus for self-diagnostic evaluation of nerve sensory latency
US7058438 *1 Abr 20036 Jun 2006Grace Lawrence JMethod and apparatus for self-diagnostic evaluation of nerve sensory latency
US70798837 May 200318 Jul 2006Nuvaslve, Inc.Nerve surveillance cannulae systems
US717767716 Oct 200213 Feb 2007Nuvasive, Inc.Nerve proximity and status detection system and method
US720794925 May 200524 Abr 2007Nuvasive, Inc.Surgical access system and related methods
US7470236 *24 Nov 200030 Dic 2008Nuvasive, Inc.Electromyography system
US752295325 Mar 200421 Abr 2009Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US758205826 Jun 20031 Sep 2009Nuvasive, Inc.Surgical access system and related methods
US765730818 Feb 20052 Feb 2010Nuvasive, Inc.System and methods for performing dynamic pedicle integrity assessments
US766454430 Abr 200416 Feb 2010Nuvasive, Inc.System and methods for performing percutaneous pedicle integrity assessments
US769105716 Ene 20046 Abr 2010Nuvasive, Inc.Surgical access system and related methods
US769356231 Oct 20076 Abr 2010Nuvasive, Inc.Nerve surveillance cannulae systems
US778525331 Ene 200631 Ago 2010Nuvasive, Inc.Surgical access system and related methods
US781980127 Feb 200426 Oct 2010Nuvasive, Inc.Surgical access system and related methods
US78921737 Dic 200922 Feb 2011Nuvasive, Inc.Surgical access system and related methods
US790584018 Oct 200415 Mar 2011Nuvasive, Inc.Surgical access system and related methods
US792092224 Feb 20105 Abr 2011Nuvasive, Inc.System and methods for determining nerve proximity, direction, and pathology during surgery
US793505122 Abr 20093 May 2011Nuvasive, Inc.Surgical access system and related methods
US796219131 Oct 200714 Jun 2011Nuvasive, Inc.Nerve surveillance cannulae systems
US796392721 Abr 200421 Jun 2011Nuvasive, Inc.Electromyography system
US798700125 Ene 200726 Jul 2011Warsaw Orthopedic, Inc.Surgical navigational and neuromonitoring instrument
US799146331 Oct 20072 Ago 2011Nuvasive, Inc.Electromyography system
US80007821 Dic 200916 Ago 2011Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US800553514 Abr 200923 Ago 2011Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US801676723 Abr 200713 Sep 2011Nuvasive, Inc.Surgical access system and related methods
US802771620 Abr 200927 Sep 2011Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US80507691 May 20091 Nov 2011Nuvasive, Inc.System and methods for determining nerve proximity, direction, and pathology during surgery
US80689129 Ene 200429 Nov 2011Nuvasive, Inc.System and methods for determining nerve proximity, direction, and pathology during surgery
US809043629 Oct 20093 Ene 2012Nuvasive, Inc.Tissue discrimination and applications in medical procedures
US811401930 Dic 200914 Feb 2012Nuvasive, Inc.Surgical access system and related methods
US813317330 Dic 200913 Mar 2012Nuvasive, Inc.Surgical access system and related methods
US81372848 Oct 200320 Mar 2012Nuvasive, Inc.Surgical access system and related methods
US814742115 Jul 20053 Abr 2012Nuvasive, Inc.System and methods for determining nerve direction to a surgical instrument
US816565314 Jun 201124 Abr 2012Nuvasive, Inc.Surgical access and nerve surveillance
US817275017 Mar 20108 May 2012Nuvasive, Inc.Surgical access system and related methods
US818242330 Dic 200922 May 2012Nuvasive, Inc.Surgical access system and related methods
US818717930 Dic 200929 May 2012Nuvasive, Inc.Surgical access system and related methods
US819235610 Dic 20095 Jun 2012Nuvasive, Inc.Surgical access system and related methods
US819235730 Dic 20095 Jun 2012Nuvasive, Inc.Surgical access system and related methods
US820631222 Sep 200626 Jun 2012Nuvasive, Inc.Multi-channel stimulation threshold detection algorithm for use in neurophysiology monitoring
US824434323 Ago 201114 Ago 2012Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US82550442 Feb 201028 Ago 2012Nuvasive, Inc.System and methods for performing dynamic pedicle integrity assessments
US8255045 *3 Abr 200828 Ago 2012Nuvasive, Inc.Neurophysiologic monitoring system
US826574416 Ago 201111 Sep 2012Nuvasive, Inc.Systems and methods for performing surgical procedures and assessments
US828759716 Abr 201016 Oct 2012Nuvasive, Inc.Method and apparatus for performing spine surgery
US830349818 Feb 20116 Nov 2012Nuvasive, Inc.Surgical access system and related methods
US830351511 Dic 20096 Nov 2012Nuvasive, Inc.Surgical access system and related methods
US831343011 Ene 200720 Nov 2012Nuvasive, Inc.Surgical access system and related methods
US832885128 Jul 200611 Dic 2012Nuvasive, Inc.Total disc replacement system and related methods
US83374102 Ago 201125 Dic 2012Nu Vasive, Inc.Electromyography system
US834304612 Mar 20121 Ene 2013Nuvasive, Inc.Surgical access system and related methods
US835578020 Nov 200915 Ene 2013Nuvasive, Inc.Surgical access system and related methods
US837467325 Ene 200712 Feb 2013Warsaw Orthopedic, Inc.Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control
US838852731 Dic 20095 Mar 2013Nuvasive, Inc.Surgical access system and related method
US840384114 Dic 200926 Mar 2013Nuvasive, Inc.Surgical access system and related methods
US84398324 Ene 201114 May 2013Nuvasive, Inc.Surgical access system and related methods
US850063417 Ene 20136 Ago 2013Nuvasive, Inc.Surgical access system and related methods
US850065326 Jun 20126 Ago 2013Nuvasive, Inc.Neurophysiology monitoring system configured for rapid stimulation threshold acquisition
US85122351 Jun 201220 Ago 2013Nuvasive, Inc.Surgical access system and related methods
US85237688 May 20123 Sep 2013Nuvasive, Inc.Surgical access system and related methods
US85385397 Oct 200517 Sep 2013Nu Vasive, Inc.System and methods for assessing the neuromuscular pathway prior to nerve testing
US85485797 Ago 20121 Oct 2013Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US85509945 Nov 20128 Oct 2013Nuvasive, Inc.Surgical access system and related methods
US855680815 Ene 201315 Oct 2013Nuvasive, Inc.Surgical access system and related methods
US85625211 Feb 201322 Oct 2013Nuvasive, Inc.Surgical access system and related methods
US856253921 Ago 200722 Oct 2013Nuvasive, Inc.Electromyography system
US856831727 Sep 200629 Oct 2013Nuvasive, Inc.System and methods for nerve monitoring
US85683312 Feb 200629 Oct 2013Nuvasive, Inc.System and methods for monitoring during anterior surgery
US859143122 Sep 200626 Nov 2013Nuvasive, Inc.System and methods for performing pedicle integrity assessments of the thoracic spine
US85914323 Ene 201126 Nov 2013Nuvasive, Inc.Surgical access system and related methods
US86029824 Abr 201310 Dic 2013Nuvasive, Inc.Surgical access system and related methods
US862846930 Jul 201314 Ene 2014Nuvasive, Inc.Surgical access system and related methods
US86349048 Nov 201121 Ene 2014Nuvasive, Inc.System and methods for determining nerve proximity, direction, and pathology during surgery
US864163831 Oct 20074 Feb 2014Nuvasive, Inc.Electromyography system
US86631004 Sep 20134 Mar 2014Nuvasive, Inc.Surgical access system and related methods
US86728408 May 201218 Mar 2014Nuvasive, Inc.Surgical access system and related methods
US86790061 Feb 201325 Mar 2014Nuvasive, Inc.Surgical access system and related methods
US86965591 Feb 201315 Abr 2014Nuvasive, Inc.Surgical access system and related methods
US87088991 Feb 201329 Abr 2014Nuvasive, Inc.Surgical access system and related methods
US873812311 Feb 201327 May 2014Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US874078320 Jul 20063 Jun 2014Nuvasive, Inc.System and methods for performing neurophysiologic assessments with pressure monitoring
US87473074 Sep 201310 Jun 2014Nuvasive, Inc.Surgical access system and related methods
US875327031 Jul 201317 Jun 2014Nuvasive, Inc.Surgical access system and related methods
US875327113 Ene 201417 Jun 2014Nuvasive, Inc.Surgical access system and related methods
US876464911 Oct 20131 Jul 2014Nuvasive, Inc.Surgical access system and related methods
US87684508 Feb 20131 Jul 2014Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US87904062 Abr 201229 Jul 2014William D. SmithSystems and methods for performing spine surgery
US88121167 May 201219 Ago 2014Nuvasive, Inc.System and methods for determining nerve proximity, direction, and pathology during surgery
US88213969 Jun 20142 Sep 2014Nuvasive, Inc.Surgical access system and related methods
US882790020 Nov 20129 Sep 2014Nuvasive, Inc.Surgical access system and related methods
Clasificaciones
Clasificación de EE.UU.600/384
Clasificación internacionalA61B5/05
Clasificación cooperativaA61B5/05
Clasificación europeaA61B5/05