US3794115A - Process for forming borehole plugs - Google Patents

Process for forming borehole plugs Download PDF

Info

Publication number
US3794115A
US3794115A US00217964A US3794115DA US3794115A US 3794115 A US3794115 A US 3794115A US 00217964 A US00217964 A US 00217964A US 3794115D A US3794115D A US 3794115DA US 3794115 A US3794115 A US 3794115A
Authority
US
United States
Prior art keywords
borehole
aqueous dispersion
dispersion
positioning
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00217964A
Inventor
W Skagerberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Mills Chemicals Inc
Original Assignee
General Mills Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Mills Chemicals Inc filed Critical General Mills Chemicals Inc
Application granted granted Critical
Publication of US3794115A publication Critical patent/US3794115A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/514Compositions based on water or polar solvents containing organic compounds macromolecular compounds of natural origin, e.g. polysaccharides, cellulose

Definitions

  • the process 166/283, 282; 252/855 R uses dispersions of water soluble polymers and crosslinking agents, the cross-linking activity of which is re- [56] References Cited tarded.
  • the dispersion is positioned while in a low vis- UNITED STATES PATENTS cosity state and subsequently high viscosities develop.
  • This invention relates to a process for placing strong substantially impermeable, relatively inexpensive temporary plugs in boreholes. More particularly, this invention relates to positioning aqueous dispersions of polymers and selected cross-linking agents in boreholes and causing the predominant portion of the cross linking to occur after the dispersion has been put in the desired position.
  • Operating fluid is used in boreholes for: one, carrying cuttings to the surface during drilling; two, treating during cleaning; and three, stimulating treatment.
  • Plugs are used in drilling boreholes primarily to prevent the flow of operating fluid from the borehole into the surrounding rock or earth formation. This is a common problem encountered in oil well drilling. The leakage ordinarily occurs in particular areas of the borehole. The plug acts as a patch over that particular rock or earth stratum.
  • plugs are used to prevent the flow of fluids, such as water, from the surrounding rock or earth formations into the borehole. This is sometimes a problem in core drilling.
  • the plug is an aqueous solution or dispersion of a thickener, i.e. starch. The solution or dispersion is pumped into the borehole and impregnates and seals the pores in the rock or earth radial to the borehole. The plug may literally smear the surface of the borehole.
  • One method consists of pumping dispersions of gums such as guar in concentrations of about 5% to by weight into boreholes.
  • This method has several disadvantages. First, be-cause the dispersion is initially very viscous it is extremely difficult to pump and requires equipment capable of operating at pressure of the magnitude of about 500 to 3,000 psi. Secondly, because the gum is not cross linked, there is no gel structure present. The dispersion forms a paste in the environment of the borehole and is not very strong or impervious to fluid flow. Third, using gums at such high concentrations is expensive.
  • a second method of devising a plug has been to inject a solution of cross-linking agent into a dispersion of guar at the outlet of the pump just before the dispersion is moved down the pipe in the borehole.
  • the disadvantage in this method is that cross linking occurs very quickly. Therefore, only a small amount of cross linking can be tolerated or the gum will gel in the pipe and cannot be moved. Because only a small amount of cross linking can be tolerated, the plug itself is weak and fairly easily penetrated by fluids.
  • the dispersions contain relatively low concentrations of polymer and therefore can be pumped through the system without using excessively high pressures. For example, a 1% by weight guar dispersion can be pumped at pressure less than psig.
  • the polymer concentration is much lower than in those processes which depend upon limited solution and high gum concentrations in the order of 5% to 20%, the process is much more inexpensive.
  • the polymer is not substantially cross linked until the dispersion is in place, relatively heavy cross linking can be used thus creating more viscous, stiffer and less penetrable gelled plugs than here tofore possible.
  • polygalactomannan gums are polygalactomannan gums, hydroxyalkyl ethers of polygalactomannan gums, carboxyalkyl ethers of polygalactomannan gums, their depolymerized counterparts, polyvinyl alcohol and mixtures thereof.
  • polygalactomannan as used herein includes the general class of polysaccharides containing both galactose and mannose units.
  • the polygalactomannans" are usually found in the endosperm sections of leguminous seeds such as guar, locust bean, tara, honey bean, flametree and cassia occidentalis.
  • Hydroxyalkyl ethers of polygalactomannans refer to derivatives obtained by reacting a polygalactomannan with an alkylene oxide in the presence of an alkaline catalyst.
  • the alkylene oxide forms an ether linkage with a hydroxyl group of the galactomannan unit.
  • each saccharide ring has an average of three hydroxyl groups with which the alkylene oxide can react.
  • a new hydroxyl group is added with each alkylene oxide group and it too can react. Theoretically there is no limit to the amount of alkylene oxide that may be added to the guar gum.
  • Molar substitution is the average of number of moles of the substituting material added to each mole of the anhydrohexose unit of polygalactomannan. As a practical matter, molar substitutions are of about 0.2 to 2.0. The preferred range is about 0.2 to 1.0.
  • an alkaline catalyst is necessary.
  • Such catalysts are in general the alkali metal or alkaline earth metal hydroxides, such as sodium, potassium or calcium hydroxide.
  • Ammonia may also be used, as well as more complex basic catalysts such as benzyl trimethyl ammonium hydroxide. No special advantage, however, is obtained by the use of more exotic basic or alkaline catalysts over the use of sodium hydroxide which is commonly available.
  • catalyst may be employed, as low as 0.05% based on the weight of the polygalactomannan. It is generally not necessary to exceed 10% by weight of the polygalactomannan, although larger amounts might be used. in general, about 2% to 3% by weight of the polygalactomannan is employed.
  • the reaction can be conducted at room temperature or elevated temperatures.
  • the temperature range in which the reaction is generally conducted is about 17 C. to 100 C. While higher temperatures can be used, such as up to (1., there is generally no advantage achieved.
  • the reaction can be conducted at atmospheric temperature, under reflux, or at elevated pressures, in a closed reactor.
  • the exact pressure is not critical and while higher pressure may be employed, operation is normally conducted at whatever pressure develops during the reaction. Generally such developed pressures will be on the order of from about 30 to 125 psig.
  • the reaction may be conducted in the substantial absence of water or solvent (no water added) although the efficiency of the reaction is very low without the addition of water. Accordingly, the reaction is generally conducted in the presence of water to provide higher reaction efficiency.
  • catalytic amounts of water on the order of about 3 to 8% based on the polygalactomannan are employed. These small amounts are generally used where higher temperatures and elevated pressures are employed, whereas larger amounts of water are used when lower temperatures and atmospheric pressure is employed.
  • other organic solvents either water-miscible or water-immiscible organic solvents, can be employed. Illustrative of such organic solvents are isopropanol (water-miscible) and heptane (water-immiscible).
  • unreactive organic solvents may be employed although the two mentioned are preferred.
  • Such other organic solvents are the common aliphatic hydrocarbons having from to carbon atoms which are com briefly available such as heptane and hexane. Alcohols higher than methanol, those having from 2 to 6 carbon atoms, may be employed also, such as tbutanol, the only requirement being that the solvent be substantially unreactive. Where higher water levels are employed, the water should be sufficient to swell the guar gum slightly, thereby making the gum more reactive. When employed with a solvent such as isopropan01 or heptane, from about 10 to 80% water based on the weight of guar gum is employed. The preferred amount of water is from about 30 to 70% with the water-miscible solvents and about to 30% with the water-immiscible solvents.
  • organic solvents are employed, they are generally present in an amount up to 8 times the amount of gum by weight, although larger amounts may be employed, if desired. Generally, with water-miscible solvents, an amount equal to one to three times the weight of gum are employed. With water-immiscible solvents, an amount of from 3 to 5 times the weight of gum is generally employed. With the organic solvents, the ratio by weight of water to organic solvent is preferably within the range of about 0.05 to 0.5. A range of from about 0.2 to 0.45 is preferred with the water-miscible organic solvents and from about 0.1 to 0.2 is preferred with the water-immiscible organic solvents. In general, any unreactive, organic solvent may be employed.
  • the preferred hydroxyalkyl ethers of guar are those in which the hydroxyalkyl group contains 2 to 3 carbon atoms.
  • Carboxyalkyl polygalactomannans are derivatives obtained by reacting polygalactomannan gum with halo aliphatic acid or salt of a halo aliphatic acid. Usually this is done by treating the polygalactomannan with aqueous solution of an alkali such as sodium hydroxide and then treating the alkali gum with a halo aliphatic acid or a halo aliphatic acid salt.
  • One procedure calls for the following steps. The gum is dispersed in the aqueous alkali solution and the mixture is heated to an elevated temperature such as 60 to 90 C. The reaction mixture frequently becomes a semi-solid. This mass is cooled and broken up into fine particles and treated with the etherifying agent, usually in the form of a halo aliphatic acid or salt thereof. This reaction mixture is heated to a temperature of 80 to 85 C. for
  • Alternate methods of synthesis include hydrolysis of carbamoyl alkyl ethers of polygalactomannan.
  • the preferred carboxyalkyl ethers are those in which the carboxyl alkyl group contains 1 to 3 atoms.
  • the molar substitution is the average number of moles of halo aliphatic acid substituted per mole of anhydrohexose unit of polygalactomannan gum. The preferred range is about 0.1 to 1.0.
  • the depolymerized counterparts of the above polygalactomannan gums and their derivatives are made by treating the gum with a mixture of an alkali such as sodium hydroxide and hydrogen peroxide or alkali metal peroxide and heating the mixture to a temperature of about to 90 C. as in making the carboxyalkyl or hydroxyalkyl derivatives.
  • an alkali such as sodium hydroxide and hydrogen peroxide or alkali metal peroxide
  • the polygalactomannan gum can be first depolymerized and subsequently reacted with the halo aliphatic acid or the alkylene oxide.
  • the shorter chains of the depolymerized gums develop less viscosity in dispersions than the longer chains of the initial gum. More of the depolymerized gum by weight can be put into a dispersion before the viscosity becomes too great for the dispersion to be handled.
  • the degree of depolymerization is measured by the decrease in viscosity of the gum or its derivatives.
  • the preferred amount of depolymerization yields modified gums and derivatives that require amounts of about 2% to 3% by weight gum in an aqueous dispersion to develop viscosities equivalent to dispersions containing 1% by weight of their nondepolymerized counterparts.
  • Dispersions having the same initial viscosity but containing depolymerized gums and gums having original chain lengths, respectively, will upon cross linking produce very different gels. Due to the greater concentration of the depolymerized gum, the gel obtained from dispersions containing depolymerized gums will be much stiffer than that obtained from the original gum.
  • Polyvinyl alcohol is a well-known polymer usually prepared by hydrolyzing polyvinyl acetate.
  • the polyvinyl alcohols generally useful in the practice of this invention are those in which about to 95% of the acetate groups have been hydrolyzed to hydroxyl groups.
  • the preferred hydrolyzed range is about to
  • the molecular weight of the polyvinyl alcohol should generally produce viscosities of about 1 to 200 centipoise at a temperature of 25 C. in an aqueous dispersion containing 4% by weight polyvinyl alcohol.
  • the above described water-soluble polymers are generally used in this invention in amounts of about 1% to 10% by weight based upon the weight of the polymer and water combination.
  • the long chain polygalactomannan gums and their derivatives are preferably used in amounts of from about 1% to 3% by weight and their polymerized counterparts preferably in amounts of from about 2% to 4% by weight, both based on the weight of the gum-water combination.
  • Polyvinyl alcohol is generally used in amounts of about 1% to 10% by weight, based on the weight of the polymer-water combination and preferably in amounts of 2% to
  • the cross-linking agents used in my process all have at least one characteristic which can delay their crosslinking action under conditions obtainable in a borehole.
  • This characteristic can be that the cross-linking agent is in a slowly soluble form. It can be that the cross-linking agent must react with another component of the dispersion before it has cross-linking capacity and the other component acts slowly.
  • the delaying characteristic may be that at certain pH values the cross-linking action of a particular cross-linking agent is very slow.
  • the characteristic can be that at temperatures to which the dispersion is heated in the borehole only slow cross-linking action occurs. Any cross-linking agent can be used in the practice of this invention which can develop viscosities in excess of 20,000 centipoise in the polymer dispersion and which has a characteristic which is critical to the speed of reaction and can be manipulated.
  • Suitable cross-linking agents for members of the above-described water soluble polymers include borax glass, sodium and potassium pyroantimonate, antimony oxide and chromium salts. Borate, antimony and chromic ions are known cross-linking ions. Their usefulness in this process is that they can be used under conditions in which their cross-linking activity is retarded sufficiently to permit the positioning of the dispersion in the borehole before substantial gelling of the polymer occurs.
  • the borate ion can cross link any of the abovedescribed polymers.
  • the borate ion is in the form of borax glass. While in its solid state, borax glass is dispersed in the polymer dispersion. it dissolves in the dispersion in a time range of a few minutes to hours.
  • the rate at which the borax glass dissolves and the borate ion becomes available for cross linking can be controlled by the mesh size of the borax glass particles. As shown in Example II, the gelling of guar gum can be delayed for hours using particle sizes of 100% passing through mesh and 60% retained on 30 mesh U. S. Standard Sieve. Commercially, this particle size is classified as 18 mesh. Smaller particles of borax glass dissolve more rapidly causing gelling sooner.
  • Borax glass is generally used in particle size distribution larger than about 90% through 100 mesh and 40% retained on 200 mesh U. S. Standard Sieves. Preferably borax glass is used in particle size distribution between about 100% through 20 mesh and 60% retained on 30 mesh U. S. Standard Sieve and 100% through 30 mesh and 20% retained on 100 mesh U. S. Standard Sieve. As the borax glass dissolves, it imparts alkalinity to the dispersion. Polygalactomannan gums generally are cross linked by borate ions when the pH of the dispersion is higher than about 7.5. Borax glass can be used in amounts of from 1% to 200% by weight of the polymer. Preferably, it is used in amounts of about 5% to 10% by weight of the polymer.
  • borax glass When borax glass is dry blended and stored with polygalactomannan gum or its derivatives, the natural moisture in the gum tends to hydrate the borax glass. To retard such hydration, a small amount of an organic acid such as 1% citric acid by weight based on the weight of the gum, is usually included in the dry blend.
  • an organic acid such as 1% citric acid by weight based on the weight of the gum
  • Potassium and sodium pyroantimonates can cross link polygalactomannans and their derivatives. These compounds are only slowly soluble in water based dispersions at slightly acidic and alkaline pH values. Cross-linking activity of the pyroantimonate ion is pH sensitive and occurs in the pH range of about 3 to 7. The cross-linking effect at pH values of about 3 is very fast. At the pH range of about 6 to 7, however, the cross-linking activity is very slow. By incorporating an acid into the polymer dispersion to achieve a given pH, the rate at which the pyroantimonate salt dissolves and the rate cross linking occurs can be controlled.
  • the range of acids that can be used is very wide including organic acids such as acetic, citric and oxalic acid and mineral acids such as hydrochloric, sulfuric and nitric acid.
  • organic acids such as acetic, citric and oxalic acid
  • mineral acids such as hydrochloric, sulfuric and nitric acid.
  • the sodium or potassium pyroantimonate is usually used in amounts of about 1% to 10% by weight based upon the weight of the polymer.
  • Antimony oxide containing valentinite in the presence of an oxidizing agent can cross link polygalactomannan gums and their derivatives. Strong oxidizing agents such as dichromates induce almost immediate cross linking at appropriate pH values. Weak oxidizing agents such as hydrogen peroxide, sodium peroxide, nitric acid and potassium permanganate, induce crosslinking activity very slowly. The cross-linking activity is also pH sensitive being viable in the pH range of about 3 to 7. At pH values of about 6 to 7, the cross-linking reaction is slow. Antimony oxide containing valentinite is generally used in amounts of about 1% to 10% by weight of the gum.
  • Chromic ions can cross link carboxyalkyl ethers of polygalactomannan.
  • the cross-linking activity is temperature sensitive. Dispersions being pumped down boreholes reach a temperature of from 5 C. to about 48 C. Chromic ions cross link carboxyalkyl ethers of polygalactomannan gums very slowly at these temperatures.
  • Chromic ion salts such as chromic alum are usually used in amounts of about 1% to 10% by weight of the gum. In this particular combination it has been found that a small amount of calcium ion improves the stiffness of the gel. Generally, it is used at concentrations of about ppm to the saturation concentration.
  • the distance from the entrance of the borehole to the desired position of the plug is measured.
  • the available pumping pressure, the expected friction in the borehole and the viscosity of the polymer containing dispersion are determined. From this data, the time required to move the dispersion into position is calculated or estimated.
  • a crosslinking agent which requires a greater period of time to gel the dispersion than the time required to position the dispersion in the borehole, is incorporated into the dispersion.
  • the polymer and cross linking may be stored as a dry blend and the appropriate blend selected. The dispersion is then pumped down the pipe into the borehole. As shown in the following examples, borax glass and guar gum can require about 3% hours to begin initial gelling under given conditions.
  • Carboxyalkyl guar and hydroxyalkyl guar can require about as hour.
  • the strength or viscosity of the cross-linked dispersions usually continues to increase for several hours after initial gelling begins. Maximum strength or viscosity is obtained about 16 to 22 hours after initial gelling.
  • Optimized results can be obtained by using combinations of polymers and cross-linking agents.
  • water and cross-linking agents it is frequently desirably to include oxalic acid or salts of oxalic acid in the dispersion to control the effects of hard water upon the rate or cross linking.
  • oxalic EXAMPLE I This example illustrates the gelling properties of guar gum and borax glass.
  • EXAMPLE 11 This example illustrates a variation of the guar gum and borax glass combination.
  • Example II The formulation procedure and viscosity measurements set out in Example I were repeated using the following guar gum and borax glass blend.
  • Viscosity change was as follows:
  • EXAMPLE 111 This example illustrates the characteristics of a carboxyethyl ether of guar gum having a molar substitution of about 0.2 and borax glass.
  • EXAMPLE IV This example illustrates the use of using two gums and two cross-linking agents in a blend.
  • the particular gums used were sodium carboxyethyl ether of guar and hydroxypropyl ether of guar.
  • the cross-linking agents used were borax glass and chromium alum [CrK(SO 'l2H O]. Oxalic acid was included to simulate hard water control.
  • Preservatives sodium orthophenoxyphenol and sodium pentaehlorophenylate, Dowicide A and G, Dow Chemical Co. were included to simulate the protection of the gum from microbiological deterioration.
  • composition of each blend is shown in Table 1.
  • the amount of each blend used was 8.54 grams in 500 ml. of water having a temperature of 25 C.
  • the viscosity change measurements and the time required for gelling are shown in Table 1.
  • Gelling time corresponds to the time required to develop a viscosity of 20,000 centipoise.
  • EXAMPLE v This example illustrates the behavior of a blend of hydroxypropyl ether and carboxyethyl ether of guar and two cross-linking agents in the presence of mineral salts commonly found in water available for making dispersions in the field.
  • composition of the gum blend is as follows:
  • Example I See footnote Example IV
  • Ten grams of the above blend were dispersed in 500 ml. of the solutions shown in Table 2.
  • the solutions had a temperature of 25 C.
  • the dispersion procedure was the same as described in Example I. Changes in viscosity were measured as in Example I.
  • the stiffness of the resulting gels was measured with a penetrometer after a period of 16 hours from the beginning of the mixing. This test was run for 30 seconds with a Precision Penetrometer fitted with a 45 steel cone having a 2% inch base diameter and weighing 94 grams. An additional 150 grams of weight was placed on the penetration arm.
  • EXAMPLE VI This example illustrates the effect of the temperature of the aqueous media and the concentration of the blend of gums and cross-linking agents described in Example IV.
  • the blend in amounts of 2% by weight was incorporated in water having the temperature shown in Table 3.
  • Gelling time and penetrometer measurements were made as described in Examples I and IV. The results are as follows:
  • EXAMPLE VII This example illustrates the effect of concentration of the gum and cross linker blend in the dispersion upon gelling time and gel stiffness.
  • the blend described in Example IV was incorporated in water having a temperature of 25 C. at the concentrations shown below.
  • the gelling time and penetrometer readings determined for these gels is also shown below.
  • EXAMPLE VIII This example illustrates the use of depolymerized gums in the process of this invention.
  • depolymerized gums because they have lower molecular weight than the natural gums, develop less viscosity at the same solids concentration than do natural gums while the dispersion is in an uncross-linked condition.
  • Their dispersion having equivalent initial viscosities will contain a higher solids level of depolymerized gum than of natural gums. Because the solids level is higher, upon cross linking significantly stiffer and less mobile gels are obtained from the dispersions of depolymerized gum than that from the natural gum.
  • Sample A is a hydroxypropy] ether of guar retaining its original chain lengths.
  • Sample B is a hydroxypropyl ether of guar in which the chain lengths of the guar base have been shortened to the extend that 3% by weight of this depolymerized guar derivative is required to develop the same initial viscosity as 1% by weight of the hydroxypropyl ether of guar having the original chain lengths.
  • Dispersions were prepared respectively by dispersing 3% by weight of the depolymerized guar derivative and 1% by weight of guar derivative having original chain lengths in 500 ml. of water having a temperature of 25 C.
  • EXAMPLE lX This example illustrates the use of polyvinyl alcohol as a plug former.
  • aqueous dispersion of 4% polyvinyl alcohol by weight was prepared using distilled water having a temperature of 75 to 80 F. After the completion of dispersion a dry mixture of 0.2 grams of 100 mesh (commercial graded mesh) borax glass, 0.8 grams of 30 mesh (commercial graded mesh) borax glass and 0.1 gram of anhydrous citric acid was added to 500 ml. of the dispersion.
  • the viscosity development was measured as in Example I and is as follows:
  • a process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a water soluble polymer selected from the group consisting of carboxyalkyl ethers of polygalactomannans in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination and depolymerized derivatives of carboxyalkyl ether of polygalactomannan in amounts of about 2% to 4% by weight based on the weight of the water-polymer combination, and a chromic salt, said aqueous dispersion having a low initial viscosity and said aqueous dispersion having a temperature of about 5 C. to 48 C.
  • the rate of crosslinking activity is such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
  • a process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a mixture of carboxyalkyl ether of polygalactomannan and hydroxyalkyl ether of polygalactomannan in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination, and a mixture of chromic salt and borax glass, said aqueous dispersion having a low initial viscosity and said aqueous dispersion having a temperature of about 5 C. to 48 C.
  • the rate of cross linking activity is such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
  • a process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a water soluble polymer selected from the group consisting of polygalactomannans, carboxyalkyl ethers of polygalactomannans, hydroxyalkyl ethers of polygalactomannans in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination, depolymerized derivatives of polygalactomannan, carboxyalkyl ether of polygalactomannan, hydroxyalkyl ether of polygalactomannan in amounts of about 2% to 4% by weight based on the weight of the water-polymer combination, and a cross linking agent selected from sodium or potassium pyroantimonate, said aqueous dispersion having a low initial viscosity and said aqueous dispersion having a pH range of about 6 to 7, whereby the rate of cross linking activity is such that the period of time between the introduction
  • a process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a water soluble polymer selected from the group consisting of polygalactomannans, carboxyalkyl ethers of polygalactomannans, hydroxyalkyl ethers of polygalactomannans in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination, depolymerized derivatives of polygalactomannan, carboxyalkyl ether of polygalactomannan, hydroxyalkyl ether of polygalactomannan in amounts of about 2% to 4% by weight based on the weight of the water-polymer combination, and antimony oxide in the presence of a weak oxidizing agent, said aqueous dispersion having a low initial viscosity, and the rate of cross linking activity being such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about
  • a process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising polyvinyl alcohol in amounts of from about 1% to 10% by weight based on the weight of the water-polymer combination and mixtures thereof, and borax glass, said aqueous dispersion having a low initial viscosity, and the rate of cross linking activity being such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
  • a process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a water soluble polymer selected from the group consisting of carboxyalkyl ethers of polygalactomannans and hydroxyalkyl ethers of polygalactomannans in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination, depolymerized derivatives of carboxyalkyl ether of polygalactomannan, and hydroxyalkyl ether of polygalactomannan in amounts of about 2% to 4% by weight based on the weight of the water-polymer combination, and borax glass, said aqueous dispersion having a low initial viscosity and the rate of cross linking activity being such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion

Abstract

A process for making plugs for boreholes. The process uses dispersions of water soluble polymers and cross-linking agents, the cross-linking activity of which is retarded. The dispersion is positioned while in a low viscosity state and subsequently high viscosities develop.

Description

States Patent 11 1 1111 3, 4 15 Skagerberg Feb. 26, 1974 [54] PROCESS FOR FORMING BOREHOLE 3,615,794 10/1971 Nimerick 252/855 R X PLUGS 3,378,073 4/1968 Savins 166/308 3,208,524 9/1965 Horner et a1. 166/294 Inventor: wllllam g g, Paul, 3,613,790 10/1971 Stout et a1. 166/294 Minn. 3,611,733 10/1971 Eilers at 211 166/294 X 3,378,070 4/1968 W 1e t'l. 166/294 X [73] Asslgnee: l 9 chemlcals 2,832,414 4/1958 166/294 Mmneapohs, 3,079,332 2/1963 Wyant 166/283 [22] Filed: Jan. 14, 1972 Primary ExammerStephen J Novosad 1 1 p N05 217,964 Attorney, Agent, or FirmAnthony A. Juetter; Gene 0. Enockson; Elizabeth Tweedy [52] U.S. C1. 166/294 51 lm. c1 E2lb 33/138 1 ABSTRACT [58] Field of Search 166/294, 293, 292, 295, 281, A process for making plugs for boreholes. The process 166/283, 282; 252/855 R uses dispersions of water soluble polymers and crosslinking agents, the cross-linking activity of which is re- [56] References Cited tarded. The dispersion is positioned while in a low vis- UNITED STATES PATENTS cosity state and subsequently high viscosities develop. 3,227,212 l/l966 Black et a1 166/294 6 Claims, N0 Drawings PROCESS FOR FORMING BOREHOLE PLUGS This invention relates to a process for placing strong substantially impermeable, relatively inexpensive temporary plugs in boreholes. More particularly, this invention relates to positioning aqueous dispersions of polymers and selected cross-linking agents in boreholes and causing the predominant portion of the cross linking to occur after the dispersion has been put in the desired position.
Operating fluid is used in boreholes for: one, carrying cuttings to the surface during drilling; two, treating during cleaning; and three, stimulating treatment. Plugs are used in drilling boreholes primarily to prevent the flow of operating fluid from the borehole into the surrounding rock or earth formation. This is a common problem encountered in oil well drilling. The leakage ordinarily occurs in particular areas of the borehole. The plug acts as a patch over that particular rock or earth stratum. Sometimes plugs are used to prevent the flow of fluids, such as water, from the surrounding rock or earth formations into the borehole. This is sometimes a problem in core drilling. Generally the plug is an aqueous solution or dispersion of a thickener, i.e. starch. The solution or dispersion is pumped into the borehole and impregnates and seals the pores in the rock or earth radial to the borehole. The plug may literally smear the surface of the borehole.
Various methods have been used in the past to devise plugs. One method consists of pumping dispersions of gums such as guar in concentrations of about 5% to by weight into boreholes. This method has several disadvantages. First, be-cause the dispersion is initially very viscous it is extremely difficult to pump and requires equipment capable of operating at pressure of the magnitude of about 500 to 3,000 psi. Secondly, because the gum is not cross linked, there is no gel structure present. The dispersion forms a paste in the environment of the borehole and is not very strong or impervious to fluid flow. Third, using gums at such high concentrations is expensive. A second method of devising a plug has been to inject a solution of cross-linking agent into a dispersion of guar at the outlet of the pump just before the dispersion is moved down the pipe in the borehole. The disadvantage in this method is that cross linking occurs very quickly. Therefore, only a small amount of cross linking can be tolerated or the gum will gel in the pipe and cannot be moved. Because only a small amount of cross linking can be tolerated, the plug itself is weak and fairly easily penetrated by fluids.
It has now been found that, by using water soluble polymers and selected cross-linking agents having retarded cross-linking action, dispersions of polymers can be put into place while in a reasonably low viscosity, fluid state and the viscosity or gelling of the dispersion developed after the dispersion is in position. The polymer dispersion when cross linked is not a true gel but a viscoelastic fluid. Viscoelastic fluids will flow but extremely slowly. For purposes of convenience, viscoelastic fluids having viscosities greater than 20,000 centipoise will be referred to as gels in the following description of my invention.
The advantages of this process over previously used processes are numerous. First, the dispersions contain relatively low concentrations of polymer and therefore can be pumped through the system without using excessively high pressures. For example, a 1% by weight guar dispersion can be pumped at pressure less than psig. Secondly, because the polymer concentration is much lower than in those processes which depend upon limited solution and high gum concentrations in the order of 5% to 20%, the process is much more inexpensive. Third, because the polymer is not substantially cross linked until the dispersion is in place, relatively heavy cross linking can be used thus creating more viscous, stiffer and less penetrable gelled plugs than here tofore possible.
In the practice of this invention the preferred polymers are polygalactomannan gums, hydroxyalkyl ethers of polygalactomannan gums, carboxyalkyl ethers of polygalactomannan gums, their depolymerized counterparts, polyvinyl alcohol and mixtures thereof. The term polygalactomannan as used herein includes the general class of polysaccharides containing both galactose and mannose units. The polygalactomannans" are usually found in the endosperm sections of leguminous seeds such as guar, locust bean, tara, honey bean, flametree and cassia occidentalis.
Hydroxyalkyl ethers of polygalactomannans refer to derivatives obtained by reacting a polygalactomannan with an alkylene oxide in the presence of an alkaline catalyst. The alkylene oxide forms an ether linkage with a hydroxyl group of the galactomannan unit. In the case of guar gum each saccharide ring has an average of three hydroxyl groups with which the alkylene oxide can react. In addition, a new hydroxyl group is added with each alkylene oxide group and it too can react. Theoretically there is no limit to the amount of alkylene oxide that may be added to the guar gum. Molar substitution is the average of number of moles of the substituting material added to each mole of the anhydrohexose unit of polygalactomannan. As a practical matter, molar substitutions are of about 0.2 to 2.0. The preferred range is about 0.2 to 1.0.
in order for the reaction between the polygalactomanan and the alkylene oxide to proceed, the presence of an alkaline catalyst is necessary. Such catalysts are in general the alkali metal or alkaline earth metal hydroxides, such as sodium, potassium or calcium hydroxide. Ammonia may also be used, as well as more complex basic catalysts such as benzyl trimethyl ammonium hydroxide. No special advantage, however, is obtained by the use of more exotic basic or alkaline catalysts over the use of sodium hydroxide which is commonly available.
Very small amounts of catalyst may be employed, as low as 0.05% based on the weight of the polygalactomannan. It is generally not necessary to exceed 10% by weight of the polygalactomannan, although larger amounts might be used. in general, about 2% to 3% by weight of the polygalactomannan is employed.
The reaction can be conducted at room temperature or elevated temperatures. The temperature range in which the reaction is generally conducted is about 17 C. to 100 C. While higher temperatures can be used, such as up to (1., there is generally no advantage achieved.
The reaction can be conducted at atmospheric temperature, under reflux, or at elevated pressures, in a closed reactor. The exact pressure is not critical and while higher pressure may be employed, operation is normally conducted at whatever pressure develops during the reaction. Generally such developed pressures will be on the order of from about 30 to 125 psig.
The reaction may be conducted in the substantial absence of water or solvent (no water added) although the efficiency of the reaction is very low without the addition of water. Accordingly, the reaction is generally conducted in the presence of water to provide higher reaction efficiency. In the absence of other solvents, catalytic amounts of water on the order of about 3 to 8% based on the polygalactomannan are employed. These small amounts are generally used where higher temperatures and elevated pressures are employed, whereas larger amounts of water are used when lower temperatures and atmospheric pressure is employed. Further, other organic solvents, either water-miscible or water-immiscible organic solvents, can be employed. Illustrative of such organic solvents are isopropanol (water-miscible) and heptane (water-immiscible).
. Other unreactive organic solvents may be employed although the two mentioned are preferred. Such other organic solvents are the common aliphatic hydrocarbons having from to carbon atoms which are com mercially available such as heptane and hexane. Alcohols higher than methanol, those having from 2 to 6 carbon atoms, may be employed also, such as tbutanol, the only requirement being that the solvent be substantially unreactive. Where higher water levels are employed, the water should be sufficient to swell the guar gum slightly, thereby making the gum more reactive. When employed with a solvent such as isopropan01 or heptane, from about 10 to 80% water based on the weight of guar gum is employed. The preferred amount of water is from about 30 to 70% with the water-miscible solvents and about to 30% with the water-immiscible solvents.
Where organic solvents are employed, they are generally present in an amount up to 8 times the amount of gum by weight, although larger amounts may be employed, if desired. Generally, with water-miscible solvents, an amount equal to one to three times the weight of gum are employed. With water-immiscible solvents, an amount of from 3 to 5 times the weight of gum is generally employed. With the organic solvents, the ratio by weight of water to organic solvent is preferably within the range of about 0.05 to 0.5. A range of from about 0.2 to 0.45 is preferred with the water-miscible organic solvents and from about 0.1 to 0.2 is preferred with the water-immiscible organic solvents. In general, any unreactive, organic solvent may be employed. With the lower ratios of water to organic solvent, the reaction is slowed. With the higher ratios, the recovery of product by filtration is slowed. The preferred hydroxyalkyl ethers of guar are those in which the hydroxyalkyl group contains 2 to 3 carbon atoms.
Carboxyalkyl polygalactomannans are derivatives obtained by reacting polygalactomannan gum with halo aliphatic acid or salt of a halo aliphatic acid. Usually this is done by treating the polygalactomannan with aqueous solution of an alkali such as sodium hydroxide and then treating the alkali gum with a halo aliphatic acid or a halo aliphatic acid salt. One procedure calls for the following steps. The gum is dispersed in the aqueous alkali solution and the mixture is heated to an elevated temperature such as 60 to 90 C. The reaction mixture frequently becomes a semi-solid. This mass is cooled and broken up into fine particles and treated with the etherifying agent, usually in the form of a halo aliphatic acid or salt thereof. This reaction mixture is heated to a temperature of 80 to 85 C. for
a period of about 1 to 2 hours with mixing. The reaction mixture is then cooled and acidified. The product is filtered and dried. A method of preparing carboxyalkyl ethers of carbohydrate gums is set out in U. S. Pat.
No. 2,520,161. Alternate methods of synthesis include hydrolysis of carbamoyl alkyl ethers of polygalactomannan. The preferred carboxyalkyl ethers are those in which the carboxyl alkyl group contains 1 to 3 atoms. The molar substitution is the average number of moles of halo aliphatic acid substituted per mole of anhydrohexose unit of polygalactomannan gum. The preferred range is about 0.1 to 1.0.
The depolymerized counterparts of the above polygalactomannan gums and their derivatives are made by treating the gum with a mixture of an alkali such as sodium hydroxide and hydrogen peroxide or alkali metal peroxide and heating the mixture to a temperature of about to 90 C. as in making the carboxyalkyl or hydroxyalkyl derivatives. When making depolymerized carboxyalkyl or hydroxyalkyl ethers of polygalactomannan gums, the polygalactomannan gum can be first depolymerized and subsequently reacted with the halo aliphatic acid or the alkylene oxide.
The hydrogen or alkali metal peroxide attacks the glycosidic linkages of the polygalactomannan chain breaking the very long chains into shorter chains. The shorter chains of the depolymerized gums develop less viscosity in dispersions than the longer chains of the initial gum. More of the depolymerized gum by weight can be put into a dispersion before the viscosity becomes too great for the dispersion to be handled. For the purposes of this invention, the degree of depolymerization is measured by the decrease in viscosity of the gum or its derivatives. The preferred amount of depolymerization yields modified gums and derivatives that require amounts of about 2% to 3% by weight gum in an aqueous dispersion to develop viscosities equivalent to dispersions containing 1% by weight of their nondepolymerized counterparts. Dispersions having the same initial viscosity but containing depolymerized gums and gums having original chain lengths, respectively, will upon cross linking produce very different gels. Due to the greater concentration of the depolymerized gum, the gel obtained from dispersions containing depolymerized gums will be much stiffer than that obtained from the original gum.
Polyvinyl alcohol is a well-known polymer usually prepared by hydrolyzing polyvinyl acetate. The polyvinyl alcohols generally useful in the practice of this invention are those in which about to 95% of the acetate groups have been hydrolyzed to hydroxyl groups. The preferred hydrolyzed range is about to The molecular weight of the polyvinyl alcohol should generally produce viscosities of about 1 to 200 centipoise at a temperature of 25 C. in an aqueous dispersion containing 4% by weight polyvinyl alcohol.
The above described water-soluble polymers are generally used in this invention in amounts of about 1% to 10% by weight based upon the weight of the polymer and water combination. The long chain polygalactomannan gums and their derivatives are preferably used in amounts of from about 1% to 3% by weight and their polymerized counterparts preferably in amounts of from about 2% to 4% by weight, both based on the weight of the gum-water combination. Polyvinyl alcohol is generally used in amounts of about 1% to 10% by weight, based on the weight of the polymer-water combination and preferably in amounts of 2% to The cross-linking agents used in my process all have at least one characteristic which can delay their crosslinking action under conditions obtainable in a borehole. This characteristic can be that the cross-linking agent is in a slowly soluble form. It can be that the cross-linking agent must react with another component of the dispersion before it has cross-linking capacity and the other component acts slowly. The delaying characteristic may be that at certain pH values the cross-linking action of a particular cross-linking agent is very slow. Finally, the characteristic can be that at temperatures to which the dispersion is heated in the borehole only slow cross-linking action occurs. Any cross-linking agent can be used in the practice of this invention which can develop viscosities in excess of 20,000 centipoise in the polymer dispersion and which has a characteristic which is critical to the speed of reaction and can be manipulated.
Suitable cross-linking agents for members of the above-described water soluble polymers include borax glass, sodium and potassium pyroantimonate, antimony oxide and chromium salts. Borate, antimony and chromic ions are known cross-linking ions. Their usefulness in this process is that they can be used under conditions in which their cross-linking activity is retarded sufficiently to permit the positioning of the dispersion in the borehole before substantial gelling of the polymer occurs.
The borate ion can cross link any of the abovedescribed polymers. For the purposes of this invention, the borate ion is in the form of borax glass. While in its solid state, borax glass is dispersed in the polymer dispersion. it dissolves in the dispersion in a time range of a few minutes to hours. The rate at which the borax glass dissolves and the borate ion becomes available for cross linking can be controlled by the mesh size of the borax glass particles. As shown in Example II, the gelling of guar gum can be delayed for hours using particle sizes of 100% passing through mesh and 60% retained on 30 mesh U. S. Standard Sieve. Commercially, this particle size is classified as 18 mesh. Smaller particles of borax glass dissolve more rapidly causing gelling sooner. Borax glass is generally used in particle size distribution larger than about 90% through 100 mesh and 40% retained on 200 mesh U. S. Standard Sieves. Preferably borax glass is used in particle size distribution between about 100% through 20 mesh and 60% retained on 30 mesh U. S. Standard Sieve and 100% through 30 mesh and 20% retained on 100 mesh U. S. Standard Sieve. As the borax glass dissolves, it imparts alkalinity to the dispersion. Polygalactomannan gums generally are cross linked by borate ions when the pH of the dispersion is higher than about 7.5. Borax glass can be used in amounts of from 1% to 200% by weight of the polymer. Preferably, it is used in amounts of about 5% to 10% by weight of the polymer. When borax glass is dry blended and stored with polygalactomannan gum or its derivatives, the natural moisture in the gum tends to hydrate the borax glass. To retard such hydration, a small amount of an organic acid such as 1% citric acid by weight based on the weight of the gum, is usually included in the dry blend.
Potassium and sodium pyroantimonates can cross link polygalactomannans and their derivatives. These compounds are only slowly soluble in water based dispersions at slightly acidic and alkaline pH values. Cross-linking activity of the pyroantimonate ion is pH sensitive and occurs in the pH range of about 3 to 7. The cross-linking effect at pH values of about 3 is very fast. At the pH range of about 6 to 7, however, the cross-linking activity is very slow. By incorporating an acid into the polymer dispersion to achieve a given pH, the rate at which the pyroantimonate salt dissolves and the rate cross linking occurs can be controlled. The range of acids that can be used is very wide including organic acids such as acetic, citric and oxalic acid and mineral acids such as hydrochloric, sulfuric and nitric acid. The sodium or potassium pyroantimonate is usually used in amounts of about 1% to 10% by weight based upon the weight of the polymer.
Antimony oxide containing valentinite in the presence of an oxidizing agent can cross link polygalactomannan gums and their derivatives. Strong oxidizing agents such as dichromates induce almost immediate cross linking at appropriate pH values. Weak oxidizing agents such as hydrogen peroxide, sodium peroxide, nitric acid and potassium permanganate, induce crosslinking activity very slowly. The cross-linking activity is also pH sensitive being viable in the pH range of about 3 to 7. At pH values of about 6 to 7, the cross-linking reaction is slow. Antimony oxide containing valentinite is generally used in amounts of about 1% to 10% by weight of the gum.
Chromic ions can cross link carboxyalkyl ethers of polygalactomannan. The cross-linking activity is temperature sensitive. Dispersions being pumped down boreholes reach a temperature of from 5 C. to about 48 C. Chromic ions cross link carboxyalkyl ethers of polygalactomannan gums very slowly at these temperatures. Chromic ion salts such as chromic alum are usually used in amounts of about 1% to 10% by weight of the gum. In this particular combination it has been found that a small amount of calcium ion improves the stiffness of the gel. Generally, it is used at concentrations of about ppm to the saturation concentration.
In the practice of this invention the distance from the entrance of the borehole to the desired position of the plug is measured. The available pumping pressure, the expected friction in the borehole and the viscosity of the polymer containing dispersion are determined. From this data, the time required to move the dispersion into position is calculated or estimated. A crosslinking agent which requires a greater period of time to gel the dispersion than the time required to position the dispersion in the borehole, is incorporated into the dispersion. Alternatively, the polymer and cross linking may be stored as a dry blend and the appropriate blend selected. The dispersion is then pumped down the pipe into the borehole. As shown in the following examples, borax glass and guar gum can require about 3% hours to begin initial gelling under given conditions. Carboxyalkyl guar and hydroxyalkyl guar can require about as hour. The strength or viscosity of the cross-linked dispersions usually continues to increase for several hours after initial gelling begins. Maximum strength or viscosity is obtained about 16 to 22 hours after initial gelling.
Optimized results can be obtained by using combinations of polymers and cross-linking agents. In addition to the polymer, water and cross-linking agents, it is frequently desirably to include oxalic acid or salts of oxalic acid in the dispersion to control the effects of hard water upon the rate or cross linking. Generally, oxalic EXAMPLE I This example illustrates the gelling properties of guar gum and borax glass.
Five grams of a guar gum and borax glass blend having the following composition Percent by Weight Guar Gum (90% through 200 mesh 94.0 U.S. Standard Sieve) Borax Glass (100% through 20 mesh, 60% on 30 mesh U. S. Standard Sieve) Borax Glass (90% to 100% through 60 mesh, 70% on 200 mesh U. S. Standard Sieve)" Citric Acid (Anhydrous) Commercially graded 18 mesh Commercially graded 60 mesh were added with agitation to 500 ml. of distilled water having a temperature of 25 C. The mixture was mixed for a period of two minutes in a 1 quart Waring Blendor operated at 1,500 to 2,000 rpm. Following the initial agitation the viscosity of the dispersion was continuously measured with a Brookfteld RVF Viscometer using a No. 4 spindle at a speed of 10 rpm. When the viscosity of the dispersion reached 20,000 centipoise, the cross linking had progressed sufficiently to consider the dispersion gelled. The changes in viscosity measured from the beginning of the initial mixing to gelation is as follows:
Time, Viscosity,
minutes centipoise 35 9,000 (gelling 35-40 minutes) EXAMPLE 11 This example illustrates a variation of the guar gum and borax glass combination.
The formulation procedure and viscosity measurements set out in Example I were repeated using the following guar gum and borax glass blend.
Percent by Weight Guar Gum (90% through 200 mesh 94.0 U. S. Standard Sieve) Borax Glass (commercial mesh 5.0 size 18) Citric Acid (Anhydrous) 1.0
See footnote Example I.
Viscosity change was as follows:
Time Viscosity, pH hours centipoise 3.0 5,000 6 3.5 10,000 (gelling 7.4
time 3.5-3.7 hours) EXAMPLE 111 This example illustrates the characteristics of a carboxyethyl ether of guar gum having a molar substitution of about 0.2 and borax glass. Ten grams of a blend having the following composition Percent by Weig Sodium carboxyethyl guar 6 Borax glass (commercial mcsh 4.6 size 18) Citric Acid (Anhydrous 4.8
See footnote Example 1.
were added to and mixed with 500 ml. of distilled water having a temperature of 25 C. Viscosity measurements were made as in Example 1. The results are as follows:
Time, Viscosity,
minutes centipoise pH 20 15,000 (gelling 8.0
time 20-22 minutes) EXAMPLE IV This example illustrates the use of using two gums and two cross-linking agents in a blend. The particular gums used were sodium carboxyethyl ether of guar and hydroxypropyl ether of guar. The cross-linking agents used were borax glass and chromium alum [CrK(SO 'l2H O]. Oxalic acid was included to simulate hard water control. Preservatives (sodium orthophenoxyphenol and sodium pentaehlorophenylate, Dowicide A and G, Dow Chemical Co.) were included to simulate the protection of the gum from microbiological deterioration.
The composition of each blend is shown in Table 1. The amount of each blend used was 8.54 grams in 500 ml. of water having a temperature of 25 C. The viscosity change measurements and the time required for gelling are shown in Table 1. Gelling time corresponds to the time required to develop a viscosity of 20,000 centipoise.
TABLE 1 Percent by weight Sample A B C D E Carboxyethylguar 37.0 37.0 36.65 36.65 36.65 Hydroxypropylguar 37.0 37.0 36. 65 36.65 36. 65 Borax class (100% through 30 mesh,
100% through 60 mesh U.S.
Standard Sieve) 6.65 13. 3 Borax glass (commercial mesh size 13.3 13.3 6.65 Borax glass through 100 mesh and 40% retained on 200 mesh U.S.
Standard Sieve) 13.3 Chrome alum 7.0 7.0 7.0 7.0 7.0 ()xallc acid 0.7 0.7 1.4 1.4 1.4 hedlum pentuehlerophenylaio (Dowicldo (1, Dow ChemlealCo.) 2.5 2.5 2.5 2.5 2.: Sodlum erthephonoxyphenyl (Dowielde A,Do\v Chemical Co.) 2.5 2.5 2.5 2.5 2.5 (lellingtlmemlnutes 4-5 8-10 10-12 -22 30 Commercially graded 100 mesh.
EXAMPLE v This example illustrates the behavior of a blend of hydroxypropyl ether and carboxyethyl ether of guar and two cross-linking agents in the presence of mineral salts commonly found in water available for making dispersions in the field.
The composition of the gum blend is as follows:
Percent by Weight Carboxyethyl Ether of Guar 35.0 (M.S. approx. 0.2)
Hydroxypropyl Ether of Guar 35.0 (M.S. approx. 0.5-0.6)
Calcium Sulfate (anhydrous) l0.0 Ammonium Oxalate 6.0 Chromium Alum 5.0 Borax Glass (commercial mesh 4.0 size 60 mesh) Borax Glass (commercial mesh 4.0 size 30 mesh) Oxalic Acid 1.0
* See footnote Example I See footnote Example IV Ten grams of the above blend were dispersed in 500 ml. of the solutions shown in Table 2. The solutions had a temperature of 25 C. The dispersion procedure was the same as described in Example I. Changes in viscosity were measured as in Example I. In addition, the stiffness of the resulting gels was measured with a penetrometer after a period of 16 hours from the beginning of the mixing. This test was run for 30 seconds with a Precision Penetrometer fitted with a 45 steel cone having a 2% inch base diameter and weighing 94 grams. An additional 150 grams of weight was placed on the penetration arm.
Table 2 Gelling Penetrometer Concen- Time, Reading, Sample Salt tration minutes millimeters A pure water l0.0 37.6 B calcium chloride 500 ppm 10.7 37.1 C calcium chloride [000 ppm 12.0 D magnesium chloride 50 ppm 12.7 E magnesium chloride 100 ppm 12.8 F magnesium chloride 200 ppm G magnesium chloride 500 ppm 360 H ferric chloride l ppm I sodium chloride by 19.8 42.0 Y J potassium chloride by wt. k calcium sulfate saturated Measurement not taken As can be seen from the above data, gelling time is generally increased in the presence of mineral salts.
EXAMPLE VI This example illustrates the effect of the temperature of the aqueous media and the concentration of the blend of gums and cross-linking agents described in Example IV. The blend in amounts of 2% by weight was incorporated in water having the temperature shown in Table 3. Gelling time and penetrometer measurements were made as described in Examples I and IV. The results are as follows:
Table 3 Water Temp., Gelling Time, Penetrometcr Sample C. minutes Readings A 4.5 45 33.8 B 25.0 l0 37.6 C 38.0 5 36.7
EXAMPLE VII This example illustrates the effect of concentration of the gum and cross linker blend in the dispersion upon gelling time and gel stiffness. The blend described in Example IV was incorporated in water having a temperature of 25 C. at the concentrations shown below. The gelling time and penetrometer readings determined for these gels is also shown below.
Table 4 Concentration of Calling Time. Pentrometer Sample Blend, by Wt. minutes Reading Atd 1.4 17.2 41.3 B 2.0 10.0 34.7 C 2.6 4.3 37.6
EXAMPLE VIII This example illustrates the use of depolymerized gums in the process of this invention. In general, depolymerized gums, because they have lower molecular weight than the natural gums, develop less viscosity at the same solids concentration than do natural gums while the dispersion is in an uncross-linked condition. Their dispersion having equivalent initial viscosities will contain a higher solids level of depolymerized gum than of natural gums. Because the solids level is higher, upon cross linking significantly stiffer and less mobile gels are obtained from the dispersions of depolymerized gum than that from the natural gum.
In the samples described below, Sample A is a hydroxypropy] ether of guar retaining its original chain lengths. Sample B is a hydroxypropyl ether of guar in which the chain lengths of the guar base have been shortened to the extend that 3% by weight of this depolymerized guar derivative is required to develop the same initial viscosity as 1% by weight of the hydroxypropyl ether of guar having the original chain lengths. Dispersions were prepared respectively by dispersing 3% by weight of the depolymerized guar derivative and 1% by weight of guar derivative having original chain lengths in 500 ml. of water having a temperature of 25 C. One gram of 30 mesh borax glass was then added to each dispersion and cross linking allowed to proceed to maximum gel strength. Each gel was then evaluated by penetrometer measurements as described above. The flow characteristic of each gel was also evaluated by a Baroid Cell. The efflux pressure from the Baroid Cell was determined by packing the gel into the cell without using a screen or other barrier, closing the cell and slowly applying pressure with nitrogen. The pressure at which the gel began to flow out of the cell was recorded and shown below:
Table 5 Concen- Baroid Cell tration Penetrometer Flow Pressure Sample of Gum pl-l Reading psig. A L 9.2 38.0 -10 B 3.0 8.9 33.6 35-37 As can be readily seen from the data, the gel formed from the depolymerized guar derivative was much stiffer and less mobile than the gel formed by the guar derivative having the original chain lengths.
EXAMPLE lX This example illustrates the use of polyvinyl alcohol as a plug former.
An aqueous dispersion of 4% polyvinyl alcohol by weight was prepared using distilled water having a temperature of 75 to 80 F. After the completion of dispersion a dry mixture of 0.2 grams of 100 mesh (commercial graded mesh) borax glass, 0.8 grams of 30 mesh (commercial graded mesh) borax glass and 0.1 gram of anhydrous citric acid was added to 500 ml. of the dispersion. The viscosity development was measured as in Example I and is as follows:
Time, Viscosity, minutes centipoise 0 30 13 20,000 (gelling time) The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
l. A process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a water soluble polymer selected from the group consisting of carboxyalkyl ethers of polygalactomannans in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination and depolymerized derivatives of carboxyalkyl ether of polygalactomannan in amounts of about 2% to 4% by weight based on the weight of the water-polymer combination, and a chromic salt, said aqueous dispersion having a low initial viscosity and said aqueous dispersion having a temperature of about 5 C. to 48 C. whereby the rate of crosslinking activity is such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
2. A process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a mixture of carboxyalkyl ether of polygalactomannan and hydroxyalkyl ether of polygalactomannan in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination, and a mixture of chromic salt and borax glass, said aqueous dispersion having a low initial viscosity and said aqueous dispersion having a temperature of about 5 C. to 48 C. whereby the rate of cross linking activity is such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
3. A process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a water soluble polymer selected from the group consisting of polygalactomannans, carboxyalkyl ethers of polygalactomannans, hydroxyalkyl ethers of polygalactomannans in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination, depolymerized derivatives of polygalactomannan, carboxyalkyl ether of polygalactomannan, hydroxyalkyl ether of polygalactomannan in amounts of about 2% to 4% by weight based on the weight of the water-polymer combination, and a cross linking agent selected from sodium or potassium pyroantimonate, said aqueous dispersion having a low initial viscosity and said aqueous dispersion having a pH range of about 6 to 7, whereby the rate of cross linking activity is such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
4. A process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a water soluble polymer selected from the group consisting of polygalactomannans, carboxyalkyl ethers of polygalactomannans, hydroxyalkyl ethers of polygalactomannans in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination, depolymerized derivatives of polygalactomannan, carboxyalkyl ether of polygalactomannan, hydroxyalkyl ether of polygalactomannan in amounts of about 2% to 4% by weight based on the weight of the water-polymer combination, and antimony oxide in the presence of a weak oxidizing agent, said aqueous dispersion having a low initial viscosity, and the rate of cross linking activity being such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
5. A process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising polyvinyl alcohol in amounts of from about 1% to 10% by weight based on the weight of the water-polymer combination and mixtures thereof, and borax glass, said aqueous dispersion having a low initial viscosity, and the rate of cross linking activity being such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
6. A process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a water soluble polymer selected from the group consisting of carboxyalkyl ethers of polygalactomannans and hydroxyalkyl ethers of polygalactomannans in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination, depolymerized derivatives of carboxyalkyl ether of polygalactomannan, and hydroxyalkyl ether of polygalactomannan in amounts of about 2% to 4% by weight based on the weight of the water-polymer combination, and borax glass, said aqueous dispersion having a low initial viscosity and the rate of cross linking activity being such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
PC-1 050 UNITED STATES PATENT OFFICE,
u a i (569 CERTIFICATE OF CORRECTION Patent No. 3,79%115 v .Dg February 26,-197u Inven fl William E. skaserberz u It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected asshown below:
Column 6, line .65, "desirably" should read --desirable--; .1 line 66, "or" should read --of--. Column 8 line 35, v "chromium" should read --chromic; line 55, "class" sho ld read lass Column 9, line 18, "Chromium" should read --Chromic--; line 52, -ll.7-- should be centeredYunder the column headed "Gelling Time"; line 53, by wt." "should read 5% by wt.-'-; line 54, by wt." should read -i-2% by wt.--. Column 10, line 26-, "Pen'trometer" should read --'Penetrometerlinev 28, '-l."+v-'- should be centered under the column headed "Concentration of Blend" and "td" should be deleted; line #9, "than that from" should read --than from-- line" 5 4 "extend" should read --'extent--. r
Signed and sealed this 24th day offlSeptemher 1 974.
(SEAL) Attest:
'McCOY M. GIBSON JR. l c. MARSHALL lfiANN Attesting Officer Commissioner of Patents

Claims (5)

  1. 2. A process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a mixture of carboxyalkyl ether of polygalactomannan and hydroxyalkyl ether of polygalactomannan in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination, and a mixture of chromic salt and borax glass, said aqueous dispersion having a low initial viscosity and said aqueous dispersion having a temperature of about 5* C. to 48* C. whereby the rate of cross linking activity is such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
  2. 3. A process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a water soluble polymer selected from the group consisting of polygalactomannans, carboxyalkyl ethers of polygalactomannans, hydroxyalkyl ethers of polygalactomannans in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination, depolymerized derivatives of polygalactomannan, carboxyalkyl ether of polygalactomannan, hydroxyalkyl ether of polygalactomannan in amounts of about 2% to 4% by weight based on the weight of the water-polymer combination, and a cross linking agent selected from sodium or potassium pyroantimonate, said aqueous dispersion having a low initial viscosity and said aqueous dispersion having a pH range of about 6 to 7, whereby the rate of cross linking activity is such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
  3. 4. A process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a water soluble polymer selected from the group consisting of polygalactomannans, carboxyalkyl ethers of polygalactomannans, hydroxyalkyl ethers of polygalactomannans in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination, depolymerized derivatives of polygalactomannan, carboxyalkyl ether of polygalactomannan, hydroxyalkyl ether of polygalactomannan in amounts of about 2% to 4% by weight based on the weight of the water-polymer combination, and antimony oxide in the presence of a weak oxidizing agent, said aqueous dispersion having a low initial viscosity, and the rate of cross linking activity being such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipOise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
  4. 5. A process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising polyvinyl alcohol in amounts of from about 1% to 10% by weight based on the weight of the water-polymer combination and mixtures thereof, and borax glass, said aqueous dispersion having a low initial viscosity, and the rate of cross linking activity being such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
  5. 6. A process for forming borehole plugs comprising: introducing into a borehole and positioning in the borehole an aqueous dispersion comprising a water soluble polymer selected from the group consisting of carboxyalkyl ethers of polygalactomannans and hydroxyalkyl ethers of polygalactomannans in amounts of from about 1% to 3% by weight based on the weight of the water-polymer combination, depolymerized derivatives of carboxyalkyl ether of polygalactomannan, and hydroxyalkyl ether of polygalactomannan in amounts of about 2% to 4% by weight based on the weight of the water-polymer combination, and borax glass, said aqueous dispersion having a low initial viscosity and the rate of cross linking activity being such that the period of time between the introduction of the dispersion into the borehole and the development of viscosities in excess of about 20,000 centipoise is greater than the time between the introduction of the aqueous dispersion into the borehole and the positioning of the aqueous dispersion; and allowing the viscosity of the dispersion to exceed about 20,000 centipoise subsequent to the positioning of the aqueous dispersion.
US00217964A 1972-01-14 1972-01-14 Process for forming borehole plugs Expired - Lifetime US3794115A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21796472A 1972-01-14 1972-01-14

Publications (1)

Publication Number Publication Date
US3794115A true US3794115A (en) 1974-02-26

Family

ID=22813200

Family Applications (1)

Application Number Title Priority Date Filing Date
US00217964A Expired - Lifetime US3794115A (en) 1972-01-14 1972-01-14 Process for forming borehole plugs

Country Status (2)

Country Link
US (1) US3794115A (en)
CA (1) CA977948A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841399A (en) * 1973-01-29 1974-10-15 Nalco Chemical Co Secondary oil recovery
US4018286A (en) * 1975-11-06 1977-04-19 Phillips Petroleum Company Controlled well plugging with dilute polymer solutions
US4461352A (en) * 1983-02-28 1984-07-24 Marathon Oil Company Process for selectively plugging a subterranean formation with a polymer gel
US4514309A (en) * 1982-12-27 1985-04-30 Hughes Tool Company Cross-linking system for water based well fracturing fluids
US4552217A (en) * 1984-07-09 1985-11-12 Phillips Petroleum Company Microbiocidal anionic sequesterants with polyvalent metal cations for permeability correction process
WO1986000330A1 (en) * 1984-06-25 1986-01-16 Cities Service Oil And Gas Corporation Gel and process for retarding fluid flow
US4568481A (en) * 1984-02-16 1986-02-04 Celanese Corporation Extension of gelation time of crosslinked polygalactomannans
US4643255A (en) * 1984-06-25 1987-02-17 Cities Service Oil And Gas Corporation Gel and process for preventing loss of circulation, and combination process for enhanced recovery
US4664194A (en) * 1983-07-18 1987-05-12 Cities Service Oil And Gas Corporation Gel for retarding water flow
US4666957A (en) * 1983-07-18 1987-05-19 Cities Service Oil And Gas Corporation Gel for retarding water flow
US4665987A (en) * 1984-06-25 1987-05-19 Cities Serice Oil And Gas Corporation Prepartially crosslinked gel for retarding fluid flow
US4673038A (en) * 1984-06-25 1987-06-16 Cities Service Oil And Gas Corporation Gel and process for preventing carbon dioxide break through
US4678032A (en) * 1986-05-23 1987-07-07 Mobil Oil Corporation Polymer and method for permeability profile control under severe reservoir conditions
US4766959A (en) * 1987-04-13 1988-08-30 Conoco Inc. Reducing permeability of highly permeable zones in subterranean formations
US4783492A (en) * 1983-12-09 1988-11-08 Union Oil Company Of California Continuous permeability reduction in subterranean reservoirs
US4796700A (en) * 1984-06-25 1989-01-10 Cities Service Oil And Gas Corporation Process for retarding fluid flow
US4917186A (en) * 1989-02-16 1990-04-17 Phillips Petroleum Company Altering subterranean formation permeability
US4939203A (en) * 1983-07-18 1990-07-03 Cities Service Oil And Gas Corporation Gel for retarding water flow
US5026735A (en) * 1988-06-08 1991-06-25 Minnesota Mining And Manufacturing Company Treatment of hazardous materials with aqueous air foam of polyhydroxy polymer
US5124363A (en) * 1988-06-08 1992-06-23 Minnesota Mining And Manufacturing Company Aqueous air foams of polyhydroxy polymer
US5160445A (en) * 1991-05-24 1992-11-03 Zirconium Technology Corporation Borate cross-linking solutions
US5184680A (en) * 1991-09-27 1993-02-09 Halliburton Company High temperature well cement compositions and methods
US5217632A (en) * 1992-05-11 1993-06-08 Zirconium Technology Corporation Process for preparation and composition of stable aqueous solutions of boron zirconium chelates for high temperature frac fluids
US5252236A (en) * 1991-05-24 1993-10-12 Zirconium Technology Corporation Borate cross-linking solutions
US5252235A (en) * 1991-05-24 1993-10-12 Zirconium Technology Corporation Borate cross-linking solutions
US5252234A (en) * 1991-05-24 1993-10-12 Zirconium Technology Corporation Borate cross-linking solutions
US5266224A (en) * 1991-05-24 1993-11-30 Zirconium Technology Corporation Borate cross-linking solutions
US5273580A (en) * 1991-09-27 1993-12-28 Halluburton Company High temperature well cement compositions and methods
US6488091B1 (en) * 2001-06-11 2002-12-03 Halliburton Energy Services, Inc. Subterranean formation treating fluid concentrates, treating fluids and methods
US20040018943A1 (en) * 2001-06-11 2004-01-29 Pyecroft James Frederick Subterranean formation treating fluid and methods of fracturing subterranean formations
US20040163813A1 (en) * 2003-02-26 2004-08-26 Slabaugh Billy F. Methods and compositions for sealing subterranean zones
US20050137094A1 (en) * 2001-06-11 2005-06-23 Halliburton Energy Sevices, Inc. Subterranean formation treatment fluids and methods of using such fluids
US20060280561A1 (en) * 2005-06-09 2006-12-14 Roesler Ronald H Method of creating and sustaining earthen hard pan formations
US20080203199A1 (en) * 2007-02-07 2008-08-28 Imation Corp. Processing of a guar dispersion for particle size reduction
US20080242747A1 (en) * 2007-03-28 2008-10-02 Bruce Lucas Gel Yield Improvements
US20080264641A1 (en) * 2007-04-30 2008-10-30 Slabaugh Billy F Blending Fracturing Gel
WO2011112519A1 (en) * 2010-03-12 2011-09-15 Baker Hughes Incorporated Method of treating a wellbore having annular isolation system
US20110303411A1 (en) * 2010-06-11 2011-12-15 Todd Bradley L Swellable/degradable "sand" plug system for horizontal wells
CN105441046A (en) * 2015-11-25 2016-03-30 长江大学 Hydrogen-bonding hydrogel suitable for plugging cracks and caves
WO2016077135A1 (en) * 2014-11-13 2016-05-19 Saudi Arabian Oil Company Flowing fracturing fluids to subterranean zones
US20170002255A1 (en) * 2015-07-01 2017-01-05 Saudi Arabian Oil Company Methods and Compositions for In-Situ Polymerization Reaction to Improve Shale Inhibition
US9920609B2 (en) 2010-03-12 2018-03-20 Baker Hughes, A Ge Company, Llc Method of re-fracturing using borated galactomannan gum
US20180346788A1 (en) * 2015-07-01 2018-12-06 Saudi Arabian Oil Company Methods and Compositions for In-Situ Polymerization Reaction to Improve Shale Inhibition
US10989011B2 (en) 2010-03-12 2021-04-27 Baker Hughes, A Ge Company, Llc Well intervention method using a chemical barrier

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2832414A (en) * 1956-10-18 1958-04-29 Exxon Research Engineering Co Protecting well casing
US3079332A (en) * 1957-07-23 1963-02-26 Atlantic Refining Co Method and composition for reducing fluid loss
US3208524A (en) * 1960-09-26 1965-09-28 Exxon Production Research Co Process for controlling lost circulation
US3227212A (en) * 1961-06-19 1966-01-04 Halliburton Co Temporary plugging agent
US3378070A (en) * 1965-09-03 1968-04-16 Halliburton Co Hydroxyethyl cellulose complex and method of plugging underground formations therewith
US3378073A (en) * 1966-05-10 1968-04-16 Mobil Oil Corp Method of fracturing a subterranean formation with a shear thickening liquid
US3611733A (en) * 1969-10-06 1971-10-12 Dow Chemical Co Method of sealing openings
US3613790A (en) * 1969-09-24 1971-10-19 Dow Chemical Co Method of plugging a formation
US3615794A (en) * 1968-05-20 1971-10-26 Dow Chemical Co Sealing composition and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2832414A (en) * 1956-10-18 1958-04-29 Exxon Research Engineering Co Protecting well casing
US3079332A (en) * 1957-07-23 1963-02-26 Atlantic Refining Co Method and composition for reducing fluid loss
US3208524A (en) * 1960-09-26 1965-09-28 Exxon Production Research Co Process for controlling lost circulation
US3227212A (en) * 1961-06-19 1966-01-04 Halliburton Co Temporary plugging agent
US3378070A (en) * 1965-09-03 1968-04-16 Halliburton Co Hydroxyethyl cellulose complex and method of plugging underground formations therewith
US3378073A (en) * 1966-05-10 1968-04-16 Mobil Oil Corp Method of fracturing a subterranean formation with a shear thickening liquid
US3615794A (en) * 1968-05-20 1971-10-26 Dow Chemical Co Sealing composition and method
US3613790A (en) * 1969-09-24 1971-10-19 Dow Chemical Co Method of plugging a formation
US3611733A (en) * 1969-10-06 1971-10-12 Dow Chemical Co Method of sealing openings

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841399A (en) * 1973-01-29 1974-10-15 Nalco Chemical Co Secondary oil recovery
US4018286A (en) * 1975-11-06 1977-04-19 Phillips Petroleum Company Controlled well plugging with dilute polymer solutions
US4514309A (en) * 1982-12-27 1985-04-30 Hughes Tool Company Cross-linking system for water based well fracturing fluids
US4461352A (en) * 1983-02-28 1984-07-24 Marathon Oil Company Process for selectively plugging a subterranean formation with a polymer gel
US4664194A (en) * 1983-07-18 1987-05-12 Cities Service Oil And Gas Corporation Gel for retarding water flow
US4666957A (en) * 1983-07-18 1987-05-19 Cities Service Oil And Gas Corporation Gel for retarding water flow
US4939203A (en) * 1983-07-18 1990-07-03 Cities Service Oil And Gas Corporation Gel for retarding water flow
US4783492A (en) * 1983-12-09 1988-11-08 Union Oil Company Of California Continuous permeability reduction in subterranean reservoirs
US4568481A (en) * 1984-02-16 1986-02-04 Celanese Corporation Extension of gelation time of crosslinked polygalactomannans
WO1986000330A1 (en) * 1984-06-25 1986-01-16 Cities Service Oil And Gas Corporation Gel and process for retarding fluid flow
US4673038A (en) * 1984-06-25 1987-06-16 Cities Service Oil And Gas Corporation Gel and process for preventing carbon dioxide break through
US4665987A (en) * 1984-06-25 1987-05-19 Cities Serice Oil And Gas Corporation Prepartially crosslinked gel for retarding fluid flow
US4796700A (en) * 1984-06-25 1989-01-10 Cities Service Oil And Gas Corporation Process for retarding fluid flow
US4643255A (en) * 1984-06-25 1987-02-17 Cities Service Oil And Gas Corporation Gel and process for preventing loss of circulation, and combination process for enhanced recovery
US4552217A (en) * 1984-07-09 1985-11-12 Phillips Petroleum Company Microbiocidal anionic sequesterants with polyvalent metal cations for permeability correction process
US4678032A (en) * 1986-05-23 1987-07-07 Mobil Oil Corporation Polymer and method for permeability profile control under severe reservoir conditions
US4766959A (en) * 1987-04-13 1988-08-30 Conoco Inc. Reducing permeability of highly permeable zones in subterranean formations
US5026735A (en) * 1988-06-08 1991-06-25 Minnesota Mining And Manufacturing Company Treatment of hazardous materials with aqueous air foam of polyhydroxy polymer
US5124363A (en) * 1988-06-08 1992-06-23 Minnesota Mining And Manufacturing Company Aqueous air foams of polyhydroxy polymer
US4917186A (en) * 1989-02-16 1990-04-17 Phillips Petroleum Company Altering subterranean formation permeability
US5160445A (en) * 1991-05-24 1992-11-03 Zirconium Technology Corporation Borate cross-linking solutions
US5252236A (en) * 1991-05-24 1993-10-12 Zirconium Technology Corporation Borate cross-linking solutions
US5252235A (en) * 1991-05-24 1993-10-12 Zirconium Technology Corporation Borate cross-linking solutions
US5252234A (en) * 1991-05-24 1993-10-12 Zirconium Technology Corporation Borate cross-linking solutions
US5266224A (en) * 1991-05-24 1993-11-30 Zirconium Technology Corporation Borate cross-linking solutions
US5310489A (en) * 1991-05-24 1994-05-10 Zirconium Technology Corporation Borate cross-linking solutions
US5184680A (en) * 1991-09-27 1993-02-09 Halliburton Company High temperature well cement compositions and methods
EP0534639A1 (en) * 1991-09-27 1993-03-31 Halliburton Company Method of cementing a well
US5273580A (en) * 1991-09-27 1993-12-28 Halluburton Company High temperature well cement compositions and methods
US5217632A (en) * 1992-05-11 1993-06-08 Zirconium Technology Corporation Process for preparation and composition of stable aqueous solutions of boron zirconium chelates for high temperature frac fluids
US6488091B1 (en) * 2001-06-11 2002-12-03 Halliburton Energy Services, Inc. Subterranean formation treating fluid concentrates, treating fluids and methods
US20030114539A1 (en) * 2001-06-11 2003-06-19 Weaver Jim D. Subterranean formation treating fluid concentrates, treating fluids and methods
US20040018943A1 (en) * 2001-06-11 2004-01-29 Pyecroft James Frederick Subterranean formation treating fluid and methods of fracturing subterranean formations
US7001872B2 (en) 2001-06-11 2006-02-21 Halliburton Energy Services, Inc. Subterranean formation treating fluid and methods of fracturing subterranean formations
AU780512B2 (en) * 2001-06-11 2005-03-24 Halliburton Energy Services, Inc. Subterranean formation treating fluid concentrates treating fluids and methods
US20050137094A1 (en) * 2001-06-11 2005-06-23 Halliburton Energy Sevices, Inc. Subterranean formation treatment fluids and methods of using such fluids
US6971448B2 (en) 2003-02-26 2005-12-06 Halliburton Energy Services, Inc. Methods and compositions for sealing subterranean zones
US20050241827A1 (en) * 2003-02-26 2005-11-03 Whitfill Donald L Self-dissolving lost circulation treatment for producing formations
US20040163813A1 (en) * 2003-02-26 2004-08-26 Slabaugh Billy F. Methods and compositions for sealing subterranean zones
US7281583B2 (en) 2003-02-26 2007-10-16 Halliburton Energy Services, Inc. Self-dissolving lost circulation treatment for producing formations
US20060280561A1 (en) * 2005-06-09 2006-12-14 Roesler Ronald H Method of creating and sustaining earthen hard pan formations
US20080203199A1 (en) * 2007-02-07 2008-08-28 Imation Corp. Processing of a guar dispersion for particle size reduction
US20080242747A1 (en) * 2007-03-28 2008-10-02 Bruce Lucas Gel Yield Improvements
US20080264641A1 (en) * 2007-04-30 2008-10-30 Slabaugh Billy F Blending Fracturing Gel
US20110220363A1 (en) * 2010-03-12 2011-09-15 Gupta D V Satyarnarayana Method of Treating a Wellbore Having Annular Isolation System
CN102791823A (en) * 2010-03-12 2012-11-21 贝克休斯公司 Method of treating a wellbore having annular isolation system
US8636066B2 (en) 2010-03-12 2014-01-28 Baker Hughes Incorporated Method of enhancing productivity of a formation with unhydrated borated galactomannan gum
CN102791823B (en) * 2010-03-12 2015-06-17 贝克休斯公司 Method of treating a wellbore having annular isolation system
US10989011B2 (en) 2010-03-12 2021-04-27 Baker Hughes, A Ge Company, Llc Well intervention method using a chemical barrier
WO2011112519A1 (en) * 2010-03-12 2011-09-15 Baker Hughes Incorporated Method of treating a wellbore having annular isolation system
US9920609B2 (en) 2010-03-12 2018-03-20 Baker Hughes, A Ge Company, Llc Method of re-fracturing using borated galactomannan gum
US20110303411A1 (en) * 2010-06-11 2011-12-15 Todd Bradley L Swellable/degradable "sand" plug system for horizontal wells
US8720568B2 (en) * 2010-06-11 2014-05-13 Halliburton Energy Services, Inc. Swellable/degradable “sand” plug system for horizontal wells
US9995120B2 (en) 2014-11-13 2018-06-12 Saudi Arabian Oil Company Flowing fracturing fluids to subterranean zones
WO2016077135A1 (en) * 2014-11-13 2016-05-19 Saudi Arabian Oil Company Flowing fracturing fluids to subterranean zones
US20170002255A1 (en) * 2015-07-01 2017-01-05 Saudi Arabian Oil Company Methods and Compositions for In-Situ Polymerization Reaction to Improve Shale Inhibition
US10059868B2 (en) * 2015-07-01 2018-08-28 Saudi Arabian Oil Company Methods and compositions for in-situ polymerization reaction to improve shale inhibition
US10125301B2 (en) * 2015-07-01 2018-11-13 Saudi Arabian Oil Company Methods and compositions for in-situ polymerization reaction to improve shale inhibition
US20180346788A1 (en) * 2015-07-01 2018-12-06 Saudi Arabian Oil Company Methods and Compositions for In-Situ Polymerization Reaction to Improve Shale Inhibition
US10344198B2 (en) * 2015-07-01 2019-07-09 Saudi Arabian Oil Company Methods and compositions for in-situ polymerization reaction to improve shale inhibition
CN105441046B (en) * 2015-11-25 2018-04-20 长江大学 Suitable for crack and the hydrogen bond hydrogel of solution cavity leak stopping
CN105441046A (en) * 2015-11-25 2016-03-30 长江大学 Hydrogen-bonding hydrogel suitable for plugging cracks and caves

Also Published As

Publication number Publication date
CA977948A (en) 1975-11-18

Similar Documents

Publication Publication Date Title
US3794115A (en) Process for forming borehole plugs
US3818998A (en) Method of reducing lost circulation during well drilling
US5217632A (en) Process for preparation and composition of stable aqueous solutions of boron zirconium chelates for high temperature frac fluids
CA1192484A (en) Permeability reduction in subterranean reservoirs
US4579942A (en) Polysaccharides, methods for preparing such polysaccharides and fluids utilizing such polysaccharides
CA1269093A (en) Stabilized fracture fluid and crosslinker therefor
US4982793A (en) Crosslinkable cellulose derivatives
US5160445A (en) Borate cross-linking solutions
US4324668A (en) High viscosity acidic treating fluids and methods of forming and using the same
Chatterji et al. Applications of water-soluble polymers in the oil field
US4514309A (en) Cross-linking system for water based well fracturing fluids
US4169798A (en) Well-treating compositions
US6060436A (en) Delayed borate crosslinked fracturing fluid
CA1217329A (en) Method and compositions for fracturing subterranean formations
EP0679795B1 (en) Method of controlling fluid loss in a permeable formation
CA1218228A (en) Method and compositions for fracturing subterranean formations
US4553601A (en) Method for fracturing subterranean formations
US5547026A (en) Crosslinked guar based blocking gel system for use at low to high temperatures
US4378049A (en) Methods, additives and compositions for temporarily sealing high temperature permeable formations
US3378070A (en) Hydroxyethyl cellulose complex and method of plugging underground formations therewith
US4313834A (en) High viscosity acidic treating fluids and methods of forming and using the same
US20080085843A1 (en) Well treating compositions containing water-superabsorbent polymers and method of using the same
WO1997026310A1 (en) Viscosification of high density brines
WO2011077336A2 (en) Method for treating well bore in a subterranean formation with high density brines and complexed metal crosslinkers
EP0007013A1 (en) Gelled compositions and process for treating subterranean formations