US3794216A - Pressure powered aerosol timer - Google Patents

Pressure powered aerosol timer Download PDF

Info

Publication number
US3794216A
US3794216A US00334759A US3794216DA US3794216A US 3794216 A US3794216 A US 3794216A US 00334759 A US00334759 A US 00334759A US 3794216D A US3794216D A US 3794216DA US 3794216 A US3794216 A US 3794216A
Authority
US
United States
Prior art keywords
timer
valve
chamber
housing
valve means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00334759A
Inventor
W Buck
G Buck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPRAY A MATIC PROD Inc
Original Assignee
SPRAY A MATIC PROD Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPRAY A MATIC PROD Inc filed Critical SPRAY A MATIC PROD Inc
Application granted granted Critical
Publication of US3794216A publication Critical patent/US3794216A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/16Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means
    • B65D83/26Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means operating automatically, e.g. periodically
    • B65D83/265Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means operating automatically, e.g. periodically by fall or rise in pressure or temperature

Definitions

  • This invention relates generally to automatic, pressure actuated timer devices and more particularly to a pressure powered timer for periodically actuating the spray mechanism of an aersol can.
  • means are provided for coupling the timing device to the outlet nozzle of the aerosol can so as to maintain the' valve in the aerosol can in an open condition.
  • the coupling means is in fluid communication with a first valve in the form of a cylinder having an axially displaceable piston that is movable between valve open and closed conditions.
  • the interior of the cylinder is in fluid communication with both the atmosphere and with a diaphragm that closes one end of a first cup-shaped chamber filled with a viscous fluid.
  • the portion of the contents thereof that is not vented to the atmosphere displaces the diaphragm so as to cause the viscous fluid to flow from the first chamber into a second chamber via a plurality of metering orifices and thereby displace another in the form ofa spring loaded piston.
  • the second piston When the second piston is displaced axially in one direction, it actuates an over-center toggle mechanism that acts to displace the first piston of the aforementioned cylinder from the open condition to the "closed" condition, soas to prevent further discharge of the contents of the aserosol can, either into the atmosphere or into the first chamber.
  • Another object of the present invention is to provide an all mechanical timer 'of low cost which may be directly coupled to the spray can.
  • FIG. I is an elevational view illustrating the present invention attached to the outlet nozzle of a conventional aerosol can;
  • FIG. 2 is a sectional, elevational view of the timer mechanism comprising the present invention
  • FIG. 2A is a fragmentary elevational view, in section, illustrating the closed-condition of one of the pistons shown in FIG. 2; j
  • FIG. 3 is an enlarged, fragmentary, sectional elevational view of one portion of the timer mechanism shown in FIG. 2;
  • FIG. 4 is a fragmentary, sectional plan view taken along line 4-4 of FIG. 2.
  • a piston rod 28 that is secured to the pad 26 to provide for displacement thereof extends outwardly of the cylinder 16 and has a generally tri'angularly shaped link 30 pivotally connected thereto. Pin 32 provides for the pivotal connection to one corner of the link 30.
  • Another portion ofthe link 30 is pivotally secured to an extension 34 of the cylinder 16 by'rneans of'a'nother pin 36.
  • a connection rod 38 is also pivotally mounted on the'link 30 at the third corner thereof.
  • the cylinder 16 is also provided with a cap 37 having an orifice 39 that defines an exhaust outlet 40 for providing communication between the interior of the cylinder 16 and the atmosphere.
  • the cylinder 16 also includes an additional, threaded outlet tube 42 thatis similarly in fluid communication with the interior of the cylinder 16 and whose function will be described subsequently.
  • the cylinder 16 ' is coupled to a housing, generally designated by the reference character 44, by means of the threaded outlet tube 42.
  • a resilient gasket 46 or the 1 like is interposed between the cylinder 16 and the hous- 3 50 is of frusto-conical shape and is positioned between the housing 44 and the plug 52.
  • a transverse wall 54 that is formed in the plug 52 and which is provided with a plurality of axially extending metering orifices 56 permits fluid communication between the first chamber 48 and a second chamber 58 that is formed within the plug 52. Although only two orifices 56 have been illustrated, more may be used for purposes to be discussed later.
  • the lower end of the plug'52 is also frusto-conical and is provided with a second, frusto-conical, resilient diaphragm 60 that is interposed between the lower portion of the plug 52 and the lower portion 44a of the housing 44.
  • the second diaphragm 60 includes a cup-shaped section that extends into the second chamber 58. It should be noted at this time that both diaphragms 50 and 60 are provided with O-ring like rim portions that facilitate their capture between the housing 44 and the plug 52 and between the plug 52 and the lower housing portion 440, respectively.
  • a rod 62 is also secured to the transverse wall 54 intermediate the orifices 56 by means of a threaded portion 64.
  • the rod 62 supports a shouldered disc 66 on the upper surface of which-is a sealing member in the form of an O-ring 68.
  • O-ring 68 and the surface of the transverse wall 54 against which it abuts define a second valve.
  • Spring means 70 extend between a transverse shoulder ofthe disc 68 and a flange 72 that is formed on the lower end of the rod 62.
  • the bore 74 of the disc 66 is slightly larger than the diameter of the rod 62 and defines an annular channel thereabout, the purpose for which will be described hereinafter.
  • the flange 72 rests on one transverse surface of the cup-shaped section ofthe second diaphragm 60 that is positioned within the second chamber 58.
  • a cup-shaped member 74 is loosely positioned partially within a bore 76 formed in the housing portion 44a and partially within the bore 58, thus being in opposition to the rod 62.
  • the transverse wall of the cup-shaped member 74 bears against the portion of the second diaphragm 60 that is directly opposite the flange 72,
  • a rod 78 is located within and is provided with a transverse upper end flange 80 that bears against the inner surface of the transverse wall of the cup-shaped member 74.
  • a compression spring 82 extends between the flange 80 and a transverse wall surface 84 at the lower end of the housing section 44a in which an opening 86 is formed to permit axial passage of the rod 78.
  • the lower end of the rod 78 is provided with a crank arm 88 that includes a first leg 88a, middle leg 88b and a third leg 88c.
  • a crank arm 88 Connected to the third leg 880 of the crank arm 88 is an L-shaped link 90 having a first leg 90a and a second leg 90b.
  • a spring 9] extends between the first leg 88a of the crank arm 88 and the second leg b of the L-shaped link 90.
  • the connection rod 38 is also coupled to the second leg 90b of the L-shaped link 90.
  • Adjustable stop means 92 and 94 are secured in the housing 44a in opposition to the first leg 90a ofthe L- shaped link 90. Alternatively, the stops 90 and 92 may be fixed.
  • the viscous fluid will be discharged through the metering orifices 56 so as to bear against the transverse face of the disc 66 and thereby exert an axial force sufficient to displace the disc 66.
  • the second chamber 58 will be filled with the viscous fluid.
  • provision of more orifices 56 will reduce the transfer time of the viscous fluid.
  • larger orifices or a less viscous fluid will accomplish the same results.
  • the link 30 will pivot about the pin 36 to cause the central portion of thepad 26 to move inwardly or to the left as shown in FIG, 2A so that it abuts the end face '22 of the conduit 1 8 and thereby prevents further discharge of the contents of the aerosol can A either into the'atmosphere through the outlet 7 40 or through the outlet tube 42'.
  • the viscous fluid in the lower chamber 58 will return to the upper chamber 48 through the annular channel 74 due to the urging of the force of the spring 82 which moves the second diaphragm 6i) upwardly and thereby overcomes the weight ofthe viscous fluid.
  • the rod 78 moves upwardly, there will once again be an over-center toggle action of the links 88 and 90 that snaps the O-ring 68 against its seat on the undersurface of the transverse wall 54 in order to confine the return flow of the viscous fluid to the orifices 56.
  • the orifices are seized and are in a specific quantity dependent on the type of viscous fluid in use.
  • the cylinder 16 and the housing sections 44 and 44a were molded of nylon.
  • the resilient pad 26 is preferably made of a synthetic material such as neoprene or the like. Rubber, neoprene or a suitable plastic may be used for the O- ring 68. The choice of materials should take into account resistance to chemicals usually dispensed from aerosol containers.
  • 82 and 91 may exert spring pressures of 1 oz., 30 lbs.
  • a pressure-powered aerosol timer for an aerosol can comprising:'
  • first valve means intermediate said coupling means and the interior of said housing, said first valve including first outlet means in fluid communication with the atmosphere and second outlet means in fluid communication with the interior of said housing, said first valve means being periodically movable between an open condition and a closed condition;
  • a first chamber in said housing said first chamber including a viscous fluid
  • said first valve means comprises fluid inlet means having an end surface, a resilient pad adapted to engage said end surface in the valve closed condition and to be spaced therefrom in the valve open condition and means responsive to said connecting means for displacing said pad between saidopen and said closed conditions.
  • said fluid inlet means comprises a conduit in'fluid communication with said coupling means, said end surface of said conduit being in spaced relationship and substantially parallel to the plane of said pad.
  • said second valve means comprises a rod rigidly secured to said housing within said second chamber, a disc slidably mounted on said rod and defining an annular passageway therebetween, resilient means secured to said disc for limiting fluid communication between said first and said second chambers to a path including said passageway and said orifices, when said second valve means-is closed, and means for normally biasing said second valve means into the closed condition.
  • connecting means comprises an axially movable rod responsive to the filling ofsaid second'chamber with said viscous fluid, means for normally biasing said movable rod in a direction towards the closed condition of said second valve means, an over-center toggle assembly coupled to said movable rod-and a connecting arm coupling said over-center toggle assembly to said first valve means.

Abstract

A pressure powered timer for aerosol spray cans operates automatically to periodically spray the contents of the can at desired, predetermined intervals, the pressure within the can being utilized to actuate the timer.

Description

United StatesPatent 1191 Buck, deceased 1 ,1 3,794,216 1451 Feb. 26, 1974 PRESSURE POWERED AEROSOL TIMER [75] Inventor: Willard E. Buck, deceased, late of .Lake Havasu City, Ariz. by Gwynne Buck, executrix [73] As'signee: Spray-A-Matic Products, Inc., New
York, NY.
22 Filed: Feb. 22, 1973 21 Appl. No.: 334,759
[52] US. .Cl.. 222/70 [51] Int. Cl ..B65d 83/14 [58] Field of Search 222/70, 402.12, 498, 504;
[56] References Cited UNITED STATES PATENTS 3,289,886 12/1966 Goldsholl 222/70 X I 3,477,613 11/1969 Mange! 222/70 3,542,248 11/1970 Mange! 3,589,562 6/1971 Buck 222/70 Primary Examiner-Robert B. Reeves Assistant Examiner Thomas E. Kocovsky Attorney, Agent, or Firm-Leonard H. King 5 7] ABSTRACT A pressure powered timer for aerosol spray cans operates automatically to periodically spray the contents of the can at desired, predetermined intervals, the pressure within the can being utilized to actuate the timer.
8 Claims, 5 Drawing Figures PRESSURE POWERED AEROSOL TIMER BACKGROUND OF THE INVENTION 1. Field of the Invention This inventionrelates generally to automatic, pressure actuated timer devices and more particularly to a pressure powered timer for periodically actuating the spray mechanism of an aersol can.
' 2. Description of the Prior Art Heretofore it has been difficult to provide a dependable device for periodically causing a spray to issue from an aerosol can orthe like. Problems with long period actuation of a can spray mechanism have been very difficult to resolve. Further, an all mechanical, low-cost unit coupled directly to the can top and actuated by the pressure in the canhas been difficult to produce because of mechanical defects and operation of these smaller devices. The inventors issued US. Pat. No. 3,589,562, granted June 29, I971, discloses structure that overcomes many of the'problems inherent in the prior art devices. However, the structure disclosed in the aforesaid patent is relatively complex and is therefore costly and liable to malfunction.
SUMMARY OF THE INVENTION In one aspect of the present invention means are provided for coupling the timing device to the outlet nozzle of the aerosol can so as to maintain the' valve in the aerosol can in an open condition. The coupling means is in fluid communication with a first valve in the form of a cylinder having an axially displaceable piston that is movable between valve open and closed conditions. The interior of the cylinder is in fluid communication with both the atmosphere and with a diaphragm that closes one end ofa first cup-shaped chamber filled with a viscous fluid. When the aerosol can discharges,
the portion of the contents thereof that is not vented to the atmosphere displaces the diaphragm so as to cause the viscous fluid to flow from the first chamber into a second chamber via a plurality of metering orifices and thereby displace another in the form ofa spring loaded piston. When the second piston is displaced axially in one direction, it actuates an over-center toggle mechanism that acts to displace the first piston of the aforementioned cylinder from the open condition to the "closed" condition, soas to prevent further discharge of the contents of the aserosol can, either into the atmosphere or into the first chamber.
Accordingly, it is an object of the present invention to provide an improved aerosol can spray timer that is automatically actuated from the normal pressure within the can.
Another object of the present invention is to provide an all mechanical timer 'of low cost which may be directly coupled to the spray can.
These and other objects, features and advantages of the invention will, in part, become obvious and will, in part, be pointed out with particularity in the following more detailed description of the invention, taken in conjunction with the accompanying drawing, which forms an integral part thereof.
BRIEF DESCRIPTION OF THE DRAWING In the various figures of the drawing like reference characters designate like parts.
In the drawing:
. v g 2 FIG. I is an elevational view illustrating the present invention attached to the outlet nozzle of a conventional aerosol can;
FIG. 2 is a sectional, elevational view of the timer mechanism comprising the present invention;
' FIG. 2A is a fragmentary elevational view, in section, illustrating the closed-condition of one of the pistons shown in FIG. 2; j
FIG. 3 is an enlarged, fragmentary, sectional elevational view of one portion of the timer mechanism shown in FIG. 2; and
FIG. 4 is a fragmentary, sectional plan view taken along line 4-4 of FIG. 2.
DESCRIPTION'OF THE PREFERRED EMBODIMENT the timer 10. As shown, there is provided a cylinder,
generally designated by the reference character 16, which includesa conduit 18 that'is' in fluid communication with the tube 14. End wall 20 of the cylinder 16 supports the conduit .18. The inner. end of the conduit 18 terminates in an end face 22. A piston 24, defined in part bya resilient pad 26 that is in fluid tight sealing relationship with the interior of said cylinder 16, is positioned so that the pad 26 is in sealing opposition with the end face 22 of the conduit 18. Effectively the pad 26 and the end face 22 comprise a first valve. A piston rod 28 that is secured to the pad 26 to provide for displacement thereof extends outwardly of the cylinder 16 and has a generally tri'angularly shaped link 30 pivotally connected thereto. Pin 32 provides for the pivotal connection to one corner of the link 30. Another portion ofthe link 30 is pivotally secured to an extension 34 of the cylinder 16 by'rneans of'a'nother pin 36. A connection rod 38 is also pivotally mounted on the'link 30 at the third corner thereof. The cylinder 16 is also provided with a cap 37 having an orifice 39 that defines an exhaust outlet 40 for providing communication between the interior of the cylinder 16 and the atmosphere. The cylinder 16 also includes an additional, threaded outlet tube 42 thatis similarly in fluid communication with the interior of the cylinder 16 and whose function will be described subsequently.
The cylinder 16 'is coupled to a housing, generally designated by the reference character 44, by means of the threaded outlet tube 42. A resilient gasket 46 or the 1 like is interposed between the cylinder 16 and the hous- 3 50 is of frusto-conical shape and is positioned between the housing 44 and the plug 52.
A transverse wall 54 that is formed in the plug 52 and which is provided with a plurality of axially extending metering orifices 56 permits fluid communication between the first chamber 48 and a second chamber 58 that is formed within the plug 52. Although only two orifices 56 have been illustrated, more may be used for purposes to be discussed later. As shown in FIG. 2, the lower end of the plug'52 is also frusto-conical and is provided with a second, frusto-conical, resilient diaphragm 60 that is interposed between the lower portion of the plug 52 and the lower portion 44a of the housing 44. The second diaphragm 60 includes a cup-shaped section that extends into the second chamber 58. It should be noted at this time that both diaphragms 50 and 60 are provided with O-ring like rim portions that facilitate their capture between the housing 44 and the plug 52 and between the plug 52 and the lower housing portion 440, respectively. a
A rod 62 is also secured to the transverse wall 54 intermediate the orifices 56 by means of a threaded portion 64. The rod 62 supports a shouldered disc 66 on the upper surface of which-is a sealing member in the form of an O-ring 68. Effectively, the O-ring 68 and the surface of the transverse wall 54 against which it abuts define a second valve. Spring means 70 extend between a transverse shoulder ofthe disc 68 and a flange 72 that is formed on the lower end of the rod 62. As may best be seen in F103, the bore 74 of the disc 66 is slightly larger than the diameter of the rod 62 and defines an annular channel thereabout, the purpose for which will be described hereinafter.
As may also be seen in FIG. 2, the flange 72 rests on one transverse surface of the cup-shaped section ofthe second diaphragm 60 that is positioned within the second chamber 58. A cup-shaped member 74 is loosely positioned partially within a bore 76 formed in the housing portion 44a and partially within the bore 58, thus being in opposition to the rod 62. The transverse wall of the cup-shaped member 74 bears against the portion of the second diaphragm 60 that is directly opposite the flange 72, A rod 78 is located within and is provided with a transverse upper end flange 80 that bears against the inner surface of the transverse wall of the cup-shaped member 74. A compression spring 82 extends between the flange 80 and a transverse wall surface 84 at the lower end of the housing section 44a in which an opening 86 is formed to permit axial passage of the rod 78.
The lower end of the rod 78 is provided with a crank arm 88 that includes a first leg 88a, middle leg 88b and a third leg 88c. Connected to the third leg 880 of the crank arm 88 is an L-shaped link 90 having a first leg 90a and a second leg 90b. A spring 9] extends between the first leg 88a of the crank arm 88 and the second leg b of the L-shaped link 90. The connection rod 38 is also coupled to the second leg 90b of the L-shaped link 90. Adjustable stop means 92 and 94 are secured in the housing 44a in opposition to the first leg 90a ofthe L- shaped link 90. Alternatively, the stops 90 and 92 may be fixed.
MODE OF OPERATION When the aerosol can A discharges, the contents thereof will pass through the conduit 18 to the interior of the cylinder 16 and will be vented to the atmosphere through the orifice 39 of the outlet tube 40. A portion of the contents of the aerosol can A will also pass through the outlet tube 42 so as to apply pressure to the upper surface of the first diaphragm 50. The pressurized contents of the aerosol can A that discharges through the outlet tube 42 will distort the transverse wall of first diaphragm 50 and thereby apply a force to the viscous fluid that is contained within the chamber 48. The viscous fluid will be discharged through the metering orifices 56 so as to bear against the transverse face of the disc 66 and thereby exert an axial force sufficient to displace the disc 66. By this action'the second chamber 58 will be filled with the viscous fluid. At this time it should be noted that provision of more orifices 56 will reduce the transfer time of the viscous fluid. Alternatively, larger orifices or a less viscous fluid will accomplish the same results.
When the second chamber 58 is sufficiently filled with the viscous fluid, the force thereof will axially displace the second diaphragm 60, the cup-shaped member 74, and the rod 78, thus causing the links 88 and 90 to snap about the axis of the third leg 880 of the link 88. The link 90 will thereby be moved downwardly or in a clockwise direction as shown in H0. 2 to thereby cause the connecting rod 38 to move downwardly. When this takes place, the link 30 will pivot about the pin 36 to cause the central portion of thepad 26 to move inwardly or to the left as shown in FIG, 2A so that it abuts the end face '22 of the conduit 1 8 and thereby prevents further discharge of the contents of the aerosol can A either into the'atmosphere through the outlet 7 40 or through the outlet tube 42'.
After a predetermined period of time, when discharge of the contents of the aerosol can is not permitted, the viscous fluid in the lower chamber 58 will return to the upper chamber 48 through the annular channel 74 due to the urging of the force of the spring 82 which moves the second diaphragm 6i) upwardly and thereby overcomes the weight ofthe viscous fluid. As the rod 78 moves upwardly, there will once again be an over-center toggle action of the links 88 and 90 that snaps the O-ring 68 against its seat on the undersurface of the transverse wall 54 in order to confine the return flow of the viscous fluid to the orifices 56. it should be noted'that the orifices are seized and are in a specific quantity dependent on the type of viscous fluid in use. Thus, the fluid flows through the orifices 56 only-when acted on by the pressurized contents of the aerosol can A or by the force of the spring 82. That is, only the viscous'fluid'will not flow freely in either direction. When forced from chamber 48 intochamber 58, the fluid will stay there until forced back upward so that the cycle can start again. I I
In one embodiment of this invention the cylinder 16 and the housing sections 44 and 44a were molded of nylon. The resilient pad 26 is preferably made of a synthetic material such as neoprene or the like. Rubber, neoprene or a suitable plastic may be used for the O- ring 68. The choice of materials should take into account resistance to chemicals usually dispensed from aerosol containers.
When the contents of the aerosol can A are pressurized in the order of 30-80 p.s.i., it has been found that three metering orifices 56, each having a 0.005 inches diameter, is very effective whencoupled with a channel 74 having about half the cross-sectional area and a viscous fluid such as Dow Silicone 1000. The springs 70,
82 and 91 may exert spring pressures of 1 oz., 30 lbs.
and 6 lbs., respectively. With 80 psi. can pressure, a -minute cycle and a venting of about 200 mg of freon would be typical.
There has been disclosed heretofore the best embodiments ofthe invention presently contemplated, and it is to be understood that various changes and modifications may be made by those skilled in the art'without departing from the spirit of the invention.
What is claimed is:
l. A pressure-powered aerosol timer for an aerosol can, said timer comprising:'
a. a housing;
b. means for coupling said housing to the can whereby the discharge nozzle thereof is maintained in an open condition;
c. first valve means intermediate said coupling means and the interior of said housing, said first valve including first outlet means in fluid communication with the atmosphere and second outlet means in fluid communication with the interior of said housing, said first valve means being periodically movable between an open condition and a closed condition;
d. a first chamber in said housing, said first chamber including a viscous fluid;
e. a first resilient diaphragmin fluid sealing relationship with said second outlet means and said first chamber whereby the pressurized contents of theaerosol can exerts a force on said first diaphragm with said force being transmitted to the viscous '6 valve means in said second chamber; and k. connecting means responsive to the movement of said second valve means for reversing the condition of said first valve means.
2. The timer in accordance with claim 1 wherein said first valve means comprises fluid inlet means having an end surface, a resilient pad adapted to engage said end surface in the valve closed condition and to be spaced therefrom in the valve open condition and means responsive to said connecting means for displacing said pad between saidopen and said closed conditions.
3. The timer in accordance with claim 2 wherein said fluid inlet means comprises a conduit in'fluid communication with said coupling means, said end surface of said conduit being in spaced relationship and substantially parallel to the plane of said pad.
4. The timer in accordance with claim 2 wherein said second valve means comprises a rod rigidly secured to said housing within said second chamber, a disc slidably mounted on said rod and defining an annular passageway therebetween, resilient means secured to said disc for limiting fluid communication between said first and said second chambers to a path including said passageway and said orifices, when said second valve means-is closed, and means for normally biasing said second valve means into the closed condition.
5. The timer in accordance with claim 4 wherein said resilient means is an O-ring.
6. The timer in accordance with claim 4 wherein said connecting means comprises an axially movable rod responsive to the filling ofsaid second'chamber with said viscous fluid, means for normally biasing said movable rod in a direction towards the closed condition of said second valve means, an over-center toggle assembly coupled to said movable rod-and a connecting arm coupling said over-center toggle assembly to said first valve means.
7.'The timer in accordance with claim 6 wherein there is further included means for limiting the movement of said over-center toggle assembly.
8. The timer in accordance'with claim 7 wherein said limiting means are adjustable.

Claims (8)

1. A pressure-powered aerosol timer for an aerosol can, said timer comprising: a. a housing; b. means for coupling said housing to the can whereby the discharge nozzle thereof is maintained in an open condition; c. first valve means intermediate said coupling means and the interior of said housing, said first valve including first outlet means in fluid communication with the atmosphere and second outlet means in fluid communication with the interior of said housing, said first valve means being periodically movable between an open condition and a closed condition; d. a first chamber in said housing, said first chamber including a viscous fluid; e. a first resilient diaphragm in fluid sealing relationship with said second outlet means and said first chamber whereby the pressurized contents of the aerosol can exerts a force on said first diaphragm with said force being transmitted to the viscous fluid by said first diaphragm when said first valve is open; f. a second chamber in said housing; g. orifice means for providing fluid communication between said first aNd said second chambers; h. second valve means in said second chamber for periodically opening and closing said orifice means; i. passageway means in said second valve means providing fluid communication between said second chamber and said first chamber when said first and said second valve means are closed; j. second diaphragm means for sealing said second valve means in said second chamber; and k. connecting means responsive to the movement of said second valve means for reversing the condition of said first valve means.
2. The timer in accordance with claim 1 wherein said first valve means comprises fluid inlet means having an end surface, a resilient pad adapted to engage said end surface in the valve closed condition and to be spaced therefrom in the valve open condition and means responsive to said connecting means for displacing said pad between said open and said closed conditions.
3. The timer in accordance with claim 2 wherein said fluid inlet means comprises a conduit in fluid communication with said coupling means, said end surface of said conduit being in spaced relationship and substantially parallel to the plane of said pad.
4. The timer in accordance with claim 2 wherein said second valve means comprises a rod rigidly secured to said housing within said second chamber, a disc slidably mounted on said rod and defining an annular passageway therebetween, resilient means secured to said disc for limiting fluid communication between said first and said second chambers to a path including said passageway and said orifices, when said second valve means is closed, and means for normally biasing said second valve means into the closed condition.
5. The timer in accordance with claim 4 wherein said resilient means is an O-ring.
6. The timer in accordance with claim 4 wherein said connecting means comprises an axially movable rod responsive to the filling of said second chamber with said viscous fluid, means for normally biasing said movable rod in a direction towards the closed condition of said second valve means, an over-center toggle assembly coupled to said movable rod and a connecting arm coupling said over-center toggle assembly to said first valve means.
7. The timer in accordance with claim 6 wherein there is further included means for limiting the movement of said over-center toggle assembly.
8. The timer in accordance with claim 7 wherein said limiting means are adjustable.
US00334759A 1973-02-22 1973-02-22 Pressure powered aerosol timer Expired - Lifetime US3794216A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US33475973A 1973-02-22 1973-02-22

Publications (1)

Publication Number Publication Date
US3794216A true US3794216A (en) 1974-02-26

Family

ID=23308697

Family Applications (1)

Application Number Title Priority Date Filing Date
US00334759A Expired - Lifetime US3794216A (en) 1973-02-22 1973-02-22 Pressure powered aerosol timer

Country Status (1)

Country Link
US (1) US3794216A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469255A (en) * 1982-11-19 1984-09-04 Cook International, Inc. Automatic and adjustable valving mechanism
US5025962A (en) * 1990-01-12 1991-06-25 Robert J. Leblanc Automatic timed release spray dispenser
US6517009B2 (en) 1997-12-25 2003-02-11 Gotit Ltd. Automatic spray dispenser
US20080290113A1 (en) * 2007-05-25 2008-11-27 Helf Thomas A Actuator cap for a spray device
US20080290120A1 (en) * 2007-05-25 2008-11-27 Helf Thomas A Actuator cap for a spray device
US20090045219A1 (en) * 2007-08-16 2009-02-19 Helf Thomas A Overcap and system for spraying a fluid
US20090045218A1 (en) * 2007-08-16 2009-02-19 Helf Thomas A Overcap for a spray device
US20090045220A1 (en) * 2007-08-16 2009-02-19 Helf Thomas A Apparatus for control of a volatile material dispenser
US8387827B2 (en) 2008-03-24 2013-03-05 S.C. Johnson & Son, Inc. Volatile material dispenser
US8590743B2 (en) 2007-05-10 2013-11-26 S.C. Johnson & Son, Inc. Actuator cap for a spray device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3289886A (en) * 1964-02-24 1966-12-06 Goldsholl Morton Timing device and method
US3477613A (en) * 1968-02-29 1969-11-11 Dart Ind Inc Aerosol dispenser actuated by propellant pressure
US3542248A (en) * 1969-01-08 1970-11-24 John J Mangel Aerosol dispenser controlled by permanent magnet
US3589562A (en) * 1969-02-10 1971-06-29 Buck Willard Pressure-powered aerosol timer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3289886A (en) * 1964-02-24 1966-12-06 Goldsholl Morton Timing device and method
US3477613A (en) * 1968-02-29 1969-11-11 Dart Ind Inc Aerosol dispenser actuated by propellant pressure
US3542248A (en) * 1969-01-08 1970-11-24 John J Mangel Aerosol dispenser controlled by permanent magnet
US3589562A (en) * 1969-02-10 1971-06-29 Buck Willard Pressure-powered aerosol timer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469255A (en) * 1982-11-19 1984-09-04 Cook International, Inc. Automatic and adjustable valving mechanism
US5025962A (en) * 1990-01-12 1991-06-25 Robert J. Leblanc Automatic timed release spray dispenser
US6517009B2 (en) 1997-12-25 2003-02-11 Gotit Ltd. Automatic spray dispenser
US6540155B1 (en) 1997-12-25 2003-04-01 Gotit Ltd. Automatic spray dispenser
US8746504B2 (en) 2007-05-10 2014-06-10 S.C. Johnson & Son, Inc. Actuator cap for a spray device
US8590743B2 (en) 2007-05-10 2013-11-26 S.C. Johnson & Son, Inc. Actuator cap for a spray device
US20080290113A1 (en) * 2007-05-25 2008-11-27 Helf Thomas A Actuator cap for a spray device
US20080290120A1 (en) * 2007-05-25 2008-11-27 Helf Thomas A Actuator cap for a spray device
US20090045220A1 (en) * 2007-08-16 2009-02-19 Helf Thomas A Apparatus for control of a volatile material dispenser
US8381951B2 (en) 2007-08-16 2013-02-26 S.C. Johnson & Son, Inc. Overcap for a spray device
US8469244B2 (en) 2007-08-16 2013-06-25 S.C. Johnson & Son, Inc. Overcap and system for spraying a fluid
US8556122B2 (en) 2007-08-16 2013-10-15 S.C. Johnson & Son, Inc. Apparatus for control of a volatile material dispenser
US20090045218A1 (en) * 2007-08-16 2009-02-19 Helf Thomas A Overcap for a spray device
US20090045219A1 (en) * 2007-08-16 2009-02-19 Helf Thomas A Overcap and system for spraying a fluid
US9061821B2 (en) 2007-08-16 2015-06-23 S.C. Johnson & Son, Inc. Apparatus for control of a volatile material dispenser
US8387827B2 (en) 2008-03-24 2013-03-05 S.C. Johnson & Son, Inc. Volatile material dispenser
US9089622B2 (en) 2008-03-24 2015-07-28 S.C. Johnson & Son, Inc. Volatile material dispenser

Similar Documents

Publication Publication Date Title
US4252507A (en) Hand-actuatable pump assembly
US4886193A (en) Container closure cap with metering appliance
US3463093A (en) Simply operating push plunger pump housed in a container
US7780044B2 (en) Needle valve pump for dispensing liquid product
JPS61164479U (en)
US2757846A (en) Liquid dispensers
US3794216A (en) Pressure powered aerosol timer
US4693675A (en) Non-throttling discharge pump
US4726493A (en) Actuator valve for dispenser of carbonated beverages
JPH0278459A (en) Applying device
US3878973A (en) Metered dose dispenser
IE42539L (en) Pump sprayer.
US3937241A (en) Device for injecting an adjuvant into a liquid
JPS61174959A (en) Weighing distribution pump
US5950879A (en) Dispenser for discharging media, as well as method and device for filling a dispenser
BRPI0408336A (en) device for dispensing a fluid product, and a fluid product dispenser including such device
US4053089A (en) Pump for dispensing liquids
JPH05270558A (en) Manually operated pump for dispensing liquid or creamy substances at a predetermined constant pressure
ATE183411T1 (en) DISPENSER FOR DISPENSING FLUID ATOMIZED UNDER PRESSURE, WITH A CLOSURE PIECE ACTUATED BY THE PRESSURIZED FLUIDS
US3764046A (en) Compressed air fluid product dispenser
NO762666L (en)
US3387789A (en) Atomizer pump assemblies
US3861564A (en) Product pressurizing dispenser including product flow cutoff
US3016840A (en) Fluid actuating device
KR830006610A (en) Relief valve with new seal