US3805379A - Method of assembling an electrical connector to effect a preloading thereof - Google Patents

Method of assembling an electrical connector to effect a preloading thereof Download PDF

Info

Publication number
US3805379A
US3805379A US00346588A US34658873A US3805379A US 3805379 A US3805379 A US 3805379A US 00346588 A US00346588 A US 00346588A US 34658873 A US34658873 A US 34658873A US 3805379 A US3805379 A US 3805379A
Authority
US
United States
Prior art keywords
coupling ring
component
spring washer
ring
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00346588A
Inventor
O Vetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Globe Motors Inc
Original Assignee
TRW Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRW Inc filed Critical TRW Inc
Priority to US00346588A priority Critical patent/US3805379A/en
Application granted granted Critical
Publication of US3805379A publication Critical patent/US3805379A/en
Assigned to LABINAL COMPONENTS AND SYSTEMS, INC., A DE CORP. reassignment LABINAL COMPONENTS AND SYSTEMS, INC., A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: TRW INC., A CORP. OF OH
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/623Casing or ring with helicoidal groove
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/58Means for relieving strain on wire connection, e.g. cord grip, for avoiding loosening of connections between wires and terminals within a coupling device terminating a cable
    • H01R13/595Bolts operating in a direction transverse to the cable or wire
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49208Contact or terminal manufacturing by assembling plural parts
    • Y10T29/49217Contact or terminal manufacturing by assembling plural parts by elastic joining

Definitions

  • ABSTRACT Helical ramp grooves formed in the interior of a coupling ring act against bayonets or pins mounted on one half of the electrical connector to effect coupling with the other half.
  • My method includes the positioning of FATENTEDAPR 23 1974 3.8053379 SHEET 2 BF 2 3s 39 POINT WHERE SPRING WASHER 68 IS POlNT WHERE COUPLING INITIALLY DEFLECTED lS COMPLETED BAYONET ADVANCE APPLIES WORKING RANGE PRELOAD START OF TO WASHER 68 BAYONET ADVANCE 1
  • This invention relates generally to a preloaded electrical connector, and pertains more particularly to a connector utilizing a specially configured spring washer to maintain the connector halves in their coupled condition.
  • oneobject of the present invention is to provide apreloaded electrical connector in which the likelihood of relative motion between the connector parts is virtually eliminated.
  • an aim of the invention is to provide an electrical connector of the foregoing type in which there is a metal-to-metal bottoming of the parts or components when mated so that little or no wear results and, as a result of the lack of relative movement, electrical discontinuities are avoided. It will be appreciated, that once the parts of an electrical connector have been coupled that they should not become inadvertently uncoupled, yet the connector should permit ready uncoupling when it is desired to separate the parts. Consequently, it is within the purview of the present invention to provide a'connector that will withstand a high degree of vibration, large shock forces, and appreciable temperature gradients or changes.
  • Another object of the invention is to provide an electrical connector that will possess the above attributes, yet which will be relatively inexpensive to manufacture.
  • a connector fabricated in accordance with the teachings of the present invention will cost little more than a conventional bayonettype connector.
  • a further object is to provide an electrical connector that requires very little manual force to effect the coupling thereof.
  • the ramp grooves are configured or contoured so that most of the mating travel occurs before any appreciable amount of spring deflection occurs.
  • Yet another object of the invention is to provide a set of detent balls that automatically become effective to assist the spring washer in maintaining the connector in its coupled or mated condition, the detent balls being shifted into their latching condition near the end of the rotation of the coupling ring.
  • a further object is to provide an electrical connector that can be easily assembled, and also wherein precise dimensions and spacings need not be initially adhered to. More specifically, an aim of the invention is to provide a means by which the loading of the specially designed spring washer can be predetermined within desired limits during the assembling procedure, a retainer ring being threadedly positioned and secured in place to thereafter furnish the correct amount of spring loading during subsequent use of the connector.
  • my invention comprises a spring washer having a tapered cross section that is progressively deflected, reaching a desired state of compression near the end of the coupling action. The requisite deflection occurs after a nietal-to-metal bottoming of one connector component with respect to the other has been achieved. While a bayonet and ramp groove arrangement is used in effecting the coupling of the two connector components, the present invention avoids the need for offset pockets or notches at the closed ends of the grooves by reason of the retaining force exerted by the compressed spring washer, thereby assuring that the above-mentioned bottoming relationship is maintained.
  • FIG. 1 is a side elevational view of my electrical connector when the parts are fully coupled together, a portion thereof being broken away in order to show to better advantage the connectors internal construction;
  • FIG. 2 is a fragmentary view corresponding generally to FIG. 1 but illustrating the parts prior to a complete mating thereof;
  • FIGS. 3 and 4 are sectional views taken in the direction of lines 3-3 and 4-4 of FIGS. 3 and 4, respectively, for the purpose of showing how the detent balls function;
  • FIG. 5 is a developed plan view of one of the ramp grooves formed in the coupling ring, the leftmost phantom outline of one of the bayonets or pins showing the entering of the bayonet or pin into the groove and the other phantom position illustrating the point in the bayonet travel where the spring washer starts to become compressed, and the solid or rightmost position of the bayonet illustrating the fully coupled condition of the connector components at which point the washer has become sufficiently deflected to assure retention of the connector parts in their coupled relation, and
  • FIG. 6 is a graphical representation illustrating a typical working range of the spring washer with percent spring force as the ordinate and percent spring deflection as the abscissa, the solid curve depicting a nominal value and the portions of the dash curves within the working range lower and upper acceptable limits.
  • a connector of this type includes two components or halves l2 and 14.
  • the component 12 comprises a rigid shell 16 containing a rubber grommet 18, a rigid dielectric contact retainer 20, a rubber insert 22 and a rigid dielectric block 24 formed with a forwardly directed integral lip or rabbet 26, these members all being fixedly retained in the shell 16.
  • the several members 18-24 encompass and hold in place any preferred number of socket contacts 28, the precise number depending upon the number of conductors or wires 30 to be electrically connected.
  • a cable clamp 32 has been pictured which encompasses the wires 30.
  • the shell 16 is suggestively formed with external threads at 34 for the attachment of the protective shroud or sleeve 36 portion of the cable clamp 32. It will be perceived from FIGS. 1-4 that the shell 16 is formed with an outwardly projecting flange 38 thereon, serving a purpose later to be referred to.
  • the flange 38 is formed with a peripheral or circumferential slot or groove 39.
  • a plurality of angularly spaced cylindrical holes 40 are also formed in the flange 38, extending from the right face of this flange to the above-mentioned groove 39. Actually, four such holes 40 will suffice and even three can be employed. Bowed in the direction of each hole 40 is a wave washer 42 or spring residing in the groove 39. A detent ball44 is housed in each hole 40. The detent balls 44, only one appearing in the drawings, are shifted into interfering positions, as will hereinafter become clearer, to assist in preventing inadvertent uncoupling of the connector halves or parts l2, l4.
  • this half of the connector includes a shell 46 having therein a rubber insert 48 plus a dielectric contact retainer and grommet (not shown but corresponding generally to the members 20 and 18, respectively).
  • Projecting from the insert 48 is a number of pin contacts 50 that are cooperable or engageable with the previously mentioned socket contacts 28 belonging to the component 12, the block having appropriately spaced holes through which the pin contacts 50 extend when mated with the contacts 28.
  • the left ends of the pin contacts 50 connect to a plurality of conductors or wires 52.
  • the shell 46 may be provided with a flange 54 having suitable mounting holes 55 therein.
  • the shell 46 has a number of radially projecting bayonets or pins 56 thereon for a purpose explained immediately below.
  • a coupling ring 58 having a plurality of helical ramp grooves 60. Portions of one such groove 60 can be seen quite clearly in FIGS. 1 and 2, and the full groove (in developed form) in FIG. 5. As should also be evident from these three figures, one bayonet 56 extends into each ramp groove 60.
  • the right end of the coupling ring 58 is formed with internal threads 62.
  • a retainer ring 64 Secured within the end of the coupling ring 58 by means of the threads 62 is a retainer ring 64, the ring 64 having external threads 66 that permit its axial positioning within the coupling ring 58 to whatever extent is necessary.
  • the retainer ring 64 is initially positioned properly during assembly and then appropriately secured in place so as to become an integral portion of the coupling ring 58.
  • Various techniques can be resorted to in the securement of the retainer ring 64 so that it is not thereafter rotatable with respect to the coupling ring 58.
  • the retainer ring 64 can be staked or welded. Although the way it is held stationary is relatively unimportant to a practicing of the invention, it is imperative that its properly adjusted position be maintained. In other words, the retainer ring 64 is not secured in place until a certain longitudinal space or distanceis provided between the retainer ring 64, which serves as an inwardly projecting integral flange, and the earlier mentioned outwardly projecting flange 38 on the shell 16 of the component 12.
  • a specially configured spring washer 68 Performing a very important role in the practicing of the invention is a specially configured spring washer 68.
  • the thickness, material and diameter determine the spring characteristics of the spring washer 68.
  • the washer 68 which is annular, has a thicker outside diameter and a thinner inside diameter.
  • the inner periphery of the washer 68 is offset to the left of the outer periphery, as can be pictorially appreciated from FIGS. 1 and 2. It is also thought that the advantages to be derived from the incorporating of such a washer in the connector 10 can be graphically understood and interpreted from FIG. 6. From the solid curve labeled 70 in FIG.
  • the dashed curves 70a and 70b are intended to depict typical lower and upper acceptable limits, the curve 70 actually representing a nominal value therebetween; here again, though, the limits are only illustrative, demonstrating mainly that limits can be easily obtained. The advantages to be derived from this working range probably will be better understood as the description progresses, especially when considering the manner in which my connector 10 is coupled together.
  • FIGS. l-4 there is a detent ring 72 having an outer key 74 integrally formed thereon which projects radially into a longitudinally directed keyway 76 formed in the interior of the coupling ring 58.
  • the function of the ring 72 is to coact with the detent balls 44; therefore, a plurality of detent pockets 78, the number corresponding to the number of ballst44, are angularly disposed around the ring 72.
  • the detent pockets 78 are of smaller diameter than the balls 44 so that the balls 44 cannot be fully received therein. Comparing the position of the particular detent ball 44 appearing in FIG. 2 with that appearing in FIG. 1 will illustrate that the shifting of the detent balls 44 is such as to only cause segmental portions thereof to be received in the pockets or passages 78; they never fully move into the pockets 78.
  • the detent ring 72 is inserted within the coupling ring 58, the insertion being via the right end.
  • the wave washer 42 and detent ball 44 are in place prior to inserting the ring 72.
  • the wave washer 42 is angularly positioned so that its crests properly bear against the several balls 44 for the purpose of biasing the balls to the right as viewed in FIGS. 1 and 2.
  • the spring washer 68 is next inserted so that one side confronts or faces the detent ring 72. It is then that the connector l isin. readiness for the initial threaded advancement of the retainer 64 inwardly.
  • the gauge tool would correspond generally in appearance to the shell 46. However, it differs dimensionally inasmuch as the distance from the left side of the pin or bayonet 56 appearing in FIG. 1 to the right end .of the shell 46 is somewhat less than the depicted distance of the pin 56 with respect to the right end of the shell 46. More specifically, the gauge tool would be foreshortened so as to compensate for the amount necessary to bring the washer 68 into its working range, as pictorially represented in FIG. 5 and graphically in FIG. 6. The alluded to working range has been denoted in FIG.
  • the detent ring 72 can be angularly oriented so that the pockets or openings 78 will be in alignment with the various detent balls 44 each time the parts 12, 14 are coupled together. Consequently, when the coupling ring 58 is rotated or twisted to couple the components 12, 14 together, the detent balls 44 will be urged or shifted (under the influence of the wave washer or spring 42) to effect a segmental engagement thereof with the pockets 78. It will be recalled that the pockets 78 are of lesser diameter than the diameter of the detent balls 44, so the relationship appearing in FIG. 1 is always established each time the components 12 and 14 are mated.
  • the slope of the grooves 60 may be lessened or made more gradual so that a greater mechanical advantage is realized.
  • the washer 68 requires only a few thousandths of compression or flattening in order to become effective and this need only be obtained near the ends of the grooves 60 where the slope is deliberately decreased, thereby minimizing the amount of manual effort required to rotate the coupling ring 58 under these terminating conditions. 7
  • the detent balls 44 simply roll against the left face of the ring 72 in a reverse fashion from that in which they roll when the coupling is being effected.
  • the washer 68 expands from its compressed state during this happening until it reaches its initial degree of compression determined by the proper positioning and securement of the retainer ring 64, which functions as an inwardly projecting flange as previously pointed out, during assembly.
  • the space or distance between the flanges 38 and 64 is varied, being decreased during the coupling of the connector 10 and increased during the uncoupling thereof.
  • the shell 16 will always bottom against the shell 46, more specifically the flange 38 abuts the right end of the shell 46 as is clearly evident in FIG. 1.
  • the detent or notch portions previously provided in the prior art arrangements at the closed end of the helical or ramp grooves are not needed.
  • my connector 10 resists vibration, shock and thermal gradients much more effectively than those connectors relying upon detent notches at the ends of the ramp grooves.
  • any deleterious effect attributal to wear of the bayonets 56 or the walls of the grooves 60 is minimized because of the preloading.
  • a method of assembling an electrical connector comprised of first and second components, each including interengageable contact means, a rotatable coupling ring encircling portions of said components, a spring washer, and a retainer ring, the method comprising the steps of placing said spring washer within said coupling ring, and then positioning said retainer ring within said coupling ring so that said spring washer is deflected a given amount only after the coupling of said components has been substantially completed.
  • a method of assembling an electrical connector comprised of first and second components, each including interengageable contact means and also including interengageable portions that abut each other when said contacts are engaged to prevent further advancement of said second component relative to said first component, a rotatable coupling ring, a spring washer, and a retainer means, the method comprising the step of positioning said retainer means within said coupling ring after said spring washer has been placed therein so that said spring washer is deflected only after said portions have engaged each other.
  • the method defined in claim 5 including the initial step of first employing a substitute member for said first component that causes the portion on said second component to engage said member with a lesser amount of rotation of said coupling ring than when said first component is employed, said positioning step being performed when said portion on said second component is engaged with said member.
  • a method of assembling an electrical connector comprised of two components, each including interengageable contact means, a rotatable coupling ring, a spring washer, and a retainer ring for causing deflection of said spring washer, the method comprising the steps of initially positioning a portion of said second component so that it will assume a given position with respect to said coupling ring when said coupling ring is in one rotative position, placing said spring washer between said coupling ring and said second component, disposing said retainer ring at a location between said coupling ring and said second component so as to abut said spring washer without deflecting said washer while said coupling ring is in its said one rotative position, and thereafter advancing said coupling ring to a second rotative position to couple said two components and to cause said retainer ring to deflect said spring washer a desired amount determined by the amount of rotation of said coupling ring between its said rotative positions.
  • a method of assembling an electrical connector comprised of two components, each including interengageable contact means, a rotatable coupling ring, a spring washer, and a retainer ring threadedly engageable within said coupling ring for deflecting said spring washer, the method comprising the steps of causing one end of a gauge tool to abut or bottom against a portion one p la threadedl) advancing Said @taining 11.

Abstract

Helical ramp grooves formed in the interior of a coupling ring act against bayonets or pins mounted on one half of the electrical connector to effect coupling with the other half. My method includes the positioning of a retainer ring within the coupling ring so that a specially tapered spring washer becomes effective during the coupling procedure to maintain a no-motion condition of the two components after the contacts thereof have been fully mated. Before the step of positioning the retainer with respect to the washer, a plurality of detent balls are inserted within the coupling ring so as to be automatically shifted into a holding position at the completion of the coupling action, thereby further contributing to the maintenance of the mated or coupled condition of the connector parts.

Description

United States Patent [191 Vetter METHOD OF ASSEMBLING AN ELECTRICAL CONNECTOR TO EFFECT A PRELOADING THEREOF [75] Inventor: Ottomar H. Vetter, Minneapolis,
Related US. Application Data [62] Division of Ser. No. 192,040, Oct. 26, 1971, Pat. No.
3 a retainer ring within the coupling ring so that a specially tapered spring washer becomes effective during [22] }J.S.(I|l. 29/62sI1i0229/6l35(;0i\) the coupling procedure to maintain a nomotion Com f i 5 360 dition of the two components after the contacts [5 1 o 'k' 287/l03 1 thereof have been fully mated. Before the step of positioning the retainer with respect to the washer, a plurality of detent balls are inserted within the coupling [56] References C'ted ring so as to be automatically shifted into a holding I UNITED STATES PATENTS position at the completion of the coupling action, 3,393,927 7/1968 Kelly et al 339/90 R thereby further contributing to the maintenance of the 3,462,727 8/1969 Blight et al. 28 9 mated or coupled condition of the connector parts. 3,312,928 4/1967 Nava et al 339/91 R 3,125,395 3/1964 Swanson 339/217 S 11 Claims, 6 Drawing Figures 55 t 74 62 3 /6 0 56 3 i 66 l0 Apr. 23, 1974 Heinrich et all. 285/81 Hennessey et al. 339/94 5 7] ABSTRACT Helical ramp grooves formed in the interior of a coupling ring act against bayonets or pins mounted on one half of the electrical connector to effect coupling with the other half. My method includes the positioning of FATENTEDAPR 23 1974 3.8053379 SHEET 2 BF 2 3s 39 POINT WHERE SPRING WASHER 68 IS POlNT WHERE COUPLING INITIALLY DEFLECTED lS COMPLETED BAYONET ADVANCE APPLIES WORKING RANGE PRELOAD START OF TO WASHER 68 BAYONET ADVANCE 1| GROOVE IN I COUPLING RING PERCENTAGE ROTATION OF COUPLING RING 5a 705 1 RKING 100% GE PERCENT 75 FORCE REQUlRED A TO DEFLECT WASHER 0% 68 O 25 V SOLID PERCENT DEFLECTION OF WASHER 68 FIG: 5
METHOD OF ASSEMBLING AN ELECTRICAL CONNECTOR TO EFFECT A PRELOADING THEREOF CROSS-REFERENCE TO RELATED APPLICATION This is a division of my application for PRELOADED ELECTRICAL CONNECTOR, Ser. No. 192,040, filed Oct. 26, 1971 now US. Pat. No. 3,750,087.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates generally to a preloaded electrical connector, and pertains more particularly to a connector utilizing a specially configured spring washer to maintain the connector halves in their coupled condition.
2. Description of the Prior Art Bayonets or pins and associated helical ramp grooves have long been used for coupling together the two halves or components of an electrical connector. In an effort to assure that the two components remain coupled, the inner or closed ends of the grooves have been provided in the past with offset notches or pockets into which the bayonets move. While the retention goal has been achieved with such prior art arrangements, this has been at the sacrifice of other needed criteria. More specifically, there cannot be a so called bottoming of one connector component with respect to the other. Also, the connector is vulnerable to vibration, wear and also other factors resulting in partial or complete electrical discontinuities. An example of a patent utilizing the notch or pocket detent arrangement at the closed end of the helical ramp grooves is US. Pat. No. 2,984,811 issued on May 16, 1961 to Hennessey, Jr., et al.
SUMMARY OF THE INVENTION Accordingly, oneobject of the present invention is to provide apreloaded electrical connector in which the likelihood of relative motion between the connector parts is virtually eliminated. In this regard, an aim of the invention is to provide an electrical connector of the foregoing type in which there is a metal-to-metal bottoming of the parts or components when mated so that little or no wear results and, as a result of the lack of relative movement, electrical discontinuities are avoided. It will be appreciated, that once the parts of an electrical connector have been coupled that they should not become inadvertently uncoupled, yet the connector should permit ready uncoupling when it is desired to separate the parts. Consequently, it is within the purview of the present invention to provide a'connector that will withstand a high degree of vibration, large shock forces, and appreciable temperature gradients or changes.
Another object of the invention is to provide an electrical connector that will possess the above attributes, yet which will be relatively inexpensive to manufacture. In this regard, it is planned that a connector fabricated in accordance with the teachings of the present invention will cost little more than a conventional bayonettype connector. Also, it is within the contemplation of the invention to provide a connector that will be longlasting and exceedingly reliable during its entire life.
A further object is to provide an electrical connector that requires very little manual force to effect the coupling thereof. In this regard, the ramp grooves are configured or contoured so that most of the mating travel occurs before any appreciable amount of spring deflection occurs.
Yet another object of the invention is to provide a set of detent balls that automatically become effective to assist the spring washer in maintaining the connector in its coupled or mated condition, the detent balls being shifted into their latching condition near the end of the rotation of the coupling ring.
A further object is to provide an electrical connector that can be easily assembled, and also wherein precise dimensions and spacings need not be initially adhered to. More specifically, an aim of the invention is to provide a means by which the loading of the specially designed spring washer can be predetermined within desired limits during the assembling procedure, a retainer ring being threadedly positioned and secured in place to thereafter furnish the correct amount of spring loading during subsequent use of the connector.
Briefly, my invention comprises a spring washer having a tapered cross section that is progressively deflected, reaching a desired state of compression near the end of the coupling action. The requisite deflection occurs after a nietal-to-metal bottoming of one connector component with respect to the other has been achieved. While a bayonet and ramp groove arrangement is used in effecting the coupling of the two connector components, the present invention avoids the need for offset pockets or notches at the closed ends of the grooves by reason of the retaining force exerted by the compressed spring washer, thereby assuring that the above-mentioned bottoming relationship is maintained. Provision is also made for assisting the action provided by the flexed spring washer, a plurality of ball detents being automatically shifted into an interfering relationship so that they supplement the retentiveaction of the washer. By reason of the improved mechanical construction, electrical characteristics are also improved.
BRIEF DESCRIPTIONOF THE DRAWINGS FIG. 1 is a side elevational view of my electrical connector when the parts are fully coupled together, a portion thereof being broken away in order to show to better advantage the connectors internal construction;
FIG. 2 is a fragmentary view corresponding generally to FIG. 1 but illustrating the parts prior to a complete mating thereof;
FIGS. 3 and 4 are sectional views taken in the direction of lines 3-3 and 4-4 of FIGS. 3 and 4, respectively, for the purpose of showing how the detent balls function;
FIG. 5 is a developed plan view of one of the ramp grooves formed in the coupling ring, the leftmost phantom outline of one of the bayonets or pins showing the entering of the bayonet or pin into the groove and the other phantom position illustrating the point in the bayonet travel where the spring washer starts to become compressed, and the solid or rightmost position of the bayonet illustrating the fully coupled condition of the connector components at which point the washer has become sufficiently deflected to assure retention of the connector parts in their coupled relation, and
FIG. 6 is a graphical representation illustrating a typical working range of the spring washer with percent spring force as the ordinate and percent spring deflection as the abscissa, the solid curve depicting a nominal value and the portions of the dash curves within the working range lower and upper acceptable limits.
DESCRIPTION OF THE PREFERRED EMBODIMENT An electrical connector exemplifying my invention is denoted in its entirety in FIG. 1 by the reference numeral 10. As is conventional, a connector of this type includes two components or halves l2 and 14. In the illustrated instance, the component 12 comprises a rigid shell 16 containing a rubber grommet 18, a rigid dielectric contact retainer 20, a rubber insert 22 and a rigid dielectric block 24 formed with a forwardly directed integral lip or rabbet 26, these members all being fixedly retained in the shell 16. The several members 18-24 encompass and hold in place any preferred number of socket contacts 28, the precise number depending upon the number of conductors or wires 30 to be electrically connected. Although not a part of the invention, a cable clamp 32 has been pictured which encompasses the wires 30. The shell 16 is suggestively formed with external threads at 34 for the attachment of the protective shroud or sleeve 36 portion of the cable clamp 32. It will be perceived from FIGS. 1-4 that the shell 16 is formed with an outwardly projecting flange 38 thereon, serving a purpose later to be referred to. The flange 38 is formed with a peripheral or circumferential slot or groove 39.
Although the function thereof is not readily apparent at this stage of the description, it can be pointed out that a plurality of angularly spaced cylindrical holes 40 are also formed in the flange 38, extending from the right face of this flange to the above-mentioned groove 39. Actually, four such holes 40 will suffice and even three can be employed. Bowed in the direction of each hole 40 is a wave washer 42 or spring residing in the groove 39. A detent ball44 is housed in each hole 40. The detent balls 44, only one appearing in the drawings, are shifted into interfering positions, as will hereinafter become clearer, to assist in preventing inadvertent uncoupling of the connector halves or parts l2, l4.
Describing now the component or part 14, it will be noted that this half of the connector includes a shell 46 having therein a rubber insert 48 plus a dielectric contact retainer and grommet (not shown but corresponding generally to the members 20 and 18, respectively). Projecting from the insert 48 is a number of pin contacts 50 that are cooperable or engageable with the previously mentioned socket contacts 28 belonging to the component 12, the block having appropriately spaced holes through which the pin contacts 50 extend when mated with the contacts 28. The left ends of the pin contacts 50 connect to a plurality of conductors or wires 52. To permit mounting of the component 14, the shell 46 may be provided with a flange 54 having suitable mounting holes 55 therein. The shell 46 has a number of radially projecting bayonets or pins 56 thereon for a purpose explained immediately below.
At this time, attention is called to a coupling ring 58 having a plurality of helical ramp grooves 60. Portions of one such groove 60 can be seen quite clearly in FIGS. 1 and 2, and the full groove (in developed form) in FIG. 5. As should also be evident from these three figures, one bayonet 56 extends into each ramp groove 60.
From FIGS. 1 and 2 it will be further discerned that the right end of the coupling ring 58 is formed with internal threads 62. Secured within the end of the coupling ring 58 by means of the threads 62 is a retainer ring 64, the ring 64 having external threads 66 that permit its axial positioning within the coupling ring 58 to whatever extent is necessary. It will become clearer as the description progresses that the retainer ring 64 is initially positioned properly during assembly and then appropriately secured in place so as to become an integral portion of the coupling ring 58. Various techniques can be resorted to in the securement of the retainer ring 64 so that it is not thereafter rotatable with respect to the coupling ring 58. For instance, the retainer ring 64 can be staked or welded. Although the way it is held stationary is relatively unimportant to a practicing of the invention, it is imperative that its properly adjusted position be maintained. In other words, the retainer ring 64 is not secured in place until a certain longitudinal space or distanceis provided between the retainer ring 64, which serves as an inwardly projecting integral flange, and the earlier mentioned outwardly projecting flange 38 on the shell 16 of the component 12.
Performing a very important role in the practicing of the invention is a specially configured spring washer 68. The thickness, material and diameter determine the spring characteristics of the spring washer 68. In this regard, it is to be observed that the washer 68, which is annular, has a thicker outside diameter and a thinner inside diameter. Furthermore, the inner periphery of the washer 68 is offset to the left of the outer periphery, as can be pictorially appreciated from FIGS. 1 and 2. It is also thought that the advantages to be derived from the incorporating of such a washer in the connector 10 can be graphically understood and interpreted from FIG. 6. From the solid curve labeled 70 in FIG. 6 it will be noted that a considerable amount of spring force is needed to provide the initial deformation of the washer 68 and similarly a large change in force is needed to fully deform the washer up to about'50 per'centof its total deflection capability. However, there is a working range, typically between 0.008 and 0.015 inch of deformation (for one specific model) where very little additional spring force is needed to effect the deformation from the 0.008 inch condition to the 0.015 inch condition. Owing to the fact that these figures depend upon connector dimensions, percentages have been given in FIGS. 5 and 6, and even these percentage values depend upon specific design characteristics and reliability factors. The dashed curves 70a and 70b, it might be explained, are intended to depict typical lower and upper acceptable limits, the curve 70 actually representing a nominal value therebetween; here again, though, the limits are only illustrative, demonstrating mainly that limits can be easily obtained. The advantages to be derived from this working range probably will be better understood as the description progresses, especially when considering the manner in which my connector 10 is coupled together.
As can be seen from FIGS. l-4, there is a detent ring 72 having an outer key 74 integrally formed thereon which projects radially into a longitudinally directed keyway 76 formed in the interior of the coupling ring 58. As its name implies, the function of the ring 72 is to coact with the detent balls 44; therefore, a plurality of detent pockets 78, the number corresponding to the number of ballst44, are angularly disposed around the ring 72. However, the detent pockets 78 are of smaller diameter than the balls 44 so that the balls 44 cannot be fully received therein. Comparing the position of the particular detent ball 44 appearing in FIG. 2 with that appearing in FIG. 1 will illustrate that the shifting of the detent balls 44 is such as to only cause segmental portions thereof to be received in the pockets or passages 78; they never fully move into the pockets 78.
In assembling the electrical connector 10, it is to be understood that the detent ring 72 is inserted within the coupling ring 58, the insertion being via the right end. Of course, the wave washer 42 and detent ball 44 are in place prior to inserting the ring 72. The wave washer 42 is angularly positioned so that its crests properly bear against the several balls 44 for the purpose of biasing the balls to the right as viewed in FIGS. 1 and 2. The spring washer 68 is next inserted so that one side confronts or faces the detent ring 72. It is then that the connector l isin. readiness for the initial threaded advancement of the retainer 64 inwardly.
However, it is planned that a gauge too] be substituted for the shell 46 during the assembling procedure. The gauge tool would correspond generally in appearance to the shell 46. However, it differs dimensionally inasmuch as the distance from the left side of the pin or bayonet 56 appearing in FIG. 1 to the right end .of the shell 46 is somewhat less than the depicted distance of the pin 56 with respect to the right end of the shell 46. More specifically, the gauge tool would be foreshortened so as to compensate for the amount necessary to bring the washer 68 into its working range, as pictorially represented in FIG. 5 and graphically in FIG. 6. The alluded to working range has been denoted in FIG. 5 by the amount of advancement of the bayonet or pin 56 from its intermediate position (shown in phantom outline) to the right hand position (shown in solid outline), the right hand solid line position denoting the point where the coupling of the connector is fully completed. By indicating the working range in FIG. 6 on a percentage basis, as far as the deflection of the washer 68 is concerned, is believed to present a more generalized condition than employing typical mil figures.
If the retainer 64 is now advanced so that it just contacts the spring washer 68, then when the regular connector component or half 14 is employed, the spring washer 68 will be compressed or deflected sufficiently so as to bring the requisitepercent deflection within the working range illustrated in FIG. 6. From FIG. 6 it will be noted that a considerable percentage variation of linear deflection is permissible without going below or above the allowable working rangelimits. Assuming for the sake of discussion that any force over 50 percent will be adequate to maintain the connector 10 coupled, it can be seen from FIG. 6 that the percent force for the working range is well above the 50 percent level, actually being approximately 80 per cent which provides an excellent margin of safety under virtually all environmental conditions.
Consequently, a considerable amount of allowance is provided for the wear of the various bayonets or pins 56 with respect to the sides of the several ramp grooves 60. Further, it will be appreciated that the mode of as sembly described above compensates for any geomettie variations in the thickness and spacing of the various parts such as the pins 56, the thickness of the flange 38 and the detent ring 72. It will also be recognized that the inaccuracies or variations resulting from the machining of the ramp grooves 60 and/or the locations of the pins or bayonets 56 are automatically compensated for by reason of the assembling procedure just described. This all is realized by virtue of the positioning of the retainer 64 with the gauge tool in place. After the retainer 64 has been properly located, then its securement, such as by staking or welding (as previously mentioned), will assure that the position of the retainer 64 is maintained.
It is important to appreciate that the same deformation or deflection of the spring 68 that is initially realized during assembly will be repeatedly obtained each time that the components 12 and 14 are coupled together. The working range allows: for a considerable amount of bayonet and groove wear. It will also be noted that not only is the same spring deformation realized, but the metal-to-metal bottoming of the shell 16 against the shell 46 is re-established each time.
By proper machining of the keyway 76 in the coupling ring 58, it follows that the detent ring 72 can be angularly oriented so that the pockets or openings 78 will be in alignment with the various detent balls 44 each time the parts 12, 14 are coupled together. Consequently, when the coupling ring 58 is rotated or twisted to couple the components 12, 14 together, the detent balls 44 will be urged or shifted (under the influence of the wave washer or spring 42) to effect a segmental engagement thereof with the pockets 78. It will be recalled that the pockets 78 are of lesser diameter than the diameter of the detent balls 44, so the relationship appearing in FIG. 1 is always established each time the components 12 and 14 are mated.
As can be understood from FIG. 5, it is only when the bayonets 56 approach the closed ends of their respec' tive helical ramp grooves 60 that the spring washer 68 is compressed or deflected from its preloaded state of deformation. Up to this particular point, which is represented by the right hand dotted position of the particular bayonet 56 in FIG. 6, there islit'tle resistance to the mating or coupling action. In other words, the camming performed by one side of each helical groove 60 simply acts against the bayonets 56 to pull or force the shell 46 into its mating relationship with the shell 16. By correlating the point of compression or deflection of the washer 68 with the approach of the bayonets 56 toward the end of their respective grooves 60, the slope of the grooves 60 may be lessened or made more gradual so that a greater mechanical advantage is realized. Stated somewhat differently, the washer 68 requires only a few thousandths of compression or flattening in order to become effective and this need only be obtained near the ends of the grooves 60 where the slope is deliberately decreased, thereby minimizing the amount of manual effort required to rotate the coupling ring 58 under these terminating conditions. 7
When uncoupling or disconnecting the connector 10, a reverse rotation of the coupling ring 58 moves the detent ring 72 so as to force the partially received detent balls 44 out of the pockets 78. However, until some manual twisting effort is applied to the coupling ring 58, the detent balls 44, owing to the interfering relationship they have, further assist in the prevention of unwanted separation of the components 12 and 14.
Once out of the pockets 78, the detent balls 44 simply roll against the left face of the ring 72 in a reverse fashion from that in which they roll when the coupling is being effected. The washer 68 expands from its compressed state during this happening until it reaches its initial degree of compression determined by the proper positioning and securement of the retainer ring 64, which functions as an inwardly projecting flange as previously pointed out, during assembly.
Recapitulating, the space or distance between the flanges 38 and 64 is varied, being decreased during the coupling of the connector 10 and increased during the uncoupling thereof. However, when fully coupled, the shell 16 will always bottom against the shell 46, more specifically the flange 38 abuts the right end of the shell 46 as is clearly evident in FIG. 1. Also, the detent or notch portions previously provided in the prior art arrangements at the closed end of the helical or ramp grooves are not needed. Thus, there is no unwanted backing off by virtue of the detent notches previously employed at the ends of the ramp grooves. Consequently, my connector 10 resists vibration, shock and thermal gradients much more effectively than those connectors relying upon detent notches at the ends of the ramp grooves. Also, any deleterious effect attributal to wear of the bayonets 56 or the walls of the grooves 60 is minimized because of the preloading.
I claim:
l. A method of assembling an electrical connector comprised of first and second components, each including interengageable contact means, a rotatable coupling ring encircling portions of said components, a spring washer, and a retainer ring, the method comprising the steps of placing said spring washer within said coupling ring, and then positioning said retainer ring within said coupling ring so that said spring washer is deflected a given amount only after the coupling of said components has been substantially completed.
2. The method defined in claim 1 in which said retainer ring is threadedly engageable within said coupling ring and said positioning step includes the threaded advancement of said retainer ring.
3. The method defined in claim 1 in which said first component has outwardly projecting bayonet means thereon and said coupling-ring has an internal ramp groove receiving said bayonet means, said retainer ring being positioned so that said spring washer is initially deflected when said bayonet means is nearer the closed end of said ramp groove to produce a substantial coupling of said first and second components.
4. The method defined in claim 3 in which said retainer ring is positioned so that said spring washer is initially deflected when said coupling ring has been rotated about 75 percent of its full rotative amount.
5. A method of assembling an electrical connector comprised of first and second components, each including interengageable contact means and also including interengageable portions that abut each other when said contacts are engaged to prevent further advancement of said second component relative to said first component, a rotatable coupling ring, a spring washer, and a retainer means, the method comprising the step of positioning said retainer means within said coupling ring after said spring washer has been placed therein so that said spring washer is deflected only after said portions have engaged each other.
6. The method defined in claim 5 including the initial step of first employing a substitute member for said first component that causes the portion on said second component to engage said member with a lesser amount of rotation of said coupling ring than when said first component is employed, said positioning step being performed when said portion on said second component is engaged with said member.
7. The method defined in claim 6 in which an outwardly projecting bayonet means is mounted on said first component and in which an outwardly projecting bayonet means is also mounted on said member, said coupling ring having an internal ramp groove receiving either of said bayonet means, said retainer means being fixedly anchored during said positioning step when the said portion on said second component has engaged said member and when the bayonet means on said member has traveled throughout the entire length of said ramp groove, whereby when said first component is substituted for said member, said coupling ring can be rotated an additional amount to cause said portions to abut each other, said additional amount of rotation causing a desired amount of deflection of said spring washer.
8. A method of assembling an electrical connector comprised of two components, each including interengageable contact means, a rotatable coupling ring, a spring washer, and a retainer ring for causing deflection of said spring washer, the method comprising the steps of initially positioning a portion of said second component so that it will assume a given position with respect to said coupling ring when said coupling ring is in one rotative position, placing said spring washer between said coupling ring and said second component, disposing said retainer ring at a location between said coupling ring and said second component so as to abut said spring washer without deflecting said washer while said coupling ring is in its said one rotative position, and thereafter advancing said coupling ring to a second rotative position to couple said two components and to cause said retainer ring to deflect said spring washer a desired amount determined by the amount of rotation of said coupling ring between its said rotative positions.
9. The method defined in claim 8 including outwardly projecting bayonet means mounted on said first component, said coupling ring having an internal ramp groove receiving said bayonet means, said ramp groove having an entrance and a greater degree of angularity adjacent said entrance which greater degree of angularity lessens toward the closed end of said ramp groove, said retainer ring being fixedly positioned so that said portion on said second component abuts the end of said first component in one region of lesser angularity of said helical groove when said coupling ring is in its said one rotative position, whereby said spring washer is deflected said desired amount as said bayonet means moves relatively toward the closed end of said ramp groove during the advancement of said coupling ring from its said one rotative position to its said second rotative position.
10. A method of assembling an electrical connector comprised of two components, each including interengageable contact means, a rotatable coupling ring, a spring washer, and a retainer ring threadedly engageable within said coupling ring for deflecting said spring washer, the method comprising the steps of causing one end of a gauge tool to abut or bottom against a portion one p la threadedl) advancing Said @taining 11. The method defined in claim 10 including the to deflect washer an amourlt dfatermmed by step of securing said retainer ring in place after it has said gauge tool, and thereafter substituting the other component for Said gauge too], said other component 5 been threadedly advanced to the extent determined by being foreshortened with respect to the effective length 531d gauge too]- of said gauge tool so as to preload said spring washer.

Claims (11)

1. A method of assembling an electrical connector comprised of first and second components, each including interengageable contact means, a rotatable coupling ring encircling portions of said components, a spring washer, and a retainer ring, the method comprising the steps of placing said spring washer within said coupling ring, and then positioning said retainer ring within said coupling ring so that said spring washer is deflected a gIven amount only after the coupling of said components has been substantially completed.
2. The method defined in claim 1 in which said retainer ring is threadedly engageable within said coupling ring and said positioning step includes the threaded advancement of said retainer ring.
3. The method defined in claim 1 in which said first component has outwardly projecting bayonet means thereon and said coupling ring has an internal ramp groove receiving said bayonet means, said retainer ring being positioned so that said spring washer is initially deflected when said bayonet means is nearer the closed end of said ramp groove to produce a substantial coupling of said first and second components.
4. The method defined in claim 3 in which said retainer ring is positioned so that said spring washer is initially deflected when said coupling ring has been rotated about 75 percent of its full rotative amount.
5. A method of assembling an electrical connector comprised of first and second components, each including interengageable contact means and also including interengageable portions that abut each other when said contacts are engaged to prevent further advancement of said second component relative to said first component, a rotatable coupling ring, a spring washer, and a retainer means, the method comprising the step of positioning said retainer means within said coupling ring after said spring washer has been placed therein so that said spring washer is deflected only after said portions have engaged each other.
6. The method defined in claim 5 including the initial step of first employing a substitute member for said first component that causes the portion on said second component to engage said member with a lesser amount of rotation of said coupling ring than when said first component is employed, said positioning step being performed when said portion on said second component is engaged with said member.
7. The method defined in claim 6 in which an outwardly projecting bayonet means is mounted on said first component and in which an outwardly projecting bayonet means is also mounted on said member, said coupling ring having an internal ramp groove receiving either of said bayonet means, said retainer means being fixedly anchored during said positioning step when the said portion on said second component has engaged said member and when the bayonet means on said member has traveled throughout the entire length of said ramp groove, whereby when said first component is substituted for said member, said coupling ring can be rotated an additional amount to cause said portions to abut each other, said additional amount of rotation causing a desired amount of deflection of said spring washer.
8. A method of assembling an electrical connector comprised of two components, each including interengageable contact means, a rotatable coupling ring, a spring washer, and a retainer ring for causing deflection of said spring washer, the method comprising the steps of initially positioning a portion of said second component so that it will assume a given position with respect to said coupling ring when said coupling ring is in one rotative position, placing said spring washer between said coupling ring and said second component, disposing said retainer ring at a location between said coupling ring and said second component so as to abut said spring washer without deflecting said washer while said coupling ring is in its said one rotative position, and thereafter advancing said coupling ring to a second rotative position to couple said two components and to cause said retainer ring to deflect said spring washer a desired amount determined by the amount of rotation of said coupling ring between its said rotative positions.
9. The method defined in claim 8 including outwardly projecting bayonet means mounted on said first component, said coupling ring having an internal ramp groove receiving said bayonet means, said ramp groove having an entrance and a greater degree of anGularity adjacent said entrance which greater degree of angularity lessens toward the closed end of said ramp groove, said retainer ring being fixedly positioned so that said portion on said second component abuts the end of said first component in one region of lesser angularity of said helical groove when said coupling ring is in its said one rotative position, whereby said spring washer is deflected said desired amount as said bayonet means moves relatively toward the closed end of said ramp groove during the advancement of said coupling ring from its said one rotative position to its said second rotative position.
10. A method of assembling an electrical connector comprised of two components, each including interengageable contact means, a rotatable coupling ring, a spring washer, and a retainer ring threadedly engageable within said coupling ring for deflecting said spring washer, the method comprising the steps of causing one end of a gauge tool to abut or bottom against a portion of one component, threadedly advancing said retaining ring to deflect said washer an amount determined by said gauge tool, and thereafter substituting the other component for said gauge tool, said other component being foreshortened with respect to the effective length of said gauge tool so as to preload said spring washer.
11. The method defined in claim 10 including the step of securing said retainer ring in place after it has been threadedly advanced to the extent determined by said gauge tool.
US00346588A 1971-10-26 1973-03-30 Method of assembling an electrical connector to effect a preloading thereof Expired - Lifetime US3805379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00346588A US3805379A (en) 1971-10-26 1973-03-30 Method of assembling an electrical connector to effect a preloading thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19204071A 1971-10-26 1971-10-26
US00346588A US3805379A (en) 1971-10-26 1973-03-30 Method of assembling an electrical connector to effect a preloading thereof

Publications (1)

Publication Number Publication Date
US3805379A true US3805379A (en) 1974-04-23

Family

ID=26887666

Family Applications (1)

Application Number Title Priority Date Filing Date
US00346588A Expired - Lifetime US3805379A (en) 1971-10-26 1973-03-30 Method of assembling an electrical connector to effect a preloading thereof

Country Status (1)

Country Link
US (1) US3805379A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359254A (en) * 1980-11-14 1982-11-16 The Bendix Corporation Electrical connector coupling ring having an integral spring
US4359255A (en) * 1980-11-14 1982-11-16 The Bendix Corporation Coupling ring having detent means
US4361373A (en) * 1980-11-14 1982-11-30 The Bendix Corporation Electrical connector comprised of plastic
US4367002A (en) * 1980-11-14 1983-01-04 The Bendix Corporation Coupling ring having lined bayonet slot
US4389081A (en) * 1980-11-14 1983-06-21 The Bendix Corporation Electrical connector coupling ring
US5786976A (en) * 1996-07-16 1998-07-28 Hydraflow Coupling with hard metallic ductile conductive coating
US5800197A (en) * 1996-10-18 1998-09-01 Itt Manufacturing Enterprises, Inc. Connector system with quick coupling/decoupling
US5959828A (en) * 1996-07-16 1999-09-28 Hydraflow Coupling with insulated flanges
WO2001017068A1 (en) * 1999-08-27 2001-03-08 Amphenol Corporation Self-locking bayonet coupling mechanism
US20050175404A1 (en) * 2001-11-09 2005-08-11 Conway Christopher J. Dual pitch locking connector
WO2012159229A1 (en) * 2011-05-24 2012-11-29 中航光电科技股份有限公司 Connector assembly having thread structure with hand feeling of positioning and plug thereof
WO2014179853A1 (en) * 2013-05-10 2014-11-13 Mahle Metal Leve S.A. Structural arrangement for fuel filter lid assembly
CN107223192A (en) * 2016-12-23 2017-09-29 深圳市大疆灵眸科技有限公司 Head mounting mechanism and the filming apparatus for possessing the head mounting mechanism
US20180131130A1 (en) * 2016-11-10 2018-05-10 A.A.G. Stucchi S.R.L. Linear connection assembly for electrical conductors with high locking reliability
EP3176885B1 (en) * 2015-12-02 2022-03-30 Telefonaktiebolaget LM Ericsson (Publ) Connector assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2984811A (en) * 1957-02-06 1961-05-16 Bendix Corp Electrical connector
US3125395A (en) * 1959-04-24 1964-03-17 Electrical connector
US3312928A (en) * 1964-07-21 1967-04-04 Pyle National Co Explosion-proof connector
US3393927A (en) * 1966-02-07 1968-07-23 Itt Electrical connector
US3462727A (en) * 1966-06-03 1969-08-19 Int Standard Electric Corp Electrical connector or the like having coupling nut detent means
US3552777A (en) * 1968-02-23 1971-01-05 United Air Lines Inc Self-locking device for couplings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2984811A (en) * 1957-02-06 1961-05-16 Bendix Corp Electrical connector
US3125395A (en) * 1959-04-24 1964-03-17 Electrical connector
US3312928A (en) * 1964-07-21 1967-04-04 Pyle National Co Explosion-proof connector
US3393927A (en) * 1966-02-07 1968-07-23 Itt Electrical connector
US3462727A (en) * 1966-06-03 1969-08-19 Int Standard Electric Corp Electrical connector or the like having coupling nut detent means
US3552777A (en) * 1968-02-23 1971-01-05 United Air Lines Inc Self-locking device for couplings

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359254A (en) * 1980-11-14 1982-11-16 The Bendix Corporation Electrical connector coupling ring having an integral spring
US4359255A (en) * 1980-11-14 1982-11-16 The Bendix Corporation Coupling ring having detent means
US4361373A (en) * 1980-11-14 1982-11-30 The Bendix Corporation Electrical connector comprised of plastic
US4367002A (en) * 1980-11-14 1983-01-04 The Bendix Corporation Coupling ring having lined bayonet slot
US4389081A (en) * 1980-11-14 1983-06-21 The Bendix Corporation Electrical connector coupling ring
US5786976A (en) * 1996-07-16 1998-07-28 Hydraflow Coupling with hard metallic ductile conductive coating
US5959828A (en) * 1996-07-16 1999-09-28 Hydraflow Coupling with insulated flanges
US5800197A (en) * 1996-10-18 1998-09-01 Itt Manufacturing Enterprises, Inc. Connector system with quick coupling/decoupling
WO2001017068A1 (en) * 1999-08-27 2001-03-08 Amphenol Corporation Self-locking bayonet coupling mechanism
US6226068B1 (en) 1999-08-27 2001-05-01 Amphenol Corporation Self-locking bayonet coupling mechanism
US20050175404A1 (en) * 2001-11-09 2005-08-11 Conway Christopher J. Dual pitch locking connector
WO2012159229A1 (en) * 2011-05-24 2012-11-29 中航光电科技股份有限公司 Connector assembly having thread structure with hand feeling of positioning and plug thereof
WO2014179853A1 (en) * 2013-05-10 2014-11-13 Mahle Metal Leve S.A. Structural arrangement for fuel filter lid assembly
EP3176885B1 (en) * 2015-12-02 2022-03-30 Telefonaktiebolaget LM Ericsson (Publ) Connector assembly
US20180131130A1 (en) * 2016-11-10 2018-05-10 A.A.G. Stucchi S.R.L. Linear connection assembly for electrical conductors with high locking reliability
US10348033B2 (en) * 2016-11-10 2019-07-09 A.A.G Stucchi S.R.L. Linear connection assembly for electrical conductors with high locking reliability
CN107223192A (en) * 2016-12-23 2017-09-29 深圳市大疆灵眸科技有限公司 Head mounting mechanism and the filming apparatus for possessing the head mounting mechanism
WO2018112916A1 (en) * 2016-12-23 2018-06-28 深圳市大疆灵眸科技有限公司 Pan-tilt-zoom apparatus assembly and disassembly mechanism and photographing device having same

Similar Documents

Publication Publication Date Title
US3750087A (en) Preloaded electrical connector
US3805379A (en) Method of assembling an electrical connector to effect a preloading thereof
US3892458A (en) Coupling for electrical connector or the like
US4111514A (en) Polarizing keying device for electrical connectors
US3786396A (en) Electrical connector with locking device
US3182280A (en) Protection of electrical connector contact pins
US3281757A (en) Electrical connectors
US4074927A (en) Electrical connector with insert member retaining means
US2858518A (en) Fluid tight electrical connection
US4066315A (en) Electrical connector with arcuate detent means
US4277125A (en) Enhanced detent guide track with dog-leg
US4183605A (en) Electrical connector with arcuate detent means
US3747047A (en) Latchable integrally molded electrical connector
US3017597A (en) Electrical connector
US3727172A (en) Electrical connector
US3462727A (en) Electrical connector or the like having coupling nut detent means
US20190348802A1 (en) Female connector and fitting connector
EP3700021B1 (en) Sealed electrical connector assembly
US5458501A (en) Bayonet coupling cable clamp
US3349364A (en) Cable clamp for electrical connector
US3323098A (en) Sub-miniature coaxial connector
US20040157500A1 (en) Circuit board and socket assembly
US5722846A (en) Bayonet coupling, low impedance, vibration resistant cable clamp
EP0273269B1 (en) Connector plug
CN110131510B (en) Embedded fluid connector capable of largely floating and preventing spring from being exposed in flow channel

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

AS Assignment

Owner name: LABINAL COMPONENTS AND SYSTEMS, INC., A DE CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:TRW INC., A CORP. OF OH;REEL/FRAME:004853/0501

Effective date: 19871224