US3805486A - Packaging apparatus and techniques - Google Patents

Packaging apparatus and techniques Download PDF

Info

Publication number
US3805486A
US3805486A US00258320A US25832072A US3805486A US 3805486 A US3805486 A US 3805486A US 00258320 A US00258320 A US 00258320A US 25832072 A US25832072 A US 25832072A US 3805486 A US3805486 A US 3805486A
Authority
US
United States
Prior art keywords
web
path
assembly station
conveyor
pockets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00258320A
Inventor
R Mahaffy
J Hamilton
W Pinney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahaffy and Harder Engineering Co
Original Assignee
Mahaffy and Harder Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahaffy and Harder Engineering Co filed Critical Mahaffy and Harder Engineering Co
Priority to US00258320A priority Critical patent/US3805486A/en
Priority to CA167,985A priority patent/CA1004129A/en
Priority to GB2114973A priority patent/GB1435562A/en
Priority to FR7316755A priority patent/FR2186384B1/fr
Priority to DE2327286A priority patent/DE2327286C2/en
Priority to JP6139573A priority patent/JPS575723B2/ja
Application granted granted Critical
Publication of US3805486A publication Critical patent/US3805486A/en
Priority to CA258,796A priority patent/CA1012051A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/02Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas
    • B65B31/021Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas the containers or wrappers being interconnected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B41/00Supplying or feeding container-forming sheets or wrapping material
    • B65B41/12Feeding webs from rolls
    • B65B41/14Feeding webs from rolls by grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B9/00Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
    • B65B9/02Enclosing successive articles, or quantities of material between opposed webs
    • B65B9/04Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material

Definitions

  • the disclosed machine is capa- [22] Filed; May 31 1972 ble of convexly thermoforming two webs of packaging material into respective sets of pockets which are PP 258,320 brought together in opposed positions to enclose the product.
  • One preferred package made by the dis- [52] s Cl 53/184, 53/22 A, 53/ 12 A, closed techniques comprises a transparent semi-rigid 53/167, 425/388 cup-like shell and a back-formed flexible film sealed 51 int.
  • EATENTEDAPR 2 1914 3.805486 sum on HF 12 PATENTEDAPR 23 um sum "as or 12 MTENTEMPR 23 m4 sum 03 [1F 12 PATENTEUAPR 2a m SHEET '03 HF 12 PATENTEDAPR 23 I974 sum 10 [1F 12 1 PACKAGING APPARATUS AND TECHNIQUES BACKGROUND OF THE INVENTION 1.
  • This invention relates to packaging techniques, and especially to techniques useful in producing vacuum or gas-filled packages for containing food products and the like. More particularly, this invention relates in one principal aspect to improved packaging apparatus and methods suitable for making packages of a class exemplified by the disclosure of U.S. Pat. No. 3,467,244.
  • the final package should be so arranged as to present to the customer a view of the lean side of the bacon, permitting customer inspection of the lean edges of the slices in a neat and uniform disposition.
  • the display side of the package should be the side which has been thermoformed into a cup-like container for the bacon.
  • Some'packaging machines even though capable making the especially preferred semi-rigid bacon package such as shown in U.S. Pat. No. 3,467,244, form the semi-rigid display side downward (i.e., so that the container opening faces up to receive the product).
  • the bacon must be inverted before loading, in order to dispose the lean edges against the display side. This inverting procedure has not been satisfactory, particularly due to the dangers of disrupting the shingle arrangement during the loading operation.
  • the loaded receptacles are moved horizontally to a package assembly station to which also is directed, from a rotary turret above the station, a'continuous web of transparent semi-rigid plastic material'thermoformed into a series of cup-shaped containers which ultimately will serve as the display side of the packages.
  • These containers enter the assembly station with their openings facing downwards, and mate with the flexible-film receptacles to fully enclose the bacon product.
  • the two webs there upon are sealed together to form a composite evacuated package wherein the upper (lean) edges of the bacon are forced up, by atmospheric pressure acting through the flexible film, against the inner surface of the semi-rigid container which thus serves to display the lean edges of the bacon to the customer.
  • That film advantageously may be formed to a depth less than the product height, at least in certain regions. Portions of the product would in these circumstances project above the web line. This however causes no problem in the disclosed machine, because the semi-rigid web is formed on the turret to a depth sufficient. to accommodate such product projection.
  • the unformed flange portions of both webs may be brought together into a common plane, without wrinkling or gathering of either, and may be heat-sealed together so as to effect the overall hermetic sealing of the package.
  • Positive and precise positioning of both webs for high-quality scaling is achieved by the use of two sets of intermeshing web clamps for the two webs, providing close positioning control especially important when making packages with large-area pockets extending across a web having relatively great flexibility.
  • FIG. 1 is a perspective view of a packaging machine constructed as a preferred embodiment of the present invention.
  • FIG. 2 illustrates one preferred package configuration made by the machine of FIG. 1;
  • FIG. 3 is an elevation view of the machine of FIG. 1;
  • FIG. 4 is a diagrammatic elevation view of the principal operating components of the machine
  • FIG. 5 shows in perspective the two webs of packaging material advancing through the machine
  • FIG. 6 is a detail section taken along lines 66 of FIG. 3, to show the flexible web being applied to the film clarnp;'
  • FIG. 7 is a detail section taken along line 77 of FIG. 3, to show the forming die for the flexible film
  • FIG. 8 is a perspective view of the film clamp
  • FIG. 9 is a vertical section showing details of the rotatable turret
  • FIG. 10 is a detailed vertical section at the package assembly station
  • FIG. 11 is a horizontal section, taken along line 11-11 of FIG. 10, showing the interleaved relationship of the two sets of clamps;
  • FIG. 12 is a vertical section, taken along line 1212 of FIG. 10;
  • FIG. 13 is a perspective view of the clamp fingers for the turret
  • FIG. 14 is a detail section showing the initial seal arrangement
  • FIG. 15 is a perspective view showing the initial seal outline
  • FIG. 16 is a perspective view of the package-severing mechanism
  • FIG. 17 is a vertical section showing elements of the evacuation and final seal stage
  • FIG. 18 is a vertical cross-section taken along line l818 of FIG. 17;
  • FIG. 19 is a detailed vertical section showing aspects of the evacuation chamber
  • FIG. 20 is a detailed horizontal section showing the outline of the lower evacuation die
  • FIGS. 21 and 22 are vertical section views of a turret die
  • FIG. 23 is a plan view of a'portion of the support means beneath the loaded receptacles
  • FIG. 23a is a side view of a portion of the support means beneath the loaded receptacles.
  • FIG. 24 is a vertical section showing the product control plate in the initial seal member.
  • FIG. 1 there is shown a packaging machine 30 having a number of synchronized mechanisms which, as will be described, operate in concert to produce a series of packages like that illustrated in FIG. 2.
  • This package is similar in basic respects to that disclosed in U.S. Pat. No. 3,467,244, although certain differences will be noted hereinbelow.
  • the packaging machine 30 is provided in its lower right-hand region with a spindle 32 carrying a roll 34 of relatively thin plastic film of packaging material which is unwound as a continuous web by a conventional web-feed mechanism 33.
  • This plastic film is directed (see also FIGS. 3 and 4) to the upper reaches of an endless-chain conveyor 36 arranged to carry the web with an intermittent indexing motion (to the left in the drawings) past a series of stations where packaging operations are performed during the dwell periods between indexes.
  • This conveyor 36 comprises two parallel, hollowroller chains each adjacent one edge of the web 34, and each carrying a series of clamp sets 40 (FIGS. 6 and 8) spaced apart uniformly along the chain.
  • Each clamp comprises spring-loaded jaw elements 42, 43 the tips of which engage to grip the side margins of the web.
  • the cylindrical portions of upper elements 42 are loosely fitted within corresponding hollow rollers of chain 36, permitting axial movement of elements 42 as the clamp is opened and closed.
  • Pairs of lower elements 43 are integrally formed as part of a rocker plate 44 the top of which is curved to fit into a correspondingly curved support element 45 to define an elongate pivot axis 46 for the rocker plate.
  • Support element 45 is formed with L-shaped tabs 46A which are inserted into a base plate 47 fixedly secured to the chain 36.
  • the elements 42 are grooved on the top to fit with corresponding slots in rocker plate 44, so that elements 42 move horizontally as the plate rotates about is pivot axis.
  • Springs 48 surround elements 42 and urge the plate 44 counterclockwise to tend to hold the gripper jaws shut.
  • a stationary ramp cam 49 Adjacent the conveyor 36, at a point preceding the point where the web 34 is to be applied, a stationary ramp cam 49 is arranged to engage an arm 50 (forming part of the rocker plate 44) to rotate the plate 44 about pivot axis 46. This shifts the elements 42 towards the chain 36, and also moves the lower elements 43 down and away (referring to FIGS. 6 and 8) to permit the web to slip into position to be gripped by the clamp jaws. The lower elements are moved sufficiently in a lateral direction that the film need not be bent or deflected prior to entry into the clamp.
  • the cam 49 ramps the lower element back against the upper element, tightly gripping the plastic film under the compressive force of spring 48.
  • the jaws grip the plastic film in the plane of the web and thus do not tend to distort the film.
  • This clamp arrangement also is advantageous because it is self-actuating in the sense that any tendency of the film to pull away from the clamp causes the jaws to be forced together and bite the film ever more tightly.
  • thermoforming means comprising a heating station 52 and a forming station 54.
  • This thermoforming operation is basically similar to that disclosed in U.S. Pat. No. 3,524,298, and thus will not be described in great detail herein.
  • thermoforming operation briefly, in the heating station 52 a heated platen is brought up to the web line and a seal is made between it and the film through contact with a fixed back-up platen above the web. Vacuum is drawn through the heated platen to bring the film into contact with the heated surface, to raise the temperature of the film to a level suitable for stretch-forming. At the end of the dwell cycle, this heated platen is lowered,'and the film is indexed to the next station 54 where a water-cooled forming die 56 is brought up to the underside of the film.
  • Vacuum is applied to this die 56 to cause the heated film to be forced downward by atmospheric pressure and conform to the shape of the die cavity.
  • the film is thereby stretched into a cup-shaped pocket 58 adapted to serve as a receptacle for the product.
  • the die 56 preferably includes side troughs 56A adapted to stretch the side margins of the film more than the central regions, thereby to form the special ear-like elements, disclosed in U.S. Pat. No. 3,467,244, which extend along the sides of the product in the final package.
  • the shape of the formed receptacle 58 should be such as to allow the product to be placed into it and effectively locate the product for further operations.
  • the die 56 is arranged to stretch the web, in the marginal regions at the periphery of the receptacle, to an appropriate depth, and with suitable contours, to permit each thermoformed receptacle to embrace all sections and contours of the bacon rashers (as illustrated in FIG. 5 of U.S. Pat. No. 3,467,244),
  • the receptacle should be formed to properly contain the most extreme bacon arrangement (i.e., extreme as to size and shape) which may be delivered from the slicing machine.
  • the great majority of 'rashers, which are less extreme, will automatically be accommodated by the self-adjusting characteristic of the package, discussed subsequently.
  • a product loader 59 arranged automatically to deposit the sliced bacon into the receptacles 58.
  • This product loader may be substantially the same as that shown in US. Pat. No. 3,354,613, and thus will not be described in detail herein. It maybe noted, however, that in such a loader, the advancing movement of the product conveyor is continuous, but its speed is varied, synchronously with the operation of the intermittent-motion web-conveyor 36, in such a way as to insure that the product speed matches the receptacle speed at the instant of transfer.
  • the loaded receptacles 58 are indexed to the left, along the horizontal path of movement of the chain conveyor 36, to a package assembly and initial seal station 60.
  • a rotatable, multi-faceted drum or turret 62 which delivers to station 60 a continuous web 64 of heavy-gauge plastic formed into semi-rigid containers 66 (see also FIG. 5)
  • the assembly station 60 includes a verticallyreciprocable initial seal member 68 (see also FIGS. 14 and carrying an impulse-type seal element- 70.
  • This seal member is moved up during the dwell period by a lower reciprocating bed 72. (This lower bed also serves to reciprocate the various other movable packaging components located beneath the web line.)
  • the seal member 68 is pressed up against the lower web 34 by internal spring-loading (illustrated in FIG. 4 at 74).
  • the impulse seal element 70 then is activated to apply to the flange areas surrounding the lower receptacle 58 sufficient heat to seal them to the flange areas of the semi-rigid containers 66 around the entire periphery, except for one region 76 through which the package is to be evacuated.
  • the turret 62 is drivingly connected to the conveyor 36 by a series of coupling elements 78 which engage the conveyor chain.
  • the turret is rotated with an intermittent indexing movement exactly synchronized with that of the horizontal conveyor.
  • the turret rotates, it receives the semi-rigid plastic film 64 from a roll 80 which is unwound by a conventional web-feed mechanism 82, e.g., identical to the lower web-feed 33.
  • the turret 62 is provided around itsperiphery with a series of forming dies 84 10, in this embodiment) the cavities of which are shaped to match the configuration of the preferred container 66.
  • a pressure plate86 is swung down to press the web into proper position over the die.
  • a pair of toggle-actuators 88 adjacentthe sides of the turret 62 are thrust forward by a control mechanism 90 (including a chain-driven eccentric 92) so as to actuate corresponding toggle linkages 94 (one set on each end of each die).
  • These toggle-linkages in turn shift corresponding die clamps 96 into position to hold the web tightly over the die.
  • the die clamps 96 comprise a set of spaced, parallel, elongate and springy clamp fingers 100 (see also FIG. 13) the tips of which are curved over to a position to be pressed tightly against the turret frame alongside the side wall of the die 84.
  • the toggle-linkage 94 is an overcenter mechanism, with springs 102 arranged to develop inthe closed position a force pressing the clamp fingers against the turret frame, so as to pin the edge of the web tightly in position overlying the die. In the open position of the linkage 94, the springs 102 serve to hold the clamp fingers away from the die.
  • the plastic web 64 is carried by the indexing movement of the turret 62 beneath a retractable radiant heater which, in three successive die stations, heats the plastic to forming temperature. After indexing from under the heater, vacuum is applied to the die cavity under the film, stretching the heated film down against the walls of the cavity. The vacuum is maintained during subsequent indexing, to assure that the film cools sufficiently in its proper shape.
  • the vacuum to the dies is controlled by a rotary slide valve (not shown) adjacent the hub of the turret, and to which all of the die cavities are connected by suitable vacuum lines. Each die also is water cooled. Vacuum and water connections are made automatically to the die when the die is secured in place on the turret, as by means of a quarterturn fastener.
  • Thermoforming dies must provide certain characteristics in order to perform their intended function properly.
  • the dies must have an interior profile corresponding precisely to the part to be formed, and the surfaces must be capable of withstanding considerable heat from the web, without sticking to the web. The heat of the web also must be absorbed quickly, so as to cool the film to setting temperature.
  • the die In the areas where heat seals are to be made after forming, the die should be covered by an unbroken resilient sealing back-up material.
  • the dies should be adaptedfor quick and easy replacement, and should be reasonably economical to manufacture.
  • the dies advantageously should be capable of forming relatively complex shapes (such as the trapezoidal container 66 of FIG. 2), with a highly transparent, blemish-free film surface, to enhance the customers ability to inspect the product. 4
  • a thin layer of resilient material 120 e.g., silicone rubber, integrally extending throughout the cavity region, and also over the flange surfaces where the rubber serves as a heat-seal back-up bead 122 (FIG. 21).
  • the rubber covering is molded to the precise interior dimensions required.
  • the metal (aluminum) surfaces of the die, beneath the rubber, thus need not be held within close tolerances, and may be as-cast, or rough-machined, for example to a tolerance of 1- 1/64 inch.
  • the rubber layer is sufficiently thin to conduct heat rapidly from the formed web to the metal of the die, where the heat is further dissipated by water cooling.
  • the rubber thickness may, for example, be between l/l6 inch and 3/32 inch.
  • the rubber bead 122, on the flange surfaces, should (for the disclosed package) be effectively planar, e.g., flat within .005 inch (total indicator reading),'and parallel to the back surfaces of the die.
  • the bead particularly should be free of nicks, holes and foreign matter.
  • the rubber within the cavity may be formed with small holes communicating with the chamber 124 beneath he die cavity (which chamber is supplied with vacuum by the rotary slide valve at the appropriate time in the sequence of operations), in order to vacuumize the die to draw the heated web into the cavity by atmospheric pressure.
  • the rubber layer 120 may be molded directly into the die cavity by various techniques. For example, a quantity of rubber may be deposited approximately in the center of the cavity, and a precisely machined core member (illustrated at 126) pressed into the cavity, together with application of heat, to compress the rubber and force it over all of the die surfaces including the flange areas around the cavity.
  • the metal surfaces of the die should, before depositing the rubber, have applied thereto an adhesive composition to effect a bond between the metal and the silicon rubber. The bond should have a strength exceeding the tear strength of the rubber.
  • the core member 126 made for example from aluminum, is precisely machined to match the exact contours of the part to be formed, i.e., container 66, in this case. It may be noted that only one precision machining operation is necessary, since the single core can be used for a number of dies. Thus this arrangement avoids costly machining operations required in prior types of dies wherein bare metal surfaces are presented to the hot drawn web.
  • the disclosed arrangement also is superior to the use of thick die-filler blocks which, for example, do not conduct heat away at a sufficient rate to be satisfactory in many applications, such as in forming semi-rigid film.
  • the indexing movement of the turret 62 brings each semirigid container 66, completely formed, into register with 'a corresponding loaded receptacle 58 at the assembly station 60.
  • the container 66 is brought down at an angle with respect to the horizontal web line, and moves into station 60 simultaneously with the associated loaded receptacle 58, so that there is no interference between the two even when the product extends above the flange regions of the receptacle 58.
  • the coupling elements 78 force the chain 36 downwards a small distance.
  • the chains are supported by spring-loaded mounts to accommodate this motion.
  • the flanges of the upwardly facing receptacle 58 and the flanges of the downwardly facing container 66 are parallel and effectively in the same plane, prior to sealing as described above.
  • the clamp elements 42, 43 and the clamp fingers are interleaved, in staggered fashion, along the main machine direction (i.e., parallel to the edge of the web 34) to allow concurrent, continuous gripping of both webs, yet without any mechanical interference between the respective components.
  • the sealing member 68 is brought up to press the two webs 34 and 64 against a die 84 of the turret 62, and once the sealing member is seated, its spring-loading force against the die positively holds the two webs tightly in position for the sealing operation. Accordingly, referring to FIG. 12, at this time the clamp fingers 100 are released from engagement with web 64. This release is effected by a stud carried by an upper bed 132 of the vertical reciprocation mechanism of the machine, and which is reciprocated (by drive linkages shown in FIG. 3) in synchronism with the lower bed 72 (see above) but opposite thereto, with both beds being maintained horizontal at all times.
  • the seal member 68 is retracted downwards.
  • the partially completed package then is indexed two steps to the left where it is engaged by the operating elements of an evacuation and final seal station 136.
  • These elements comprise upper and lower vacuum chambers 138, which are moved by beds 72 and 132 into position surrounding and sealing off the package assembly from outside atmosphere.
  • the chambers 138, 140 are both connected in common to a vacuum valve 142 which, when the chambers are in closed position, is actuated by cam mechanisms to evacuate above and below the package.
  • the interior of the package also is evacuated through a previously formed evacuation slot 144 (see FIG. 19) in the lower web, the air exiting through a passage 146 forming part of the lower vacuum chamber, and communicating with the main vacuum line to that chamber.
  • the evacuation slot is formed in conventional fashion by a slitting knife 148 (FIGS. 3 and 7) carried by the upper bed 132 in a position just preceding assembly station 60.
  • the lower vacuum chamber 140 contains a die-filler 150 (FIG. 19) which forces the receptacle 58 and the product up towards the container 66, preferably positioning the product very near to the top of the container. This elevation of the product prior to evacuation has been found to be highly desirable and effective in achieving high performance capabilities.
  • the upper vacuum chamber 138 also contains a die-filler 152 which matches the shape of the semi-rigid container. Both die-fillers reduce the amount of air which must be drawn out during evacuation.
  • gas may be introduced to the package through a gas tube (not shown) leading to a region adjacent to the evacuation passage 146.
  • both chambers 138, 140 are vented to atmosphere.
  • the lower chamber is vented first, followed a short time later by venting of the upper chamber.
  • the atmospheric pressure forces the lower film 34 up against the product, thereby pressing the product against the upper surface of the container 66 with a force dependent upon the degree of evacuation and the extent of gas-filling, if any.
  • the flexible lower film is tightly forced into the container interior, extending down along the side walls of the container, and filling any void areas which may remain between the product and the container walls.
  • the performing of the lower web 34, to make the pockets 58 provides the necessary stretched marginal film regions, i.e., immediately inboard of the container walls, to assure a good close fit.
  • the volume of the package automatically adjusts to the volume of the product, thus assuring consistently good packages even where there is considerable variation in product size or contour, from unit to unit, as there particularly is with sliced bacon.
  • the package continues to index on its horizontal path until it reaches a boardapplication station 166.
  • a board magazine 168 containing a stack of stiff, flat cardboard elements 170 which are lifted, one at a time, by a chainfeeder 172 and carried up to station 166 for application to the package to serve as a stiff protective member adjacent and parallel to the formed flexible film portion 58.
  • the board is positioned in register with the package, and during the dwell of the machine a heat seal bar is brought up from underneath to activate a heat seal coating on the board, so as to seal the board to the flexible web entirely around the periphery of the package.
  • the clamps 40 are momentarily opened and then closed, to allow the clamps to grip the semi-rigid web and the board as parts of the complete package assembly.
  • water-cooled member 174 is brought up against the sealed regions of the board to cool the board and set the sealant prior to further processing.
  • Completed packages are indexed further to the left and, near the end of the upper reaches of the conveyor 36, the clamps 40 are again ramped open to release the line of completed packages. Continuing movement of the unreleased packages pushes the released packages forward, aided if necessary by a small auxiliary conveyor beneath the web line.
  • the released packages are thereby moved into a cut-off station 180 (FIG. 16) where the packages are severed from one another, and simultaneously the package corners are trimmed with a smooth round curve.
  • This cutting operation is performed by a rolling cutter drum 182 formed on its peripheral cylindrical surface with a cutting edge 184 the ends of which are bifurcated to define rounded curves for the corner trimming.
  • a back-up platen 186 is reciprocated down into the flange area of the upper web 64, between adjacent containers 66.
  • This reciprocating motion is produced by a linkage mechanism including two links 188, 190 and an air-cylinder 192 which moves the link coupling 194 to the left to force the links to a substantially vertical lock position.
  • This movement pulls down the support shafts 196 for the platen 186, and at the end of the movement the platen is locked in place (due to the positional relationship of the links) to permit the application of great cutting force without significant deflection of the opposed parts.
  • conventional means are actuated to roll the cutter 182 in a crossmachine direction, under the flange area between two packages, so that the cutting edge 184 bites through the two webs 34 and 64 to sever the package.
  • the backing board is performed with curved corners, so that it is not cut at this time.
  • the severed packages may be fed out of the machine by conventional conveyor means.
  • the machine 30 may with advantage be provided with special means to engage the loaded pockets 58 and prevent or minimize relative movement between the product and the receptacles.
  • a conveyor-like product control structure generally indicated at 200, and comprising a train of elements including a set of maincrossbars 202 located directly beneath the flange areas of the web 34, and intermediate sets of support slats 204 located beneath the pockets 58.
  • This train of elements is carried by a pair of chains 206 driven in synchronism with the chain conveyor 36.
  • the main bars 202 extend up into the region alongside of the vertical end walls of the pockets 58, and serve as barriers to any movement of the contained products, in the machine direction, relative to the movement of the conveyor 36.
  • the products are kept positively within the confines of the cavities defined by the pockets during the passage of the loaded pockets to the assembly station 60.
  • the lower support slats 204 prevent the bottom of the pockets from sagging significantly, under the weight of the product.
  • the product control structure 200 terminates adjacent the assembly station 60, because of the presence of the initial s'eal member 68.
  • the initial seal member may be provided with additional special means which restrains forward motion of the product at the end of indexing, without interfering with subsequent forward movement of the partially assembled package after the initial seal has been completed.
  • a preferred embodiment of such restraining means comprises a plate 210 pivotally mounted at 212 on the top of a vertical support 214 which is integral with the seal member 68, i.e., so that the two reciprocate together during the dwell period.
  • This plate 210 is urged in clockwise direction by a spring 216 and, during indexing movement, takes the tilted position shown, against a stop 218.
  • a product-filled pocket 58 is shown in FIG. 24 approaching the assembly station 60, that is, in a position partway through the indexing movement. Since the pocket has left the support control structure 200, its bottom will sag somewhat, under the weight of the product. The plate 210 is so positioned, vertically, that a portion of the plate is located above the lower surface of the filled pocket 58. Thus, as the pocket indexes into the station 60, it will strike the plate and tend to rotate it counterclockwise against the spring 216, ultimately repositioning the plate in horizontal condition.
  • the support 214 may be desirable to arrange the support 214 for vertical movement, e.g., by utilizing a telescoping or piston construction for the support.
  • the support can move down a short distance prior to, or simultaneously with, the upward movement of the sealing member 68.
  • the presently preferred bacon package 250 shown in FIG. 2 comprises the semi-rigid, transparent container 66, serving as the display top for the package, the flexible back-formed plastic cover film 34 (hermetically sealing the evacuated interior), and the flat, stiff cardboard protective member 170, as the base of the package.
  • the seal between the board 170 and the flexible film preferably is stronger than the seal between the flexible film and the container 66, in order to enhance the customers ability to open the package by breaking the seal between the two plastic films, using the backing board to aid in applying a pulling force to the flexible film.
  • One advantageous way of opening the package is to break the seal between the two plastic films along the two short sides and one line side, and then pivot the top back along a line adjacent and parallel to the remaining, unbroken seal line to gain access to the bacon.
  • the remainder of the bacon can be placed, or left on the composite board/film (still sealed together as a unit), with the top swung back into place covering the product.
  • the composite board/film unit can act as a serving base or platter for the remaining portion of the product.
  • the flange corners of the semi-rigid container 66, and the film 34 are slit at 252 to receive a tab 254 (see FIG. 5) pre-formed in the corresponding corners of the board 170.
  • the tabs can be pressed out and inserted up through the slits 252 after the cover 66 has been swung backdown over the product.
  • the side walls of the cover 66 are slightly angled at 256 to provide sufficient area for the reclosure slits.
  • These slits 252 are cut through the two webs 34 and 64 by knives 260 carried along with the lower evacua tion chamber (see FIG. 19), and which cooperate with corresponding elements moving down from above to effect an arc-shaped cut readily adapted to receive the cardboard tab 254.
  • the machine disclosed can be used to make other types of packages.
  • the machine can make packages of two convexly thermoformed webs of flexible packaging material, i.e., by using the turret 62 to make pockets from flexible film rather than semi-rigid film.
  • the machine also can be used to make packages of two convexly formed webs of semi-rigid material, or the lower web can be semi-rigid and the top web flexible, if desired.
  • the two convexly formed pockets could each be drawn with suitable depth and contour to receive and contain a corresponding segment of the product, e.g., the upper half of the product contained in the upper pocket, and the lower half of the product in the lower pocket.
  • the sealing flange line is located half-way between the top and bottom of the package, rather than, as in the disclosed package, at the very bottom of the package.
  • the combined depth of the two opposed pockets advantageously would be so dimensioned as to provide slightly more volume than required for the maximum-sized article to be packaged, i.e., where the article size varies, as with bacon.
  • Such a package normally would be made of all flexible material, although it is possible to make such a package using semi-rigid material for one or both of the opposed pockets. It also is possible to make vacuum packages with one flexible and one rigid web wherein the flexible web in its final position may lie partially above and partially below the web line.
  • An automatic packaging machine adapted to make hermetically sealed packages for food products and the like, comprising:
  • a first conveyor for transporting a first web of packaging material along a first path
  • first forming means for thermoforming said packaging material into a first series of cup-like pockets
  • said first path having, subsequent to said first forming means, a portion which extends in a generally horizontal direction and wherein said pockets are presented with their openings facing upwards adapted to receive products to be packaged;
  • a rotary conveyor above said package assembly station to transport a second web of packaging material from a position above said assembly station along a second path comprising a curved portion leading from said position down into said station and joining said first web at an angle with respect thereto;
  • said rotary conveyor including second forming means operable on said second web while it is passing along said second path curved portion for thermoforming said second web into a second set of cuplike pockets adapted to mate with said first set of pockets at said assembly station to define package assemblies;
  • first clamp means on said first conveyor for positively gripping said first web of packaging material while moving along said second path portion to assure precise control over the advancing movement of said first web
  • second clamp means on said second conveyor for positively gripping said second web of packaging material to assure precise control over the advancing movement thereof into said assembly station so as to provide exact synchronism with the first web of packaging material entering said assembly station from said second path portion, thereby to effect positive alignment of the corresponding pairs of pockets of said first and second sets and to accurately-seal said corresponding pairs of pockets with the product in the container formed by each corresponding pocket pair.
  • An automatic packaging machine adapted to make hermetically sealed packages for food products and the like, comprising:
  • a first conveyor for transportimg a first web of packaging material along a first path
  • first forming means for thermoforming saidpackaging material into a first series of cup-like pockets
  • said first path having, subsequent to said first forming means, a portion which extends in a generally hori-' I zontal direction and wherein said pockets are presented with their openings facing upwards adapted to receive products to be packaged;
  • a rotary conveyor above said package assembly station to transport a second web of packaging material along a second path leadinginto said station and joining said first web at an angle with respectsecond forming means for thermoforming said second web into a second set of cup-like pockets adapted to mate with said first set of pockets at said assembly station to define package assemblies;
  • Packaging apparatus comprising:
  • a first conveyor for transporting a first web of packaging material along a first path to a package as sembly station, said path being generally horizontal at least in the portion thereof immediately preceding said assembly station;
  • said first conveyor comprising a plurality of edge clamps mounted in an endless loop and arranged to grip the side edges of said first web;
  • said edge clamps each comprising first and second elements forming a gripping jaw at the ends thereof;
  • said one element being pivotally mounted at a point vertically offset from the axis of said other element and in a position between said chain and the end of the jaw;
  • said other element being movably mounted with rea first forming station for thermoforming said first web into a first set of container pockets the openings of which face upwards in said horizontal path portion;
  • a second conveyor for transporting a second web of packaging material along a second path distinct from said first path and leading to said package assembly station, the portion of said second path immediately preceding said assembly station extending downwards towards said first path at an angle with respect thereto;
  • sealing means for securing together the first and second sets of mated container pockets.
  • said other section extending transversely across the axis of said other element to the pivot point, and engaging said other element to provide for motion thereof as said one element is moved.
  • Packaging apparatus comprising:
  • first forming means to thermoform a first continuous web of packaging material into a first series of cupshaped containers:

Abstract

Automatic packaging apparatus and methods for packaging food products such as bacon in evacuated or gas-filled packages. The disclosed machine is capable of convexly thermoforming two webs of packaging material into respective sets of pockets which are brought together in opposed positions to enclose the product. One preferred package made by the disclosed techniques comprises a transparent semi-rigid cup-like shell and a back-formed flexible film sealed over the shell opening. In operation of the disclosed machine, the product is loaded into the semi-rigid package shell from below, so that the upper sides of the product as introduced into the machine are pressed up against the inside surface of the shell, and after evacuation are held in that position by atmospheric pressure acting through the flexible film beneath the product. Thus, such upper sides of the product are visible through the transparent shell which serves as the display side of the package.

Description

United States Patent Mahaffy et al.
[451 Apr. 23, 1974 [54] PACKAGING APPARATUS AND Primary Examiner-Travis S. McGehee TECHNIQUES I Attorney, Agent, or FirmBryan, Parmelee, Johnson [75] Inventors: Reid A. Mahaffy, Montclair; Joel A. & Bonmger Hamilton, Englewood; Wesley W. Pinney, Upper Montclair, all of NJ. [57] ABSTRACT 1 D Automatic packagmg apparatus and methods for Asslgneei Mahaffy & Harder Engineering packaging food products such as bacon in evacuated p y, TOtOWa, or gas-filled packages. The disclosed machine is capa- [22] Filed; May 31 1972 ble of convexly thermoforming two webs of packaging material into respective sets of pockets which are PP 258,320 brought together in opposed positions to enclose the product. One preferred package made by the dis- [52] s Cl 53/184, 53/22 A, 53/ 12 A, closed techniques comprises a transparent semi-rigid 53/167, 425/388 cup-like shell and a back-formed flexible film sealed 51 int. Cl B65b 9/04, B65b 31/02 Over the opehihg- Operation of the disclosed 58 Field of Search 53/184, 112 A machine, the Product is loaded into the Semi-rigid s package shell from below, so that the upper sides of [56] References Cited the product as introduced into the machine are pressed up against the inside surface of the shell, and UNITED ST ATES PATENTS after evacuation are held in that position by atmogllxll.t 53/513428; p i pressure i g h g the a l on neath the product. Thus, vsuch upper sides of the prod- 2,935,828 5/1960 Mahaffy et al 53/ll2 A uct Visible through the transparent shell which serves as the display side of the package.
13 Claims, 25 Drawing Figures R/w/fi/vr I/l/ SENI RIGID W55 I/[flTEA5 VflCl/l/M FORM run/v 7" kanmv Tifiii f I L n o: p 12? 5 M 6; O W W M 1mm.
BOTTOM W58 FEED PATENTEDAPR 23 I974 sum 01 0F 12 :55 v m 1W;
ZPATENTEDAPR 23 I974 SHEET 02 [1F 12 v PATENTEDAPR 23 1974 SHEET 03 HF 12 G QIWN wm.
EATENTEDAPR 2 1914 3.805486 sum on HF 12 PATENTEDAPR 23 um sum "as or 12 MTENTEMPR 23 m4 sum 03 [1F 12 PATENTEUAPR 2a m SHEET '03 HF 12 PATENTEDAPR 23 I974 sum 10 [1F 12 1 PACKAGING APPARATUS AND TECHNIQUES BACKGROUND OF THE INVENTION 1. Field of'the Invention This invention relates to packaging techniques, and especially to techniques useful in producing vacuum or gas-filled packages for containing food products and the like. More particularly, this invention relates in one principal aspect to improved packaging apparatus and methods suitable for making packages of a class exemplified by the disclosure of U.S. Pat. No. 3,467,244.
2. Description of the Prior Art A variety of packaging machines have been proposed and used over the past decade or so for vacuum packaging of food products including cheese, luncheon meat, bacon, frankfurters, and the like. The machines which have been used include'rotary types, for example as shown in U.S. Pat. No. 2,888,787, and straight-line machines such .as are shown in U.S. Pat. Nos. 3,061,984, 3,524,298 and 3,545,163.
The packaging machines available heretofore have not been fully satisfactory. In part, this is because the machines have not been capable of packaging an adequately wide range of products. Special problems are presented in packaging certain products, particularly sliced bacon.
Such problems, for example, stem'from the fact that bacon typically is sliced and simultaneously placed in shingled formation by machines having involuteshaped knives rotating on horizontal axes, arranged to cut the bacon fromabove. In order for these machines to slice bacon cleanly, without tearing or separatingfat from lean portions, the knife must enter from the lean (inside) side. Thus, the bacon necessarily leaves the slicing machine with its lean side up, and it has generally been found to be good practice to convey andhandle the product with its lean side up, all of the way from the bacon press into the finished package.
Now, it is well established that the final package should be so arranged as to present to the customer a view of the lean side of the bacon, permitting customer inspection of the lean edges of the slices in a neat and uniform disposition. For best presentation, moreover, the display side of the package should be the side which has been thermoformed into a cup-like container for the bacon. 1
Some'packaging machines, even though capable making the especially preferred semi-rigid bacon package such as shown in U.S. Pat. No. 3,467,244, form the semi-rigid display side downward (i.e., so that the container opening faces up to receive the product). When such machines are used for packaging bacon, the bacon must be inverted before loading, in order to dispose the lean edges against the display side. This inverting procedure has not been satisfactory, particularly due to the dangers of disrupting the shingle arrangement during the loading operation.
SUMMARY OF THE INVENTION Accordingly, it is one principal object of the present invention to provide a machine capable of producing modern-style bacon packages, as described above, without requiring the bacon rashers to be inverted from the as-sliced, lean-up position to the lean-down position prior to the packaging operations. Other principal objects of the invention include the development of imscribed hcreinbelow in detail, a packaging machine is provided wherein a continuous web of flexible film is thermoformed downwardly to make a series of upwardly facing cup-shaped receptacles into which the bacon is loaded from above, lean-side up. The loaded receptacles are moved horizontally to a package assembly station to which also is directed, from a rotary turret above the station, a'continuous web of transparent semi-rigid plastic material'thermoformed into a series of cup-shaped containers which ultimately will serve as the display side of the packages. These containers enter the assembly station with their openings facing downwards, and mate with the flexible-film receptacles to fully enclose the bacon product. The two webs there upon are sealed together to form a composite evacuated package wherein the upper (lean) edges of the bacon are forced up, by atmospheric pressure acting through the flexible film, against the inner surface of the semi-rigid container which thus serves to display the lean edges of the bacon to the customer.
To minimize the amount of required thermoforming of the thin, flexible film, that film advantageously may be formed to a depth less than the product height, at least in certain regions. Portions of the product would in these circumstances project above the web line. This however causes no problem in the disclosed machine, because the semi-rigid web is formed on the turret to a depth sufficient. to accommodate such product projection. Thus, the unformed flange portions of both webs may be brought together into a common plane, without wrinkling or gathering of either, and may be heat-sealed together so as to effect the overall hermetic sealing of the package. Positive and precise positioning of both webs for high-quality scaling is achieved by the use of two sets of intermeshing web clamps for the two webs, providing close positioning control especially important when making packages with large-area pockets extending across a web having relatively great flexibility.
Other objects, aspects and advantages of the invention will in part be pointed out in, and in part apparent from, the following description considered together with the accompanying drawings.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a packaging machine constructed as a preferred embodiment of the present invention;.
FIG. 2 illustrates one preferred package configuration made by the machine of FIG. 1;
FIG. 3 is an elevation view of the machine of FIG. 1;
FIG. 4 is a diagrammatic elevation view of the principal operating components of the machine;
FIG. 5 shows in perspective the two webs of packaging material advancing through the machine;
FIG. 6 is a detail section taken along lines 66 of FIG. 3, to show the flexible web being applied to the film clarnp;'
FIG. 7 is a detail section taken along line 77 of FIG. 3, to show the forming die for the flexible film;
FIG. 8 is a perspective view of the film clamp;
FIG. 9 is a vertical section showing details of the rotatable turret;
FIG. 10 is a detailed vertical section at the package assembly station;
FIG. 11 is a horizontal section, taken along line 11-11 of FIG. 10, showing the interleaved relationship of the two sets of clamps;
FIG. 12 is a vertical section, taken along line 1212 of FIG. 10;
FIG. 13 is a perspective view of the clamp fingers for the turret;
FIG. 14 is a detail section showing the initial seal arrangement;
FIG. 15 is a perspective view showing the initial seal outline;
FIG. 16 is a perspective view of the package-severing mechanism;
FIG. 17 is a vertical section showing elements of the evacuation and final seal stage;
FIG. 18 is a vertical cross-section taken along line l818 of FIG. 17;
FIG. 19 is a detailed vertical section showing aspects of the evacuation chamber;
FIG. 20 is a detailed horizontal section showing the outline of the lower evacuation die;
FIGS. 21 and 22 are vertical section views of a turret die;
FIG. 23 is a plan view of a'portion of the support means beneath the loaded receptacles;
FIG. 23a is a side view of a portion of the support means beneath the loaded receptacles; and
FIG. 24 is a vertical section showing the product control plate in the initial seal member.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring first to FIG. 1, there is shown a packaging machine 30 having a number of synchronized mechanisms which, as will be described, operate in concert to produce a series of packages like that illustrated in FIG. 2. This package is similar in basic respects to that disclosed in U.S. Pat. No. 3,467,244, although certain differences will be noted hereinbelow.
The packaging machine 30 is provided in its lower right-hand region with a spindle 32 carrying a roll 34 of relatively thin plastic film of packaging material which is unwound as a continuous web by a conventional web-feed mechanism 33. This plastic film is directed (see also FIGS. 3 and 4) to the upper reaches of an endless-chain conveyor 36 arranged to carry the web with an intermittent indexing motion (to the left in the drawings) past a series of stations where packaging operations are performed during the dwell periods between indexes.
This conveyor 36 comprises two parallel, hollowroller chains each adjacent one edge of the web 34, and each carrying a series of clamp sets 40 (FIGS. 6 and 8) spaced apart uniformly along the chain. Each clamp comprises spring-loaded jaw elements 42, 43 the tips of which engage to grip the side margins of the web. The cylindrical portions of upper elements 42 are loosely fitted within corresponding hollow rollers of chain 36, permitting axial movement of elements 42 as the clamp is opened and closed.
Pairs of lower elements 43 are integrally formed as part of a rocker plate 44 the top of which is curved to fit into a correspondingly curved support element 45 to define an elongate pivot axis 46 for the rocker plate. Support element 45 is formed with L-shaped tabs 46A which are inserted into a base plate 47 fixedly secured to the chain 36. The elements 42 are grooved on the top to fit with corresponding slots in rocker plate 44, so that elements 42 move horizontally as the plate rotates about is pivot axis. Springs 48 surround elements 42 and urge the plate 44 counterclockwise to tend to hold the gripper jaws shut.
Adjacent the conveyor 36, at a point preceding the point where the web 34 is to be applied, a stationary ramp cam 49 is arranged to engage an arm 50 (forming part of the rocker plate 44) to rotate the plate 44 about pivot axis 46. This shifts the elements 42 towards the chain 36, and also moves the lower elements 43 down and away (referring to FIGS. 6 and 8) to permit the web to slip into position to be gripped by the clamp jaws. The lower elements are moved sufficiently in a lateral direction that the film need not be bent or deflected prior to entry into the clamp.
After the web 34 has been properly positioned, the cam 49 ramps the lower element back against the upper element, tightly gripping the plastic film under the compressive force of spring 48. The jaws grip the plastic film in the plane of the web and thus do not tend to distort the film. This clamp arrangement also is advantageous because it is self-actuating in the sense that any tendency of the film to pull away from the clamp causes the jaws to be forced together and bite the film ever more tightly.
Referring again to FIGS. 3 and 4, and also to FIG. 7, the conveyor 36 carries the web 34 past a two-stage, vertically-reciprocable thermoforming means comprising a heating station 52 and a forming station 54. This thermoforming operation is basically similar to that disclosed in U.S. Pat. No. 3,524,298, and thus will not be described in great detail herein.
To summarize the thermoforming operation briefly, in the heating station 52 a heated platen is brought up to the web line and a seal is made between it and the film through contact with a fixed back-up platen above the web. Vacuum is drawn through the heated platen to bring the film into contact with the heated surface, to raise the temperature of the film to a level suitable for stretch-forming. At the end of the dwell cycle, this heated platen is lowered,'and the film is indexed to the next station 54 where a water-cooled forming die 56 is brought up to the underside of the film.
Vacuum is applied to this die 56 to cause the heated film to be forced downward by atmospheric pressure and conform to the shape of the die cavity. The film is thereby stretched into a cup-shaped pocket 58 adapted to serve as a receptacle for the product. The die 56 preferably includes side troughs 56A adapted to stretch the side margins of the film more than the central regions, thereby to form the special ear-like elements, disclosed in U.S. Pat. No. 3,467,244, which extend along the sides of the product in the final package.
The shape of the formed receptacle 58 should be such as to allow the product to be placed into it and effectively locate the product for further operations. For bacon packaging, the die 56 is arranged to stretch the web, in the marginal regions at the periphery of the receptacle, to an appropriate depth, and with suitable contours, to permit each thermoformed receptacle to embrace all sections and contours of the bacon rashers (as illustrated in FIG. 5 of U.S. Pat. No. 3,467,244),
taking into account the fact that the actual size and configuration of the shingled bacon varies somewhat from rasher to rasher. Thus, the receptacle should be formed to properly contain the most extreme bacon arrangement (i.e., extreme as to size and shape) which may be delivered from the slicing machine. The great majority of 'rashers, which are less extreme, will automatically be accommodated by the self-adjusting characteristic of the package, discussed subsequently.
As the web 34 emerges from the forming station 54 (FIG. 4), it moves out under a product loader 59 arranged automatically to deposit the sliced bacon into the receptacles 58. This product loader may be substantially the same as that shown in US. Pat. No. 3,354,613, and thus will not be described in detail herein. It maybe noted, however, that in such a loader, the advancing movement of the product conveyor is continuous, but its speed is varied, synchronously with the operation of the intermittent-motion web-conveyor 36, in such a way as to insure that the product speed matches the receptacle speed at the instant of transfer.
The loaded receptacles 58 are indexed to the left, along the horizontal path of movement of the chain conveyor 36, to a package assembly and initial seal station 60. Immediately above that station is a rotatable, multi-faceted drum or turret 62 which delivers to station 60 a continuous web 64 of heavy-gauge plastic formed into semi-rigid containers 66 (see also FIG. 5)
adapted'to mate with the formed receptacles 58 to completely enclose the product to be packaged.
The assembly station 60 includes a verticallyreciprocable initial seal member 68 (see also FIGS. 14 and carrying an impulse-type seal element- 70. This seal member is moved up during the dwell period by a lower reciprocating bed 72. (This lower bed also serves to reciprocate the various other movable packaging components located beneath the web line.) At the end of the up-stroke, the seal member 68 is pressed up against the lower web 34 by internal spring-loading (illustrated in FIG. 4 at 74). The impulse seal element 70 then is activated to apply to the flange areas surrounding the lower receptacle 58 sufficient heat to seal them to the flange areas of the semi-rigid containers 66 around the entire periphery, except for one region 76 through which the package is to be evacuated.
The turret 62 is drivingly connected to the conveyor 36 by a series of coupling elements 78 which engage the conveyor chain. Thus, the turret is rotated with an intermittent indexing movement exactly synchronized with that of the horizontal conveyor. As the turret rotates, it receives the semi-rigid plastic film 64 from a roll 80 which is unwound by a conventional web-feed mechanism 82, e.g., identical to the lower web-feed 33.
Referring now also to FIG. 9, it will be seen that the turret 62 isprovided around itsperiphery with a series of forming dies 84 10, in this embodiment) the cavities of which are shaped to match the configuration of the preferred container 66. During each indexing step, an empty die moves into position under a fresh portion of the web 64. At the start of the following dwell period, a pressure plate86 is swung down to press the web into proper position over the die. Thereafter, a pair of toggle-actuators 88 adjacentthe sides of the turret 62 are thrust forward by a control mechanism 90 (including a chain-driven eccentric 92) so as to actuate corresponding toggle linkages 94 (one set on each end of each die). These toggle-linkages in turn shift corresponding die clamps 96 into position to hold the web tightly over the die.
The die clamps 96 comprise a set of spaced, parallel, elongate and springy clamp fingers 100 (see also FIG. 13) the tips of which are curved over to a position to be pressed tightly against the turret frame alongside the side wall of the die 84. The toggle-linkage 94 is an overcenter mechanism, with springs 102 arranged to develop inthe closed position a force pressing the clamp fingers against the turret frame, so as to pin the edge of the web tightly in position overlying the die. In the open position of the linkage 94, the springs 102 serve to hold the clamp fingers away from the die.
The plastic web 64 is carried by the indexing movement of the turret 62 beneath a retractable radiant heater which, in three successive die stations, heats the plastic to forming temperature. After indexing from under the heater, vacuum is applied to the die cavity under the film, stretching the heated film down against the walls of the cavity. The vacuum is maintained during subsequent indexing, to assure that the film cools sufficiently in its proper shape. The vacuum to the dies is controlled by a rotary slide valve (not shown) adjacent the hub of the turret, and to which all of the die cavities are connected by suitable vacuum lines. Each die also is water cooled. Vacuum and water connections are made automatically to the die when the die is secured in place on the turret, as by means of a quarterturn fastener.
Thermoforming dies must provide certain characteristics in order to perform their intended function properly. For example, the dies must have an interior profile corresponding precisely to the part to be formed, and the surfaces must be capable of withstanding considerable heat from the web, without sticking to the web. The heat of the web also must be absorbed quickly, so as to cool the film to setting temperature. In the areas where heat seals are to be made after forming, the die should be covered by an unbroken resilient sealing back-up material. In addition to these generally fundamental requirements, the dies should be adaptedfor quick and easy replacement, and should be reasonably economical to manufacture. Moreover, the dies advantageously should be capable of forming relatively complex shapes (such as the trapezoidal container 66 of FIG. 2), with a highly transparent, blemish-free film surface, to enhance the customers ability to inspect the product. 4
These desirable results are achieved in accordance with one aspect of the present invention by molding to the surfaces of the dies 84 a thin layer of resilient material 120, e.g., silicone rubber, integrally extending throughout the cavity region, and also over the flange surfaces where the rubber serves as a heat-seal back-up bead 122 (FIG. 21). The rubber covering is molded to the precise interior dimensions required. The metal (aluminum) surfaces of the die, beneath the rubber, thus need not be held within close tolerances, and may be as-cast, or rough-machined, for example to a tolerance of 1- 1/64 inch. The rubber layer is sufficiently thin to conduct heat rapidly from the formed web to the metal of the die, where the heat is further dissipated by water cooling. The rubber thickness may, for example, be between l/l6 inch and 3/32 inch.
The rubber bead 122, on the flange surfaces, should (for the disclosed package) be effectively planar, e.g., flat within .005 inch (total indicator reading),'and parallel to the back surfaces of the die. The bead particularly should be free of nicks, holes and foreign matter. The rubber within the cavity may be formed with small holes communicating with the chamber 124 beneath he die cavity (which chamber is supplied with vacuum by the rotary slide valve at the appropriate time in the sequence of operations), in order to vacuumize the die to draw the heated web into the cavity by atmospheric pressure.
The rubber layer 120 may be molded directly into the die cavity by various techniques. For example, a quantity of rubber may be deposited approximately in the center of the cavity, and a precisely machined core member (illustrated at 126) pressed into the cavity, together with application of heat, to compress the rubber and force it over all of the die surfaces including the flange areas around the cavity. The metal surfaces of the die should, before depositing the rubber, have applied thereto an adhesive composition to effect a bond between the metal and the silicon rubber. The bond should have a strength exceeding the tear strength of the rubber.
The core member 126, made for example from aluminum, is precisely machined to match the exact contours of the part to be formed, i.e., container 66, in this case. It may be noted that only one precision machining operation is necessary, since the single core can be used for a number of dies. Thus this arrangement avoids costly machining operations required in prior types of dies wherein bare metal surfaces are presented to the hot drawn web. The disclosed arrangement also is superior to the use of thick die-filler blocks which, for example, do not conduct heat away at a sufficient rate to be satisfactory in many applications, such as in forming semi-rigid film.
Moreover, in the present arrangement, if any part of the bead 126 becomes damaged, or for any reason requires repair, the entire rubber covering may be stripped and replaced. The desired interior contours, dimensions, and surface finish result from the original mold which need be machined only once. The result is a very satisfactory and economical die construction.
Returning now to the operational description, the indexing movement of the turret 62 brings each semirigid container 66, completely formed, into register with 'a corresponding loaded receptacle 58 at the assembly station 60. The container 66 is brought down at an angle with respect to the horizontal web line, and moves into station 60 simultaneously with the associated loaded receptacle 58, so that there is no interference between the two even when the product extends above the flange regions of the receptacle 58.
During the indexing movement, the coupling elements 78 force the chain 36 downwards a small distance. The chains are supported by spring-loaded mounts to accommodate this motion.
At the end of the indexing movement, the flanges of the upwardly facing receptacle 58 and the flanges of the downwardly facing container 66 are parallel and effectively in the same plane, prior to sealing as described above.
Important to successful sealing is the positive positioning of both webs by the respective clamps 40 and 96. Thereby, accurate control over the webs is assured to provide that the two sets of formed pockets are correctly related when sealing takes place, resulting in a good seal, particularly without problems from wrinkling. As shown most clearly in FIGS. 11 and 12, the clamp elements 42, 43 and the clamp fingers are interleaved, in staggered fashion, along the main machine direction (i.e., parallel to the edge of the web 34) to allow concurrent, continuous gripping of both webs, yet without any mechanical interference between the respective components.
During the dwell period, the sealing member 68 is brought up to press the two webs 34 and 64 against a die 84 of the turret 62, and once the sealing member is seated, its spring-loading force against the die positively holds the two webs tightly in position for the sealing operation. Accordingly, referring to FIG. 12, at this time the clamp fingers 100 are released from engagement with web 64. This release is effected by a stud carried by an upper bed 132 of the vertical reciprocation mechanism of the machine, and which is reciprocated (by drive linkages shown in FIG. 3) in synchronism with the lower bed 72 (see above) but opposite thereto, with both beds being maintained horizontal at all times.
At the end of the dwell period, i.e., after partial or preliminary sealing has been completed between receptacle 58 and container 66, the seal member 68 is retracted downwards. The partially completed package then is indexed two steps to the left where it is engaged by the operating elements of an evacuation and final seal station 136. These elements comprise upper and lower vacuum chambers 138, which are moved by beds 72 and 132 into position surrounding and sealing off the package assembly from outside atmosphere.
,The chambers 138, 140 are both connected in common to a vacuum valve 142 which, when the chambers are in closed position, is actuated by cam mechanisms to evacuate above and below the package. The interior of the package also is evacuated through a previously formed evacuation slot 144 (see FIG. 19) in the lower web, the air exiting through a passage 146 forming part of the lower vacuum chamber, and communicating with the main vacuum line to that chamber. The evacuation slot is formed in conventional fashion by a slitting knife 148 (FIGS. 3 and 7) carried by the upper bed 132 in a position just preceding assembly station 60.
The lower vacuum chamber 140 contains a die-filler 150 (FIG. 19) which forces the receptacle 58 and the product up towards the container 66, preferably positioning the product very near to the top of the container. This elevation of the product prior to evacuation has been found to be highly desirable and effective in achieving high performance capabilities. The upper vacuum chamber 138 also contains a die-filler 152 which matches the shape of the semi-rigid container. Both die-fillers reduce the amount of air which must be drawn out during evacuation.
At the end of the evacuation cycle, gas may be introduced to the package through a gas tube (not shown) leading to a region adjacent to the evacuation passage 146.
When evacuation or gassing has been completed, the evacuation slot is sealed shut by a reciprocable, heated final seal platen 160, in an arrangement somewhat similar to that shown in U.S. Pat. No. 3,524,298.
After sealing, both chambers 138, 140 are vented to atmosphere. Preferably the lower chamber is vented first, followed a short time later by venting of the upper chamber. The atmospheric pressure forces the lower film 34 up against the product, thereby pressing the product against the upper surface of the container 66 with a force dependent upon the degree of evacuation and the extent of gas-filling, if any. The flexible lower film is tightly forced into the container interior, extending down along the side walls of the container, and filling any void areas which may remain between the product and the container walls. The performing of the lower web 34, to make the pockets 58, provides the necessary stretched marginal film regions, i.e., immediately inboard of the container walls, to assure a good close fit.
It particularly may be noted that with this arrangement, the volume of the package automatically adjusts to the volume of the product, thus assuring consistently good packages even where there is considerable variation in product size or contour, from unit to unit, as there particularly is with sliced bacon.
After the vacuum chambers 138, 140 have separated, at the end of the dwell period, the package continues to index on its horizontal path until it reaches a boardapplication station 166. Below this station is a board magazine 168, containing a stack of stiff, flat cardboard elements 170 which are lifted, one at a time, by a chainfeeder 172 and carried up to station 166 for application to the package to serve as a stiff protective member adjacent and parallel to the formed flexible film portion 58. The board is positioned in register with the package, and during the dwell of the machine a heat seal bar is brought up from underneath to activate a heat seal coating on the board, so as to seal the board to the flexible web entirely around the periphery of the package.
After the board is sealed to the film 34, the clamps 40 are momentarily opened and then closed, to allow the clamps to grip the semi-rigid web and the board as parts of the complete package assembly. At the station next after the sealing station, water-cooled member 174 is brought up against the sealed regions of the board to cool the board and set the sealant prior to further processing.
Completed packages are indexed further to the left and, near the end of the upper reaches of the conveyor 36, the clamps 40 are again ramped open to release the line of completed packages. Continuing movement of the unreleased packages pushes the released packages forward, aided if necessary by a small auxiliary conveyor beneath the web line. The released packages are thereby moved into a cut-off station 180 (FIG. 16) where the packages are severed from one another, and simultaneously the package corners are trimmed with a smooth round curve. This cutting operation is performed by a rolling cutter drum 182 formed on its peripheral cylindrical surface with a cutting edge 184 the ends of which are bifurcated to define rounded curves for the corner trimming.
At the start of the dwell period, a back-up platen 186 is reciprocated down into the flange area of the upper web 64, between adjacent containers 66. This reciprocating motion is produced by a linkage mechanism including two links 188, 190 and an air-cylinder 192 which moves the link coupling 194 to the left to force the links to a substantially vertical lock position. This movement pulls down the support shafts 196 for the platen 186, and at the end of the movement the platen is locked in place (due to the positional relationship of the links) to permit the application of great cutting force without significant deflection of the opposed parts.
Once the linkage mechanism 188, 190 has been locked in position, conventional means (not shown in detail) are actuated to roll the cutter 182 in a crossmachine direction, under the flange area between two packages, so that the cutting edge 184 bites through the two webs 34 and 64 to sever the package. The backing board is performed with curved corners, so that it is not cut at this time. The severed packages may be fed out of the machine by conventional conveyor means.
For machines of the type described which are to be operated at relatively high speed, e.g., 40 or so indexes per minute, there may be a tendency for the product to slip'out of the receptacle 58 prior to the initial seal station 60, due to acceleration and deceleration at each index. This may particularly be a problem where the pockets 58 have a depth less than the product height, an arrangement which is desirable in order to avoid over-thinning of the plastic film. It also may particularly be a problem with slippery products, such as bacon, especially where the edges of the pockets 58 slope gently in the machine direction, thereby giving a somewhat ramp-like formation where the product can slide too easily. In addition, there can be a problem with relatively heavy products which cause the formed pockets 58 to sag, and develop a pendulum-like swinging as the indexing motion stops and starts at high speed.
To avoid such difficulties, the machine 30 may with advantage be provided with special means to engage the loaded pockets 58 and prevent or minimize relative movement between the product and the receptacles. In the present embodiment (referring now to FIGS. 4 and 23), there is provided beneath the loaded receptacles 58 a conveyor-like product control structure generally indicated at 200, and comprising a train of elements including a set of maincrossbars 202 located directly beneath the flange areas of the web 34, and intermediate sets of support slats 204 located beneath the pockets 58. This train of elements is carried by a pair of chains 206 driven in synchronism with the chain conveyor 36.
The main bars 202 extend up into the region alongside of the vertical end walls of the pockets 58, and serve as barriers to any movement of the contained products, in the machine direction, relative to the movement of the conveyor 36. Thus, the products are kept positively within the confines of the cavities defined by the pockets during the passage of the loaded pockets to the assembly station 60. Also during this time, the lower support slats 204 prevent the bottom of the pockets from sagging significantly, under the weight of the product.
The product control structure 200 terminates adjacent the assembly station 60, because of the presence of the initial s'eal member 68. To prevent excessive product movement within the assembly station position, as the indexing movement stops, the initial seal member may be provided with additional special means which restrains forward motion of the product at the end of indexing, without interfering with subsequent forward movement of the partially assembled package after the initial seal has been completed.-
Referring now to FIG. 24, a preferred embodiment of such restraining means comprises a plate 210 pivotally mounted at 212 on the top of a vertical support 214 which is integral with the seal member 68, i.e., so that the two reciprocate together during the dwell period. This plate 210 is urged in clockwise direction by a spring 216 and, during indexing movement, takes the tilted position shown, against a stop 218.
A product-filled pocket 58 is shown in FIG. 24 approaching the assembly station 60, that is, in a position partway through the indexing movement. Since the pocket has left the support control structure 200, its bottom will sag somewhat, under the weight of the product. The plate 210 is so positioned, vertically, that a portion of the plate is located above the lower surface of the filled pocket 58. Thus, as the pocket indexes into the station 60, it will strike the plate and tend to rotate it counterclockwise against the spring 216, ultimately repositioning the plate in horizontal condition.
This rotation of the tilted plate 210 against its spring loading absorbs energy from the advancing product, and thereby tends to prevent forward movement of the product beyond the movement of conveyor 36. Thus the product is prevented from sliding up into the area of the flanges forward of the pocket 58. Once the seal has been made, there is no possibility of product movement out of the pocket during subsequent indexing.
For some applications, it may be desirable to arrange the support 214 for vertical movement, e.g., by utilizing a telescoping or piston construction for the support. Thus, if the product weight is sufficient, the support can move down a short distance prior to, or simultaneously with, the upward movement of the sealing member 68.
The presently preferred bacon package 250 shown in FIG. 2 comprises the semi-rigid, transparent container 66, serving as the display top for the package, the flexible back-formed plastic cover film 34 (hermetically sealing the evacuated interior), and the flat, stiff cardboard protective member 170, as the base of the package. The seal between the board 170 and the flexible film preferably is stronger than the seal between the flexible film and the container 66, in order to enhance the customers ability to open the package by breaking the seal between the two plastic films, using the backing board to aid in applying a pulling force to the flexible film.
One advantageous way of opening the package is to break the seal between the two plastic films along the two short sides and one line side, and then pivot the top back along a line adjacent and parallel to the remaining, unbroken seal line to gain access to the bacon. After the package has been opened, and a portion of the bacon removed, the remainder of the bacon can be placed, or left on the composite board/film (still sealed together as a unit), with the top swung back into place covering the product. Thus the remaining bacon is still protected on all sides by relatively rigid elements, and the composite board/film unit can act as a serving base or platter for the remaining portion of the product.
To insure that the top stays firmly in place after the seal is broken, and the package subsequently reclosed, the flange corners of the semi-rigid container 66, and the film 34, are slit at 252 to receive a tab 254 (see FIG. 5) pre-formed in the corresponding corners of the board 170. The tabs can be pressed out and inserted up through the slits 252 after the cover 66 has been swung backdown over the product. The side walls of the cover 66 are slightly angled at 256 to provide sufficient area for the reclosure slits.
These slits 252 are cut through the two webs 34 and 64 by knives 260 carried along with the lower evacua tion chamber (see FIG. 19), and which cooperate with corresponding elements moving down from above to effect an arc-shaped cut readily adapted to receive the cardboard tab 254.
The machine disclosed can be used to make other types of packages. For example, the machine can make packages of two convexly thermoformed webs of flexible packaging material, i.e., by using the turret 62 to make pockets from flexible film rather than semi-rigid film. The machine also can be used to make packages of two convexly formed webs of semi-rigid material, or the lower web can be semi-rigid and the top web flexible, if desired.
For some applications, the two convexly formed pockets could each be drawn with suitable depth and contour to receive and contain a corresponding segment of the product, e.g., the upper half of the product contained in the upper pocket, and the lower half of the product in the lower pocket. With such an arrangement the sealing flange line is located half-way between the top and bottom of the package, rather than, as in the disclosed package, at the very bottom of the package. In such a modified package, the combined depth of the two opposed pockets advantageously would be so dimensioned as to provide slightly more volume than required for the maximum-sized article to be packaged, i.e., where the article size varies, as with bacon. Such a package normally would be made of all flexible material, although it is possible to make such a package using semi-rigid material for one or both of the opposed pockets. It also is possible to make vacuum packages with one flexible and one rigid web wherein the flexible web in its final position may lie partially above and partially below the web line.
Although preferred embodiments of the invention have been described hereinabove in detail, it is to be understood that this is for the purpose of illustrating the invention and should not be construed as necessarily limiting of the invention, it being well recognized that those skilled in the art may make numerous changes to suit different requirements while still practicing the invention claimed hereinafter. For example, although the particular turret arrangement described hereinabove is advantageous, and preferred, it is evident that other means can be devised to perform the basic required functions.
We claim:
1. An automatic packaging machine adapted to make hermetically sealed packages for food products and the like, comprising:
a first conveyor for transporting a first web of packaging material along a first path;
first forming means for thermoforming said packaging material into a first series of cup-like pockets;
said first path having, subsequent to said first forming means, a portion which extends in a generally horizontal direction and wherein said pockets are presented with their openings facing upwards adapted to receive products to be packaged;
a package assembly station adjacent said generally horizontal portion of said first-path;
a rotary conveyor above said package assembly station to transport a second web of packaging material from a position above said assembly station along a second path comprising a curved portion leading from said position down into said station and joining said first web at an angle with respect thereto;
said rotary conveyor including second forming means operable on said second web while it is passing along said second path curved portion for thermoforming said second web into a second set of cuplike pockets adapted to mate with said first set of pockets at said assembly station to define package assemblies;
means at or subsequent to said package assembly station for sealing said first and second webs together to form sealed packages;
first clamp means on said first conveyor for positively gripping said first web of packaging material while moving along said second path portion to assure precise control over the advancing movement of said first web; and
second clamp means on said second conveyor for positively gripping said second web of packaging material to assure precise control over the advancing movement thereof into said assembly station so as to provide exact synchronism with the first web of packaging material entering said assembly station from said second path portion, thereby to effect positive alignment of the corresponding pairs of pockets of said first and second sets and to accurately-seal said corresponding pairs of pockets with the product in the container formed by each corresponding pocket pair. v
2. An automatic packaging machine adapted to make hermetically sealed packages for food products and the like, comprising:
a first conveyor for transportimg a first web of packaging material along a first path;
a first set of clamp elements on said first conveyor and spaced along the side edges of said first web to hold it in position;
first forming means for thermoforming saidpackaging material into a first series of cup-like pockets;
said first path having, subsequent to said first forming means, a portion which extends in a generally hori-' I zontal direction and wherein said pockets are presented with their openings facing upwards adapted to receive products to be packaged;
a package assembly station adjacent said generally horizontal portion of said first path;
a rotary conveyor above said package assembly station to transport a second web of packaging material along a second path leadinginto said station and joining said first web at an angle with respectsecond forming means for thermoforming said second web into a second set of cup-like pockets adapted to mate with said first set of pockets at said assembly station to define package assemblies; and
means at or subsequent to said package assembly station for sealing said first and second webs together to form sealed packages.
3. Packaging apparatus comprising:
a first conveyor for transporting a first web of packaging material along a first path to a package as sembly station, said path being generally horizontal at least in the portion thereof immediately preceding said assembly station;
said first conveyor comprising a plurality of edge clamps mounted in an endless loop and arranged to grip the side edges of said first web;
said edge clamps each comprising first and second elements forming a gripping jaw at the ends thereof;
means pivotally mounting at least one of said elements and operable when the jaw is opened to provide for retractile movement of one element away from the side edge of the web;
said one element being pivotally mounted at a point vertically offset from the axis of said other element and in a position between said chain and the end of the jaw;
said other element being movably mounted with rea first forming station for thermoforming said first web into a first set of container pockets the openings of which face upwards in said horizontal path portion;
a second conveyor for transporting a second web of packaging material along a second path distinct from said first path and leading to said package assembly station, the portion of said second path immediately preceding said assembly station extending downwards towards said first path at an angle with respect thereto;
a second forming station adjacent said second path for thermoforming said second web into a second set of container pockets the openings of which face downwards at said assembly station, thereby to mate with said first set of container pockets to define package assemblies; and
sealing means for securing together the first and second sets of mated container pockets.
4. Apparatus as claimed in claim 3 wherein said one element comprises two sections;
one section engaging said other element as part of said jaw and extending generally away from the end of said jaw to a region of joinder with the other section;
said other section extending transversely across the axis of said other element to the pivot point, and engaging said other element to provide for motion thereof as said one element is moved.
5. Packaging apparatus comprising:
first forming means to thermoform a first continuous web of packaging material into a first series of cupshaped containers:
second forming means to thermoform a second continuous web of packaging material into a second

Claims (13)

1. An automatic packaging machine adapted to make hermetically sealed packages for food products and the like, comprising: a first conveyor for transporting a first web of packaging material along a first path; first forming means for thermoforming said packaging material into a first series of cup-like pockets; said first path having, subsequent to said first forming means, a portion which extends in a generally horizontal direction and wherein said pockets are presented with their openings facing upwards adapted to receive products to be packaged; a package assembly station adjacent said generally horizontal portion of said first path; a rotary conveyor above said package assembly station to transport a second web of packaging material from a position above said assembly station along a second path comprising a curved portion leading from said position down into said station and joining said first web at an angle with respect thereto; said rotary conveyor including second forming means operable on said second web while it is passing along said second path curved portion for thermoforming said second web into a second set of cup-like pockets adapted to mate with said first set of pockets at said assembly station to define package assemblies; means at or subsequent to said package assembly station for sealing said first and second webs together to form sealed packages; first clamp means on said first conveyor for positively gripping said first web of packaging material while moving along said second path portion to assure precise control over the advancing movement of said first web; and second clamp means on said second conveyor for positively gripping said second web of packaging material to assure precise control over the advancing movement thereof into said assembly station so as to provide exact synchronism with the first web of packaging material entering said assembly station from said second path portion, thereby to effect positive alignment of the corresponding pairs of pockets of said first and second sets and to accurately seal said corresponding pairs of pockets with the product in the container formed by each corresponding pocket pair.
2. An automatic packaging machine adapted to make hermetically sealed packages for food products and the like, comprising: a first conveyor for transportimg a first web of packaging material along a first path; a first set of clamp elements on said first cOnveyor and spaced along the side edges of said first web to hold it in position; first forming means for thermoforming said packaging material into a first series of cup-like pockets; said first path having, subsequent to said first forming means, a portion which extends in a generally horizontal direction and wherein said pockets are presented with their openings facing upwards adapted to receive products to be packaged; a package assembly station adjacent said generally horizontal portion of said first path; a rotary conveyor above said package assembly station to transport a second web of packaging material along a second path leading into said station and joining said first web at an angle with respect thereto; the lowermost portion of said rotary conveyor being aligned with said first path portion to maintain said second web of material effectively coplanar with said first web within said assembly station; a second set of clamp elements on said rotary conveyor and spaced apart along the side edges of said second web to hold it in position; said first and sedond sets of clamp elements being effectively in the same plane at said assembly and interleaved to prevent interference; second forming means for thermoforming said second web into a second set of cup-like pockets adapted to mate with said first set of pockets at said assembly station to define package assemblies; and means at or subsequent to said package assembly station for sealing said first and second webs together to form sealed packages.
3. Packaging apparatus comprising: a first conveyor for transporting a first web of packaging material along a first path to a package assembly station, said path being generally horizontal at least in the portion thereof immediately preceding said assembly station; said first conveyor comprising a plurality of edge clamps mounted in an endless loop and arranged to grip the side edges of said first web; said edge clamps each comprising first and second elements forming a gripping jaw at the ends thereof; means pivotally mounting at least one of said elements and operable when the jaw is opened to provide for retractile movement of one element away from the side edge of the web; said one element being pivotally mounted at a point vertically offset from the axis of said other element and in a position between said chain and the end of the jaw; said other element being movably mounted with respect to said chain, and arranged to move with said one element away from said web as the clamp is opened; a first forming station for thermoforming said first web into a first set of container pockets the openings of which face upwards in said horizontal path portion; a second conveyor for transporting a second web of packaging material along a second path distinct from said first path and leading to said package assembly station, the portion of said second path immediately preceding said assembly station extending downwards towards said first path at an angle with respect thereto; a second forming station adjacent said second path for thermoforming said second web into a second set of container pockets the openings of which face downwards at said assembly station, thereby to mate with said first set of container pockets to define package assemblies; and sealing means for securing together the first and second sets of mated container pockets.
4. Apparatus as claimed in claim 3 wherein said one element comprises two sections; one section engaging said other element as part of said jaw and extending generally away from the end of said jaw to a region of joinder with the other section; said other section extending transversely across the axis of said other element to the pivot point, and engaging said other element to provide for motion thereof as said one element is moved.
5. Packaging apparatus comprising: first forming means to thermoform a first continuous web of paCkaging material into a first series of cup-shaped containers: second forming means to thermoform a second continuous web of packaging material into a second series of cup-shaped containers adapted to mate with said first series of containers to define package assemblies; first conveyor means to carry said first web along a first path extending in a generally horizontal direction with said first series of containers disposed with their openings facing upwards to receive products loaded from above the web line; second conveyor means to carry said second web with said second series of cup-shaped containers along a second path which extends down towards said first path at an angle with respect thereto and joins said first path at a package assembly station where said second series of containers are placed, opening downwards, over said first series of containers; means at or subsequent to said assembly station for sealing said two series of containers together; said second conveyor means comprising die means defining a series of cavities to receive said second series of containers; and said die means comprising rough-shaped rigid material covered with a thin continuous sheet of precision-cast resilient material adhesively secured to said rigid material and establishing the required container shape, whereby to accommodate thermoforming said second web of packaging material in the cavities established by said sheet of resilient material.
6. Apparatus as claimed in claim 5, wherein said second conveyor means comprises a rotatable polygonal structure presenting a series of cavities at its outer periphery; a single integral sheet of said resilient material covering the interior of each cavity and, as well, covering the flange areas immediately surrounding each cavity to serve as heat-seal beads.
7. Apparatus as claimed in claim 5, wherein said sheet of resilient material has a substantially uniform thickness throughout.
8. Apparatus as claimed in claim 5, wherein said sheet of resilient material is molded about a precision-formed core shaped to match the desired containers.
9. In packaging apparatus of the type wherein a web of packaging material is transported with an intermittent indexing motion by edge supports which grip the side edges of the web so as to suspend the central web portions therebetween, and wherein means are provided for forming the central web portions into downwardly extending pockets to be loaded with product for conveyance to a subsequent station where further packaging operations are performed; that improvement for effecting controlled product conveyance as the loaded pocket is shifted into said station comprising: a restraining element at said station; means mounting said element in the path of motion of said loaded pocket so that said pocket engages said element near the end of its indexing motion; said mounting means providing for movement of said element out of the path of said pocket after contact therewith whereby said pocket can be indexed further without interference.
10. Apparatus as claimed in claim 9, wherein said restraining element is a plate pivotally mounted for rotary motion as it is struck by the advancing pocket.
11. Apparatus as claimed in claim 9, including a spring urging said plate in a direction against a stop, to provide a tilt angle resulting in a glancing blow when struck by the pocket.
12. Packaging apparatus comprising: a first conveyor for transporting a first web of packaging material along a first path to a package assembly station, said path being generally horizontal at least in the portion thereof immediately preceding said assembly station; a first set of edge clamps forming part of said first conveyor and arranged to grip the side edges of said first web to provide positve and precisely controlled movement thereof with said first conveyor; a second conveyor for transporting a second web of packaging material along a second path distincT from said first path and leading to said package assembly station, the portion of said second path immediately preceding said assembly station extending downwards towards said first path at an angle with respect thereto; a second set of edge clamps forming part of said second conveyor to grip the side edges of said second web to provide positive and precisely controlled movement thereof with with the advancing movement of said first web as the two webs enter said package assembly station; a forming station adjacent at least one of said paths for thermoforming the corresponding web into a set of container pockets to be advanced into said assembly station for assembly with the other web to define package assemblies; and sealing means for securing together the first and second webs to form hermetically sealed packages.
13. Apparatus as claimed in claim 12, wherein said first set of edge clamps grips said first web as it advances through said assembly station and to a position beyond said assembly station; said sealing means comprising means located at said position beyond said assembly station for effecting a complete seal of the packages advanced thereto by said first conveyor edge clamps.
US00258320A 1972-05-31 1972-05-31 Packaging apparatus and techniques Expired - Lifetime US3805486A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US00258320A US3805486A (en) 1972-05-31 1972-05-31 Packaging apparatus and techniques
CA167,985A CA1004129A (en) 1972-05-31 1973-04-05 Packaging apparatus and techniques
GB2114973A GB1435562A (en) 1972-05-31 1973-05-03 Packaging apparatus
FR7316755A FR2186384B1 (en) 1972-05-31 1973-05-09
DE2327286A DE2327286C2 (en) 1972-05-31 1973-05-29 Packaging device
JP6139573A JPS575723B2 (en) 1972-05-31 1973-05-31
CA258,796A CA1012051A (en) 1972-05-31 1976-08-10 Method and apparatus for making a package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00258320A US3805486A (en) 1972-05-31 1972-05-31 Packaging apparatus and techniques

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05427790 Division 1973-12-23

Publications (1)

Publication Number Publication Date
US3805486A true US3805486A (en) 1974-04-23

Family

ID=22980055

Family Applications (1)

Application Number Title Priority Date Filing Date
US00258320A Expired - Lifetime US3805486A (en) 1972-05-31 1972-05-31 Packaging apparatus and techniques

Country Status (6)

Country Link
US (1) US3805486A (en)
JP (1) JPS575723B2 (en)
CA (1) CA1004129A (en)
DE (1) DE2327286C2 (en)
FR (1) FR2186384B1 (en)
GB (1) GB1435562A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942934A (en) * 1973-10-19 1976-03-09 Takeda Chemical Industries, Ltd. Mold assembly for use in packaging machine
US4008554A (en) * 1974-10-12 1977-02-22 The Metal Box Limited Packaging machines and methods of packaging articles
US4033092A (en) * 1974-08-01 1977-07-05 Multivac Sepp Haggenmueller Kg Vacuum packaging machine for the production of packages from packaging material webs
JPS53120991A (en) * 1977-03-29 1978-10-21 Omori Machinery Continuous vacuum sealing method
DE2834076A1 (en) * 1977-08-05 1979-02-15 Mahaffy & Harder Eng Co Plastic packaging machine - with two stations for welding and stretching cover foil on plastic flanged cup
US4146420A (en) * 1978-02-17 1979-03-27 Tape Inc. Rotary sealing machine for thermoplastic articles
US4155786A (en) * 1975-12-17 1979-05-22 Gatrun Anstalt Process and apparatus for sterilizing a thermoplastic band
DE3036435A1 (en) * 1979-09-28 1981-04-16 Sanford New York N.Y. Redmond SEALED PACKAGING AND METHOD AND DEVICE FOR PRODUCING THE SAME
US4449350A (en) * 1980-08-29 1984-05-22 Redmond Sanford Method and apparatus for making sealed packages for spreadable products
US4614076A (en) * 1985-05-23 1986-09-30 Becton, Dickinson And Company Flexible packaging apparatus and method
US4751805A (en) * 1986-02-24 1988-06-21 Hassia Verpackungsmaschinen Gmbh Packing machine
EP0278576A2 (en) * 1987-02-12 1988-08-17 Unilever N.V. Ice confection in a package
US4782647A (en) * 1987-10-08 1988-11-08 Becton, Dickinson And Company Flexible packaging and the method of production
US5098498A (en) * 1989-10-10 1992-03-24 Manville Corporation Apparatus and method for encapsulating contoured articles
US5105603A (en) * 1989-12-13 1992-04-21 Multivac Sepp Haggenmuller Kg Packaging machine for producing a reclosable package for a product
US5426919A (en) * 1992-05-15 1995-06-27 Multivac Sepp Haggenmuller Kg Packaging machine
WO2004089752A1 (en) * 2003-04-07 2004-10-21 Ilchester Cheese Co Ltd Method for packaging cheese and other food products
US20090241485A1 (en) * 2008-03-28 2009-10-01 Buchko Raymond G Lift Mechanism For Tooling That Acts On A Web In A Packaging Machine
US20120096809A1 (en) * 2010-10-20 2012-04-26 Multivac Sepp Haggenmueller Gmbh & Co. Kg Thermoform packaging machine and method for stretching a film web
US20130284562A1 (en) * 2012-04-27 2013-10-31 Douglas Machine Inc. Variable pitch system, apparatus & method
CN103863600A (en) * 2012-12-18 2014-06-18 莫迪维克贸易有限公司 Thermoform packaging machine and method
US20170352150A1 (en) * 2014-12-27 2017-12-07 Hill's Pet Nutrition, Inc. Food Processing Method and System
EP3539883A1 (en) * 2018-03-16 2019-09-18 MULTIVAC Sepp Haggenmüller SE & Co. KG Deep draw packaging machine with film deflection
US10961093B2 (en) 2017-08-14 2021-03-30 Cp Packaging, Inc. Simplified lift mechanism for a packaging machine
WO2023046883A3 (en) * 2021-09-23 2023-05-19 Syntegon Technology Gmbh Packaging machine and method for producing packagings

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091488A (en) * 1973-12-17 1975-07-22
JPS5351090A (en) * 1976-10-21 1978-05-10 Omori Machinery Method of continuous vacuum tight wrapping
JPS5393983A (en) * 1977-01-26 1978-08-17 Omori Machinery Continuous vacuum sealing method
US4168598A (en) * 1977-03-01 1979-09-25 Omori Machinery Co., Ltd. Vacuum packaging method and apparatus
JPS53145796A (en) * 1977-05-21 1978-12-19 Omori Machinery Continuous vacuum sealing method
JPS53149490A (en) * 1977-05-30 1978-12-26 Omori Machinery Continuous vacuum sealing method
JPS53119185A (en) * 1977-03-28 1978-10-18 Chukyo Electric Co Vacuum skin packing method and apparatus
JPS5492486A (en) * 1977-12-29 1979-07-21 Omori Machinery Method of continuous vacuum seallup packing
JPS5657623A (en) * 1979-10-04 1981-05-20 Sumitomo Bakelite Co Continuous vacuum adhering packing method
IT1153034B (en) * 1982-11-15 1987-01-14 Grace W R & Co PROCESS AND EQUIPMENT FOR VACUUM PACKAGING AND REACTIVE PACKAGING
US4578133A (en) * 1984-11-19 1986-03-25 Kimberly-Clark Corporation Method and apparatus for applying discrete strips to a web of material
GB2229695B (en) * 1989-03-23 1993-06-30 Grace W R & Co Improvements in or relating to film packaging
GB2235678A (en) * 1989-08-29 1991-03-13 Grace W R & Co Packaging method and apparatus
DE4216210A1 (en) * 1992-05-15 1993-11-18 Multivac Haggenmueller Kg Workstation with an upper part and a lower part movable relative to it
DE4216207C1 (en) * 1992-05-15 1993-08-19 Multivac Sepp Haggenmueller Kg, 8941 Wolfertschwenden, De
DE19824976A1 (en) * 1998-06-04 1999-12-09 Kraemer & Grebe Kg Method and device for producing packages
DE10224237A1 (en) * 2002-05-29 2003-12-11 Convenience Food Sys Wallau packaging
DE102005033273A1 (en) * 2005-07-15 2007-01-25 Multivac Sepp Haggenmüller Gmbh & Co. Kg Packaging of web material and process for its production
DE102008051026A1 (en) * 2008-10-13 2010-04-15 Cfs Germany Gmbh Means of transport and packaging machine for film width adjustment
JP5159835B2 (en) * 2010-07-16 2013-03-13 Ckd株式会社 PTP sheet manufacturing equipment
KR101439790B1 (en) * 2013-09-12 2014-09-12 유승국 Apparatus for manufacturing diagnostic kit and diagnostic kit
DE102022108184A1 (en) 2021-09-23 2023-03-23 Syntegon Technology Gmbh Packaging machine and method for manufacturing packaging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2935828A (en) * 1957-04-16 1960-05-10 Standard Packing Corp Continuous vacuum packaging machine
US3524298A (en) * 1969-07-01 1970-08-18 Mahaffy & Harder Eng Co Automatic packaging apparatus
US3533215A (en) * 1967-11-06 1970-10-13 Applic Plastique Mec Elec Packaging machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3002325A (en) * 1959-04-08 1961-10-03 Clarence W Vogt Apparatus for forming and filling packages
US3247643A (en) * 1962-08-20 1966-04-26 Dora G Bartelt Machine for forming a skin package
US3457699A (en) * 1966-10-20 1969-07-29 Phillips Petroleum Co Apparatus for securing cover material to containers
DE2000618B2 (en) * 1969-01-21 1976-10-07 Societe Intercan S.A., Freiburg (Schweiz) PROCEDURE FOR CUTTING OUT CONTAINERS AND PUNCHING STATION FOR PERFORMING THE PROCESS
DE1921809A1 (en) * 1969-04-29 1970-11-12 Kraemer & Grebe Kg Device for tensioning a foil tape
DE1921787A1 (en) * 1969-04-29 1970-11-12 Kraemer & Grebe Kg Packaging machine for wrapping food
US3673760A (en) * 1970-10-26 1972-07-04 American Can Co Packaging method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2935828A (en) * 1957-04-16 1960-05-10 Standard Packing Corp Continuous vacuum packaging machine
US3533215A (en) * 1967-11-06 1970-10-13 Applic Plastique Mec Elec Packaging machine
US3524298A (en) * 1969-07-01 1970-08-18 Mahaffy & Harder Eng Co Automatic packaging apparatus

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942934A (en) * 1973-10-19 1976-03-09 Takeda Chemical Industries, Ltd. Mold assembly for use in packaging machine
US4033092A (en) * 1974-08-01 1977-07-05 Multivac Sepp Haggenmueller Kg Vacuum packaging machine for the production of packages from packaging material webs
US4008554A (en) * 1974-10-12 1977-02-22 The Metal Box Limited Packaging machines and methods of packaging articles
US4155786A (en) * 1975-12-17 1979-05-22 Gatrun Anstalt Process and apparatus for sterilizing a thermoplastic band
JPS53120991A (en) * 1977-03-29 1978-10-21 Omori Machinery Continuous vacuum sealing method
JPS5643927B2 (en) * 1977-03-29 1981-10-16
DE2834076A1 (en) * 1977-08-05 1979-02-15 Mahaffy & Harder Eng Co Plastic packaging machine - with two stations for welding and stretching cover foil on plastic flanged cup
US4146420A (en) * 1978-02-17 1979-03-27 Tape Inc. Rotary sealing machine for thermoplastic articles
DE3036435A1 (en) * 1979-09-28 1981-04-16 Sanford New York N.Y. Redmond SEALED PACKAGING AND METHOD AND DEVICE FOR PRODUCING THE SAME
US4449350A (en) * 1980-08-29 1984-05-22 Redmond Sanford Method and apparatus for making sealed packages for spreadable products
US4614076A (en) * 1985-05-23 1986-09-30 Becton, Dickinson And Company Flexible packaging apparatus and method
US4751805A (en) * 1986-02-24 1988-06-21 Hassia Verpackungsmaschinen Gmbh Packing machine
EP0278576A2 (en) * 1987-02-12 1988-08-17 Unilever N.V. Ice confection in a package
EP0278576A3 (en) * 1987-02-12 1989-03-08 Unilever Nv Ice confection in a package
US4782647A (en) * 1987-10-08 1988-11-08 Becton, Dickinson And Company Flexible packaging and the method of production
US5098498A (en) * 1989-10-10 1992-03-24 Manville Corporation Apparatus and method for encapsulating contoured articles
US5105603A (en) * 1989-12-13 1992-04-21 Multivac Sepp Haggenmuller Kg Packaging machine for producing a reclosable package for a product
US5426919A (en) * 1992-05-15 1995-06-27 Multivac Sepp Haggenmuller Kg Packaging machine
WO2004089752A1 (en) * 2003-04-07 2004-10-21 Ilchester Cheese Co Ltd Method for packaging cheese and other food products
US20090241485A1 (en) * 2008-03-28 2009-10-01 Buchko Raymond G Lift Mechanism For Tooling That Acts On A Web In A Packaging Machine
US7833002B2 (en) 2008-03-28 2010-11-16 Cp Packaging, Inc. Lift mechanism for tooling that acts on a web in a packaging machine
US9180987B2 (en) * 2010-10-20 2015-11-10 Multivac Sepp Haggenmueller Gmbh & Co. Kg Thermoform packaging machine and method for stretching a film web
US20120096809A1 (en) * 2010-10-20 2012-04-26 Multivac Sepp Haggenmueller Gmbh & Co. Kg Thermoform packaging machine and method for stretching a film web
US20130284562A1 (en) * 2012-04-27 2013-10-31 Douglas Machine Inc. Variable pitch system, apparatus & method
CN103863600A (en) * 2012-12-18 2014-06-18 莫迪维克贸易有限公司 Thermoform packaging machine and method
US20140165511A1 (en) * 2012-12-18 2014-06-19 Multivac Sepp Haggenmüller Gmbh & Co. Kg Thermoform packaging machine and method
CN103863600B (en) * 2012-12-18 2016-10-26 莫迪维克贸易有限公司 Hot forming packer and method
US9708083B2 (en) * 2012-12-18 2017-07-18 Multipac Sepp Haggenmueller Se & Co. Kg Thermoform packaging machine and method
US20170352150A1 (en) * 2014-12-27 2017-12-07 Hill's Pet Nutrition, Inc. Food Processing Method and System
US10235749B2 (en) * 2014-12-27 2019-03-19 Colgate-Palmolive Company Food processing method and system
US10961093B2 (en) 2017-08-14 2021-03-30 Cp Packaging, Inc. Simplified lift mechanism for a packaging machine
EP3539883A1 (en) * 2018-03-16 2019-09-18 MULTIVAC Sepp Haggenmüller SE & Co. KG Deep draw packaging machine with film deflection
US11260999B2 (en) * 2018-03-16 2022-03-01 Multivac Sepp Haggenmueller Se & Co. Kg Thermoforming packaging machine with film deflection
WO2023046883A3 (en) * 2021-09-23 2023-05-19 Syntegon Technology Gmbh Packaging machine and method for producing packagings

Also Published As

Publication number Publication date
GB1435562A (en) 1976-05-12
FR2186384B1 (en) 1978-08-11
FR2186384A1 (en) 1974-01-11
JPS575723B2 (en) 1982-02-01
JPS4955485A (en) 1974-05-29
DE2327286A1 (en) 1973-12-13
CA1004129A (en) 1977-01-25
DE2327286C2 (en) 1986-01-30

Similar Documents

Publication Publication Date Title
US3805486A (en) Packaging apparatus and techniques
US4034536A (en) Packaging apparatus and techniques
US3061984A (en) Packaging machine and method
US3706174A (en) Packaging machine and method of forming packages
US3685251A (en) Automatic packaging apparatus with improved means for cutting and contour trimming of packages
US2970414A (en) Method and apparatus for blister packaging
US3958394A (en) Continuous movement packaging machine
US3972155A (en) Packaging techniques for semi-rigid packages
US4114348A (en) Packaging techniques for semi-rigid packages
US3343332A (en) Packaging apparatus and method of packaging
US3792181A (en) Semi-rigid plastic package with reclosable seal
US4201030A (en) Packaging apparatus and techniques for forming closure tops
US4058953A (en) Gas flushing or filling packaging machine
US3874143A (en) Packaging method and apparatus
DK3024733T3 (en) Modified atmosphere, shrinkage or vacuum packer and method
US3283469A (en) Method and apparatus for producing evacuated packages
US3815322A (en) Packaging machine
US3695900A (en) Evacuated hermetically sealed package with semirigid shell and stretchable closure
US3524298A (en) Automatic packaging apparatus
US4410089A (en) Flexible package, and method and apparatus for manufacturing same
US4349999A (en) Packaging techniques for semi-rigid packages
US3355995A (en) Tape applying apparatus and method
US3930350A (en) Packaging assembly and process
US3464182A (en) Packaging machine
US3247643A (en) Machine for forming a skin package