US3807398A - Ocular implant - Google Patents

Ocular implant Download PDF

Info

Publication number
US3807398A
US3807398A US00290376A US29037672A US3807398A US 3807398 A US3807398 A US 3807398A US 00290376 A US00290376 A US 00290376A US 29037672 A US29037672 A US 29037672A US 3807398 A US3807398 A US 3807398A
Authority
US
United States
Prior art keywords
percent
lens
dry
water
pvp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00290376A
Inventor
B Grucza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ciba Vision Corp
Irving Trust Co
Original Assignee
B Grucza
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by B Grucza filed Critical B Grucza
Priority to US00290376A priority Critical patent/US3807398A/en
Priority to US00419245A priority patent/US3841598A/en
Application granted granted Critical
Publication of US3807398A publication Critical patent/US3807398A/en
Priority to US05/631,997 priority patent/US4042552A/en
Assigned to AO, INC. 14 MECHANIC ST., A CORP. OF DE reassignment AO, INC. 14 MECHANIC ST., A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: WARNER-LAMBERT COMPANY A CORP.OF DE
Assigned to WARNER-LAMBERT TECHNOLOGIES, INC., WARNER-LAMBERT CANADA, INC. reassignment WARNER-LAMBERT TECHNOLOGIES, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AO, INC., A DE CORP.
Assigned to IRVING TRUST COMPANY reassignment IRVING TRUST COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AO, INC.
Assigned to CIBA-U.S., CIBA-GEIGY CORPORATION reassignment CIBA-U.S., CIBA-GEIGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AD, INC., AMERICAN OPTICAL CORPORATION, A CORP OF DE.
Anticipated expiration legal-status Critical
Assigned to CIBA VISION CORPORATION A COMPANY OF DE reassignment CIBA VISION CORPORATION A COMPANY OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CIBA-GEIGY CORPORATION, A NY COMPANY
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses

Definitions

  • ABSTRACT Improvements in the ODriscoll et a1 U. S. Pat. No. 3,700,761 composition consisting of regulating critical proportions of PVP, HEMA, MA, EDMA, Water and the first and second stage initiators for producing hydrophilic lens blanks from which reproducible and predictable hydrated lenses are obtained with ratios of acceptance of 95 98 percent, to dimensional standards between the grinding dry and hydrated wet states and with ratios of resisting dimensional change in wet storage of upwards of ninety five percent.
  • compositions lying outside of the critical ranges of proportions provide lenses which are unpredictable (90 percent rejection) drift in size and do not provide reproducibility between dry and wet states and thereby create fitting problems.
  • Critical ratios of MA to EDMA lying between 2.5/3.2 at 15 percent PVP content down to l/ 1 at 28 percent PVP content provide reproducibility and predictability dry-to-wet and the optimum ratio is 1.5/0.7 at 20 percent PVP (reagents containing less than 1 percent water). Further improvement is made in the method of casting and cutting of U. S. Patent'No.
  • 3,700,761 in which there is used a disposable mold of Teflon, high-density polyethylene or of RTV Silicone material with break-away curved bottom which is discarded to provide a convex surface requiring no cutting thereby eliminating many cutting and grinding steps on the conventional hard-lens lathe.
  • Water-soluble medicaments as in US. Pat. No. 3,700,761 can be added to precision-cut eye bandages by dissolving in H 0 and adding a total of 5 percent H O to HEMA or the medicament can be used in eye drops, the bandage with 5 percent added containing 65 percent H O instead of 60 percent.
  • the present invention is an improvement of the initial step of the method of preparing the hygroscopic lens in the dry state and depends upon the casting of the lens after a critical induction period in a breakaway curved-bottom plastic mold in static condition from the liquid mixture of ingredients in critical porportions and under controlled temperature and inhibitor concentration conditions which prevent heat transfer through the mold so that an improved anisotropic lens is produced which has predictable and reproducible characteristics.
  • This anisotropic lens of the present invention is characterized by different swelling and expansion between dry and wet states in the lateral direction and in the vertical direction but these changes are now reproducible and predictable to match diameters a substantially rigid and accurate fit to the eye without drift in diameter or slope or stifiness and to provide longtime and precision correction of the optical condition.
  • the lens made by the method of the present invention is found to shape itself by evaporation forces, in an unusual manner to steepen the vault or slope of the lens closely resting on the cornea andsclera of the eye, shaping being similar to that of hard-lens memory characteristics.
  • reproducibility and predictability are achieved by the critically controlled amounts of PVP, HEMA, EDMA, MA, Water and inhibitor which is used to stabilize the HEMA and which will produce a lens having 50-65 percent in the saline-stored condition.
  • the lens drops in water content from 55 -65 percent down to 45-55 percent.
  • the higher amount of water retained in the lenses in saline drops to the lower value in from thirty seconds to two minutes after insertion into the eye.
  • This water content drop-off from about 50-65 percent occurs in most patients to a value of about 45-50 percent.
  • the casting against the curved shape of a disposable mold permits a range of dry lenses for fitting eyes of all dimensions and the range is based upon a simplified manufacturing procedure, using a break-away .mold bottom eliminating the grinding of the cast surface while providing a simple number of base curves (5) and a simple number of diameters (5) to true and time-stable dimensions in x,y and z planes.
  • FIG. 1 is a sectional view which shows a break-away mold with curved bottom into which the composition is cast and polymerized against a curved inner-surface which surface requires no further grinding or polishing.
  • FIG. 2 is a sectional view which shows the breaking of the button from the mold by ram pressure and movement.
  • FIG. 3 is an exploded view showing separation of the break-away bottom from the button.
  • FIG. 4a shows the first stage of cutting on the lathe as shown in diagramatic form in FIG. 5.
  • FIG. 4b shows the second stage
  • FIG. 4c shows the third stage of cutting.
  • FIG. 4d shows the finished lense
  • FIG. 5 shows the mounting of the lense for cutting in stages 4a, 4b and 40, with a conventional hard lense lathe of the type shown in FIG. 6 and 9 of Mullen, U.S. Pat. No. 2,330,837.
  • FIG. 6 shows the finished lense with the rim cut after the cutting stage in FIG. 4d, this rim cut being illustrated in FIG. 5.
  • FIG. 6 shows the dimensions of rim cut lenses of the type shown in FIG. 5.
  • FIG. 7' shows the mounting of the lense of FIG. 5 on the eye with space between the rim and sclera before evaporation contracts the lense.
  • FIG. 8 shows lense of FIG. 7 after contractile evaporation.
  • the accuracy of manufacture of the present invention is based upon the discovery that critical proportions are required of PVP, MA, EDMA, HEMA, Water with the initiator amounts used for first and second stage initiation in the Driscoll U.S. Pat. No. 3,700,761, and that initial amounts of hydroquinone stabilizer are required to assure storage stability and to give predictability and reproducibility between dry and wet states, these initial amounts permit economy, safety, and reliability in supply and in fitting.
  • the example and drawings illustrate an improved method, based upon the discovery of first stage initiation which must be carried out in a preliminary induction stage at room temperature and which requires that the liquid mixture in static condition in the mold of FIG.
  • This dry polymer is subjected to further high temperature polymerization, as taught in the ODriscoll Patent after the first stage without removing from the mold and this second stage is essential to impart hardness and brittleness which creates a button that can be ground to a tolerance of 0.01 millimeters and will maintain its shape after hydration regardless of the shape of eye to which it is applied.
  • the improvement of the present invention controls opposite properties in the contact lens of rubberiness, rigidity, hardness for grinding, dimensional stability and reproducibility in a new and unusual manner by controlling the time for chain growth during a preliminary induction period prior to rapid first stage initiation which occurs in at least four hours at 40C in the oven and in the mold.
  • HEMA All of the ingredients HEMA, EDMA, PVP, HPMA, MA, H 0 and inhibitor (HQ or MEHQ) control the chain growth with given initiators.
  • HQ inhibitor
  • a critical element for the achievement of storage stability of the lens in the wet state is the requirement that no more than one hundred parts per million (preferably 60 80 parts per million) of hydroquinone-type polymerizing inhibitor, used exclusively with HEMA, such as hydroquinone (H0) or mono-methyl ether of hydroquinone (MEHQ). It was unexpected to discover that more than 100 parts per million of HO inhibitor in HEMA would cause drifting, spreading and an increase in size of the diameter with decreased steepness of lenses which were placed in storage in isotonic saline for long periods of time (two weeks to six months).
  • compositions in which the inhibitor content is controlled within critical limits of less than one hundred parts per million based upon the HEMA monomer can provide lenses which can be stored in the wet state for weeks or for several months or up to a year without increasing the critical dimensions of diameter and slope.
  • the present disposible mold 11 with break-away curved bottom 11b is shown in FIG. 1 as being filled with the polymerizable composition 20 which hardens in static condition through the room-temperature induction stage (2 k 6 hours) of the present invention (see examples below), the first stage initiation under thermal break down of first initiator to assume the solid state in rubbery condition (40 60 C), the second stage under thermal break-down of second initiator (l10Cl/24 hours).
  • lens 20 as shown in FIG. 4d is the lens ready for the radiation post curing step.
  • the compositions made by the new method of bottom ejection of the buttom permit eliminating all cutting operations from the back (curved concave surface) of the lens 202 and more important, provide a superior lens which resists breakage since cutting inherently introduces microscopic scratches which act as stress points, initiating cracking and tearing. Eliminating all stress points on the inner-surfaces provides a stronger, longerwearing, more tear-resistant lens in hydrated condition.
  • FIGS. 2 and 3 show break-away frangible section 11f in annular shape which serves as the means for permitting movement of dome portion 11d with the concave surface of the button.
  • the ram 13 is positioned so that its diameter fits precisely under frangible positions 11f for free expulsion of the button (see FIGS. 2 and 3).
  • the invention comtemplates the use of a modified form of break-away curved bottom in the mold which will have the rim cut dimension put in the mold part and for more automated manufactoring this method of casting and mold contour information is part of the present invention.
  • FIGS. 7 and 8 The importance of the rim, which can be prescription ground to meet the various requirements of scleral slope encountered by precise examination or which can be molded as explained, can be seen by the comparison of views in FIGS. 7 and 8.
  • the lens 20e has just been put back on the mounting chuck 15 which is carried on the lathe spindle 16 of the conventional machine in the Mullen Patent.
  • This view illustrates a finishing polish step of the convex surface after this rim has been made.
  • the terminology herein defining rim cut relates to both the rim cut casting or that which has been trimmed by cutting.
  • FIG. 7 the lens 202 is shown in the stage just after removal from isotonic saline and being placed on the eye. Under the rim 20r of the lens, the tear fluid flows freely and contractile forces based upon evaporation of water begin their effect.
  • the exposed outer surface of the lens 20c loses water from a range of 50 65% H O down to 45 50% M and the rim 20 thereby moves downwardly and inwardly gripping the sclera and thereby entrapping a liquid film of tear fluid, thereunder the contracted form is shown in FIG. 8.
  • This mixing technique is identical with that in the O- Driscoll Patent, care being taken not to entrap air and to degas the mixture under vacuum and bleeding nitrogen gas back into the system.
  • Table 1 illustrates the fomulations which have been completely analyzed, the EDMA, I-IEMA, MA all being done by gas-liquid chromatography, (GLC) with HQ and MEHQ being done by titration and being double checked by GLC.
  • the water content was determined by Karl Fishers method. All values in the tables below are on a weight basis.
  • Table l The water content of Table l is based upon testing average f e 9 s ms f asd n C, aver n 3 3.5 percent water, since the Plasdone C content varies from about to about 28 percent (spread of 2 percent) of the present composition for contact lenses, the average contribution of water in the mixture is less than 1 percent and that Table is entitled substantially dry (less than 1 percent)
  • Table 2 illustrates the addition of 5 percent of water to HEMA. All water, in both tables 1 and 2, determinations are made by testing dry and before and after additions of water and all ingredients added to the mixture are tested in the same way. Suprisingly and unexpectedly the EDMA content is raised by 1 percent as a result of the addition of 5 percent of water and thus increase is reflected in Table 2 and emphasized by the notation (asterisk) after EDMA.
  • the second stage initiator was benzoyl peroxide.
  • This invention is limited to these initiators, e.g. the first stage are: disecondary butyl peroxy dicarbonate, cyclohexanone peroxide and acetyl peroxide.
  • First and second stage initiators are used at a concentration of 0.05 to 0.15 percent by weight of the batch.
  • series B and in Table 2 represent the best groups for simple corrective hydrated lens which meet percent of the connections in nearsightedness, far sightedness and minor astigmatigmatism (less than 2.0 diopters).
  • the lens extends beyond the cornea, the distance beyond the limbus being from about 0.5 2.0 mm. and the overall diameter varying from about 13.5 15.5 mm. and the inner rim being beveled in a flat curve in a width of 0.30 0.70 mm., preferably 0.35 0.40 mm. the same rim is used with the plus lens.
  • Center thicknesses in the minus lens in the dry state vary from 0.30 mm. to about 0.16 mm., depending upon the power. Thinner lenses are more highly corrected and these are made from Series C and G in Tables l and 2. Center thicknesses in the plus lenses vary from 0.30 mm. up to 0.45 mm., depending upon the power and the thicker lenses are the highly corrected ones which can be made from Series A, B, E or F compositions in Tables 1 and 2.
  • Astigmatic lenses with minus correction can be cast ground by the hard lens technology of Feinbloom, US. Pat. No. 3,227,507, but the selection of the composition is important since the cylindrical correction may be cast into the inner or bottom surface and a special mold may be made and used with Series G and C in accordance with the elliptical shapes taught in Feinbloom.
  • the strongest thin lenses which can be made are based uppm the more rubbery compositions having a higher PVP content, thus the Series C and Series G compositions would be selected, depending upon whether the patient had a dry eye to fit or the normal wet eye".
  • Series G provides better fitting for the dry eye
  • Series C provides better fitting for the wet eye.
  • Series E G are obviously more efiective, the higher water content accommodating greater total dosages for sparingly soluble eye medicaments.
  • the water soluble medicaments from ODriscoll et al, US. Pat. No. 3,700,761 can be incorporated in the HEMA by dissolving in H and by adding percent of H 0 to the HEMA; especially useful lenses are made in this manner to provide hydrated lens which contain 60 65% R 0, as against 55 60% H O when the 5% H O addition is omitted. With 5 percent added H O the lens after hydration is more spongy, and can release medication more efficiently.
  • Uniquely precision reproducibility and predictability, dry to wet, and resistance to storage creep in long time saline storage (two weeks to one year) is achieved only with the narrow range of formulations of the present invention.
  • the preferred ophthalmologically acceptable medicaments are know and include corticosteroids, sulfonamide, disinfectants, antiseptics, penicillin, pilocarpine, belladonna, dibenzyline, hydergine, methacholine, carbachol, bethanechol and the like.
  • a sheath or a tube may be turned for encircling a blood vessel to which a slowrelease water soluble drug is administered to reduce blood pressure.
  • a sheath may be encircled about a nerve bundle or about a bone and medication administered to aid in repair and bone growth (calciferol for example). Since hydration occurs in saline, the implant which is at the same osmotic pressure as body tissues and as blood contains, in the same electrolyte environment, a very precisely dosed amount of drug which can be used to produce a degree of precision in dosage not heretofore obtainable.
  • fountain supplies of this type may be used with other implants.
  • new compositions of the invention create new articles of commerce which are hygroscopic buttons in hard form and are cast from new and disposable molds with break-away bottoms.
  • the buttons can be turned on a lathe to make new shaped products such as implants and contact lenses which are adapted to be hydrated in saline for water uptake of 50 65 percent.
  • These disposable molds form hard products whose inner surfaces are free from fissures and cracks and which resist tearing by crack propogation from these fissures.
  • a shaped ocular implant comprising a composition in dry form for medicament delivery which is subjected to cutting and thereafter hydrating in saline to form an implant having from 50 65% H O, said implant in dry form consisting essentially of polymerized random graft copolymer containing 67.2 to 79.3% HEMA, 14.25 to 28% PVP,0.1 to f.04% EDMA, 0.1 to 2.5% MA, from about 1.0 up to 5.0% H 0 and from 50 ppm of hydroquinone stabilizer, the composition having been polymerized with a low temperature initiator'and a high temperature initiator each in concentration of 0.05 to 0.15 percent after an induction period at 15 30C for a period of 2.5 to six hours.
  • An implant as claimed in claim 1 in the form of an optical bandage hydrated to 50 65% B 0 in combination with a fountain solution of ophthalmologically acceptable medicament dissolved in saline solution.

Abstract

Improvements in the O''Driscoll et al U. S. Pat. No. 3,700,761 composition consisting of regulating critical proportions of PVP, HEMA, MA, EDMA, Water and the first and second stage initiators for producing hydrophilic lens blanks from which reproducible and predictable hydrated lenses are obtained with ratios of acceptance of 95 - 98 percent, to dimensional standards between the grinding dry and hydrated wet states and with ratios of resisting dimensional change in wet storage of upwards of ninety five percent. Compositions lying outside of the critical ranges of proportions provide lenses which are unpredictable (90 percent rejection) drift in size and do not provide reproducibility between dry and wet states and thereby create fitting problems. Critical ratios of MA to EDMA lying between 2.5/3.2 at 15 percent PVP content down to 1/1 at 28 percent PVP content provide reproducibility and predictability dry-to-wet and the optimum ratio is 1.5/0.7 at 20 percent PVP (reagents containing less than 1 percent water). Further improvement is made in the method of casting and cutting of U. S. Patent No. 3,700,761, in which there is used a disposable mold of Teflon, high-density polyethylene or of RTV Silicone material with break-away curved bottom which is discarded to provide a convex surface requiring no cutting thereby eliminating many cutting and grinding steps on the conventional hard-lens lathe. Water-soluble medicaments as in U.S. Pat. No. 3,700,761 can be added to precision-cut eye bandages by dissolving in H2O and adding a total of 5 percent H2O to HEMA or the medicament can be used in eye drops, the bandage with 5 percent added containing 65 percent H2O instead of 60 percent.

Description

United States Patent [191 Grucza 4] OCULAR IMPLANT [76] Inventor: Bernard J. Grucza, 775 Main St.,
Buffalo, NY. 04203 [22] Filed: Sept. 19, 1972 [21] Appl. No.: 290,376
Wichterle et ai 18/58 Zaffaroni [28/268 Primary Examiner-Aldrich F. Medbery [57] ABSTRACT Improvements in the ODriscoll et a1 U. S. Pat. No. 3,700,761 composition consisting of regulating critical proportions of PVP, HEMA, MA, EDMA, Water and the first and second stage initiators for producing hydrophilic lens blanks from which reproducible and predictable hydrated lenses are obtained with ratios of acceptance of 95 98 percent, to dimensional standards between the grinding dry and hydrated wet states and with ratios of resisting dimensional change in wet storage of upwards of ninety five percent. Compositions lying outside of the critical ranges of proportions provide lenses which are unpredictable (90 percent rejection) drift in size and do not provide reproducibility between dry and wet states and thereby create fitting problems. Critical ratios of MA to EDMA lying between 2.5/3.2 at 15 percent PVP content down to l/ 1 at 28 percent PVP content provide reproducibility and predictability dry-to-wet and the optimum ratio is 1.5/0.7 at 20 percent PVP (reagents containing less than 1 percent water). Further improvement is made in the method of casting and cutting of U. S. Patent'No. 3,700,761, in which there is used a disposable mold of Teflon, high-density polyethylene or of RTV Silicone material with break-away curved bottom which is discarded to provide a convex surface requiring no cutting thereby eliminating many cutting and grinding steps on the conventional hard-lens lathe. Water-soluble medicaments as in US. Pat. No. 3,700,761 can be added to precision-cut eye bandages by dissolving in H 0 and adding a total of 5 percent H O to HEMA or the medicament can be used in eye drops, the bandage with 5 percent added containing 65 percent H O instead of 60 percent.
3 Claims, 11 Drawing Figures OCULAR IMPLANT BACKGROUND OF THE INVENTION In ODriscoll et al, U.S. Pat. No. 3,700,761, compositions consisting of HEMA (hydroxyethyl methacrylate) or I-IPMA (hydroxypropyl methacrylate) with PVP in cut when dry onboth convex and concave surfaces on the conventional hard-lens lathe after the step of radiation curing.
SUMMARY OF THE INVENTION The present invention is an improvement of the initial step of the method of preparing the hygroscopic lens in the dry state and depends upon the casting of the lens after a critical induction period in a breakaway curved-bottom plastic mold in static condition from the liquid mixture of ingredients in critical porportions and under controlled temperature and inhibitor concentration conditions which prevent heat transfer through the mold so that an improved anisotropic lens is produced which has predictable and reproducible characteristics. This anisotropic lens of the present invention is characterized by different swelling and expansion between dry and wet states in the lateral direction and in the vertical direction but these changes are now reproducible and predictable to match diameters a substantially rigid and accurate fit to the eye without drift in diameter or slope or stifiness and to provide longtime and precision correction of the optical condition.
As a result of the swelling, and uniquely due to the very high water uptake (50-65 percent), the lens made by the method of the present invention is found to shape itself by evaporation forces, in an unusual manner to steepen the vault or slope of the lens closely resting on the cornea andsclera of the eye, shaping being similar to that of hard-lens memory characteristics. In contrast to all other types of soft lenses commercially available, reproducibility and predictability are achieved by the critically controlled amounts of PVP, HEMA, EDMA, MA, Water and inhibitor which is used to stabilize the HEMA and which will produce a lens having 50-65 percent in the saline-stored condition.
In the eye, the lens drops in water content from 55 -65 percent down to 45-55 percent. Surprisingly, the higher amount of water retained in the lenses in saline drops to the lower value in from thirty seconds to two minutes after insertion into the eye. This water content drop-off from about 50-65 percent occurs in most patients to a value of about 45-50 percent. The variations mentioned are found in testing hundreds of patients whose eye conditions varied from wet eye" to dry eye" as it is known in the art.
It was discovered that this evaporation which occurs provides a slightdifference in the shape of the lens which results in a natural astigmatic condition which contributes in a new way to accurate fitting based on the secure adhesion to the limbal area, or areas of the lensrim which contract and tighten on the corneal center so that this contraction effects a closer fit, in cantilever fashion, and prevents dislodging movements of the lens away from the scleral area. The larger contact rim of the semi-rigid, rubbery lens water-laden with precise dimensional predictability, is uniquely aided for fitting of the entire scleral area and based upon the geometry of the limbal area of the lens, serves to confine the individuals own tears beneath the lens. This aids in the interchange of tear fluid, oxygen and carbon dioxide, all essential to corneal respiration. The steepness of the vault permits accurate centering on the cornea while the circulation of tear fluid permits a respiration result comparable to that due to the permeability of the cornea itself, and this permeability is based upon the high 0 & CO permeability of the lens material.
In accordance with the invention, the casting against the curved shape of a disposable mold permits a range of dry lenses for fitting eyes of all dimensions and the range is based upon a simplified manufacturing procedure, using a break-away .mold bottom eliminating the grinding of the cast surface while providing a simple number of base curves (5) and a simple number of diameters (5) to true and time-stable dimensions in x,y and z planes.
BRIEF DESCRIPTION OF THE DRAWINGS The invention is further illustrated in the drawings in which:
FIG. 1 is a sectional view which shows a break-away mold with curved bottom into which the composition is cast and polymerized against a curved inner-surface which surface requires no further grinding or polishing.
FIG. 2 is a sectional view which shows the breaking of the button from the mold by ram pressure and movement.
FIG. 3 is an exploded view showing separation of the break-away bottom from the button.
FIG. 4a shows the first stage of cutting on the lathe as shown in diagramatic form in FIG. 5.
FIG. 4b shows the second stage.
FIG. 4c shows the third stage of cutting.
FIG. 4d shows the finished lense FIG. 5 shows the mounting of the lense for cutting in stages 4a, 4b and 40, with a conventional hard lense lathe of the type shown in FIG. 6 and 9 of Mullen, U.S. Pat. No. 2,330,837.
FIG. 6 shows the finished lense with the rim cut after the cutting stage in FIG. 4d, this rim cut being illustrated in FIG. 5. FIG. 6 shows the dimensions of rim cut lenses of the type shown in FIG. 5.
FIG. 7'shows the mounting of the lense of FIG. 5 on the eye with space between the rim and sclera before evaporation contracts the lense.
FIG. 8 shows lense of FIG. 7 after contractile evaporation.
DESCRIPTION OF TI-IE PREFERRED EMBODIMENTS The accuracy of manufacture of the present invention is based upon the discovery that critical proportions are required of PVP, MA, EDMA, HEMA, Water with the initiator amounts used for first and second stage initiation in the Driscoll U.S. Pat. No. 3,700,761, and that initial amounts of hydroquinone stabilizer are required to assure storage stability and to give predictability and reproducibility between dry and wet states, these initial amounts permit economy, safety, and reliability in supply and in fitting. The example and drawings illustrate an improved method, based upon the discovery of first stage initiation which must be carried out in a preliminary induction stage at room temperature and which requires that the liquid mixture in static condition in the mold of FIG. 1, subjected to a room temperature stage for the conversion of mobile liquid to stringy liquid at a temperature between 30 C for 2% 6 hours, the longer time being required at the lower temperatures. This induction period in the static mold of FIG. 1, must be carried out before the first stage initiation under thermal decomposition (40 60 C) which decomposes the rest of the initiator and changes the thickened liquid into a transparent solid button. Only when this first stage polymerization is broken down into two stages; first, a quiescent room temperature induction stage at 15 30C and then a ther mal stage at 40 for four hours or longer can the chain length of the copolymer grafted onto the PVP be brought up in uniformity, density, etc., up to the necessary length chains which will provide the necessary balance and semi-rigid, highly extensible and brittle properties of the rigid dry polymer. This dry polymer is subjected to further high temperature polymerization, as taught in the ODriscoll Patent after the first stage without removing from the mold and this second stage is essential to impart hardness and brittleness which creates a button that can be ground to a tolerance of 0.01 millimeters and will maintain its shape after hydration regardless of the shape of eye to which it is applied. In short, the improvement of the present invention controls opposite properties in the contact lens of rubberiness, rigidity, hardness for grinding, dimensional stability and reproducibility in a new and unusual manner by controlling the time for chain growth during a preliminary induction period prior to rapid first stage initiation which occurs in at least four hours at 40C in the oven and in the mold.
All of the ingredients HEMA, EDMA, PVP, HPMA, MA, H 0 and inhibitor (HQ or MEHQ) control the chain growth with given initiators. However, a critical element for the achievement of storage stability of the lens in the wet state is the requirement that no more than one hundred parts per million (preferably 60 80 parts per million) of hydroquinone-type polymerizing inhibitor, used exclusively with HEMA, such as hydroquinone (H0) or mono-methyl ether of hydroquinone (MEHQ). It was unexpected to discover that more than 100 parts per million of HO inhibitor in HEMA would cause drifting, spreading and an increase in size of the diameter with decreased steepness of lenses which were placed in storage in isotonic saline for long periods of time (two weeks to six months). In short, only those compositions in which the inhibitor content is controlled within critical limits of less than one hundred parts per million based upon the HEMA monomer can provide lenses which can be stored in the wet state for weeks or for several months or up to a year without increasing the critical dimensions of diameter and slope.
IMPROVED MANUFACTURING PROCEDURE ILLUSTRATED IN THE DRAWINGS Reference is made to the manufacturing procedure which was illustrated and described in ODriscoll et al,
US. Pat. No. 3,700,761, wherein hard-lens cutting and polishing technology was used (see FIGS. 4a, 4b, 4c, & 4d) after the button was pushed under pressure and moved out of the Teflon cylindrical mold with the ram 13 in contact with the planar top of the button.
The present disposible mold 11 with break-away curved bottom 11b is shown in FIG. 1 as being filled with the polymerizable composition 20 which hardens in static condition through the room-temperature induction stage (2 k 6 hours) of the present invention (see examples below), the first stage initiation under thermal break down of first initiator to assume the solid state in rubbery condition (40 60 C), the second stage under thermal break-down of second initiator (l10Cl/24 hours).
Not until the final cut is made in the form shown in FIG. 4 and rimming is accomplished to provide doublegauged (inner and outer sphericities inspected) lens 20 as shown in FIG. 4d is the lens ready for the radiation post curing step. In the present invention the compositions made by the new method of bottom ejection of the buttom permit eliminating all cutting operations from the back (curved concave surface) of the lens 202 and more important, provide a superior lens which resists breakage since cutting inherently introduces microscopic scratches which act as stress points, initiating cracking and tearing. Eliminating all stress points on the inner-surfaces provides a stronger, longerwearing, more tear-resistant lens in hydrated condition.
The bottom ejection illustrated in FIGS. 2 and 3, shows break-away frangible section 11f in annular shape which serves as the means for permitting movement of dome portion 11d with the concave surface of the button. The ram 13 is positioned so that its diameter fits precisely under frangible positions 11f for free expulsion of the button (see FIGS. 2 and 3).
LENS IMPROVEMENTS BASED UPON ADAPTING HARD-LENS GRINDING TECHNOLOGY USED FOR GRINDING THE NEW COMPOSITION As shown in FIGS. 5 and 6, the hard-lens cutting and grinding technology of Mullen US. Pat. No. 2,330,837 permits the hard guasi-rubbery buttons to be accurately cut and ground and polished in the dry state by the same experienced personnel who fit hard contact lens. However, only on optically corrective surface is present for cutting in accordance with the invention and this method of cutting only the outer surface provides a superior lens which requires only an inner rim cut, shown at 20r in FIG. 5 and is in an area of the lens which is non-correcting.
Obviously the invention comtemplates the use of a modified form of break-away curved bottom in the mold which will have the rim cut dimension put in the mold part and for more automated manufactoring this method of casting and mold contour information is part of the present invention.
The importance of the rim, which can be prescription ground to meet the various requirements of scleral slope encountered by precise examination or which can be molded as explained, can be seen by the comparison of views in FIGS. 7 and 8. The lens 20e has just been put back on the mounting chuck 15 which is carried on the lathe spindle 16 of the conventional machine in the Mullen Patent. This view illustrates a finishing polish step of the convex surface after this rim has been made. The terminology herein defining rim cut relates to both the rim cut casting or that which has been trimmed by cutting.
In FIG. 7 the lens 202 is shown in the stage just after removal from isotonic saline and being placed on the eye. Under the rim 20r of the lens, the tear fluid flows freely and contractile forces based upon evaporation of water begin their effect. The exposed outer surface of the lens 20c loses water from a range of 50 65% H O down to 45 50% M and the rim 20 thereby moves downwardly and inwardly gripping the sclera and thereby entrapping a liquid film of tear fluid, thereunder the contracted form is shown in FIG. 8.
EXAMPLES SHOWING SCOPE OF PROPORTIONS IN TABLES l & 2
The following examples illustrate the scope of initial porportions of the new compositions used for static casting in the curved-bottom molds of the ODriscoll Patent as well as in the disposable break-away bottom molds of the present invention.
This mixing technique is identical with that in the O- Driscoll Patent, care being taken not to entrap air and to degas the mixture under vacuum and bleeding nitrogen gas back into the system.
The two tables below summarize the compositions which provide reproducibility and predictability. Table 1, illustrates the fomulations which have been completely analyzed, the EDMA, I-IEMA, MA all being done by gas-liquid chromatography, (GLC) with HQ and MEHQ being done by titration and being double checked by GLC. The water content was determined by Karl Fishers method. All values in the tables below are on a weight basis. The PVP in these tables is Plasdone C, (K=30) and in its place PVP (l(=l) or (K=90) can be used but best results are achieved with Plasdone C, for the reason that greater uniformity in dryness of the material, supplied by the manufacturer, is found as a result of testing.
The water content of Table l is based upon testing average f e 9 s ms f asd n C, aver n 3 3.5 percent water, since the Plasdone C content varies from about to about 28 percent (spread of 2 percent) of the present composition for contact lenses, the average contribution of water in the mixture is less than 1 percent and that Table is entitled substantially dry (less than 1 percent) Table 2 illustrates the addition of 5 percent of water to HEMA. All water, in both tables 1 and 2, determinations are made by testing dry and before and after additions of water and all ingredients added to the mixture are tested in the same way. Suprisingly and unexpectedly the EDMA content is raised by 1 percent as a result of the addition of 5 percent of water and thus increase is reflected in Table 2 and emphasized by the notation (asterisk) after EDMA.
TABLE 1 SUBSTANTIALLY DRY (LESS THAN 1% H2O) Ingredient Series A Series B Series C HEMA 79.3 77.8 7L8 PVP (K==30) 15.0 20.0 28.0 EDMA 3.2 0.7 0.] MA 2.5 1.5 0.1 H 0 less than 1 less than I less than 1 HQ or MEHQ 50 l00 ppm 50 100 ppm 50 100 ppm TABLE 2 5% H O ADDED TO HEMA Ingredient Series E Series F Series G HEMA 74.3 72.9 67.2 PVP (K=30) l4.25 19.0 26.6 EDMA 4.04 L67 1.1 MA 2.40 1.43 O.l H 0 5 5 5 HQ or MEHQ 5O 100 ppm 50 100 ppm 50 100 ppm In all of the preparations of Series A, B, C, E, F and G the first stage initiators were the three mentioned in ODriscoll US. Pat. No. 3,700,761 and the second stage initiator was benzoyl peroxide. This invention is limited to these initiators, e.g. the first stage are: disecondary butyl peroxy dicarbonate, cyclohexanone peroxide and acetyl peroxide. First and second stage initiators are used at a concentration of 0.05 to 0.15 percent by weight of the batch.
UTILITY OF DIFFERENT COMPOSITION FOR SPECIAL LENS MANUFACTURE In Table 1, series B and in Table 2, series F represent the best groups for simple corrective hydrated lens which meet percent of the connections in nearsightedness, far sightedness and minor astigmatigmatism (less than 2.0 diopters). As shown in FIGS. 6 8 for a minus lens, the lens extends beyond the cornea, the distance beyond the limbus being from about 0.5 2.0 mm. and the overall diameter varying from about 13.5 15.5 mm. and the inner rim being beveled in a flat curve in a width of 0.30 0.70 mm., preferably 0.35 0.40 mm. the same rim is used with the plus lens.
Center thicknesses in the minus lens in the dry state vary from 0.30 mm. to about 0.16 mm., depending upon the power. Thinner lenses are more highly corrected and these are made from Series C and G in Tables l and 2. Center thicknesses in the plus lenses vary from 0.30 mm. up to 0.45 mm., depending upon the power and the thicker lenses are the highly corrected ones which can be made from Series A, B, E or F compositions in Tables 1 and 2.
Astigmatic lenses with minus correction can be cast ground by the hard lens technology of Feinbloom, US. Pat. No. 3,227,507, but the selection of the composition is important since the cylindrical correction may be cast into the inner or bottom surface and a special mold may be made and used with Series G and C in accordance with the elliptical shapes taught in Feinbloom. The result of cutting the outer surface as the lathe as to provide a very thin and fragile center of the prescription ground lens which must have flexibility and rubber-like properties when dry. The strongest thin lenses which can be made are based uppm the more rubbery compositions having a higher PVP content, thus the Series C and Series G compositions would be selected, depending upon whether the patient had a dry eye to fit or the normal wet eye". Manifestly, Series G provides better fitting for the dry eye and Series C provides better fitting for the wet eye.
In production, grinding rates are higher and manufacturing time schedules are more easily met by Series A and E since these Series provide harden buttons (highter EDMA content) and for plus lenses much higher production schedules can be met.
For dispensing of medication, Series E G are obviously more efiective, the higher water content accommodating greater total dosages for sparingly soluble eye medicaments.
The water soluble medicaments from ODriscoll et al, US. Pat. No. 3,700,761 can be incorporated in the HEMA by dissolving in H and by adding percent of H 0 to the HEMA; especially useful lenses are made in this manner to provide hydrated lens which contain 60 65% R 0, as against 55 60% H O when the 5% H O addition is omitted. With 5 percent added H O the lens after hydration is more spongy, and can release medication more efficiently. Uniquely precision reproducibility and predictability, dry to wet, and resistance to storage creep in long time saline storage (two weeks to one year) is achieved only with the narrow range of formulations of the present invention.
The preferred ophthalmologically acceptable medicaments are know and include corticosteroids, sulfonamide, disinfectants, antiseptics, penicillin, pilocarpine, belladonna, dibenzyline, hydergine, methacholine, carbachol, bethanechol and the like.
It should be emphasized that the foregoing examples are the result of thousands of formulations, tested completely in the laboratory, and then on patients under the supervision of qualified ophthalmologists, these results had to be interpreted in the light of a host of pa rameters and only experience showed the relationship which are summarized above, in conjection with HEMA as the major ingredient. There is not predictability from HEMA to HPMA (hydroxypropyl analogue) and there is no basis for reproducing water uptakes at 50 65 percent in hydrated lenses with any other monomer than HEMA. These parameters, in addition to the composition, include the batch size contents of all ingredients as listed; time of mixing, induction period, viscosity changes, heat transfer, presence of convection currents etc.
Although certain preferred emboidments of eye bandage containing medicaments have been described herein above in terms of hard polymer formed by adding up to 5 percent water and subjecting the composition to the stages of induction for 2 /2 6 hours, first stage initiation at 40C and second stage initiation at l 10C for l b 4 hours, it is emphasized that changes in manufacture can be made, for example, cutting down the time at 110C to b hour to prevent excessive drug decomposition and to thereby provide drug dispensing solid precisely cut products for any type of known medication which are specifically adapted for topical administration. For example, using the same lathe as in the Mullen Patent a sheath or a tube may be turned for encircling a blood vessel to which a slowrelease water soluble drug is administered to reduce blood pressure. A sheath may be encircled about a nerve bundle or about a bone and medication administered to aid in repair and bone growth (calciferol for example). Since hydration occurs in saline, the implant which is at the same osmotic pressure as body tissues and as blood contains, in the same electrolyte environment, a very precisely dosed amount of drug which can be used to produce a degree of precision in dosage not heretofore obtainable. If the drug is used for the eye where a high degree of precision of drug dosage is needed, it may be preferable to set up a fountain solution in saline which drops the saline solution containing the drug onto the lens to deliver the dosage to the eye at a constant rate for a controlled time. Obviously, fountain supplies of this type may be used with other implants.
It is therefore seen that new compositions of the invention create new articles of commerce which are hygroscopic buttons in hard form and are cast from new and disposable molds with break-away bottoms. The buttons can be turned on a lathe to make new shaped products such as implants and contact lenses which are adapted to be hydrated in saline for water uptake of 50 65 percent. These disposable molds form hard products whose inner surfaces are free from fissures and cracks and which resist tearing by crack propogation from these fissures.
In the foregoing specification and in the following claims, the abbreviations are as follows:
HEMA Hydroxyethyl Methacrylate PVP Poly-N-Vinyl Pyrrolidone EDMA Elthylene Glycol Dimethacrylate MA Methacrylic Acid H O Water ppm parts per million HQ Hydroquinone MEHQ Methyl Ether of Hydroquinone What is claimed is:
1. A shaped ocular implant comprising a composition in dry form for medicament delivery which is subjected to cutting and thereafter hydrating in saline to form an implant having from 50 65% H O, said implant in dry form consisting essentially of polymerized random graft copolymer containing 67.2 to 79.3% HEMA, 14.25 to 28% PVP,0.1 to f.04% EDMA, 0.1 to 2.5% MA, from about 1.0 up to 5.0% H 0 and from 50 ppm of hydroquinone stabilizer, the composition having been polymerized with a low temperature initiator'and a high temperature initiator each in concentration of 0.05 to 0.15 percent after an induction period at 15 30C for a period of 2.5 to six hours.
2. An implant as claimed in claim 1 in the form of an optical bandage containing an ophthalmologically acceptable medicament incorporated in the dry form of the implant.
3. An implant as claimed in claim 1 in the form of an optical bandage hydrated to 50 65% B 0 in combination with a fountain solution of ophthalmologically acceptable medicament dissolved in saline solution.

Claims (2)

  1. 2. An implant as claimed in claim 1 in the form of an optical bandage containing an ophthalmologically acceptable medicament incorporated in the dry form of the implant.
  2. 3. An implant as claimed in claim 1 in the form of an optical bandage hydrated to 50 - 65% H2O in combination with a fountain solution of ophthalmologically acceptable medicament dissolved in saline solution.
US00290376A 1972-09-19 1972-09-19 Ocular implant Expired - Lifetime US3807398A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US00290376A US3807398A (en) 1972-09-19 1972-09-19 Ocular implant
US00419245A US3841598A (en) 1972-09-19 1973-11-27 A mold for casting a hydrophilic contact lens blank
US05/631,997 US4042552A (en) 1972-09-19 1975-11-14 Composition for hydrophilic lens blank and method of casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00290376A US3807398A (en) 1972-09-19 1972-09-19 Ocular implant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US41922873A Division 1972-09-19 1973-11-27

Publications (1)

Publication Number Publication Date
US3807398A true US3807398A (en) 1974-04-30

Family

ID=23115719

Family Applications (1)

Application Number Title Priority Date Filing Date
US00290376A Expired - Lifetime US3807398A (en) 1972-09-19 1972-09-19 Ocular implant

Country Status (1)

Country Link
US (1) US3807398A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894129A (en) * 1973-03-15 1975-07-08 American Optical Corp Method of manufacture of strain free contact lenses
US3901969A (en) * 1973-09-10 1975-08-26 Union Corp Sustained release of methantheline
DE2548061A1 (en) * 1974-11-21 1976-06-10 Warner Lambert Co DIMENSIONS FOR CONTACT LENSES OR EYE BODY AND MASS PROCESSING
US3988274A (en) * 1974-05-27 1976-10-26 Hoya Lens Co., Ltd. Process for producing soft contact lenses
JPS51161827U (en) * 1975-06-18 1976-12-23
US4018853A (en) * 1974-11-21 1977-04-19 Warner-Lambert Company Crosslinked, hydrophilic rods of pyrrolidone-methacrylate graft copolymers
US4045547A (en) * 1974-11-21 1977-08-30 Warner-Lambert Company Fabrication of soft contact lens and composition therefor
US4054624A (en) * 1974-11-21 1977-10-18 Warner-Lambert Company Preparing a hydrated contact lens
US4126138A (en) * 1974-06-14 1978-11-21 Warner-Lambert Company Soft contact lens
US4158030A (en) * 1977-06-24 1979-06-12 Nick Stoyan Method for making lenses from a modified polymerization product of methyl methacrylate
US4201210A (en) * 1976-06-22 1980-05-06 The United States Of America As Represented By The Secretary Of Agriculture Veterinary ocular ring device for sustained drug release
US4300820A (en) * 1978-11-06 1981-11-17 The Kendall Company Water absorptive composition
US4395496A (en) * 1981-11-16 1983-07-26 Uco Optics, Inc. Cured cellulose ester, method of curing same, and use thereof
US20070074980A1 (en) * 2005-09-02 2007-04-05 Bankoski Brian R Implant rehydration packages and methods of use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2976576A (en) * 1956-04-24 1961-03-28 Wichterle Otto Process for producing shaped articles from three-dimensional hydrophilic high polymers
US3496254A (en) * 1964-07-02 1970-02-17 Ceskoslovenska Akademie Ved Method of manufacturing soft and flexible contact lenses
US3598122A (en) * 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3700761A (en) * 1969-11-28 1972-10-24 Griffin Lab Inc Fabrication of soft plastic contact lens blank

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2976576A (en) * 1956-04-24 1961-03-28 Wichterle Otto Process for producing shaped articles from three-dimensional hydrophilic high polymers
US3496254A (en) * 1964-07-02 1970-02-17 Ceskoslovenska Akademie Ved Method of manufacturing soft and flexible contact lenses
US3598122A (en) * 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3598122B1 (en) * 1969-04-01 1982-11-23
US3700761A (en) * 1969-11-28 1972-10-24 Griffin Lab Inc Fabrication of soft plastic contact lens blank

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894129A (en) * 1973-03-15 1975-07-08 American Optical Corp Method of manufacture of strain free contact lenses
US3901969A (en) * 1973-09-10 1975-08-26 Union Corp Sustained release of methantheline
US3988274A (en) * 1974-05-27 1976-10-26 Hoya Lens Co., Ltd. Process for producing soft contact lenses
US4126138A (en) * 1974-06-14 1978-11-21 Warner-Lambert Company Soft contact lens
US3978164A (en) * 1974-11-21 1976-08-31 Warner-Lambert Company Pyrrolidone-methacrylate graft copolymers from 3-stage polymerization process
US4018853A (en) * 1974-11-21 1977-04-19 Warner-Lambert Company Crosslinked, hydrophilic rods of pyrrolidone-methacrylate graft copolymers
US4045547A (en) * 1974-11-21 1977-08-30 Warner-Lambert Company Fabrication of soft contact lens and composition therefor
US4054624A (en) * 1974-11-21 1977-10-18 Warner-Lambert Company Preparing a hydrated contact lens
DE2548061A1 (en) * 1974-11-21 1976-06-10 Warner Lambert Co DIMENSIONS FOR CONTACT LENSES OR EYE BODY AND MASS PROCESSING
JPS51161827U (en) * 1975-06-18 1976-12-23
US4201210A (en) * 1976-06-22 1980-05-06 The United States Of America As Represented By The Secretary Of Agriculture Veterinary ocular ring device for sustained drug release
US4158030A (en) * 1977-06-24 1979-06-12 Nick Stoyan Method for making lenses from a modified polymerization product of methyl methacrylate
US4300820A (en) * 1978-11-06 1981-11-17 The Kendall Company Water absorptive composition
US4395496A (en) * 1981-11-16 1983-07-26 Uco Optics, Inc. Cured cellulose ester, method of curing same, and use thereof
US20070074980A1 (en) * 2005-09-02 2007-04-05 Bankoski Brian R Implant rehydration packages and methods of use

Similar Documents

Publication Publication Date Title
US4042552A (en) Composition for hydrophilic lens blank and method of casting
US3841598A (en) A mold for casting a hydrophilic contact lens blank
US3807398A (en) Ocular implant
US3700761A (en) Fabrication of soft plastic contact lens blank
US4687485A (en) Intraocular lens with leg means having compressible regions and/or color
US5300116A (en) Keratoprosthesis
US3660545A (en) Method of centrifugally casting thin edged corneal contact lenses
US5147394A (en) High refractive index polymeric compositions suitable for use as expansile hydrogel intraocular lenses
SU558248A1 (en) Combined contact lens and method of its manufacture
US6713583B2 (en) Intraocular lenses made from polymeric compositions
JP3068212B2 (en) Multifocal diffractive ophthalmic lens
US6585768B2 (en) Intraocular lenses and process for the producing molded-in type intraocular lenses
US3831604A (en) Method of reshaping the cornea
ES2208304T3 (en) PLASTIFIED WATER POLYMER WITH A HIGH REFRACTION INDEX FOR OPHTHALMOLOGICAL APPLICATIONS.
JP5096793B2 (en) Polymer composition and ophthalmic lens body
US4971732A (en) Method of molding an intraocular lens
JPH04295353A (en) Intraocular implant and making thereof
US10626206B2 (en) Acrylic copolymer, which is hydrophobic, cross-linked and based on cinnamic alcohol, for intraocular lenses
CZ299094A3 (en) Implantable ophthalmic lens, process of its production and a mould for making the same
US3841985A (en) Irradiated composition for soft contact lens
US3816571A (en) Fabrication of soft plastic lens
US4153349A (en) Soft contact lens with thin edge
EP0166051B1 (en) Process for fabricating an intraocular lens
US3829329A (en) Method of cleaning a soft hydrophilic contact lens
US4163608A (en) Hydratable gas permeable methyl methacrylate copolymer

Legal Events

Date Code Title Description
AS Assignment

Owner name: AO, INC. 14 MECHANIC ST., SOUTHBRIDGE, MA A CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WARNER-LAMBERT COMPANY A CORP.OF DE;REEL/FRAME:004001/0461

Effective date: 19820524

Owner name: AO, INC. 14 MECHANIC ST., A CORP. OF DE,MASSACHUSE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WARNER-LAMBERT COMPANY A CORP.OF DE;REEL/FRAME:004001/0461

Effective date: 19820524

AS Assignment

Owner name: WARNER-LAMBERT TECHNOLOGIES, INC., A DE CORP.

Free format text: SECURITY INTEREST;ASSIGNOR:AO, INC., A DE CORP.;REEL/FRAME:004073/0046

Effective date: 19820528

Owner name: WARNER-LAMBERT CANADA, INC.

Free format text: SECURITY INTEREST;ASSIGNOR:AO, INC., A DE CORP.;REEL/FRAME:004073/0046

Effective date: 19820528

AS Assignment

Owner name: IRVING TRUST COMPANY, ONE WALL ST, NEW YORK, N.Y.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AO, INC. A CORP. OF DEL.;REEL/FRAME:004073/0675

Effective date: 19820621

Owner name: IRVING TRUST COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AO, INC.;REEL/FRAME:004073/0675

Effective date: 19820621

AS Assignment

Owner name: CIBA-U.S., CIBA-GEIGY CORPORATION

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:AMERICAN OPTICAL CORPORATION, A CORP OF DE.;AD, INC.;REEL/FRAME:004510/0050;SIGNING DATES FROM

AS Assignment

Owner name: CIBA VISION CORPORATION A COMPANY OF DE, GEORGI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CIBA-GEIGY CORPORATION, A NY COMPANY;REEL/FRAME:005699/0274

Effective date: 19910501