Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3807403 A
Tipo de publicaciónConcesión
Fecha de publicación30 Abr 1974
Fecha de presentación14 Jun 1972
Fecha de prioridad14 Jun 1972
Número de publicaciónUS 3807403 A, US 3807403A, US-A-3807403, US3807403 A, US3807403A
InventoresJ Andera, J Stumpf
Cesionario originalFrigitronics Of Conn Inc
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Cryosurgical apparatus
US 3807403 A
Resumen
There is disclosed a cryosurgical apparatus of the type which operates from a source of compressed gas. It includes an improved nozzle which is substantially less critical tnan prior art nozzles and permits simplified and less expensive construction. A defrost valve in the exhaust conduit permits easy and quiet operation by the surgeon. An insulator tube is resiliently secured to the probe to allow thermal expansion and contraction without stress.
Imágenes(2)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

United States Patent /1191 Stumpf et a].

l 11] 3,807,403 Apr. 30, 1974 Filed:

CRYOSURGICAL APPARATUS Inventors: Joseph C.,. Stumpf, Fairfield; Joseph FAnderaITrumbull, both of Conn.

Assignee: Frigitronics of Conn. Inc., Skelton,

Conn.

June 14, 1972 Appl. No.: 262,543

US. (:1 1211/3011, 62/293, 62/514 1111. c1. A6lb 17/36, A61f 7/12 Field of Search 62/293, 514; l28/303.1,

References Cited UNITED STATES PATENTS Crump et al l28/303.1

Amoils 128/303.l Crump et al.... l28/303.l Wallach l28/303.l

Primary ExaminerChanning L. Pace Attorney, Agent, or FirmBuckles and Bramblett ABSTRACT There is disclosed a cryosurgical apparatus of the type which operates from a source of compressed gas. It includes an improved nozzle which is substantially less critical tnan prior art nozzles and permits simplified andless expensive construction. A defrost valve in the exhaust conduit permits easy and quiet operation by the surgeon. An insulator tube is resiliently secured to the probe to allow thermal expansion and contraction without stress.

The foregoing abstract is not [to be taken either as a complete exposition or as a limitation of the present invention. In order. to understand the full nature and extent of the technical disclosure of this application, reference must be had to the following detailed description and the accompanying drawings as well as to the claims.

6 Claims, 13 Drawing Figures alamlw fATENTEDAPR 30 can SHEET 1 0F 2 PATENTEBAPR 30 m4 SHEEI E OF 2' iln' VIIIIIIII I'll!!! I CRYOSURGICAL APPARATUS BACKGROUND OF THE INVENTION This invention pertains to cryosurgical instruments of the type which are cooled under. the influence of high pressure gas escaping from an orifice. Instruments of this type are well known in the art and are widely employed for a number of surgical procedures such as the necrosis of diseased tissue. Several gases exhibit the Joule Thomson effect and may be used in the operation of the instrument. The most common, however, are nitrous oxide and carbon dioxide.

In instruments of this type, the gas expansion orifice is of an extremely small size and in all prior art instruments the spacing between the orifice and the inner wall of the cooling tip is extremely critical. For example, with prior art instruments, the orifice is positioned approximately 0.050 inch from the inner wall of the tip and the permitted tolerance is only 0.010 inch. This resultsin such instruments being difficult and costly to manufacture. For example, the parts of such instruments are commonly threaded so that they may be factory adjusted prior to shipment.

Another problem connected with prior art instruments of this type is found in the exhaust valve of intruments which have controlled defrost. For example, one such instrument is normally warm, which means that the exhaust valve is normally closed and the device is filled with compressed gas at bottle pressure As the bottle gas prssure may be commonly as high as 800 psi, it will be quite apparent that this creates an explosion hazard. The exhaust valve used in this prior art device comprises a cylindrical piston which seats against a small exhaust orifice and is retained in the seated position by means of a heavy spring The piston is raised against the force of a spring by means of a finger operated toggle. When the surgeon wishes tocool the probe tip, he must apply substantial force to depress the toggle which is, itself, detrimental, particularly in the case of very delicate surgical procedures. Secondly, as soon as the piston begins to leave the orifice, the full bottle pressure, which was formerly applied only to a small area of the piston, is now applied to the full area of the piston end, slamming the piston open with an explosiveJike report. I

Still another problem with prior art devices arises from the fact that they are subject to considerable thermal stress. For example, it is usually desirable to provide an insulated housing to prevent adherence to healthy tissue. This housing. should preferably remain at room temperature. However, the tip and exhaust conduit may be cooled to temperatures as low as -89C. The resultant contraction may result in substantial stresses at the junctures of the cold and warm parts.

SUMMARY OF THE INVENTION The invention comprises a gas operated cryosurgical instrument including a tubular exhaust conduit terminating at one end in a hollow probe tip of high thermal conductivity. A high pressure gas delivery conduit extends through the exhaust conduit and terminates at a nozzle within the probe tip. Thenozzle has a cylindrical gas discharge passage of smaller diameter than the delivery conduit and a smoothly curved reduction passage therebetween. A normally open valve is connected in fluid flow relationship with the exhaust conduit. An insulator tube surrounds but is spaced from the exhaust conduit and is connected thereto by-a resilient connection.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a cryosurgical instrument in accordance with the present invention shown connected to a source of bottled gas;

FIG. 2 is an enlarged cross section taken through the instrument of FIG. 1;

FIG. 3 is an enlarged cross section of the exhaust valve of FIG. 2;

FIG. 4 is a greatly enlarged cross section of the nozzle portion of the apparatus;

FIG. 5 is an illustration of the gas jet obtained with the nozzle of FIG/4;

FIG. 6 is a cross section taken substantially along the line 6-6 of FIG. 5; g

FIG. 7 is an illustration of one type nozzle used in the .prior art;

FIG. 8 is a cross section taken substantially along the line 88 of FIG. 7;

FIG. 9 is an illustration of another type of nozzle used in the prior art;

FIG. 10 is an enlarged cross section showing the orifice of the FIG. 9 nozzle;

FIG. 11 shows still another type of nozzle used in the prior art;

FIG. 12 illustrates the resilient connection between the warm insulator tube and the cold portions of the probe; and g FIG. 13 is an illustration similar to FIG. 12 showing the manner in which the resilient connection operates.

DESCRIPTION OF THE PREFERRED EMBODIMENT With particular reference to FIG. 1, there is disclosed an instrument of the type utilized in treating cervicitis. It comprises an elongated probe 10 mounted in a handle 12 and terminating in a substantially conical applicator tip 14. The other end of the probe extends from the handle and is connected to a line 16 which, in turn, is connected to a suitable source 18 of pressurized gas. Atrigger 20 extends from the handle for selective defrosting as will be explained.

Turning now'to FIG. 2, the handle 12 will be seen to support the rear portion 22a of a stainless steel insulator tube 22. ,The rear portion 220 and a forward portion 22b are each welded to the circumferential flange 24 of an internally threaded sleeve 26. Threaded into sleeve 26 is a bushing 28 which is welded to the end of an exhaust tube 30. The end of exhaust tube 30 has a bevelled valve seat 32 as shown in FIG. 3. The other end of exhaust tube 30 is welded to a bushing 34 which, in turn, is welded to the cylindrical stem 36 of the hollow copper tip 14. The forward end of the insulator tube 22 extends over the surface of stem 36 but is not secured thereto. Instead, a resilient bushing 38 frictionally engages both the exhaust tube 30 and the insulator tube 32.

The line 16 is a coaxial conduit comprising a silicon coated fiberglass exhaust line 40 secured by a spring 42 to the end of insulator tube 22. Carried within the exhaust line is a high pressure delivery line 44 secured by means of a high pressure connector 46 to the threaded end 48 of a steel valve member 50 which is illustrated in more detail in FIG. 3.

The valve member 50, in addition to the threaded end 48, has an unthreaded forward portion 52 and a central circumferential flange 54. The forward surface of flange 54 carries a circular knife edge 56. A Teflon valve member 58 is press fitted over the forward portion 52 and has a flat rear surface which engages the knife edge 56. The forward surface of valve seat 58 is tapered to engage the valve seat 32 on exhaust tube 30. The upper end of trigger 20 defines a drilled opening 60 through which the threaded end 48 of valve member 50 extends. It is held in place by a nut 62. The trigger 20 is mounted on a pivot 64 positioned approximately one inch below its upper end. The length of trigger 20 below the pivot 64 is approximately 4 inches in the described embodiment. Welded to the unthreaded forward portion 52 of valve member 50 is the end of a delivery tube 66 which in one embodiment is a 15 gauge stainless steel hypodermic tube having an internal diameter of 0.059 inch. The forward end of delivery tube 66 has a reduced diameter portion forming a nozzle 68 positioned within the hollow probe tip 14.

The construction of nozzle 68 will be best understood by reference to FIG. 4. As will be seen therein, the internal diameter of the delivery tube.66 is reduced via a smooth wall reduction passage 70 to a cylindrical gas discharge passage 72. This configuration is achieved by inserting into the end of the hypodermic tube a hardened wire having an external diameter equal to the desired diameter of the gas discharge passage. The end of the tube is then swaged onto the wire and the wire is removed. In one actual embodiment, the tube 66 has an internal diameter of 0.059 inch and the internal diameter of the gas discharge passage 72 is 0.01065 inch. The distance from the nozzle to the beginning of reduction (A FIG. 4) is 0.20 inch and the distance between the nozzle tip and the end of reduction (B) is 0.12 inch.

The performance of the nozzle 68 is strikingly superior to those of the prior art. The reason for this is not fully understood but is believed to be due to the smooth continuous inner surface formed by the reduction passage 70 and the gas discharge passage 72. This is believed to prevent gas turbulence and permit laminar fiow out of nozzle 68.

FIG. illustrates the gas flow from the nozzle 68 as actually observed in practice. As will be seen, it presents an elongated flame like" appearance and shape. FIGS. 7-11 illustrate three prior art nozzle constructions and the jets obtained thereby. FIGS. 7 and 8 illustrate a pinched tube configuration. FIGS. 9 and illustrate a rolled end construction and FIG. 11 illustrates a type of orifice known as a double reduction orifice which comprises a series of tubes of reduced diameter. The jets from these prior art nozzles appear as indicated. In these prior art nozzles the distance from the orifice to the wall of the applicator tip is very critical and the spacing must be quite close. As an example, this distance may be 0.050 inch with a tolerance of or 0.0l0 inch. In contrast, when utilizing the nozzle of this invention, the distance from the nozzle tip to the wall may be 0.250 inch with a tolerance of or -0.060 inch. Accordingly, by means of this invention, manufacture and assembly are greatly simplified, resulting in a highly effective instrument at a much lower cost.

The resilient tip construction is illustrated in detail in FIGS. 12 and 13. As seen in FIG. 12, the insulator tube 22 is spaced from exhaust tube 30, providing an insulating air space therebetween. The end of the insulator tube 22 slidingly encircles the stem 36 of tip 14. A resilient bushing 38 engages both the insulator tube and the exhaust tube. As the probe tip is cooled, the tip 14 and the exhaust line 30 will both cool and contract. This is shown in an exaggerated manner in FIG. 13 wherein it will be seen that the normal resilience of bushing 38 compensates for expansion and contraction and prevents stresses from building up in the instrument.

The nozzle and the resilient tip construction may be utilized in connection with either a non-defrostable or a defrostable cryosurgical probe. The probe illustrated herein is of the defrostable type. Defrosting is obtained by means of the valve illustrated in detail in FIG. 3. When the valve is in its normally open position, high pressure gas entering through delivery line 44 passes through the hollow passage in the valve member 50 an through delivery tube 66 to nozzle 68. From the nozzle it expands into tip 14, causing the tip to be cooled by the Joule Thomson effect. The expanded gas then passes rearwardly through exhaust tube 30 and out the exhaust line 40. It may then be exhausted to atmosphere through any suitable opening such as the vent 74 shown in FIG. 1. The high pressure exhaust gas tends to maintain the exhaust valve in its normally open position without the need for springs or similar devices. In order to defrost the instrument, the trigger 20 is depressed by the surgeon, whereupon it assumes the dashed line position illustrated in FIG. 2 and forces the Teflon valve member 58 against the bevelled valve seat 32'of the exhaust tube 30. The circular knife edge 56 forms a gas tight seal with the rear of the valve member. With the exhaust valve closed, the gas pressure within tip 14 rises to bottle pressure and the heat of compression causes rapid defrosting of the probe tip. In one embodiment, the diameter of the valve member 58 which is exposed to gas pressure is approximately 0.187 inch. With a bottle pressure of 800 psi, this results in 27 pounds force tending to drive the valve member to the rear. The 4:1 lever ratio of the trigger 20 results in only 6.8 pounds of force being required to close the valve and maintain it in the closed position. As the valve is normally open, it will be closed only for the period of time during which the surgeon desires to defrost the probe tip. Therefore, the instrument is exposed to full bottle pressure only intermittently and for short periods of time, greatly increasing the safety of the apparatus.

It is believed that the construction and operation of this .invention will now be apparent to those skilled in the art. It will also be apparent that a number of variations and modifications may be made in this invention without departing from its spirit and scope. Accordingly, the foregoing description is to be construed as'illustrative only,'rather than limiting. This invention is limited only by the scope of the following claims.

We claim:

1. A gas operated cryosurgical instrument which comprises: a tubular exhaust conduit terminating at one end in a hollow probe tip of high thermal conductivity; a remote source of high pressure gas; a gas delivery conduit extending through said exhaust conduit in fluid flow communication with said source and terminating at a nozzle within said probe tip; normally open valve means connected in fluid flow relationship between said exhaust conduit and atmosphere; and means for controllably closing and opening said valve means.

2. The instrument of claim 1 wherein said valve means comprises: a stationary valve seat defined by saidexhaust conduit; and a moveable valve member carried by said delivery conduit.

3. The instrument of claim 2 wherein said closing means comprises a manually operable trigger connected to advance both of said delivery conduit and valve member.

' 4. A gas operated cryosurgical instrument which comprises: a tubular exhaust conduit terminating at one end in a hollow probe tip of high thermal conductivity; a gas delivery conduit extending through said exhaust conduit and terminating at a nozzle within said probe tip,-said nozzle including a cylindrical gas discharge passage of smaller diameter than said delivery conduit and a smoothly curved reduction passage therebetween; normally open valve means connected in fluid flow relationship between said exhaust conduit and atmosphere; an insulator tube surrounding, but spaced from, said exhaust conduit; resilient means interconnecting said insulatortube and exhaust conduit; and means for controllably closing and opening said valve means. v

5. The instrument of claim 4 wherein said resilient means comprises an annular bushing encircling said exhaust conduit adjacent said probe tip and frictionally engaging both of said exhaust conduit and insulator tube to permit relative motion therebetween.

6. The instrument of claim 5 wherein said probe tip includes a substantially cylindrical stem and said insulator tube encircles one end of said stem in sliding relationship therewith.

UNITED STATES PATENT OFFICE- CERTIFICATE OF CORRECTION Patent No. v3,807,403 Dated April 30-, 19 74 lnvntofls) Joseph G. Stumpf and Joseph F. Andera It is certified that error appears in the above-identified patent and that said Letters Patentare hereby corrected as shown below: IniTitle Page, Column 1, change inventor's name from "Joseph C. Stumpf" to Joseph G. Stumpf--; change address of iAssignee fromv "Skelton" to Shelton-.. In Abstract, Line 4, change "tnan" to --than--. Column 3, line 49, after "nozzle" insert -tip-. Column 4, line 31, change "an" to a.nd-; Column 5, line 20, after "closing" insert and opening--.

Signed and-sealed this 3rd day of September 1974.

(SEAI-i) Attest:

McCOYf M. GIBSON, JR. 0. MARSHALL DANN Attesting Officer] Commissioner of Patents ORM PC4050 (10-69) uscoMM-oc 60376-P69 I U. 5. GOVIINHINT PRINTING OFFICE 1,. O-JI-IIL

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3393679 *27 Dic 196523 Jul 1968Frigitronics Of Conn IncCryosurgical instrument
US3502081 *5 Abr 196624 Mar 1970Amoils Selig PercyCryosurgical instrument
US3575176 *21 Oct 196820 Abr 1971Frigitronics Of Conn IncRechargeable cryosurgical instrument
US3696813 *6 Oct 197110 Oct 1972CryomedicsCryosurgical instrument
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3886945 *7 Nov 19733 Jun 1975Frigitronics Of Conn IncCryosurgical apparatus
US3933156 *8 Ene 197520 Ene 1976Giovanni RiggiCooling apparatus particularly for medical-surgical use
US4211231 *15 May 19788 Jul 1980Cryomedics, Inc.Cryosurgical instrument
US4236518 *14 Abr 19782 Dic 1980Gyne-Tech Instrument CorporationCryogenic device selectively operable in a continuous freezing mode, a continuous thawing mode or a combination thereof
US4345598 *27 Mar 198024 Ago 1982Vyzkumny Ustav Silnoproude ElektrotechnikyCryogenic apparatus for surgery
US4831846 *12 Abr 198823 May 1989The United States Of America As Represented By The United States Department Of EnergyLow temperature cryoprobe
US5433717 *23 Mar 199318 Jul 1995The Regents Of The University Of CaliforniaMagnetic resonance imaging assisted cryosurgery
US5706810 *2 Jun 199513 Ene 1998The Regents Of The University Of CaliforniaMagnetic resonance imaging assisted cryosurgery
US6161543 *15 Oct 199719 Dic 2000Epicor, Inc.Methods of epicardial ablation for creating a lesion around the pulmonary veins
US708362017 Jul 20031 Ago 2006Medtronic, Inc.Electrosurgical hemostat
US709423513 Ene 200422 Ago 2006Medtronic, Inc.Method and apparatus for tissue ablation
US71185663 Feb 200310 Oct 2006Medtronic, Inc.Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US71287402 Abr 200331 Oct 2006Jacobs Clemens JMethod for interrupting conduction paths within the heart
US715684516 Sep 20052 Ene 2007Medtronic, Inc.Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US716610520 Sep 200523 Ene 2007Medtronic, Inc.Pen-type electrosurgical instrument
US716914431 Oct 200330 Ene 2007Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US724715518 May 200424 Jul 2007Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US725004820 Ago 200431 Jul 2007Medtronic, Inc.Ablation system and method of use
US725005126 Abr 200631 Jul 2007Medtronic, Inc.Method and apparatus for tissue ablation
US72941433 Feb 200313 Nov 2007Medtronic, Inc.Device and method for ablation of cardiac tissue
US730932528 Jun 200518 Dic 2007Medtronic, Inc.Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US734785814 Oct 200325 Mar 2008Medtronic, Inc.Method and system for treatment of atrial tachyarrhythmias
US73645783 Dic 200429 Abr 2008Medtronic, Inc.System and method of performing an electrosurgical procedure
US73679729 Sep 20036 May 2008Medtronic, Inc.Ablation system
US74225887 Dic 20069 Sep 2008Medtronic, Inc.Pen-type electrosurgical instrument
US743525018 Feb 200514 Oct 2008Medtronic, Inc.Method and apparatus for tissue ablation
US747027230 Jun 200430 Dic 2008Medtronic, Inc.Device and method for ablating tissue
US749785729 Abr 20033 Mar 2009Medtronic, Inc.Endocardial dispersive electrode for use with a monopolar RF ablation pen
US750723528 May 200224 Mar 2009Medtronic, Inc.Method and system for organ positioning and stabilization
US75663342 Jun 200528 Jul 2009Medtronic, Inc.Ablation device with jaws
US761501520 Jun 200310 Nov 2009Medtronic, Inc.Focused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
US762878030 Nov 20048 Dic 2009Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US76781082 Jun 200516 Mar 2010Medtronic, Inc.Loop ablation apparatus and method
US767811129 Nov 200516 Mar 2010Medtronic, Inc.Device and method for ablating tissue
US769980530 Nov 200720 Abr 2010Medtronic, Inc.Helical coil apparatus for ablation of tissue
US770688213 May 200527 Abr 2010Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area
US770689426 Abr 200527 Abr 2010Medtronic, Inc.Heart wall ablation/mapping catheter and method
US774062323 Jun 200522 Jun 2010Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US774456210 Oct 200629 Jun 2010Medtronics, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US77585762 Jun 200520 Jul 2010Medtronic, Inc.Clamping ablation tool and method
US77585802 Jun 200520 Jul 2010Medtronic, Inc.Compound bipolar ablation device and method
US779446011 Ago 200814 Sep 2010Medtronic, Inc.Method of ablating tissue
US781803915 Jul 200519 Oct 2010Medtronic, Inc.Suction stabilized epicardial ablation devices
US782439916 Feb 20062 Nov 2010Medtronic, Inc.Ablation system and method of use
US78714092 Feb 200918 Ene 2011Medtronic, Inc.Endocardial dispersive electrode for use with a monopolar RF ablation pen
US78750288 Jul 200925 Ene 2011Medtronic, Inc.Ablation device with jaws
US795962620 Jul 200714 Jun 2011Medtronic, Inc.Transmural ablation systems and methods
US796396321 Ene 200521 Jun 2011Medtronic, Inc.Electrosurgical hemostat
US796781625 Ene 200228 Jun 2011Medtronic, Inc.Fluid-assisted electrosurgical instrument with shapeable electrode
US797570331 Ago 200612 Jul 2011Medtronic, Inc.Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US81629333 Mar 200424 Abr 2012Medtronic, Inc.Vibration sensitive ablation device and method
US816294120 Dic 201024 Abr 2012Medtronic, Inc.Ablation device with jaws
US817283714 Jun 20108 May 2012Medtronic, Inc.Clamping ablation tool and method
US82214029 Dic 200517 Jul 2012Medtronic, Inc.Method for guiding a medical device
US822141527 Jul 200717 Jul 2012Medtronic, Inc.Method and apparatus for tissue ablation
US826264927 Jul 200711 Sep 2012Medtronic, Inc.Method and apparatus for tissue ablation
US827307218 Nov 200925 Sep 2012Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US833376412 May 200418 Dic 2012Medtronic, Inc.Device and method for determining tissue thickness and creating cardiac ablation lesions
US840921930 Sep 20092 Abr 2013Medtronic, Inc.Method and system for placement of electrical lead inside heart
US841457311 Oct 20069 Abr 2013Medtronic, Inc.Device and method for ablation of cardiac tissue
US851233720 Ago 200420 Ago 2013Medtronic, Inc.Method and system for treatment of atrial tachyarrhythmias
US856840931 Oct 200729 Oct 2013Medtronic Advanced Energy LlcFluid-assisted medical devices, systems and methods
US86230109 Jun 20097 Ene 2014Medtronic, Inc.Cardiac mapping instrument with shapeable electrode
US863253323 Feb 201021 Ene 2014Medtronic Advanced Energy LlcFluid-assisted electrosurgical device
US866324519 Abr 20074 Mar 2014Medtronic, Inc.Device for occlusion of a left atrial appendage
US870626027 Oct 201122 Abr 2014Medtronic, Inc.Heart wall ablation/mapping catheter and method
US880170714 Ago 201212 Ago 2014Medtronic, Inc.Method and devices for treating atrial fibrillation by mass ablation
US882148813 May 20092 Sep 2014Medtronic, Inc.Tissue lesion evaluation
US89266352 Oct 20096 Ene 2015Medtronic, Inc.Methods and devices for occlusion of an atrial appendage
US911389628 Dic 200725 Ago 2015Medtronic, Inc.Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US92270883 May 20105 Ene 2016Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US938106123 Nov 20115 Jul 2016Medtronic Advanced Energy LlcFluid-assisted medical devices, systems and methods
US948628320 Dic 20138 Nov 2016Medtronic Advanced Energy LlcFluid-assisted electrosurgical device
US96560632 Abr 201323 May 2017Medtronic, Inc.Method and system for placement of electrical lead inside heart
US96938193 Ene 20074 Jul 2017Medtronic, Inc.Vibration sensitive ablation device and method
US97241192 Dic 20158 Ago 2017Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US977028224 Jul 200726 Sep 2017Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US20030191462 *2 Abr 20039 Oct 2003Jacobs Clemens J.Method for interrupting conduction paths within the heart
US20040015219 *3 Feb 200322 Ene 2004Francischelli David E.Device and method for ablation of cardiac tissue
US20040049179 *9 Sep 200311 Mar 2004Francischelli David E.Ablation system
US20040078069 *14 Oct 200322 Abr 2004Francischelli David E.Method and system for treatment of atrial tachyarrhythmias
US20040138621 *14 Ene 200315 Jul 2004Jahns Scott E.Devices and methods for interstitial injection of biologic agents into tissue
US20040138656 *6 Ene 200415 Jul 2004Francischelli David E.System and method for assessing transmurality of ablation lesions
US20040143260 *13 Ene 200422 Jul 2004Francischelli David E.Method and apparatus for tissue ablation
US20040215183 *18 May 200428 Oct 2004Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US20040220560 *29 Abr 20034 Nov 2004Briscoe Roderick E.Endocardial dispersive electrode for use with a monopolar RF ablation pen
US20040236322 *30 Jun 200425 Nov 2004Mulier Peter M.J.Device and method for ablating tissue
US20040267326 *25 May 200430 Dic 2004Ocel Jon MCardiac mapping instrument with shapeable electrode
US20050165392 *3 Dic 200428 Jul 2005Medtronic, Inc.System and method of performing an electrosurgical procedure
US20050256522 *12 May 200417 Nov 2005Medtronic, Inc.Device and method for determining tissue thickness and creating cardiac ablation lesions
US20050267454 *19 Jul 20051 Dic 2005Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20050273006 *26 Abr 20058 Dic 2005Medtronic, Inc.Heart wall ablation/mapping catheter and method
US20060009756 *13 May 200512 Ene 2006Francischelli David EMethod and devices for treating atrial fibrillation by mass ablation
US20060009759 *2 Jun 200512 Ene 2006Chrisitian Steven CLoop ablation apparatus and method
US20060009760 *16 Sep 200512 Ene 2006Medtronic, Inc.Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US20060020263 *2 Jun 200526 Ene 2006Rothstein Paul TClamping ablation tool and method
US20060020271 *17 Jun 200526 Ene 2006Stewart Mark TMethods and devices for occlusion of an atrial appendage
US20060025756 *13 May 20052 Feb 2006Francischelli David EMethods of using high intensity focused ultrasound to form an ablated tissue area
US20060036236 *2 Jun 200516 Feb 2006Rothstein Paul TCompound bipolar ablation device and method
US20060041254 *21 Ene 200523 Feb 2006Medtronic, Inc.Electrosurgical hemostat
US20060052770 *28 Jun 20059 Mar 2006Medtronic, Inc.Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US20060195082 *26 Abr 200631 Ago 2006Francischelli David EMethod and apparatus for tissue ablation
US20060195083 *26 Abr 200631 Ago 2006Jahns Scott EElectrosurgical hemostat
US20060229594 *9 Dic 200512 Oct 2006Medtronic, Inc.Method for guiding a medical device
US20070032786 *11 Oct 20068 Feb 2007Francischelli David EDevice and method for ablation of cardiac tissue
US20070043397 *25 Oct 200622 Feb 2007Ocel Jon MCardiac mapping instrument with shapeable electrode
US20070049923 *31 Ago 20061 Mar 2007Jahns Scott EDevice and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US20070093808 *8 Dic 200626 Abr 2007Mulier Peter M JMethod and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US20070118107 *3 Ene 200724 May 2007Francischelli David EVibration sensitive ablation device and method
US20070270799 *27 Jul 200722 Nov 2007Francischelli David EMethod and apparatus for tissue ablation
US20080015562 *20 Jul 200717 Ene 2008Medtronic, Inc.Transmural ablation systems and methods
US20080039746 *25 May 200714 Feb 2008Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20080071271 *27 Jul 200720 Mar 2008Francischelli David EMethod and apparatus for tissue ablation
US20080091194 *30 Nov 200717 Abr 2008Mulier Peter MHelical coil apparatus for ablation of tissue
US20080275439 *26 Mar 20086 Nov 2008David FrancischelliCardiac ablation and electrical interface system and instrument
US20090138008 *2 Feb 200928 May 2009Medtronic, Inc.Endocardial Dispersive Electrode for Use with a Monopolar RF Ablation Pen
US20090143638 *9 Feb 20094 Jun 2009Medtronic, Inc.Method and System for Organ Positioning and Stabilization
US20090270857 *8 Jul 200929 Oct 2009Christian Steven CAblation Device with Jaws
US20090299365 *13 May 20093 Dic 2009Medtronic , Inc.Tissue Lesion Evaluation
US20090326527 *9 Jun 200931 Dic 2009Ocel Jon MCardiac Mapping Instrument with Shapeable Electrode
US20100042110 *30 Sep 200918 Feb 2010Medtronic, Inc.Method and system for placement of electrical lead inside heart
US20100145361 *2 Oct 200910 Jun 2010Francischelli David EMethods and Devices for Occlusion of an Atrial Appendage
US20100168740 *11 Mar 20101 Jul 2010Medtronic, Inc.Heart Wall Ablation/Mapping Catheter and Method
US20100217162 *3 May 201026 Ago 2010Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20110066146 *14 Sep 201017 Mar 2011Jahns Scott ESuction Stabilized Epicardial Ablation Devices
US20110071519 *14 Jun 201024 Mar 2011Rothstein Paul TClamping Ablation Tool and Method
Clasificaciones
Clasificación de EE.UU.606/26, 62/51.1, 62/293
Clasificación internacionalA61F7/12, A61B18/02
Clasificación cooperativaF25B2309/021, A61F7/12, A61B18/02, F25B2309/022
Clasificación europeaA61F7/12, A61B18/02
Eventos legales
FechaCódigoEventoDescripción
11 Mar 1992AS27Nunc pro tunc assignment
Free format text: FRIGI ACQUISITION, INC. A DE CORP. 770 RIVER ROAD SHELTON, CONNECTICUT 06484 * COOPERVISION, INC. ACORP. OF NEW YORK : 19911004
11 Mar 1992ASAssignment
Owner name: COOPERVISION, INC. A NY CORPORATION, NEW YORK
Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:FRIGI ACQUISITION, INC., A CORPORATION OF DE;REEL/FRAME:006047/0568
Effective date: 19911004
Owner name: FRIGI ACQUISITION, INC., CONNECTICUT
Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:COOPERVISION, INC. A CORP. OF NEW YORK;REEL/FRAME:006047/0578
16 Jul 1990ASAssignment
Owner name: FRIGITRONICS OF CONN., INC.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK COMMERCIAL CORPORATION, THE;REEL/FRAME:005395/0050
Effective date: 19900612
16 Jul 1990AS17Release by secured party
Owner name: BANK OF NEW YORK COMMERCIAL CORPORATION, THE
Effective date: 19900612
Owner name: FRIGITRONICS OF CONN., INC.
28 Mar 1990ASAssignment
Owner name: FRIGI ACQUISITION, INC., 3145 PORTER DRIVE, PALO A
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FRIGITRONICS OF CONN., INC.;REEL/FRAME:005262/0818
Effective date: 19900316
Owner name: FRIGI ACQUISITION, INC., A CORP. OF DE, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FRIGITRONICS OF CONN., INC.;REEL/FRAME:005262/0818
20 May 1988AS02Assignment of assignor's interest
Owner name: FRIGITRONICS INC., A DE CORPORATION
Owner name: FRIGITRONICS OF CONN., INC.
Effective date: 19870724
20 May 1988AS06Security interest
Owner name: BANK OF NEW YORK COMMERCIAL CORPORATION, THE, 530
Owner name: FRIGITRONICS OF CONNECTICUT, INC.,
Effective date: 19870724
20 May 1988ASAssignment
Owner name: BANK OF NEW YORK COMMERCIAL CORPORATION, THE, 530
Free format text: SECURITY INTEREST;ASSIGNOR:FRIGITRONICS OF CONNECTICUT, INC.,;REEL/FRAME:004935/0800
Owner name: FRIGITRONICS INC., A DE CORPORATION
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FRIGITRONICS OF CONN., INC.;REEL/FRAME:004935/0794
Effective date: 19870724
26 Oct 1987ASAssignment
Owner name: FRIGITRONICS OF CONN., INC.
Free format text: MERGER;ASSIGNORS:FRG TWENTY-NINE CORPORATION (MERGED INTO);FRG TWENTY-EIGHT CORPORATION (CHANGED TO);REEL/FRAME:004858/0786
Effective date: 19870126
Owner name: FRIGITRONICS, INC., A CORP. OF DE
Free format text: MERGER;ASSIGNORS:FRIGITRONICS, INC., A CORP. OF CT.;FRIGITRONICS OF CONN., INC., A CORP. OF CT;REEL/FRAME:004858/0780;SIGNING DATES FROM 19680314 TO 19861208