US3811500A - Dual sleeve multiple stage cementer and its method of use in cementing oil and gas well casing - Google Patents

Dual sleeve multiple stage cementer and its method of use in cementing oil and gas well casing Download PDF

Info

Publication number
US3811500A
US3811500A US00294426A US29442672A US3811500A US 3811500 A US3811500 A US 3811500A US 00294426 A US00294426 A US 00294426A US 29442672 A US29442672 A US 29442672A US 3811500 A US3811500 A US 3811500A
Authority
US
United States
Prior art keywords
sleeve
housing
ports
bore
cementing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00294426A
Inventor
O Morrisett
E Baker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Co
Original Assignee
Halliburton Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Co filed Critical Halliburton Co
Priority to US00294426A priority Critical patent/US3811500A/en
Application granted granted Critical
Publication of US3811500A publication Critical patent/US3811500A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/14Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
    • E21B34/142Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools unsupported or free-falling elements, e.g. balls, plugs, darts or pistons
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices, or the like for cementing casings into boreholes
    • E21B33/146Stage cementing, i.e. discharging cement from casing at different levels
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices, or the like for cementing casings into boreholes
    • E21B33/16Methods or devices for cementing, for plugging holes, crevices, or the like for cementing casings into boreholes using plugs for isolating cement charge; Plugs therefor

Definitions

  • ABSTRACT This invention relates to a cementing tool used in oil and gas well multiple stage cementing operations, and more particularly to a cementing tool having an elongated case containing a plurality of ports, and two sliding sleeves within the case. The two sleeves, positioned in tandem relation one with the other, provide fluid tight seals between the ports and the interior of the cementing tool.
  • a multiple stage cementing tool which contains a number of ports thereon, is positioned in the casing string.
  • the first quantity of cement slurry is pumped out into the annular space through the bottom of the casing string and the second quantity is pumped out into the annular space through the ports of the cementing tool.
  • sliding sleeves within the cementing tool keep the ports closed and sealed except during the time said second quantity of cement slurry is being pumped therethrough.
  • the present invention provides a dual sleeve multiple stage cementing tool which comprises an elongated case having a plurality of ports therein, a first sleeve movably positioned in wall to wall engagement within said case and adapted to be shifted from closing said ports, and a second sleeve movably positioned in wall to wall engagement within said case, said second sleeve adapted to close said ports after shifting of said first sleeve therefrom.
  • FIG. 1 is a cross sectional view of the preferred embodiment of the invention.
  • FIGS. 2 and 3 are cross sectional, operational views of the embodiment shown in FIG. 1.
  • Cementing tool 10 includes case 12 whose upper end 14 and lower end 16 are attached to upper and lower casing connectors 18 and 20 respectively via companion threads 22 and 24 respectively.
  • Casing connectors 18- and 20 are in turn attached to casing 26 via companion threads 28.
  • a passageway 29 extends continuously through casing 26, cementing tool 10 and casing connectors 18 and 20.
  • Interior wall 30 of case 12 is smooth except for recesses 32 and 34 located near upper end 14 of case 12, a plurality of ports 36 which penetrate through case 12, a recess 38 on interior wall 30 surrounding ports 36, and recesses 39 and 40 near lower end 16 of case 12.
  • Recess 32 provides a housing for shear pin retaining ring 42.
  • Retaining ring 42 contains a plurality of shear pins, collectively numbered 44, spaced apart equally around the ring and projecting inwardly into corresponding apertures, collectively numbered 46 positioned in the upper end 48 of upper sleeve 50.
  • Upper sleeve 50 is held within case 12 by said shear pins 44 as shown in FIG. 1.
  • the outer wall 52 of sleeve 50 contains a pair of resilient, upper seal rings 54 which are housed in aforementioned recess 34 to equalize pressure between the two sets of seal rings.
  • a second pair of resilient lower seal rings 56 are positioned near lower end 58 of upper sleeve 50.
  • Two expandable steel lock rings 60 are positioned on outer wall 52 between seal rings 54 and 56.
  • Inner wall 64 of upper sleeve 50 is threaded toward lower end 58 to receive an elongated seat 66 which contains beveled surface 66a.
  • a lower sleeve 70 positioned immediately below upper sleeve 50, has upper end 72 and lower end 74.
  • Outer wall 76 of sleeve contains upper seal ring 78 adjacent to upper end 72 and lower seal ring 80 about midway between upper end 72 and lower end 74.
  • the two seal rings, 78 and 80 provide a fluid tight seal between passageway 29 and ports 36 so long as lower sleeve 70 is positioned as shown in FIG. 1.
  • An expandable lock ring 82 located below seal ring 80 on outer wall 76, will be discussed further below.
  • Adjacent to lower end 74 is a flattened; shear ring 84 projecting into aforementioned recess 39 in interior wall 30 of case 12; lower sleeve 70 is retained in the position shown in FIG. 1 by this arrangement.
  • the inside wall 85 ofv lower sleeve 70 is threaded to receive an elongated seat 86 which contains an inwardly and downwardly sloping surface 86a which will be discussed below.
  • FIG. 2 illustrates cementing tool 10, connected to casing 26, emplaced in well bore 100.
  • a first quantity of cement slurry 102 had been pumped down passageway 29 from the surface of well bore (not shown) and into annular space 104 via the bottom of casing 26 (not shown).
  • the volume of slurry 102 was such as to fill the annular space 104 up to point 106 slightly below cementing tool 10.
  • Plug 110 Immediately behind'slurry 102 is a calculated volume of fluid 108 which fills passageway 29 from the bottom of the well up to cementing tool 10. Following fluid 108 down passageway 29 is an opening plug 110 which contains an inwardly and downwardly sloping surface 110a. Plug 110 is described in US. patent application, Ser. No. 136,928 by Morrisett et al., entitled An Oil Well Cementing Plug. As plug 110 drops into seat 86 of lower sleeve 70, surface 1 10a catches on surface 86a of seat 86 so that further independent downwardly movement of plug 110 is arrested. Also, the mating surfaces 86a and 110a provide a fluid tight seal between the portion of passageway 29 above plug 110 from that below.
  • a second volume of fluid 114 is pumped down passageway 29 following plug 110. This fluid presses down on lower sleeve 70 and plug 110 until ring 84 (FIG. 1) shears. Sleeve 70 and plug 110 then move downwardly until lower end 74 of sleeve 70 strikes casing connector 20, halting further downwardly movement.
  • a closing plug 122 having beveled surface 122a thereon, follows behind cement slurry 116.
  • plug 122 having a plurality of resilient wiper blades 123 in contact with the walls defining passageway 29, drives cement slurry 116 downwardly, out through ports 36 and into annular space 118. This event continues until ports 36 are closed as will now be described with reference to FlG. 3.
  • closing plug 122 passes through casing bore 29 and lands in upper sleeve 50 with face 122a of plug 122 abutting face 66a of seat 66. Mating of these two surfaces results in a fluid tight seal across the inner diameter of bore 29.
  • Fluid 124 applies force to plug 122 thereby shearing pins 44 and causing downward movement of sleeve 50 until it contacts rod 111 which passes through the axial center of plug 110 in sealing engagement therewith and which rod is held in place in plug 110 by shear means 113.
  • the second quantity of cement slurry 116 has been placed into annular space 118 from the top of the first quantity of cement 102 up to a height sufficient to complete the cementing of casing 26 into well bore 100.
  • plugs 110 and 122, and seats 66 and 86 in sleeves 50 and 70 respectively are drilled out so that passageway 29 is once again open throughout casing 26.
  • the inner diameters of sleeves 50 and 70 are the same as the inner diameter of casing 26.
  • Another feature of the present invention is the use of large seal rings 54 and 56 on upper sleeve 50. Their use allows a greater clearance between sleeve 50 and interior wall 30 of case 12. The greater clearance will lessen or eliminate the effect of severe tensile and bending loads which may be imposed oncementing tool 10 if it is placed in a well which is extremely slanted from the vertical.
  • Yet another feature of this invention is the placing of the shear pin retaining ring 42 and shear ring 84 in recesses in the interior wall 30 of case 12.
  • Case 12 and sleeves 50 and 70 are made from steel.
  • Seats 66 and 86 are made from aluminum, a material easily drillable.
  • the several seal rings, such as 54 and 56, are made from resilient material such as rubber. Of course other materials may be used but those mentioned above have been found to give excellent results.
  • cementing operations are designed for each individual well so that the physical conditions present in that well can be taken into account. These conditions, such as bottomhole temperature, the presence of a weak, easily fracturable formation, pressures, and so forth, dictate the type of cement slurry to be used and the manner and position that the slurry will be placed in the annular space. For example, a particular cementing operation may require use of two cementing tools in the string'of casing so that three quantities of slurry can be spotted behind the casing with drilling mud separating each quantity. Other examples can be given, however the above suffices to demonstrate that cementing operation described relative to the preferred embodiment is not to be considered as limiting the present invention.
  • tubular cylindrical housing having one or more ports through the wall thereof;
  • opening sleeve means slidably located in said housing, said opening sleeve means being located in a first position covering said one or more ports and slidable to a second position thereby uncovering said one or more ports;
  • first shearable means retaining said opening sleeve means within said housing, said first shearable means comprising an annular shear ring partially inset in an annular grooved recess in the inner wall of said housing, with the remainder of said annular shear ring being inset in an exterior annular recess in said opening sleeve means;
  • second shearable means retaining said closing sleeve means within said housing, said second shearable means comprising an annular shear pin retaining ring concentrically located in an annular space between said closing sleeve means and said housing, with said retaining ring being removably attached to said closing sleeve means by one or more shear pins passing through said ring and into said closing sleeve means, and said retaining ring being unattached to said housing, with downward movement of said ring in said housing being prevented by abutment shoulder means on the interior wall of said housing, said abutment shoulder means arranged to abut the lower edge of said retaining ring, limiting downward movement thereof;
  • opening means providing a differential pressure area across the entire inner bore of said housing; closing means providing a differential pressure area across the entire inner bore of said housing; and said first and second shearable means arranged within said housing so as not to penetrate through the wall thereof.
  • said opening sleeve means and said closing sleeve means each comprise a nondrillable metallic sleeve having an inner bore as large or larger than that of the casing string containing said cementing apparatus;
  • said closing means comprises a second drillable valve seat collar fixedly attached in the interior bore of said closing sleeve nondrillable metallic sleeve and also having a symmetrical beveled inner seat therein and having a bore opening therethrough generally larger than the bore opening through said first drillable valve seat collar.
  • said opening means comprises a first beveled inner seat collar located in said opening sleeve means, said collar adapted to receive and sealingly engage a first cementing plug in said beveled seat thereof, so that when said first cementing plug sealingly engages said first inner seat collar the apparatus is rendered capable of distributing fluidic pressure across the entire inner bore' of said houssaid closing means comprises a second beveled inner seat collar located in said closing sleeve means, said second collar adapted to receive and sealingly engage a second cementing plug, so that when said second cementing plug sealingly engages said second inner seat collar the apparatus is rendered capable of distributing fluidic pressure across the entire inner bore of said housing; said opening sleeve means movable only between a first shearably attached position to a second nonshearably fixed position; and said first cementing plug having pressure relief means therethrough for preventing fluid lock between said first cementing plug and said second cementing plug. 4.
  • a cylindrical nondrillable tubular housing having an inner bore therethrough having a diameter generally larger than the diameter of the bore of the easing string in which it is to be installed;
  • cementing ports through the wall of said housing communicating the inner bore of said housing with the annular area outside said housing;
  • said first sleeve having an inner bore diameter generally equal to or larger than said casing bore diameter; 7 a
  • a first drillable valve seat collar fixedly attached to the interior of said first sleeve and having an open bore therethrough and an upwardly facing inner annular beveled seat therein adapted to sealingly receive a cementing plug;
  • a second nondrillable slidable tubular sleeve located within said housing above said first nondrillable sleeve and having an inner bore diameter generally equal to or larger than that of the well casing and arranged to be above said ports in an initial position and movable to a second position covering said ports;
  • a second drillable valve seat collar fixedly attached to the interior of said second sleeve and having an open bore therethrough larger than that of said first drillable valve seat collar, and an upwardly facing inner annular beveled seat therein adapted to sealingly receive a second cementing plug;

Abstract

This invention relates to a cementing tool used in oil and gas well multiple stage cementing operations, and more particularly to a cementing tool having an elongated case containing a plurality of ports, and two sliding sleeves within the case. The two sleeves, positioned in tandem relation one with the other, provide fluid tight seals between the ports and the interior of the cementing tool.

Description

United States Patent 1191 Morrisett et al. I
[ 1 DUAL SLEEVE MULTIPLE STAGE CEMENTER AND ITS METHOD OF USE IN CEMENTING OIL AND GAS WELL CASING Inventors: O. L. Morrisett; Eugene E. Baker, both of Duncan, Okla.
Assignee: Halliburton Company, Duncan,
Okla.
Filed: Oct. 2, 1972 Appl. No.: 294,426
Related U.S. Application Data Continuation-impart of Ser. No. 139,095, April 30, 1971, abandoned.
U.S. Cl. 166/154, 166/153 Int. Cl E2lb 27/00, E2lb 33/132 Field of Search 166/153, 154, 156, 289,
References Cited UNITED STATES PATENTS 9/1969 Chancellor et al. 166/154 Primary ExaminerStephen J. Novosad Assistant Examiner.lack E. Ebel Attorney, Agent, or Firm-John H. Tregoning [5 7] ABSTRACT This invention relates to a cementing tool used in oil and gas well multiple stage cementing operations, and more particularly to a cementing tool having an elongated case containing a plurality of ports, and two sliding sleeves within the case. The two sleeves, positioned in tandem relation one with the other, provide fluid tight seals between the ports and the interior of the cementing tool.
4 Claims, 3 Drawing Figures PATENTED MAY 21 1974 SHEEI 2 [IF 2 DUAL SLEEVE MULTIPLE STAGE CEMENTER AND ITS METHOD OF USE IN CEMENTING OIL AND GAS WELL CASING CROSS REFERENCES TO RELATED APPLICATIONS This application is a continuation-in-part of an original application of the same title, Ser. No., 139,095, by O. L. Morrisett and Eugene E. Baker, filed Apr. 30, 1971, now abandoned.
BACKGROUND OF THE INVENTION In order to cement a continuous, unbroken string of casing into a well bore in two cementing stages; i.e., placing a second quantity of cement slurry into the annular space above a previously placed first quantity, a multiple stage cementing tool which contains a number of ports thereon, is positioned in the casing string. The first quantity of cement slurry is pumped out into the annular space through the bottom of the casing string and the second quantity is pumped out into the annular space through the ports of the cementing tool. To insure that only the second quantity of cement slurry goes through the ports, sliding sleeves within the cementing tool keep the ports closed and sealed except during the time said second quantity of cement slurry is being pumped therethrough. These sliding sleeves must be fail-proof under all kinds and types of operating conditions and must provide a positive fluid tight seal.
The present invention provides a dual sleeve multiple stage cementing tool which comprises an elongated case having a plurality of ports therein, a first sleeve movably positioned in wall to wall engagement within said case and adapted to be shifted from closing said ports, and a second sleeve movably positioned in wall to wall engagement within said case, said second sleeve adapted to close said ports after shifting of said first sleeve therefrom.
BRIEF DESCRIPTION OF THE DRAWINGS A dual sleeve multiple stage cementing tool for use in cementing casing in oil and gas wells constructed in accordance with a preferred embodiment of the invention is illustrated in the accompanying drawings in which:
FIG. 1 is a cross sectional view of the preferred embodiment of the invention; and
FIGS. 2 and 3 are cross sectional, operational views of the embodiment shown in FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawing and to FIG. 1 in particular, shown therein and generally designated by the reference numeral is a dual sleeve multiple stage cementing tool constructed in accordance with the preferred embodiment of the invention. Cementing tool 10 includes case 12 whose upper end 14 and lower end 16 are attached to upper and lower casing connectors 18 and 20 respectively via companion threads 22 and 24 respectively. Casing connectors 18- and 20are in turn attached to casing 26 via companion threads 28. A passageway 29 extends continuously through casing 26, cementing tool 10 and casing connectors 18 and 20.
Interior wall 30 of case 12 is smooth except for recesses 32 and 34 located near upper end 14 of case 12, a plurality of ports 36 which penetrate through case 12, a recess 38 on interior wall 30 surrounding ports 36, and recesses 39 and 40 near lower end 16 of case 12.
Recess 32 provides a housing for shear pin retaining ring 42. Retaining ring 42 contains a plurality of shear pins, collectively numbered 44, spaced apart equally around the ring and projecting inwardly into corresponding apertures, collectively numbered 46 positioned in the upper end 48 of upper sleeve 50.
Upper sleeve 50 is held within case 12 by said shear pins 44 as shown in FIG. 1. The outer wall 52 of sleeve 50 contains a pair of resilient, upper seal rings 54 which are housed in aforementioned recess 34 to equalize pressure between the two sets of seal rings. A second pair of resilient lower seal rings 56 are positioned near lower end 58 of upper sleeve 50. Two expandable steel lock rings 60 are positioned on outer wall 52 between seal rings 54 and 56.
Inner wall 64 of upper sleeve 50 is threaded toward lower end 58 to receive an elongated seat 66 which contains beveled surface 66a.
A lower sleeve 70, positioned immediately below upper sleeve 50, has upper end 72 and lower end 74. Outer wall 76 of sleeve contains upper seal ring 78 adjacent to upper end 72 and lower seal ring 80 about midway between upper end 72 and lower end 74. The two seal rings, 78 and 80, provide a fluid tight seal between passageway 29 and ports 36 so long as lower sleeve 70 is positioned as shown in FIG. 1. An expandable lock ring 82, located below seal ring 80 on outer wall 76, will be discussed further below. Adjacent to lower end 74 is a flattened; shear ring 84 projecting into aforementioned recess 39 in interior wall 30 of case 12; lower sleeve 70 is retained in the position shown in FIG. 1 by this arrangement.
The inside wall 85 ofv lower sleeve 70 is threaded to receive an elongated seat 86 which contains an inwardly and downwardly sloping surface 86a which will be discussed below.
OPERATION OF THE EMBODIMENT OF FIG. 1
In describing the preferred embodiment of the present invention, reference is now made to FIG. 2 which illustrates cementing tool 10, connected to casing 26, emplaced in well bore 100. A first quantity of cement slurry 102 had been pumped down passageway 29 from the surface of well bore (not shown) and into annular space 104 via the bottom of casing 26 (not shown). For purposes of this illustration the volume of slurry 102 was such as to fill the annular space 104 up to point 106 slightly below cementing tool 10.
Immediately behind'slurry 102 is a calculated volume of fluid 108 which fills passageway 29 from the bottom of the well up to cementing tool 10. Following fluid 108 down passageway 29 is an opening plug 110 which contains an inwardly and downwardly sloping surface 110a. Plug 110 is described in US. patent application, Ser. No. 136,928 by Morrisett et al., entitled An Oil Well Cementing Plug. As plug 110 drops into seat 86 of lower sleeve 70, surface 1 10a catches on surface 86a of seat 86 so that further independent downwardly movement of plug 110 is arrested. Also, the mating surfaces 86a and 110a provide a fluid tight seal between the portion of passageway 29 above plug 110 from that below.
A second volume of fluid 114 is pumped down passageway 29 following plug 110. This fluid presses down on lower sleeve 70 and plug 110 until ring 84 (FIG. 1) shears. Sleeve 70 and plug 110 then move downwardly until lower end 74 of sleeve 70 strikes casing connector 20, halting further downwardly movement.
After sleeve 70 has moved down to the position shown in FIG. 2, upwardly movement can occur but the amount of travel is limited by expandable lock ring 82 on sleeve 70. As the sleeve moves upward, ring 82 would expand into aforementioned recess 40 and catch on the downwardly facing shoulder defined by the recess. Note that recess 40 does not hamper downward movememt of sleeve 70 since the lower shoulder defined by the recess is beveled inwardly and downwardly so as to compress ring 82 back into its recess on sleeve 70.
The downwardly movement of sleeve 70 and plug 110 described above results in the opening of ports 36 to passageway 29. Fluid 1 l4 and the second quantity of cement slurry 116 following fluid l 14 can now flow out from passageway 29 via ports 36 and into annular space 118 which extends upwardly from the top of the first quantity of cement slurry 102 to the surface of the well.
A closing plug 122, having beveled surface 122a thereon, follows behind cement slurry 116. A third volume of fluid, designated at 124 and immediately following plug 122, is pumped down passageway 29 from the surface to force plug 122 downwardly. In turn plug 122, having a plurality of resilient wiper blades 123 in contact with the walls defining passageway 29, drives cement slurry 116 downwardly, out through ports 36 and into annular space 118. This event continues until ports 36 are closed as will now be described with reference to FlG. 3.
In FIGS. 2 and 3, closing plug 122 passes through casing bore 29 and lands in upper sleeve 50 with face 122a of plug 122 abutting face 66a of seat 66. Mating of these two surfaces results in a fluid tight seal across the inner diameter of bore 29. Continued pressure on fluid 124 applies force to plug 122 thereby shearing pins 44 and causing downward movement of sleeve 50 until it contacts rod 111 which passes through the axial center of plug 110 in sealing engagement therewith and which rod is held in place in plug 110 by shear means 113.
Continued fluidic pressure applied to fluid 124 causes further downward movement of sleeve 50 pushing rod 111 downward, shearing means 113, and allow ing rod 111 to drop through the center of plug 110 thereby relieving entrapped fluid pressure between plugs 110 and 122.
Downward movement of plug 122 and sleeve is completed when lower end 58 of sleeve 50 abuts lower sleeve 70 thereby limiting further downward movement. This results in the components being positioned as shown in FIG. 3, with lower seal rings 56 below and upper seal rings 54 above ports 36 so that a fluid tight seal is provided between passageway 29 and ports 26. Double lock rings 60 are positioned in previously mentioned recess 38 so that upward movement of upper sleeve 50 is prevented. Note that as with recess 40, the lower shoulder defined by recess 38 is beveled so asnot to prevent downward movement of sleeve 50.
At the time that ports 36 have been reclosed as described above,:. the second quantity of cement slurry 116 has been placed into annular space 118 from the top of the first quantity of cement 102 up to a height sufficient to complete the cementing of casing 26 into well bore 100. After the cement slurry has set, plugs 110 and 122, and seats 66 and 86 in sleeves 50 and 70 respectively, are drilled out so that passageway 29 is once again open throughout casing 26. Note that one of the features of the present invention is that the inner diameters of sleeves 50 and 70 (after seats 66 and 86 have been drilled out) are the same as the inner diameter of casing 26. Thus, the presence of cementing tool 10. in the string of casing 26 will not hamper passage of oil well tools such as perforating guns, packers, tubing, pumps and so forth through passageway 29 after the cementing operations have been fully completed.
Another feature of the present invention is the use of large seal rings 54 and 56 on upper sleeve 50. Their use allows a greater clearance between sleeve 50 and interior wall 30 of case 12. The greater clearance will lessen or eliminate the effect of severe tensile and bending loads which may be imposed oncementing tool 10 if it is placed in a well which is extremely slanted from the vertical.
Yet another feature of this invention is the placing of the shear pin retaining ring 42 and shear ring 84 in recesses in the interior wall 30 of case 12. By so doing, holes through case 12, which would otherwise be necessary to hold shear pins, are avoided along with the difficulty generally encountered in preventing fluids from leaking therethrough.
Case 12 and sleeves 50 and 70 are made from steel. Seats 66 and 86 are made from aluminum, a material easily drillable. The several seal rings, such as 54 and 56, are made from resilient material such as rubber. Of course other materials may be used but those mentioned above have been found to give excellent results.
The present invention has been described in a cementing operation wherein one cementing tool 10 was employed and wherein cement slurry 102 filled the annular space up to cementing tool 10. However, and as is well known to those skilled in the art, cementing operations are designed for each individual well so that the physical conditions present in that well can be taken into account. These conditions, such as bottomhole temperature, the presence of a weak, easily fracturable formation, pressures, and so forth, dictate the type of cement slurry to be used and the manner and position that the slurry will be placed in the annular space. For example, a particular cementing operation may require use of two cementing tools in the string'of casing so that three quantities of slurry can be spotted behind the casing with drilling mud separating each quantity. Other examples can be given, however the above suffices to demonstrate that cementing operation described relative to the preferred embodiment is not to be considered as limiting the present invention.
Although the invention has been described with reference to the embodiment illustrated, it will be appreciated by those skilled in the art that additions, modifications, substitutions, deletions, and other changes not specifically described may be made which fall within the spirit of the invention as defined in the following claims.
I What is claimed is:
1. Dual sleeve cementing apparatus for multiple stage cementing of a wellbore comprising:
a tubular cylindrical housing having one or more ports through the wall thereof;
opening sleeve means slidably located in said housing, said opening sleeve means being located in a first position covering said one or more ports and slidable to a second position thereby uncovering said one or more ports;
closing sleeve means slidably located in said housing arranged to slide from a first position wherein said one or more ports are not covered by said closing sleeve means to a second position covering said ports;
first shearable means retaining said opening sleeve means within said housing, said first shearable means comprising an annular shear ring partially inset in an annular grooved recess in the inner wall of said housing, with the remainder of said annular shear ring being inset in an exterior annular recess in said opening sleeve means;
second shearable means retaining said closing sleeve means within said housing, said second shearable means comprising an annular shear pin retaining ring concentrically located in an annular space between said closing sleeve means and said housing, with said retaining ring being removably attached to said closing sleeve means by one or more shear pins passing through said ring and into said closing sleeve means, and said retaining ring being unattached to said housing, with downward movement of said ring in said housing being prevented by abutment shoulder means on the interior wall of said housing, said abutment shoulder means arranged to abut the lower edge of said retaining ring, limiting downward movement thereof;
opening means providing a differential pressure area across the entire inner bore of said housing; closing means providing a differential pressure area across the entire inner bore of said housing; and said first and second shearable means arranged within said housing so as not to penetrate through the wall thereof. 2. The apparatus of claim 1 wherein said opening sleeve means and said closing sleeve means each comprise a nondrillable metallic sleeve having an inner bore as large or larger than that of the casing string containing said cementing apparatus;
said opening means comprises a first drillable valve seat collar fixedly attached in the interior bore of said opening sleeve nondrillable metallic sleeve and having a symmetrical beveled inner seat therein and a bore opening therethrough; and
said closing means comprises a second drillable valve seat collar fixedly attached in the interior bore of said closing sleeve nondrillable metallic sleeve and also having a symmetrical beveled inner seat therein and having a bore opening therethrough generally larger than the bore opening through said first drillable valve seat collar.
3. The apparatus of claim 1 wherein said opening means comprises a first beveled inner seat collar located in said opening sleeve means, said collar adapted to receive and sealingly engage a first cementing plug in said beveled seat thereof, so that when said first cementing plug sealingly engages said first inner seat collar the apparatus is rendered capable of distributing fluidic pressure across the entire inner bore' of said houssaid closing means comprises a second beveled inner seat collar located in said closing sleeve means, said second collar adapted to receive and sealingly engage a second cementing plug, so that when said second cementing plug sealingly engages said second inner seat collar the apparatus is rendered capable of distributing fluidic pressure across the entire inner bore of said housing; said opening sleeve means movable only between a first shearably attached position to a second nonshearably fixed position; and said first cementing plug having pressure relief means therethrough for preventing fluid lock between said first cementing plug and said second cementing plug. 4. A dual sleeve oil well cementing valve for installation in a well casing string comprising: a
a cylindrical nondrillable tubular housing having an inner bore therethrough having a diameter generally larger than the diameter of the bore of the easing string in which it is to be installed;
one or more cementing ports through the wall of said housing communicating the inner bore of said housing with the annular area outside said housing;
a first nondrillable slidable tubular sleeve inside said housing arranged to be movable from a first position covering said ports to a second position uncovering said ports;
said first sleeve having an inner bore diameter generally equal to or larger than said casing bore diameter; 7 a
a first drillable valve seat collar fixedly attached to the interior of said first sleeve and having an open bore therethrough and an upwardly facing inner annular beveled seat therein adapted to sealingly receive a cementing plug;
a second nondrillable slidable tubular sleeve located within said housing above said first nondrillable sleeve and having an inner bore diameter generally equal to or larger than that of the well casing and arranged to be above said ports in an initial position and movable to a second position covering said ports;
a second drillable valve seat collar fixedly attached to the interior of said second sleeve and having an open bore therethrough larger than that of said first drillable valve seat collar, and an upwardly facing inner annular beveled seat therein adapted to sealingly receive a second cementing plug;
a shear pin retaining ring annularly located between said housing and said second nondrillable sleeve,
and removably attached to said second sleeve by of said second sleeve; and
locking means between said second sleeve and said housing and arranged to engage an annular recess in said housing in said lower position of said second sleeve thereby preventing upward movement of said second sleeve within said housing.

Claims (4)

1. Dual sleeve cementing apparatus for multiple stage cementing of a wellbore comprising: a tubular cylindrical housing having one or more ports through the wall thereof; opening sleeve means slidably located in said housing, said opening sleeve means being located in a first position covering said one or more ports and slidable to a second position thereby uncovering said one or more ports; closing sleeve means slidably located in said housing arranged to slide from a first position wherein said one or more ports are not covered by said closing sleeve means to a second position covering said ports; first shearable means retaining said opening sleeve means within said housing, said first shearable means comprising an annular shear ring partially inset in an annular grooved recess in the inner wall of said housing, with the remainder of said annular shear ring being inset in an exterior annular recess in said opening sleeve means; second shearable means retaining said closing sleeve means within said housing, said second shearable means comprising an annular shear pin retaining ring concentrically located in an annular space between said closing sleeve means and said housing, with said retaining ring being removably attached to said closing sleeve means by one or more shear pins passing through said ring and into said closing sleeve means, and said retaining ring being unattached to said housing, with downward movement of said ring in said housing being prevented by abutment shoulder means on the interior wall of said housing, said abutment shoulder means arranged to abut the lower edge of said retaining ring, limiting downward movement thereof; opening means providing a differential pressure area across the entire inner bore of said housing; closing means providing a differential pressure area across the entire inner bore of said housing; and said first anD second shearable means arranged within said housing so as not to penetrate through the wall thereof.
2. The apparatus of claim 1 wherein said opening sleeve means and said closing sleeve means each comprise a nondrillable metallic sleeve having an inner bore as large or larger than that of the casing string containing said cementing apparatus; said opening means comprises a first drillable valve seat collar fixedly attached in the interior bore of said opening sleeve nondrillable metallic sleeve and having a symmetrical beveled inner seat therein and a bore opening therethrough; and said closing means comprises a second drillable valve seat collar fixedly attached in the interior bore of said closing sleeve nondrillable metallic sleeve and also having a symmetrical beveled inner seat therein and having a bore opening therethrough generally larger than the bore opening through said first drillable valve seat collar.
3. The apparatus of claim 1 wherein said opening means comprises a first beveled inner seat collar located in said opening sleeve means, said collar adapted to receive and sealingly engage a first cementing plug in said beveled seat thereof, so that when said first cementing plug sealingly engages said first inner seat collar the apparatus is rendered capable of distributing fluidic pressure across the entire inner bore of said housing; said closing means comprises a second beveled inner seat collar located in said closing sleeve means, said second collar adapted to receive and sealingly engage a second cementing plug, so that when said second cementing plug sealingly engages said second inner seat collar the apparatus is rendered capable of distributing fluidic pressure across the entire inner bore of said housing; said opening sleeve means movable only between a first shearably attached position to a second non-shearably fixed position; and said first cementing plug having pressure relief means therethrough for preventing fluid lock between said first cementing plug and said second cementing plug.
4. A dual sleeve oil well cementing valve for installation in a well casing string comprising: a cylindrical nondrillable tubular housing having an inner bore therethrough having a diameter generally larger than the diameter of the bore of the casing string in which it is to be installed; one or more cementing ports through the wall of said housing communicating the inner bore of said housing with the annular area outside said housing; a first nondrillable slidable tubular sleeve inside said housing arranged to be movable from a first position covering said ports to a second position uncovering said ports; said first sleeve having an inner bore diameter generally equal to or larger than said casing bore diameter; a first drillable valve seat collar fixedly attached to the interior of said first sleeve and having an open bore therethrough and an upwardly facing inner annular beveled seat therein adapted to sealingly receive a cementing plug; a second nondrillable slidable tubular sleeve located within said housing above said first nondrillable sleeve and having an inner bore diameter generally equal to or larger than that of the well casing and arranged to be above said ports in an initial position and movable to a second position covering said ports; a second drillable valve seat collar fixedly attached to the interior of said second sleeve and having an open bore therethrough larger than that of said first drillable valve seat collar, and an upwardly facing inner annular beveled seat therein adapted to sealingly receive a second cementing plug; a shear pin retaining ring annularly located between said housing and said second nondrillable sleeve, and removably attached to said second sleeve by one or more shear pins passing through said ring and into said second sleeve; an annular shoulder on the interior wall of said housing below said retaining ring, arranged to abut said ring and limit Downward movement thereof within said housing; an annular shear ring located in annular recesses in said first sleeve and said housing and arranged to temporarily attach said first sleeve to said housing; first seal means between said first sleeve and said housing for selectively preventing fluid communication between said ports and the inner bore of said first sleeve; second seal means between said second sleeve and said housing for selectively preventing fluid communication between said ports and the inner bore of said second sleeve; and locking means between said second sleeve and said housing and arranged to engage an annular recess in said housing in said lower position of said second sleeve thereby preventing upward movement of said second sleeve within said housing.
US00294426A 1971-04-30 1972-10-02 Dual sleeve multiple stage cementer and its method of use in cementing oil and gas well casing Expired - Lifetime US3811500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00294426A US3811500A (en) 1971-04-30 1972-10-02 Dual sleeve multiple stage cementer and its method of use in cementing oil and gas well casing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13909571A 1971-04-30 1971-04-30
US00294426A US3811500A (en) 1971-04-30 1972-10-02 Dual sleeve multiple stage cementer and its method of use in cementing oil and gas well casing

Publications (1)

Publication Number Publication Date
US3811500A true US3811500A (en) 1974-05-21

Family

ID=26836856

Family Applications (1)

Application Number Title Priority Date Filing Date
US00294426A Expired - Lifetime US3811500A (en) 1971-04-30 1972-10-02 Dual sleeve multiple stage cementer and its method of use in cementing oil and gas well casing

Country Status (1)

Country Link
US (1) US3811500A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948322A (en) * 1975-04-23 1976-04-06 Halliburton Company Multiple stage cementing tool with inflation packer and methods of use
US4042014A (en) * 1976-05-10 1977-08-16 Bj-Hughes Inc. Multiple stage cementing of well casing in subsea wells
US4246968A (en) * 1979-10-17 1981-01-27 Halliburton Company Cementing tool with protective sleeve
EP0166568A2 (en) * 1984-06-27 1986-01-02 Halliburton Company Cement collar and method of use
EP0224942A1 (en) * 1985-10-04 1987-06-10 Compagnie Des Services Dowell Schlumberger Stage cementing apparatus
WO1988000275A1 (en) * 1986-07-01 1988-01-14 Bode Robert E Cement control valve device
US4842062A (en) * 1988-02-05 1989-06-27 Weatherford U.S., Inc. Hydraulic lock alleviation device, well cementing stage tool, and related methods
US4850432A (en) * 1988-10-17 1989-07-25 Texaco Inc. Manual port closing tool for well cementing
US4940094A (en) * 1987-08-19 1990-07-10 Institut Francais Du Petrole Method and device to actuate specialized intervention equipment in a drilled well having at least one section highly slanted with respect to a vertical line
US4941535A (en) * 1988-10-17 1990-07-17 Texaco Inc. Manual port closing tool for well cementing
US4949788A (en) * 1989-11-08 1990-08-21 Halliburton Company Well completions using casing valves
US4991654A (en) * 1989-11-08 1991-02-12 Halliburton Company Casing valve
WO1991005134A1 (en) * 1989-10-02 1991-04-18 Davis-Lynch, Inc. Cementing apparatus
US5024273A (en) * 1989-09-29 1991-06-18 Davis-Lynch, Inc. Cementing apparatus and method
US5038862A (en) * 1990-04-25 1991-08-13 Halliburton Company External sleeve cementing tool
US5095992A (en) * 1991-03-22 1992-03-17 Parco Mast And Substructures, Inc. Process for installing casing in a borehole
US5109925A (en) * 1991-01-17 1992-05-05 Halliburton Company Multiple stage inflation packer with secondary opening rupture disc
US5117910A (en) * 1990-12-07 1992-06-02 Halliburton Company Packer for use in, and method of, cementing a tubing string in a well without drillout
US5137087A (en) * 1991-08-07 1992-08-11 Halliburton Company Casing cementer with torque-limiting rotating positioning tool
US5279370A (en) * 1992-08-21 1994-01-18 Halliburton Company Mechanical cementing packer collar
US5299640A (en) * 1992-10-19 1994-04-05 Halliburton Company Knife gate valve stage cementer
US5314015A (en) * 1992-07-31 1994-05-24 Halliburton Company Stage cementer and inflation packer apparatus
US5325917A (en) * 1991-10-21 1994-07-05 Halliburton Company Short stroke casing valve with positioning and jetting tools therefor
US5368098A (en) * 1993-06-23 1994-11-29 Weatherford U.S., Inc. Stage tool
US5381862A (en) * 1993-08-27 1995-01-17 Halliburton Company Coiled tubing operated full opening completion tool system
US5398763A (en) * 1993-03-31 1995-03-21 Halliburton Company Wireline set baffle and method of setting thereof
US5400855A (en) * 1993-01-27 1995-03-28 Halliburton Company Casing inflation packer
US5513703A (en) * 1993-12-08 1996-05-07 Ava International Corporation Methods and apparatus for perforating and treating production zones and otherwise performing related activities within a well
US5615740A (en) * 1995-06-29 1997-04-01 Baroid Technology, Inc. Internal pressure sleeve for use with easily drillable exit ports
US6041855A (en) * 1998-04-23 2000-03-28 Halliburton Energy Services, Inc. High torque pressure sleeve for easily drillable casing exit ports
EP1262629A1 (en) * 2001-05-24 2002-12-04 Halliburton Energy Services, Inc. Slim hole stage cementer and method
WO2010024687A1 (en) * 2008-08-25 2010-03-04 I Tec As Valve for wellbore applications
US20100163253A1 (en) * 2008-12-31 2010-07-01 Caldwell Rebecca M Dual isolation mechanism of cementation port
US20130175040A1 (en) * 2012-01-06 2013-07-11 Baker Hughes Incorporated Dual Inline Sliding Sleeve Valve
US11306562B1 (en) * 2021-04-28 2022-04-19 Weatherford Technology Holdings, Llc Stage tool having composite seats
US11965397B2 (en) * 2022-07-20 2024-04-23 Halliburton Energy Services, Inc. Operating sleeve

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2435016A (en) * 1944-06-05 1948-01-27 Halliburton Oil Well Cementing Multiple stage cementing
US2627314A (en) * 1949-11-14 1953-02-03 Baker Oil Tools Inc Cementing plug and valve device for well casings
US2655216A (en) * 1948-04-23 1953-10-13 Baker Oil Tools Inc Positive shutoff ported casing apparatus
US2928470A (en) * 1956-12-03 1960-03-15 Baker Oil Tools Inc Well cementing apparatus
US2998075A (en) * 1957-07-29 1961-08-29 Baker Oil Tools Inc Subsurface well apparatus
US3338311A (en) * 1964-12-14 1967-08-29 Martin B Conrad Stage cementing collar
US3464493A (en) * 1967-12-26 1969-09-02 Forrest E Chancellor Port collar for well casings and method for packing well bores
US3527297A (en) * 1969-02-17 1970-09-08 Jerry L Pinkard Stage cementer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2435016A (en) * 1944-06-05 1948-01-27 Halliburton Oil Well Cementing Multiple stage cementing
US2655216A (en) * 1948-04-23 1953-10-13 Baker Oil Tools Inc Positive shutoff ported casing apparatus
US2627314A (en) * 1949-11-14 1953-02-03 Baker Oil Tools Inc Cementing plug and valve device for well casings
US2928470A (en) * 1956-12-03 1960-03-15 Baker Oil Tools Inc Well cementing apparatus
US2998075A (en) * 1957-07-29 1961-08-29 Baker Oil Tools Inc Subsurface well apparatus
US3338311A (en) * 1964-12-14 1967-08-29 Martin B Conrad Stage cementing collar
US3464493A (en) * 1967-12-26 1969-09-02 Forrest E Chancellor Port collar for well casings and method for packing well bores
US3527297A (en) * 1969-02-17 1970-09-08 Jerry L Pinkard Stage cementer

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948322A (en) * 1975-04-23 1976-04-06 Halliburton Company Multiple stage cementing tool with inflation packer and methods of use
US4042014A (en) * 1976-05-10 1977-08-16 Bj-Hughes Inc. Multiple stage cementing of well casing in subsea wells
US4246968A (en) * 1979-10-17 1981-01-27 Halliburton Company Cementing tool with protective sleeve
EP0166568A2 (en) * 1984-06-27 1986-01-02 Halliburton Company Cement collar and method of use
EP0166568A3 (en) * 1984-06-27 1987-04-29 Halliburton Company Cement collar and method of use
EP0224942A1 (en) * 1985-10-04 1987-06-10 Compagnie Des Services Dowell Schlumberger Stage cementing apparatus
WO1988000275A1 (en) * 1986-07-01 1988-01-14 Bode Robert E Cement control valve device
US4940094A (en) * 1987-08-19 1990-07-10 Institut Francais Du Petrole Method and device to actuate specialized intervention equipment in a drilled well having at least one section highly slanted with respect to a vertical line
US4842062A (en) * 1988-02-05 1989-06-27 Weatherford U.S., Inc. Hydraulic lock alleviation device, well cementing stage tool, and related methods
EP0327405A1 (en) * 1988-02-05 1989-08-09 WEATHERFORD-PETCO, Inc. Well cementing stage tool and method and device for alleviating a hydraulic lock
US4850432A (en) * 1988-10-17 1989-07-25 Texaco Inc. Manual port closing tool for well cementing
US4941535A (en) * 1988-10-17 1990-07-17 Texaco Inc. Manual port closing tool for well cementing
US5024273A (en) * 1989-09-29 1991-06-18 Davis-Lynch, Inc. Cementing apparatus and method
WO1991005134A1 (en) * 1989-10-02 1991-04-18 Davis-Lynch, Inc. Cementing apparatus
US4949788A (en) * 1989-11-08 1990-08-21 Halliburton Company Well completions using casing valves
US4991654A (en) * 1989-11-08 1991-02-12 Halliburton Company Casing valve
US5038862A (en) * 1990-04-25 1991-08-13 Halliburton Company External sleeve cementing tool
US5117910A (en) * 1990-12-07 1992-06-02 Halliburton Company Packer for use in, and method of, cementing a tubing string in a well without drillout
US5109925A (en) * 1991-01-17 1992-05-05 Halliburton Company Multiple stage inflation packer with secondary opening rupture disc
US5095992A (en) * 1991-03-22 1992-03-17 Parco Mast And Substructures, Inc. Process for installing casing in a borehole
US5137087A (en) * 1991-08-07 1992-08-11 Halliburton Company Casing cementer with torque-limiting rotating positioning tool
US5325917A (en) * 1991-10-21 1994-07-05 Halliburton Company Short stroke casing valve with positioning and jetting tools therefor
US5314015A (en) * 1992-07-31 1994-05-24 Halliburton Company Stage cementer and inflation packer apparatus
US5279370A (en) * 1992-08-21 1994-01-18 Halliburton Company Mechanical cementing packer collar
US5299640A (en) * 1992-10-19 1994-04-05 Halliburton Company Knife gate valve stage cementer
US5400855A (en) * 1993-01-27 1995-03-28 Halliburton Company Casing inflation packer
US5398763A (en) * 1993-03-31 1995-03-21 Halliburton Company Wireline set baffle and method of setting thereof
US5368098A (en) * 1993-06-23 1994-11-29 Weatherford U.S., Inc. Stage tool
US5464062A (en) * 1993-06-23 1995-11-07 Weatherford U.S., Inc. Metal-to-metal sealable port
US5381862A (en) * 1993-08-27 1995-01-17 Halliburton Company Coiled tubing operated full opening completion tool system
US5513703A (en) * 1993-12-08 1996-05-07 Ava International Corporation Methods and apparatus for perforating and treating production zones and otherwise performing related activities within a well
US5615740A (en) * 1995-06-29 1997-04-01 Baroid Technology, Inc. Internal pressure sleeve for use with easily drillable exit ports
US6041855A (en) * 1998-04-23 2000-03-28 Halliburton Energy Services, Inc. High torque pressure sleeve for easily drillable casing exit ports
EP1262629A1 (en) * 2001-05-24 2002-12-04 Halliburton Energy Services, Inc. Slim hole stage cementer and method
US6651743B2 (en) * 2001-05-24 2003-11-25 Halliburton Energy Services, Inc. Slim hole stage cementer and method
WO2010024687A1 (en) * 2008-08-25 2010-03-04 I Tec As Valve for wellbore applications
US20110204273A1 (en) * 2008-08-25 2011-08-25 I-Tec As Valve for Wellbore Applications
US8776888B2 (en) 2008-08-25 2014-07-15 I-Tec As Valve for wellbore applications
EP2318644A4 (en) * 2008-08-25 2017-09-13 I-Tec As Valve for wellbore applications
US20100163253A1 (en) * 2008-12-31 2010-07-01 Caldwell Rebecca M Dual isolation mechanism of cementation port
US8727026B2 (en) * 2008-12-31 2014-05-20 Weatherford/Lamb, Inc. Dual isolation mechanism of cementation port
US20130175040A1 (en) * 2012-01-06 2013-07-11 Baker Hughes Incorporated Dual Inline Sliding Sleeve Valve
US8800661B2 (en) * 2012-01-06 2014-08-12 Baker Hughes Incorporated Dual inline sliding sleeve valve
US11306562B1 (en) * 2021-04-28 2022-04-19 Weatherford Technology Holdings, Llc Stage tool having composite seats
US11965397B2 (en) * 2022-07-20 2024-04-23 Halliburton Energy Services, Inc. Operating sleeve

Similar Documents

Publication Publication Date Title
US3811500A (en) Dual sleeve multiple stage cementer and its method of use in cementing oil and gas well casing
US3768556A (en) Cementing tool
US3163225A (en) Well packers
US3395758A (en) Lateral flow duct and flow control device for wells
US5314015A (en) Stage cementer and inflation packer apparatus
US3375874A (en) Subsurface well control apparatus
US2925865A (en) Full flow packer cementing shoe
US4524825A (en) Well packer
US4421165A (en) Multiple stage cementer and casing inflation packer
EP0774564B1 (en) Well casing fill apparatus and method
US3356140A (en) Subsurface well bore fluid flow control apparatus
US4246968A (en) Cementing tool with protective sleeve
US5526878A (en) Stage cementer with integral inflation packer
US6997252B2 (en) Hydraulic setting tool for packers
US2251977A (en) Well cementing apparatus
US3228473A (en) Cementing collar and means for actuating same
US3570595A (en) Hydraulically operable valves
US3223160A (en) Cementing apparatus
US7363981B2 (en) Seal stack for sliding sleeve
US3260309A (en) Liner cementing apparatus
US3361209A (en) Well packer
US3221818A (en) Fluid pressure actuated well packer
US3119450A (en) Plural well packers
US2488819A (en) Cementing equipment
US3215207A (en) Well tools