US3813772A - Method of forming steel supported aluminum overhead conductors - Google Patents

Method of forming steel supported aluminum overhead conductors Download PDF

Info

Publication number
US3813772A
US3813772A US00280161A US28016172A US3813772A US 3813772 A US3813772 A US 3813772A US 00280161 A US00280161 A US 00280161A US 28016172 A US28016172 A US 28016172A US 3813772 A US3813772 A US 3813772A
Authority
US
United States
Prior art keywords
aluminum
conductor
steel
wires
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00280161A
Inventor
H Adams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reynolds Metals Co
Original Assignee
Reynolds Metals Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reynolds Metals Co filed Critical Reynolds Metals Co
Priority to US00280161A priority Critical patent/US3813772A/en
Application granted granted Critical
Publication of US3813772A publication Critical patent/US3813772A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • H01B13/0235Stranding-up by a twisting device situated between a pay-off device and a take-up device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • H01B5/10Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material
    • H01B5/102Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core
    • H01B5/104Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core composed of metallic wires, e.g. steel wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49194Assembling elongated conductors, e.g., splicing, etc.
    • Y10T29/49201Assembling elongated conductors, e.g., splicing, etc. with overlapping orienting

Definitions

  • I Strips, wires or rods are Stranded over the cable; integral tubes are extruded over the cable or folded ov er the cable from a broad strip and longitudinally welded.
  • Soft aluminum wires may be Stranded radially between the steel cable and the hard-drawn aluminum conductor, then crushed by the application of radial pressure to provide internal Space between the aluminum covered steel core and the hard-drawn aluminum conductor.
  • Substantially all mechanical tension on the steel supported aluminum overhead conductor is borne by the Steel cable and the conductor is largely immune to hazards of galloping, aeolian vibration, loss of strength as a result of high operating temperatures, and creep at normal and high operating temperatures.
  • Creep or inelastic elongation, of aluminum wires that takes place over a relatively long period of time.
  • the rate of creep is a function of time, temperature, stress, and of the amount of prior creep at any given point in time. Creep causes an increase in conductor sag and can result in problems with electrical clearances.
  • Some expanded ASCR conductors incorporate nonmetallic filler or hollow metallic tubes between the central steel strand(s) and the radially distributed aluminum strands.
  • Other expanded ACSR conductors employ aluminum wires stranded over a steel tube.
  • the conductors disclosed herein each comprise a hollow tube of aluminum supported on a steel cable received within the tube.
  • the steel cable has a smaller outside diameter than the inside diameter of the aluminum tube.
  • the latter need not be integral; it may be fabricated from flat strips, wires or rods, shaped or round. Strips, wires or rods maybe stranded over the steel cable; integral tubes may be extruded over the steel cable or folded over the cable from a broad strip and'longitudinally welded.
  • Soft aluminum wires may be stranded radially between the steel cable and overlaying hard-drawn aluminum conductor, then crushed by the application of radial pressure to provide internal space between the aluminum covered steel core and thehard-drawn aluminum conductor.
  • This necessary compensation can be provided for by designing the conductor so that an axial elongation of the helix of stranded aluminum wires or elements of whatever shape of 0.41 percent can take place without introducing consequential tension in the aluminum wires or elements.
  • the relationship between the axial length of a stranded conductor and the length of an individual element in its helix is such that, unless the element itself is stretched, any lengthening of the helix must be accompanied by a reduction in the diameter of the helix. Means must be provided, therefore, for appropriate reduction in the diameters of the helices of aluminum wires or elements as the helices are lengthened.
  • alternate layers of the conductors are of opposite-sense pitch of counterbalance the torque in each layer that tends to unwind the helices when tension is applied, and to counterbalance internal magnetic effectscaused by electrical current in each layer. This also simplifies manufacturing operations.
  • the problem of torque is minimized by the conductor of the invention. Pitch angles for the helices may be critically established in relation to wire (round, keystone, flat or otherwise) dimensions so that wires do not crowd each other as the helices'are stretched and their diameters reduced.
  • the aluminum must not press tightly over the steel reinforcement. This can be accomplished by employing trapezoidally shaped aluminum wires for the innermost layer. With wires so shaped, the radial compressive force resulting from tension is carried by the keystone effect in a circumferential direction. The effect is, therefore, that of a tube which will not collapse and bear upon the underlying steel reinforcement. This tube, if made large enough, may serve as a means for producing an expanded, hollow (except for the steel reinforcing) conductor.
  • the shaped wires in the inner layer can also function to provide for the required reduction in diameter referred to above. This can be done by employing soft annealed wires for this layer, or by modifying the shape so that distortion takes place at a relatively low tension level. This will allow the inner layer to collapse to a smaller diameter as tension is applied, but not to such a degree that it will bear upon the steel.
  • the entire conductor may be impregnated with a suitable grease to preclude the entry of moisture.
  • the grease may be employed simply as a coating on individual wires or as a means to fill up the voids in the interstices and thus to preclude the entry of moisture. However, it is not necessary or possible to keep all of the internal voids filled with grease.
  • Another advantage of the conductor construction of the present invention is that aeolian vibration and galloping are inhibited. This is believed to be because the absence of consequential radial force permits the maximum amount of conductor self damping by interstrand friction at all frequencies and amplitudes.
  • Another advantage is that the full strength of the steel reinforcing wires can be utilized.
  • Conventional conductors utilize only the strength of the steel at 1 percent extension because of the elongation limitations of hard drawn aluminum wires.
  • Another advantage is that computations of sags and tensions are greatly simplified by the elimination of factors such as stress distribution between different materials, difierences in thermal coefficients of expansion, creep of aluminum, loss of strength due to elevated temperature, maximum operating temperature based upon possible conductor damage, tension limitations based upon aeolian vibration and galloping considerations.
  • Such a conductor will permit the maximum tension limitation to be based solely on safety factors judged suitable under maximum ice and wind loading.
  • the maximum operating temperature can be established as the temperature at which sags are the same as under maximum ice and wind loading.
  • the conductor of this invention can include a plastic filler, either metallic or nonmetallic, that would collapse, or could be caused to collapse, to provide the required tube to core spacing in the field, before the conductor is placed in service. Another reason for introducing the space during stringing rather than at the factor would be to avoid the possibility of traffic damage from chafing.
  • objects of the invention include:
  • the tubular aluminum conductor desirably possesses the following characteristics: i
  • the inside diameter of the tube is larger than the outside diameter of the steel cable positioned inside of the tube.
  • the tube has sufficient radial stability to provide a base for overlying layers of wires, strips or rods during fabrication and during stringing.
  • the tube is capable of being elongated by approximately 0.50 percent at a very low level of longitudinal stress.
  • the length of lay of the helix is as long as practicable.
  • the reduction in diameter of the tube upon elongation is sufficient to allow overlying layers of helices to elongate an equal amount without developing consequential levels of stress.
  • the tube has an essentially round cross section, with no protruding irregularities either inside or outside.
  • Rotary and smoothness of a surface is a factor that influences the voltage gradient in the air immediately surrounding a conductor. This, in turn, is a factor that influences corona discharges and associated radio interference. Any distortion will cause the radius at various positions around the periphery to vary, and possibly [but not necessarily] to introduce corona and radio interference phenomena. A small degree of distortion can be tolerated depending upon conductor size and voltage. If conductors are produced in a plant with the internal space between the core and tubular conductor, they may be distorted when placed on reels. If this distortion is all elastic in nature, however, it disappears when the conductor is strung. On the other hand, if internal space is introduced during stringing [for example, as by the use of pressure rolls as discussed below respecting FIGS. 9 and this potential problem is eliminated.)
  • the tube must have sufficient flexibility to accommodate field stringing operations.
  • FIG. 1 is a transverse cross-sectional view of a steel supported aluminum overhead conductor incorporating aluminum strips;
  • FIG. 2 is a fragmentary elevational view of the conductor of FIG. 1 with layers progressively cut away to expose constructional details;
  • FIG. 3 is a schematic representation of equipment for manufacturing the conductor of FIGS. 1 and 2;
  • FIG. 4 is a fragmentary, partly cut away top plan view of the closure die region of the equipment of FIG. 3;
  • FIG. 5 is an end elevational view of a portion of the equipment of FIG. 3 showing the spatial relation of the forming rolls-for the first aluminum strip layer to the conductor undergoing manufacture;
  • FIG. 6 is a transverse cross-sectional view of a steel supported aluminum overhead conductor incorporating an integral aluminum tube
  • FIG. 7 is a transverse cross-sectional view of a steel supported aluminum overhead conductor incorporating an aluminum tube welded longitudinally from FIG. 8 is a transverse cross-sectional view of a steel supported aluminum overhead conductor incorporating stranded trapezoidally shaped aluminum wire;
  • FIG. 9 is a transverse cross-sectional view of a steel supported aluminum overhead conductor incorporating stranded aluminum wire over softaluminum filler wires in an as-stranded condition;
  • FIG. 10 is a transverse cross-sectional view of the conductor of FIG. 9 after the soft aluminum filler has been crushed between the steel core and overlying hard aluminum wires;
  • FIG. 11 is a transverse cross-sectional view of a steel supported aluminum overhead conductor similar to FIG. 10, but wherein the post stranding deformation is of a plastic filler.
  • a steel supported aluminum overhead conductor 10 comprising a steel core 12 and a tubular aluminum conductor 14 received over the core 12.
  • the tubular aluminum conductor is fabricated from two superimposed layers l6, 18 of helically wound layers of aluminum strip stock 20.
  • the steel core 12 is preferably made of stranded steel wires. They may be identical in composition and fabrication to the cores used in standard ACSR conductors, see ASTM specification B232 Aluminum Conductors, Steel Reinforced, Concentric-Lay Stranded (ACSR)," ASTM specification B341 Aluminum-Coated (Aluminized) Steel Core Wire for Aluminum Conductors, Steel Reinforced (ACSR), ASTM specification B502 Aluminum-Clad Steel Core Wire for Aluminum Conductors, Aluminum-Clad Steel Reinforced (ACSR- /AW) and ASTM specification B498 Zinc-Coated (Galvanized) Steel Core Wire for Aluminum Conductors, Steel Reinforced (ACSR).'They may also be of material having properties especially suitable to the disclosure, for example, higher strength than required by the ASTM specifications.
  • the steel core 12 consists of seven 0.1329 diameter steel strands 22 helically stranded to produce a core having an CD. of 0.399 inches. (This is the same core as is found in 954 MCM 54/7 ACSR Cardinal conductor manufactured by Reynolds Metals Company of Richmond, Virginia.)
  • the first, inner layer of the tubular aluminum conductor is provided by three helically stranded, rounded edged aluminum strips each 0.1 inch thick and 0.6 inch wide, this layer having an internal diameter of 0.50 inch, an external diameter of 0.70 inch and a pitch of 7.2 inches.
  • the second, outer layer of the tubular aluminum conductor is helically stranded immediately upon the first, in an opposite helical sense, and consists of four, round edged aluminum strips each 0.1 inch thick and 0.6 inch wide, this layer having an internal diameter of 0.70 inch, an external diameter of 0.90 inch and a pitch of 9.6 inches.
  • the strips of aluminum are curved about the longitudinal axis of the tubular aluminum conductor so that each is arcuate as seen in transverse cross section.
  • the constructions in accordance with the invention utilize a solid aluminum jacket over the steel core for the conductor.
  • the rated strengths were calculated on the basis of the strength of steel at 205,000 psi and of aluminum at 9,000 psi. This assumes that the stretch of the steel will be sufficient to cause load to be borne by the aluminum before break TABLE II.COMPARISON OF VARIOUS STEEL SUPPORTED CONDUCTORS Conductor size and type 7X.165 477 MOM 795 MCM 1,272 MCM 01 strand Proper y 0 .15 30/7 ACSR .25 54/7 ACSR .35 45/7 ACSR .45 all Steel area, sq.
  • the strips 20 are preferably of EC-H19 aluminum, although other tempers and aluminum alloys, eg 5005 or 6201 could beemployed.
  • the layer 16 could be formed from a greater or a lesser number of strips 20.
  • the following table relates to a layer 16 consisting of two The layer 16 of Table I may be stranded over the same 0.399 inch O.D. steel core as described above and an outer aluminum layer 18 of opposite helical sense may be laid directly on the layer 16 of this alternative example.
  • FIGS. 3-5 The representative equipment shown in FIGS. 3-5 for fabricating the steel supported aluminum overhead conductor of FIGS. 1 and 2 is provided with appropriate legends to enable those skilled in the art to rapidly grasp the salient features of its construction and manner of operation.
  • FIG. 8 there may be used, upon a 7 X 0.1489 inch helically stranded steel core 12 having an outer diameter of 0.4467 inch, a tube of aluminum 27 having an inside diameter, when elongated 0.45 percent, of 0.4767 inch and consisting of 10 trapezoidally shaped wires 29 having a thickness of 0.20 inch.
  • Other dimensions of the tube, assuming a stretch of 0.45 percent are as follgw s sion of wire to permit stretching
  • the tube using trapezoidally shaped wires is ensuring that, when stranded, the
  • FIG. 6 there is shown a steel supported aluminum overhead conductor which in cludes a steel core 12 as described above in relation to FIGS. 1 and 2, and a tubular aluminum conductor 32 extruded in an integral condition over the core.
  • Exemplary values for the conductor 30 are provided in Table TABLE IV As When Crushed or Fabricated Elongated 0.45% (inches) (inches Core outside diameter 0.450 0.450 Tube Thickness 0.1053 Approx. 0.1053 Tube inside diameter 0.500 Approx. 0.450 Tube outside diameter 0.7105 Approx. 0.6605 Tube outside circumference 2.232 Approx. 2.073
  • tubular aluminum conductor 42 is provided for the steel supported aluminum overhead conductor 40 by wrapping a single broad strip 44 about the core 12 and welding its formerly laterally, opposite edges to one another at 46 utilizing conventional welding equipment and techniques.
  • Exemplary values for the conductor 40 are the same as in Table IV, g t s
  • soft, annealed aluminum wires 52 are stranded directly upon the core 12.
  • layer(s) of harder aluminum wires 54 are helically stranded upon the soft aluminum wire layerQTh'e conductor 50 is shipped to where it is to be strung in this condition.
  • the conductor 50 is run between pressure rolls applied to the exterior of the completely fabricated article.
  • the harder wires 54 are elastically formed by the pressure rolls, but the softer underlying wires 52 are crushed into greater conformance, with interstitial saase ia.tltsssitel a d i hardtaluminum Wires 54.
  • the crushed wires 52 remain engaging the core 12 and the desired space 56 is provided between the composite core 12, 52 and the overlying tubular aluminum conductor 54.
  • the conductor 50 looks and behaves much like a conventional conductor in the plantandon shipping reels. After pressure crushing, during stringing, the gap 56 allows sufficient space for attendant reduction in diameter of the helical layer(s) of wires 54. Exemplary characteristics of a steel supported aluminum overhead conductor constructed in accordance with the embodiment of FIGS. 9 and 10 are presented in Table VIII.
  • integral or welded tubes, wire and strip may all alternatively be used in the fabrication of conductor in accordance with the invention disclosed in this document.
  • the particular mode which would be preferable at any given point in time would be the one that could most economically be produced at that time or meet other considerations of design prejudice.
  • One of the features of the conductor of the invention is that the basic requirement for conventional conductors that aluminum wires have the maximum possible strength has been eliminated. This ,makespossible the consideration of' materials other than hard drawn round wires that maybe produced by various processes. Combinations certainly are possible.
  • the soft aluminum wires referred to above in respect to FIGS. 9 and 10 could be replaced by an extruded equally crushable jacket of soft aluminum.
  • the top inside of the tubular aluminum conductor will definitely touch the top of the outside of the core and the core will not be precisely centered. This will result in some asymmetry of the magnetic fields caused by electric current.
  • the degree of asymmetry should be quite small, however, and there should be no consequential problem.
  • There is no significant sag to noncircular shape of the tubular aluminum conductor because'of its resting on the core when the conductor is fabricated in accordance with the invention, as described hereinabove, and strung in accordance with sensibleprocedures.
  • a method for manufacturing steel supported aluminum overhead conductor comprising providing a steel core, forming an intermediate layer of soft aluminum upon the steel core, fabricating a tubular aluminum conductor about said intermediate layer of soft

Abstract

The conductors disclosed herein each comprise a hollow tube of aluminum supported on a steel cable received within the tube. The cable has a smaller outside diameter than the inside diameter of the aluminum tube. The latter need not be integral; it may be fabricated from flat strips, wires or rods, shaped or round. Strips, wires or rods are stranded over the cable; integral tubes are extruded over the cable or folded over the cable from a broad strip and longitudinally welded. Soft aluminum wires may be stranded radially between the steel cable and the hard-drawn aluminum conductor, then crushed by the application of radial pressure to provide internal space between the aluminum covered steel core and the hard-drawn aluminum conductor. Under operating conditions, substantially all mechanical tension on the steel supported aluminum overhead conductor is borne by the steel cable and the conductor is largely immune to hazards of galloping, aeolian vibration, loss of strength as a result of high operating temperatures, and creep at normal and high operating temperatures.

Description

Adams UnitedStates Patent 9 v [111 3,813,772 [4 June 4, 1974 [54] METHOD OF FORMING STEEL SUPPORTED ALUMINUM OVERHEAD CONDUCTORS [75] inventor: Harold W. Adams, Richmond, Va.
[73] Assignee: Reynolds Metals Company,
Richmond, Va.
22 Filed: Aug. 14,1972
211 App]. No.: 280,161
Related US. Application Data [62] Division of Ser. No. 51,128, June 30, 1970,
abandoned.
521 u.s.c1 29/624,57/160, 57/161, 174/102 R, l74/l08 511 1111.0. ..ll0lb13/26' [58] Field of Search 156/47, 49, 50-56;
29/624, 203 C, 202.5, 505, 429, 435, 473.9, 474.]; l74/l02 R, 102 C, 102 D, 103, 105 R, I06 R, 106 D, 108, 128, 13 D, 126 CP, 40, 42; 57/160, l6], l5, 3, 6, 9,138,139,144,
[56] References Cited UNITED STATES PATENTS 3,378,63l 4/l968 Edwards 174/42 X 3,445,586 5/l969 Edwards et al. 174/42 X Primary Examiner Charles W..Lanham Assistant Examiner-Joseph A. Walkowski Attorney, Agent, or Firm-Glenn, Palmer, Lyne Gibbs 57 ABSTRACT The conductors disclosed herein each comprise a hollow tube of aluminum supported on a steel cable received within the tube. The cable has a Smaller outside diameter than the inside diameter of the aluminum tube. The latter need not be integral; it may be fabricated from flat Strips, wires or rods, shaped or round.
I Strips, wires or rods are Stranded over the cable; integral tubes are extruded over the cable or folded ov er the cable from a broad strip and longitudinally welded. Soft aluminum wires may be Stranded radially between the steel cable and the hard-drawn aluminum conductor, then crushed by the application of radial pressure to provide internal Space between the aluminum covered steel core and the hard-drawn aluminum conductor. Under operating conditions, Substantially all mechanical tension on the steel supported aluminum overhead conductor is borne by the Steel cable and the conductor is largely immune to hazards of galloping, aeolian vibration, loss of strength as a result of high operating temperatures, and creep at normal and high operating temperatures.
1 Claim, 11 Drawing Figures l METHOD OF FORMING STEEL SUPPORTED ALUMINUM OVERHEAD CONDUCTORS This is a division, of application Ser. No. 51,128 filed June 30, 1970 and now abandoned.
BACKGROUND OF THE INVENTION age of aluminum wires. Tension limitations based upon aeolian vibration considerations are principal parameters in overhead line design. (Aeolian vibration is a relatively high frequency,,low amplitude resonant oscillation that is normally caused by winds from about 3 to miles per hour. Amplitudes of aeolian vibration are less than the conductor diameter. Galloping is a low frequency, large amplitude phenomena. Most usually it occurs when an ice formation on the conductor causes the overall cross section to assume the shape of an air foil, so there is an actual lift of the conductor by the wind. Amplitudes of galloping can be several feet.)
2. High operating temperatures resulting from heavy electrical loads which can result in the partial annealing of aluminum wires. High operating temperatures, especially during emergencies, become an increasingly important factor as system capacities are progressively enlarged.
3. Creep, or inelastic elongation, of aluminum wires that takes place over a relatively long period of time. The rate of creep is a function of time, temperature, stress, and of the amount of prior creep at any given point in time. Creep causes an increase in conductor sag and can result in problems with electrical clearances.
The principle ofproviding aluminum upon steel as an overhead conductor has been widely used in recognition of the current carrying capacity of the former and the strength of the latter. The designation by which this kind of conductor is, usually knownin' technical and trade literature is ACSR" forAluminum Conductor,- Steel Reinforced. However, with conventional steel reinforced conductors, tension is borne by the aluminum wires in all circumstances, except sometimes at high temperatures. The proportionate tension borne by aluminum and steel wires is primarily a function of temperature of operation (aluminum expands and contracts approximately twice as much as steel with changes in temperature) and of the amount of creep occurring in the aluminum. Sometimes conductors are prestressed during stringing to accelerate the creep of the aluminum wires, but this does not eliminate tension in them. I
Conventional accessories such as dead ends, jumper terminals, splice connectors, armor rods, jumper filler rods, come alongs, socks, grading rings, suspension clamps, stringing sheaves and the like used in the stringing, cutting, sagging, terminating and splicing of ACSR and expanded ACSR conductors do not disturb the relative positions of the aluminum and steel strands of the conductors and so do not significantly affect the division of tension between-the aluminum and steel portions of the conductors. When tension is applied to a long length of conventional steel reinforced aluminum conductor having such fittings on each end, both the aluminum and steel components are stretched equally and by an amount proportional to the average,
or virtual modulus of elasticity. This, in turn, results in substantial stresses in both the alunimum and stee components of conventional conductors.
' Some expanded ASCR conductors incorporate nonmetallic filler or hollow metallic tubes between the central steel strand(s) and the radially distributed aluminum strands. Other expanded ACSR conductors employ aluminum wires stranded over a steel tube.
lnexpanded ACSR constructions which incorporate paper filler for expansion, there remains a need for conductor-metal contact throughout the diameter of the line. This is needed to preclude the development of voltage differentials that might result in arcing that could destroy the paper filler.
' A feature common to all the expanded types of conductor, is that there is always a solid underlying base to support'the radial pressures of overlying layers of wires.
It is, therefore, impossible for the helices of the overlying wires to contract as they must to preventthe development of consequential tension in the wires.
SUMMARY OF THE INVENTION The conductors disclosed herein each comprise a hollow tube of aluminum supported on a steel cable received within the tube. The steel cable has a smaller outside diameter than the inside diameter of the aluminum tube. The latter need not be integral; it may be fabricated from flat strips, wires or rods, shaped or round. Strips, wires or rods maybe stranded over the steel cable; integral tubes may be extruded over the steel cable or folded over the cable from a broad strip and'longitudinally welded. Soft aluminum wires may be stranded radially between the steel cable and overlaying hard-drawn aluminum conductor, then crushed by the application of radial pressure to provide internal space between the aluminum covered steel core and thehard-drawn aluminum conductor. Under operating conditions, substantially all mechanical tension on the steel supported aluminum overhead conductor is borne by .the steel cable and theconductor is-largely immune to hazards of galloping, aeolian vibration,- loss of strength as aresult of high operating temperatures, and creep at normal and high operating temperatures.
- There are threere'asons why this is so. First, relative to aluminum wires, steel wires are much more resistant to vibration damage, are not adversely affected by operating temperatures that cause partial annealing of aluminum wires, and have a very 'low creep rate throughout the operating temperature spectrum. Second, with little or no mechanical stress on the aluminum, fatigue of the aluminum is not likely to occur. Third, since there is no reliance on the strength of aluof its rated strength plus the difference in length between steel and aluminum caused bya temperature change of about 60 F. The amounts are approximately:
Steel Stretch 100,000 psi/27,000,000 0.0037 inch/inch Temp. Diff. (60) (0.0000l28-.0000064) 0.0004
inch/inch TOTAL 0.004l inch/inch The need to compensate for this difference is illustrated by the fact that in a 10,000 foot length of conductor on a reel the total amount of differential elongation is about 10,000 X 0.0041 41 feet.
This necessary compensation can be provided for by designing the conductor so that an axial elongation of the helix of stranded aluminum wires or elements of whatever shape of 0.41 percent can take place without introducing consequential tension in the aluminum wires or elements. The relationship between the axial length of a stranded conductor and the length of an individual element in its helix is such that, unless the element itself is stretched, any lengthening of the helix must be accompanied by a reduction in the diameter of the helix. Means must be provided, therefore, for appropriate reduction in the diameters of the helices of aluminum wires or elements as the helices are lengthened.
Where the conductor is of multi-layer construction, alternate layers of the conductors are of opposite-sense pitch of counterbalance the torque in each layer that tends to unwind the helices when tension is applied, and to counterbalance internal magnetic effectscaused by electrical current in each layer. This also simplifies manufacturing operations. The problem of torque is minimized by the conductor of the invention. Pitch angles for the helices may be critically established in relation to wire (round, keystone, flat or otherwise) dimensions so that wires do not crowd each other as the helices'are stretched and their diameters reduced.
ln order for consequential stresses not be transferred from the steel to the aluminum during changes in tension and temperature, the aluminum must not press tightly over the steel reinforcement. This can be accomplished by employing trapezoidally shaped aluminum wires for the innermost layer. With wires so shaped, the radial compressive force resulting from tension is carried by the keystone effect in a circumferential direction. The effect is, therefore, that of a tube which will not collapse and bear upon the underlying steel reinforcement. This tube, if made large enough, may serve as a means for producing an expanded, hollow (except for the steel reinforcing) conductor.
the shaped wires in the inner layer can also function to provide for the required reduction in diameter referred to above. This can be done by employing soft annealed wires for this layer, or by modifying the shape so that distortion takes place at a relatively low tension level. This will allow the inner layer to collapse to a smaller diameter as tension is applied, but not to such a degree that it will bear upon the steel.
Since there is no utilization of the strength of aluminum wires, there is no requirement for a hard temper for them. This may result in decreased cost of manufacturing and in an increase in conductivity when wires of a softer temper are used. It may also permit the use of trapezoidally shaped wires or round wires of larger diameter than conventionally employed.
To reduce any possibility of corrosion, the entire conductor may be impregnated with a suitable grease to preclude the entry of moisture. The grease may be employed simply as a coating on individual wires or as a means to fill up the voids in the interstices and thus to preclude the entry of moisture. However, it is not necessary or possible to keep all of the internal voids filled with grease.
Another advantage of the conductor construction of the present invention is that aeolian vibration and galloping are inhibited. This is believed to be because the absence of consequential radial force permits the maximum amount of conductor self damping by interstrand friction at all frequencies and amplitudes.
Another advantage is that the full strength of the steel reinforcing wires can be utilized. Conventional conductors utilize only the strength of the steel at 1 percent extension because of the elongation limitations of hard drawn aluminum wires.
Another advantage is that computations of sags and tensions are greatly simplified by the elimination of factors such as stress distribution between different materials, difierences in thermal coefficients of expansion, creep of aluminum, loss of strength due to elevated temperature, maximum operating temperature based upon possible conductor damage, tension limitations based upon aeolian vibration and galloping considerations. Such a conductor will permit the maximum tension limitation to be based solely on safety factors judged suitable under maximum ice and wind loading. Also the maximum operating temperature can be established as the temperature at which sags are the same as under maximum ice and wind loading.
The conductor of this invention can include a plastic filler, either metallic or nonmetallic, that would collapse, or could be caused to collapse, to provide the required tube to core spacing in the field, before the conductor is placed in service. Another reason for introducing the space during stringing rather than at the factor would be to avoid the possibility of traffic damage from chafing.
While it would be desirable to have zero stress in the aluminum conductor of the invention at all times, practical manufacturing the line construction considerations may dictate a minimal stress during initial installation and early periods of service. For example, it is desirable to joint successive lengths of conductor with fittings that rigidly connect both the steel and aluminum components.
In further summary, objects of the invention include:
1. Elimination of the possibility of aeolian vibration of fatigue damage.
2. Reduction of the possibilities of the occurrence of aeolian vibration and galloping.
3. Elimination of problems associated with creep of aluminum wires.
4. Elimination of the possibility of loss of strength due to partial annealing of aluminum wires at eleyated temperatures.
5. Elimination of any need to limit the utilization of the strength of steel to its strength at l percent extension.
6. Simplification of sag and tension computations.
, 7. Allowance of maximum operating temperature to be limited by sag rather than by possibility of conductor damage.
8. Provision of a means for producing an improved expanded conductor.
To most effectively accomplish these objects, the tubular aluminum conductor desirably possesses the following characteristics: i
1. Under all operating conditions, the inside diameter of the tube is larger than the outside diameter of the steel cable positioned inside of the tube.
2. The tube has sufficient radial stability to provide a base for overlying layers of wires, strips or rods during fabrication and during stringing.
3. The tube is capable of being elongated by approximately 0.50 percent at a very low level of longitudinal stress.
4. The length of lay of the helix is as long as practicable.
5. The reduction in diameter of the tube upon elongation is sufficient to allow overlying layers of helices to elongate an equal amount without developing consequential levels of stress.
6. The tube has an essentially round cross section, with no protruding irregularities either inside or outside. (Radius and smoothness of a surface is a factor that influences the voltage gradient in the air immediately surrounding a conductor. This, in turn, is a factor that influences corona discharges and associated radio interference. Any distortion will cause the radius at various positions around the periphery to vary, and possibly [but not necessarily] to introduce corona and radio interference phenomena. A small degree of distortion can be tolerated depending upon conductor size and voltage. If conductors are produced in a plant with the internal space between the core and tubular conductor, they may be distorted when placed on reels. If this distortion is all elastic in nature, however, it disappears when the conductor is strung. On the other hand, if internal space is introduced during stringing [for example, as by the use of pressure rolls as discussed below respecting FIGS. 9 and this potential problem is eliminated.)
7. The tube must have sufficient flexibility to accommodate field stringing operations.
.The principles of the invention will be further hereinafter discussed with reference to the drawings wherein preferred embodiments are shown. The specifics illustrated in the drawings are intended to exemplify, rather than limit, aspects of the invention as defined in the claims.
BRIEF DESCRIPTION. OF THE DRAWINGS IN THE DRAWINGS:
FIG. 1 is a transverse cross-sectional view of a steel supported aluminum overhead conductor incorporating aluminum strips;
FIG. 2 is a fragmentary elevational view of the conductor of FIG. 1 with layers progressively cut away to expose constructional details;
FIG. 3 is a schematic representation of equipment for manufacturing the conductor of FIGS. 1 and 2;
FIG. 4 is a fragmentary, partly cut away top plan view of the closure die region of the equipment of FIG. 3;
FIG. 5 is an end elevational view of a portion of the equipment of FIG. 3 showing the spatial relation of the forming rolls-for the first aluminum strip layer to the conductor undergoing manufacture;
FIG. 6 is a transverse cross-sectional view of a steel supported aluminum overhead conductor incorporating an integral aluminum tube;
broad strip stock;
FIG. 7 is a transverse cross-sectional view of a steel supported aluminum overhead conductor incorporating an aluminum tube welded longitudinally from FIG. 8 is a transverse cross-sectional view of a steel supported aluminum overhead conductor incorporating stranded trapezoidally shaped aluminum wire;
FIG. 9 is a transverse cross-sectional view of a steel supported aluminum overhead conductor incorporating stranded aluminum wire over softaluminum filler wires in an as-stranded condition;
FIG. 10 is a transverse cross-sectional view of the conductor of FIG. 9 after the soft aluminum filler has been crushed between the steel core and overlying hard aluminum wires; and
FIG. 11 is a transverse cross-sectional view of a steel supported aluminum overhead conductor similar to FIG. 10, but wherein the post stranding deformation is of a plastic filler.
DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS Following a practice which is common in the industry, theentire article of the invention is referred to herein as a conductor even though the tubular aluminum portion thereof would in a strictly technical sense be more accurately designated the conductor. It is believed that this practice will cause no problem for those skilled in the art and familiar with its practices and vocabulary.
Unless otherwise indicated or obvious from the context, absolute values of dimensions given herein are for illustrative purposes only, to enable a more concise discussion of the preferred embodiments.
With reference to FIGS. 1-5 and especially FIGS. 1 and 2, there is depicted a steel supported aluminum overhead conductor 10 comprising a steel core 12 and a tubular aluminum conductor 14 received over the core 12. In the instance depicted, the tubular aluminum conductor is fabricated from two superimposed layers l6, 18 of helically wound layers of aluminum strip stock 20. I
The steel core 12 is preferably made of stranded steel wires. They may be identical in composition and fabrication to the cores used in standard ACSR conductors, see ASTM specification B232 Aluminum Conductors, Steel Reinforced, Concentric-Lay Stranded (ACSR)," ASTM specification B341 Aluminum-Coated (Aluminized) Steel Core Wire for Aluminum Conductors, Steel Reinforced (ACSR), ASTM specification B502 Aluminum-Clad Steel Core Wire for Aluminum Conductors, Aluminum-Clad Steel Reinforced (ACSR- /AW) and ASTM specification B498 Zinc-Coated (Galvanized) Steel Core Wire for Aluminum Conductors, Steel Reinforced (ACSR).'They may also be of material having properties especially suitable to the disclosure, for example, higher strength than required by the ASTM specifications.
As illustrated, the steel core 12 consists of seven 0.1329 diameter steel strands 22 helically stranded to produce a core having an CD. of 0.399 inches. (This is the same core as is found in 954 MCM 54/7 ACSR Cardinal conductor manufactured by Reynolds Metals Company of Richmond, Virginia.)
In this same example, the first, inner layer of the tubular aluminum conductor is provided by three helically stranded, rounded edged aluminum strips each 0.1 inch thick and 0.6 inch wide, this layer having an internal diameter of 0.50 inch, an external diameter of 0.70 inch and a pitch of 7.2 inches. The second, outer layer of the tubular aluminum conductor is helically stranded immediately upon the first, in an opposite helical sense, and consists of four, round edged aluminum strips each 0.1 inch thick and 0.6 inch wide, this layer having an internal diameter of 0.70 inch, an external diameter of 0.90 inch and a pitch of 9.6 inches. In each instance, the strips of aluminum are curved about the longitudinal axis of the tubular aluminum conductor so that each is arcuate as seen in transverse cross section.
in the core than in conventional constructions. Note that the elevated operating temperatures at which sag equals sag under maximum ice and wind loading are very high.
In the examples of Table II, the constructions in accordance with the invention utilize a solid aluminum jacket over the steel core for the conductor. The rated strengths were calculated on the basis of the strength of steel at 205,000 psi and of aluminum at 9,000 psi. This assumes that the stretch of the steel will be sufficient to cause load to be borne by the aluminum before break TABLE II.COMPARISON OF VARIOUS STEEL SUPPORTED CONDUCTORS Conductor size and type 7X.165 477 MOM 795 MCM 1,272 MCM 01 strand Proper y 0 .15 30/7 ACSR .25 54/7 ACSR .35 45/7 ACSR .45 all Steel area, sq. in 149 149 .0616 149 0309 149 .069 149 0 Aluminum thickness. 0 ,15 35 45 Aluminum area, MOM 0 443 477 790 795 I 1, 220 1,272 1,700 1, 750 Alum. area. percent of total 0 80 81 81 86 87 94 90 100 Rated strength 29, 800 29, 800 23, 350 29,800 23, 550 29, 800 35,380 29,800 20, 090 Conductor diameter, 495 .795 883 .995 1. 092 1. 195 1. 345 1. 395 1. 525 Weight/M 1t., bare 502 903 747 1, 235 1, 024 1, 022 1, 434 2, 122 1, 043 Weight/M 1t., H.L 2,120 2, 575 3, 084 3, 705 3, 665 70011;. span, 50% D.T.:
Loaded:
(a) Sag 6.5 9.45 10.8 10.7 10.0 12.0 10.5 15.7 13.8 (b) Tension 14, 900 14,900 11,700 14, 000 14, 230 14,000 17, 700 14,900 14,820 0 unloaded:
' s 4. 0 4.4 5.0 4.9 7.8 5. 68 10.8 13.4 120 13, 000 9, s90 13, 200 11,050 12, 750 15, 400 12,300 7,880 5. 04 9.4 7.22 10.0 9.94 14.1 13.1 20.6 10, 050 4, 020 10, 500 0, 000 10, 300 ,300 10, 100 5,080 Temp. for final sag to equal sag at 0 D H L 172 0.) (50 0.) 153 0.) 50 0. 142 0. 127 0.) 131 c.) 0 0. 342 F. 120 F. 308 F. 120 288 F. 00 F. 261 F. 1.
The strips 20 are preferably of EC-H19 aluminum, although other tempers and aluminum alloys, eg 5005 or 6201 could beemployed.
The layer 16 could be formed from a greater or a lesser number of strips 20. To illustrate an alternative, the following table relates to a layer 16 consisting of two The layer 16 of Table I may be stranded over the same 0.399 inch O.D. steel core as described above and an outer aluminum layer 18 of opposite helical sense may be laid directly on the layer 16 of this alternative example.
Although the conductors in the examples just described have overall outer diameters smaller than one inch, it is believed that the conductor of the invention has substantial and perhaps predominating usefulness in overall outer diameters in excess of one inch.
The properties and sag characteristics of several alternative constructions embodying the principles of the invention are contrasted with those of several ACSR constructions in the following table (Table II). For the constructions embodying principles of the invention approximately to percent moresteelis shownused actually occurs, and that the aluminum is annealed.
The representative equipment shown in FIGS. 3-5 for fabricating the steel supported aluminum overhead conductor of FIGS. 1 and 2 is provided with appropriate legends to enable those skilled in the art to rapidly grasp the salient features of its construction and manner of operation.
Rather than utilize rounded edge strips of aluminum to fabricate the layer(s) of the conductor 14, aluminum strands, of other cross-sectional shape may be employed. By way of illustration (FIG. 8), there may be used, upon a 7 X 0.1489 inch helically stranded steel core 12 having an outer diameter of 0.4467 inch, a tube of aluminum 27 having an inside diameter, when elongated 0.45 percent, of 0.4767 inch and consisting of 10 trapezoidally shaped wires 29 having a thickness of 0.20 inch. Other dimensions of the tube, assuming a stretch of 0.45 percent are as follgw s sion of wire to permit stretching One problem in the design, the tube using trapezoidally shaped wires is ensuring that, when stranded, the
a particularly high tension. (Stretchfor the overlying layers can be provided for by adjusting the pitch, number of wires, and wire diameters to the amount of diameter reduction expected in the tube.) It is obvious, however, that the reduction in wire dimension of 7.5 percent shown above cannot be achieved with ordinary wires by simply putting tension on the tube. However, the wires may be drawn about 10 percent undersize and every other wire given a zigzag shape with bends about every inch or two. This permits a reductionin the diameter of the tube by the forces that would tend to straighten out the zigzag.
Referring now to FIG. 6, there is shown a steel supported aluminum overhead conductor which in cludes a steel core 12 as described above in relation to FIGS. 1 and 2, and a tubular aluminum conductor 32 extruded in an integral condition over the core. Exemplary values for the conductor 30 are provided in Table TABLE IV As When Crushed or Fabricated Elongated 0.45% (inches) (inches Core outside diameter 0.450 0.450 Tube Thickness 0.1053 Approx. 0.1053 Tube inside diameter 0.500 Approx. 0.450 Tube outside diameter 0.7105 Approx. 0.6605 Tube outside circumference 2.232 Approx. 2.073
Referring now to FIG. 7, there is shown an alternative to the construction depicted in FIG. 6 in that tubular aluminum conductor 42 is provided for the steel supported aluminum overhead conductor 40 by wrapping a single broad strip 44 about the core 12 and welding its formerly laterally, opposite edges to one another at 46 utilizing conventional welding equipment and techniques. Exemplary values for the conductor 40 are the same as in Table IV, g t s It is also possible to fabricate a steel supported aluminum overhead conductor 50in accordance with the present invention utilizing round (e.g. cylindrical, oval, rounded edge flat strip),wires helically stranded upon the steel core. In order to do this, a special technique and means are employed to achieve the necessary spacing between the outside diameter of the core and the inside diameter of the tubular aluminum conductor. Verysuccinctly, with reference to FIG. 9, soft, annealed aluminum wires 52 are stranded directly upon the core 12. Then layer(s) of harder aluminum wires 54 are helically stranded upon the soft aluminum wire layerQTh'e conductor 50 is shipped to where it is to be strung in this condition. Then, with reference to FIG. 10, the conductor 50 is run between pressure rolls applied to the exterior of the completely fabricated article. The harder wires 54 are elastically formed by the pressure rolls, but the softer underlying wires 52 are crushed into greater conformance, with interstitial saase ia.tltsssitel a d i hardtaluminum Wires 54. When the wires 54 spring back after passing the pressure rolls, the crushed wires 52 remain engaging the core 12 and the desired space 56 is provided between the composite core 12, 52 and the overlying tubular aluminum conductor 54.
The conductor 50 looks and behaves much like a conventional conductor in the plantandon shipping reels. After pressure crushing, during stringing, the gap 56 allows sufficient space for attendant reduction in diameter of the helical layer(s) of wires 54. Exemplary characteristics of a steel supported aluminum overhead conductor constructed in accordance with the embodiment of FIGS. 9 and 10 are presented in Table VIII.
I TABLE VIII Size: 1,046,105 circular mils 2. Strandingllmmediatcly after stranding):
a. tubular aluminum conductor 30x0. 1 750" EC-H l9 aluminum b. soft aluminum layer 1 1X0.1076" ECO aluminum 0. core: 7 0.1329" steel 3. Cross Section:
. Rated strength (with Class A steel wire):
a. As stranded: 36,096 lb. b. Aluminum fully annealed: 26,484 lb. Summary of Lay (as stranded):
Inner Outer Soft Layer Layer Layer Maximum Length of Lay 11.318" 13.407" 7.95" O. D. of Layer .9638" 1.3138" .6138" Lay Factor 11.74 10.2 13.0
As should be apparent, integral or welded tubes, wire and strip may all alternatively be used in the fabrication of conductor in accordance with the invention disclosed in this document. The particular mode which would be preferable at any given point in time would be the one that could most economically be produced at that time or meet other considerations of design prejudice. One of the features of the conductor of the invention is that the basic requirement for conventional conductors that aluminum wires have the maximum possible strength has been eliminated. This ,makespossible the consideration of' materials other than hard drawn round wires that maybe produced by various processes. Combinations certainly are possible. For example, the soft aluminum wires referred to above in respect to FIGS. 9 and 10 could be replaced by an extruded equally crushable jacket of soft aluminum.
In all of the disclosed embodiments, once the conductor has been strung, the top inside of the tubular aluminum conductor will definitely touch the top of the outside of the core and the core will not be precisely centered. This will result in some asymmetry of the magnetic fields caused by electric current. The degree of asymmetry should be quite small, however, and there should be no consequential problem. There is no significant sag to noncircular shape of the tubular aluminum conductor because'of its resting on the core when the conductor is fabricated in accordance with the invention, as described hereinabove, and strung in accordance with sensibleprocedures.
It should now be apparent that the steel supported aluminum overhead conductors as described hereinabove possesses each of the attributes set forth in the specification under the heading Summary of the Inaluminum overhead conductors of the invention can be modified to some extent without departing from the principles of the invention as they have been outlined and explained in this specification, the present invention should be understood as encompassing all such modifications as are within the spirit and scope of the following claims.
I claim:
' l. A method for manufacturing steel supported aluminum overhead conductor comprising providing a steel core, forming an intermediate layer of soft aluminum upon the steel core, fabricating a tubular aluminum conductor about said intermediate layer of soft

Claims (1)

1. A method for manufacturing steel supported aluminum overhead conductor comprising providing a steel core, forming an intermediate layer of soft aluminum upon the steel core, fabricating a tubular aluminum conductor about said intermediate layer of soft aluminum, applying circumferentially spaced radially inwardly directed forces upon the tubular aluminum conductor of sufficient magnitude to crush the intermediate layer into greater intimacy with the steel core and to thereby provide radial spacing between the exterior of the steel core and the interior of the tubular aluminum conductor that when the steel supported aluminum overhead conductor is strung overhead with consequent reduction in diameter of the steel core and the tubular aluminum conductor as both elongate, substantially all mechanical tension is borne by the steel core.
US00280161A 1970-06-30 1972-08-14 Method of forming steel supported aluminum overhead conductors Expired - Lifetime US3813772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00280161A US3813772A (en) 1970-06-30 1972-08-14 Method of forming steel supported aluminum overhead conductors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5112870A 1970-06-30 1970-06-30
US00280161A US3813772A (en) 1970-06-30 1972-08-14 Method of forming steel supported aluminum overhead conductors

Publications (1)

Publication Number Publication Date
US3813772A true US3813772A (en) 1974-06-04

Family

ID=26729099

Family Applications (1)

Application Number Title Priority Date Filing Date
US00280161A Expired - Lifetime US3813772A (en) 1970-06-30 1972-08-14 Method of forming steel supported aluminum overhead conductors

Country Status (1)

Country Link
US (1) US3813772A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132480A (en) * 1974-04-07 1975-10-20
DE2835253A1 (en) * 1977-08-19 1979-02-22 December 4 Drotmuevek STEEL ALUMINUM ROPE, ESPECIALLY FOR ELECTRICITY CABLE AND PROCESS FOR MANUFACTURING SUCH ROPES
US4356346A (en) * 1979-11-13 1982-10-26 Kansai Electric Power, Ltd. Transmission conductor
US4679387A (en) * 1983-05-16 1987-07-14 Akzo Nv Reinforcing cord with wrapping wire
GB2245410A (en) * 1990-05-22 1992-01-02 Bicc Plc Overhead electric and optical transmission systems
US5175989A (en) * 1990-06-29 1993-01-05 At&T Bell Laboratories Apparatus for avoiding torque build-ups in deploying ocean cable
US5243137A (en) * 1992-06-25 1993-09-07 Southwire Company Overhead transmission conductor
US5711143A (en) * 1995-04-15 1998-01-27 The Kansai Electric Power Co., Inc. Overhead cable and low sag, low wind load cable
US6147303A (en) * 1995-03-28 2000-11-14 The Furukawa Electric Co., Ltd. Overhead cable with projecting strand
US6414239B1 (en) * 2000-02-23 2002-07-02 Mag Holdings, Inc. Method and apparatus for reducing the magnetic field associated with an energized power cable
US6773312B2 (en) * 2001-09-04 2004-08-10 Era-Contact Gmbh Electrical pressure contact
US20050005433A1 (en) * 2003-05-13 2005-01-13 Elder Danny S. Process of producing overhead transmission conductor
US20050045364A1 (en) * 1998-04-06 2005-03-03 Kiyonori Yokoi Coaxial cables, multicore cables, and electronic apparatuses using such cables
ES2274682A1 (en) * 2005-02-09 2007-05-16 Inversiones Aranaz, S.A. Low expansion coefficient electrical cable for high voltage lines, has aluminum lead wires whose outer ring is provided with helical coil, and tubular casing whose exterior part is provided with sealed aluminum tube
US7228627B1 (en) 2005-12-16 2007-06-12 United States Alumoweld Co., Inc. Method of manufacturing a high strength aluminum-clad steel strand core wire for ACSR power transmission cables
CN103219084A (en) * 2013-04-07 2013-07-24 江苏通光强能输电线科技有限公司 Anti-corrosion overhead conductor and manufacturing method thereof
EP2853613A1 (en) * 2013-09-27 2015-04-01 Nexans Aluminium alloy with high electrical conductivity
US20160099090A1 (en) * 2014-09-26 2016-04-07 Jianping Huang Energy Efficient Conductors With Reduced Thermal Knee Points and The Method of Manufacture Thereof
US20170178764A1 (en) * 2014-09-26 2017-06-22 Jianping Huang Energy Efficient Conductors With Reduced Thermal Knee Points And The Method Of Manufacture Thereof
US11745624B2 (en) * 2015-12-11 2023-09-05 Ctc Global Corporation Messenger wires for electric trains, methods for making and methods for installation
US11854721B2 (en) 2022-03-28 2023-12-26 Ts Conductor Corp. Composite conductors including radiative and/or hard coatings and methods of manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378631A (en) * 1966-12-30 1968-04-16 Aluminium Lab Ltd Conductor with self-damping characteristics
US3445586A (en) * 1966-12-30 1969-05-20 Aluminium Lab Ltd Loose-core conductor having improved self-damping combined with improved internal wear resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378631A (en) * 1966-12-30 1968-04-16 Aluminium Lab Ltd Conductor with self-damping characteristics
US3445586A (en) * 1966-12-30 1969-05-20 Aluminium Lab Ltd Loose-core conductor having improved self-damping combined with improved internal wear resistance

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132480A (en) * 1974-04-07 1975-10-20
DE2835253A1 (en) * 1977-08-19 1979-02-22 December 4 Drotmuevek STEEL ALUMINUM ROPE, ESPECIALLY FOR ELECTRICITY CABLE AND PROCESS FOR MANUFACTURING SUCH ROPES
US4356346A (en) * 1979-11-13 1982-10-26 Kansai Electric Power, Ltd. Transmission conductor
US4679387A (en) * 1983-05-16 1987-07-14 Akzo Nv Reinforcing cord with wrapping wire
GB2245410B (en) * 1990-05-22 1994-06-29 Bicc Plc Overhead electric and optical transmission systems
GB2245410A (en) * 1990-05-22 1992-01-02 Bicc Plc Overhead electric and optical transmission systems
US5175989A (en) * 1990-06-29 1993-01-05 At&T Bell Laboratories Apparatus for avoiding torque build-ups in deploying ocean cable
US5374783A (en) * 1992-06-25 1994-12-20 Southwire Company Overhead transmission conductor
US5554826A (en) * 1992-06-25 1996-09-10 Southwire Company Overhead transmission conductor
US5243137A (en) * 1992-06-25 1993-09-07 Southwire Company Overhead transmission conductor
US6147303A (en) * 1995-03-28 2000-11-14 The Furukawa Electric Co., Ltd. Overhead cable with projecting strand
US6242693B1 (en) 1995-03-28 2001-06-05 The Furukawa Electric Co., Ltd Overhead cable
US5711143A (en) * 1995-04-15 1998-01-27 The Kansai Electric Power Co., Inc. Overhead cable and low sag, low wind load cable
US6894226B2 (en) 1998-04-06 2005-05-17 Sumitomo Electric Industries, Ltd. Coaxial cables, multicore cables, and electronic apparatuses using such cables
US7034228B2 (en) 1998-04-06 2006-04-25 Sumitomo Electric Industries, Ltd. Coaxial cables, multicore cables, and electronic apparatuses using such cables
US20050045364A1 (en) * 1998-04-06 2005-03-03 Kiyonori Yokoi Coaxial cables, multicore cables, and electronic apparatuses using such cables
US6414239B1 (en) * 2000-02-23 2002-07-02 Mag Holdings, Inc. Method and apparatus for reducing the magnetic field associated with an energized power cable
US6773312B2 (en) * 2001-09-04 2004-08-10 Era-Contact Gmbh Electrical pressure contact
US20050005433A1 (en) * 2003-05-13 2005-01-13 Elder Danny S. Process of producing overhead transmission conductor
US7615127B2 (en) 2003-05-13 2009-11-10 Alcan International, Ltd. Process of producing overhead transmission conductor
ES2274682A1 (en) * 2005-02-09 2007-05-16 Inversiones Aranaz, S.A. Low expansion coefficient electrical cable for high voltage lines, has aluminum lead wires whose outer ring is provided with helical coil, and tubular casing whose exterior part is provided with sealed aluminum tube
US7228627B1 (en) 2005-12-16 2007-06-12 United States Alumoweld Co., Inc. Method of manufacturing a high strength aluminum-clad steel strand core wire for ACSR power transmission cables
CN103219084A (en) * 2013-04-07 2013-07-24 江苏通光强能输电线科技有限公司 Anti-corrosion overhead conductor and manufacturing method thereof
FR3011251A1 (en) * 2013-09-27 2015-04-03 Nexans ALUMINUM ALLOY WITH HIGH ELECTRICAL CONDUCTIVITY
EP2853613A1 (en) * 2013-09-27 2015-04-01 Nexans Aluminium alloy with high electrical conductivity
US20160099090A1 (en) * 2014-09-26 2016-04-07 Jianping Huang Energy Efficient Conductors With Reduced Thermal Knee Points and The Method of Manufacture Thereof
US9633766B2 (en) * 2014-09-26 2017-04-25 Jianping Huang Energy efficient conductors with reduced thermal knee points and the method of manufacture thereof
US20170178764A1 (en) * 2014-09-26 2017-06-22 Jianping Huang Energy Efficient Conductors With Reduced Thermal Knee Points And The Method Of Manufacture Thereof
US10304586B2 (en) * 2014-09-26 2019-05-28 Jianping Huang Method of manufacturing an energy efficient electrical conductor
US11745624B2 (en) * 2015-12-11 2023-09-05 Ctc Global Corporation Messenger wires for electric trains, methods for making and methods for installation
US11854721B2 (en) 2022-03-28 2023-12-26 Ts Conductor Corp. Composite conductors including radiative and/or hard coatings and methods of manufacture thereof

Similar Documents

Publication Publication Date Title
US3813772A (en) Method of forming steel supported aluminum overhead conductors
US3813481A (en) Steel supported aluminum overhead conductors
US7015395B2 (en) Composite reinforced electrical transmission conductor
KR900006817B1 (en) Composite overhead cable structure for electric and optical transmission
US7228627B1 (en) Method of manufacturing a high strength aluminum-clad steel strand core wire for ACSR power transmission cables
US9847152B2 (en) Rating an enhanced strength conductor
FI82995B (en) FLEXIBELT LAONGSTRAECKT STYCKE.
US10886036B2 (en) Energy efficient conductors with reduced thermal knee points and the method of manufacture thereof
US20120170900A1 (en) Aluminum Alloy Conductor Composite Reinforced for High Voltage Overhead Power Lines
US20160099090A1 (en) Energy Efficient Conductors With Reduced Thermal Knee Points and The Method of Manufacture Thereof
JPH06109956A (en) Optical fiber cable
CN105788738A (en) Energy efficient wire with reduced thermal knee points and the method of manufacture thereof
US3749813A (en) Expanded self-damping electrical conductor
US3291898A (en) High voltage expanded electrical conductors
US2106060A (en) Electric cable
US2075996A (en) Electrical conductor
CN105702352A (en) High efficiency lead for reducing heat inflection point and manufacture method
US2279625A (en) Vibration damping tie wire
Morgan et al. Effect of magnetic induction in a steel-cored conductor on current distribution, resistance and power loss
CN102737766A (en) Spring cable
WO2014132765A1 (en) Super-electroconductive cable, covered heat-insulated pipe, and method of producing covered heat-insulated pipe
CN110033878B (en) Electrical conductor comprising a solid portion
USRE49941E1 (en) Rating an enhanced strength conductor
RU2735313C1 (en) Self-supporting insulated strand
US2909336A (en) Method of laying armoured cables