US3818894A - Laryngeal implant - Google Patents

Laryngeal implant Download PDF

Info

Publication number
US3818894A
US3818894A US00215126A US21512672A US3818894A US 3818894 A US3818894 A US 3818894A US 00215126 A US00215126 A US 00215126A US 21512672 A US21512672 A US 21512672A US 3818894 A US3818894 A US 3818894A
Authority
US
United States
Prior art keywords
implant
tip
implant according
group
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00215126A
Inventor
O Wichterle
Z Kresa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Czech Academy of Sciences CAS
Original Assignee
Czech Academy of Sciences CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Czech Academy of Sciences CAS filed Critical Czech Academy of Sciences CAS
Application granted granted Critical
Publication of US3818894A publication Critical patent/US3818894A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/20Epiglottis; Larynxes; Tracheae combined with larynxes or for use therewith
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the implant is made from water-swellable and physiologically inert material, such as a synthetic cross-linked hydrophilic gel, and has in a dry state, when it is ready for use in an operation, the shape of a straight or bent stick provided with a sharp, pointed tip.
  • physiologically inert material such as a synthetic cross-linked hydrophilic gel
  • the implant body except the tip may contain physiologically inert plasticizers.
  • the aforementioned materials such as paraffin and the others move inside the vocal cords over a period of time and eventu- O ally escape into the space below the glottis.
  • the crushed cartilage on the other hand, is absorbed in the course of time, so that the success of all the aforesaid operations is only temporary and the shape of the vocal cords after the operation cannot be determined in advance.
  • the implant accordingto the invention overcomes all above mentioned disadvantages comprises a physiologically inert material which swells in water and has in the dry state, as prepared for the operation, the shape of a straight or bent elongated body, such as a stick provided with a sharp, pointed tip.
  • Hydrophilic material with a linear swelling capacity from 10 to 45 percent may be used as an inert material swelling in water.
  • the implant may contain dyestuffs, pigments or contrast substances.
  • the implant according to the invention has preferably the same length in a dry state as after equilibrium swelling in water. Its modulus of elasticity may be decreased, except with respect to the tip, by adding water or another physiologically inert plasticizer.
  • glycol methacrylate or glycol acrylate, respectively to include not only simple ethyleneglycol, but also diethyleneglycol, triethyleneglycol, propyleneglycol, butyleneglycol and the like, that is, an arbitrary hydrophilic aliphatic diol.
  • Glycerol monomethacrylate or .acrylate may be also used.
  • the elongated body such as a stick is prepared in the dry state from the physiologically inert material swelling in water, preferably from a synthetic cross-linked hydrophilic gel, and this stick is provided with a sharp, pointed tip before or after drying.
  • the stick is advantageously made from a material which contains a physiologically inert plasticizer or is impregnated with the plasticizer, and wherein the tip or the part used for making the tip is freed from the plasticizer by extraction.
  • the stick can be also swollen in water, the clamped in such a way to be unable to shrink lengthwise, dried and provided with the tip, or the dried stick can be heated above the glasstransition temperature, stretched in this state, cooled and provided with the tip.
  • the implant according-to the invention may be prepared also in any manner such that the body has an una pointed tip. In this case the implant returns into the original uneven or combined shape after being swollen, due to its shape memory.
  • the characteristic glassy hard state of hydrophilic polymers in their dry condition is necessary only in the region of the stabbing tip for introduction of the implant into tissue.
  • the remaining part of the implant need not to be in the glassy hard state.
  • the body of the implant has to be sufficiently rigid to enable its introduction. into tissue by overcoming the resistance of the opening tissue.
  • the modulus of elasticity of theimplant body is generally sufficiently high when above about kg/cm However, a modulus about 1,000 kg/cm is especially advantageous.
  • the hydrophilic materials show considerable decrease of brittleness when their modulus of elasticity in the dry state is reduced from the usual value of 20,000 50,000 kg/cm to 5,000 kg/cm
  • the required reduction of modulus and thus also the high toughness of the implant body can be achieved by introduction of a small amount of a convenient plasticizer into the three dimensional network of the hydrophillic polymer.
  • This can even be water, in the simpliest case, which may be absorbed for instance from aqueous solutions of sodium chloride.
  • the amount of water in the gel decreases with the increase of the-concentration of the salt in water, since it is in equilibrium with this solution.
  • sparingly cross-linked glycol methacrylate gel softens by long soaking in a 15 percent solution of salt in such a way that its elasticity modulus is then about 500 kglcm Under these circumstances the tip is also softened. Therefore, it is necessary to dry the sharp end of the implant before application and to preserve the absorbed water in the residual material of the implant, for instance, by wrapping the implant in an aluminium foil and drying of the uncovered tip only.
  • the implant can be made so that it has a different hardness in its individual parts so that it has relatively long-term stability. For example,
  • glycerol may be absorbed by the gel along with water from dilute solutions of glycerol at elevated temperature, and will remain in the gel permanently after drying. Subsequently, all of the glycerol may be extracted from the tip by dipping the tip into water so that it leashes out from the tip leaving the presence of glycerol limited to the remaining parts of the implant. The required effect is obtained at low concentrations of glycerol, such as at 0.2 2%. The glycerol remains localized in the implant, in the slightly swollen state, for a long time and its migration into the non-plasticized tip does not take place.
  • the implant can be prepared in this condition in a sterilized package, ready for instant use without any special preparation before use by the consumer.
  • plasticizers which are absorbed by the gel and are physiologically unobjectionable in small amounts, such as diacetin, triethyleneglycol, butanedioll ,3,urethane acetoin, diethyl tartrate, N,N'-dilactyl urea, lactamide and the like.
  • plasticizers which are absorbed by the gel and are physiologically unobjectionable in small amounts, such as diacetin, triethyleneglycol, butanedioll ,3,urethane acetoin, diethyl tartrate, N,N'-dilactyl urea, lactamide and the like. These compounds may be introduced into the gel either from aqueous solutions or from solutions in other volatile solvents which heavily swell the gel and thus open the gel structure for the rapid diffusion of plasticizers.
  • the same solvents are convenient for the reverse washing of plasticizers from the tip of the implant.
  • the procedure can be also employed, where the tip is protected from the softening action of the solutions by coating, e.g. with paraffin, or where only other parts of the implant are dipped into the solutions.
  • the operation comprises insertion of the implant into the predetermined place of the vocal cord by direct laryngoscopy methods using a multiple magnifying surgical microscope, preferably after a very small incision in the mucous membrane at the upper surface of vocal cord is made.
  • the implant is used in a dry state and is of almost glassy hardness. The implant swells in the tissue for several minutes, increases its volume as it has been 'predeterminedly designed to do and thus increases the mass of the atrophied vocal cord, shifting its edge more to, the center and thereby contracting, or liquidating the slot between cords occuring hitherto at voice formation. This improves the voice in the objectively evident way and removes hoarseness and subjective difficulties, mainly the voice tiredness.
  • the implant can be employed in similar way for the treatment of paralysis of the recurrent nerve, when the afficted vocal cord is slack and excavated and the opposite vocal cord is unable to compensate for the disturbance formed by drawing across middle line.
  • the purpose of the implant is similar as in the case of atrophy of the vocal cords and it has to level the excavation by taking up the slack vocal cord, to improve the closure of glottis and to improve the voice and subjective difficulties of the patient.
  • the application of the implant according to the invention has the distinct advantage in that the patient can speak within several minutes at the operation, while with other methods total vocal inactivity is required usually for from 3 to 7 days.
  • the implant can be used for surgical treatment in other regions which are afflicted with atrophy, such as with atrophy of nasal mucous membrane and the like.
  • EXAMPLE 1 A mixture consisting of parts of hydroxyethyl methacrylate containing 0.2 of ethylene dimethacrylate, 15 parts of 0.25 aqueous solution of ammonium persulfate and 15 parts of 0.25 aqueous solution of sodium disulfite is charged by a pipette into a plurality of thin-walled 30 cm long glass capillary tubes having a inner diameter 0.8 to 2.5 mm which are placed horizontally. Polymeriz mixture is sucked into the whole length of the tubes by capillarity. The polymerization takes place at ambient temperature and is completed within 8 hours.
  • the several gel sticks are then isolated either by breaking the capillary tubes and careful separation of the crushed glass, or, in more convenient way, by dissolving the glass in cold 20 hydrofluoric acid.
  • the sticks are thoroughly washed in water and then the ends cut off to remove any portions not perfectly polymerized due to diffusing oxygen. Thereafter, one end of each stick, preferably in semi-dry state, is cut with a sharp knife in a fairly oblique angle to form a shape similar to the tip of an injection needle.
  • the stick deforms in the course of further drying but the original shape was recovered and release of internal stress obtained by heating the stick above the softening point, i.e., to C.
  • the sticks were thereafter either laid loose on stretched knitted fabric made from terylene monofilament or suspended in boiling xylene. Fine files and abrasive paper are used for forming the finish and sterilization is carried out in an ethylene oxide atmosphere.
  • water-swelling gels can be prepared from other neutral monomers, such as from N- methyl methacrylamide, acrylamide or vinylpyrrolidone in the presence of suitable cross-linking agents, such as methylene-bis-acrylamide.
  • monomers containing ionizable groups in their molecule can be employed (such as methacrylic acid) which, present in slightly cross-linked gels, when employed in the amount of upto several percent substantial increase of swelling capacity in neutral aqueous solutions.
  • methacrylic acid ionizable groups in their molecule
  • EXAMPLE 2 The monomer mixture as described in Example 1 is charged into a 3 m long thin-walled silicone rubber tube having an inner diameter of 1.2 mm. The opposite end of the tube is sealed and lml more mixture is pressed into the tube by a syringe so that the tube expands and is able to compensate precisely for the polymerization contraction. Then the other end is sealed, the tube is inserted into a wider glass tube, which is freed from all oxygen by a stream of nitrogen and sealed. After polymerization is completed, the silicone tube is split by two lengthwise cuts and the casted rod is released. It is quite regular, intact and free of contraction bubbles.
  • the rod may be, after cutting to pieces and washing in water, impregnated with plasticizers, such as by heating in a 3 aqueous solution of glycerol. if a rod is dried in the lengthwise fixed position, it is obtained in stretched state and by swelling under physiological condition only gets wider but not longer. To finish the implant, the tip is formed, freed from the plasticizer by dipping in water, and, after final drying, is sharpened with fine emery.
  • plasticizers such as by heating in a 3 aqueous solution of glycerol.
  • EXAMPLE 3 A mixture consisting of 30 parts of acrylonitrile, 70 parts of nitric acid (density 1.5) and 0. 1 parts of ammonium persulfate was charged into similar capillary tubes, as those which are described in Example 1. The capillary tubes were inerted into a pressure vessel, air was replaced by nitrogen and the pressure of nitrogen was increased to 3 atm. After five days the capillary tubes were removed from the pressure vessel and heated for hours to 45 C. Further working was analogous to Example 1.
  • a larynreal implant for surgical purposes for use in the surgical treatment of vocal cords comprising a .6 body of hydrophilic polymeric crosslinked gel material having the form of a rod-like needle with a sharp, pointed tip in the dry state in which it is applied, said implant being swellable after implantation in the vocal cord to help improve closure of glottis.
  • hydrophilic polymeric crosslinked material is an insoluble, hydrophilic gel having a linear swelling capacity in the region from 10 to 45 percent.
  • hydrophilic material is a copolymer selected from the group of glycol methecrylate and acrylate containing up to 2 weight percent of a material selected from the group consisting of glycol dimethacrylate and diacrylate and up to 3 weight percent of material selected from the group consisting of methacrylic acid or acrylic acid.
  • the implant according to claim 1 which has approximately the same length in a dry state as after equilibrium swelling in water.

Abstract

This invention relates to an implant for surgical purposes and which is especially useful for the operative treatment of afflicted vocal cords, as well as to the method for its production. The implant is made from water-swellable and physiologically inert material, such as a synthetic cross-linked hydrophilic gel, and has in a dry state, when it is ready for use in an operation, the shape of a straight or bent stick provided with a sharp, pointed tip. The implant body except the tip may contain physiologically inert plasticizers.

Description

United States Patent 1191 Wichterle et a].
[ June 25, 1974 LARYNGEAL IMPLANT [75] Inventors: Otto Wichterle, Praha; Zdenek Kresa, Plzen, both of 21 Appl. No.: 215,126
[30] Foreign Application Priority Data Jan. 22, 1971 Czechoslovakia 469-71 [52] US. Cl. 128/1 R, 3/1, 128/334 R [51] Int. Cl A61b 19/00 [58] Field of Search 128/334 R, 335, 335.5, 128/348, 214 R, 1 R; 3/1
[56] References Cited UNITED STATES PATENTS 3,220,960 11/1965 Wichterle et a1. 128/334 X 3,505,988 4/1970 Deane 128/1 R 3,520,949 7/1970 Shepherd et a1. 128/334 UX 3,524,447 8/1970 Evans 128/348 3,707,150 12/1972 Montgomery et al 128/334 R Primary Examiner-Dalton L. Truluck Attorney, Agent, or Firm-Murray Schaffer [5 7 ABSTRACT This invention relates to an implant for surgical purposes and which is especially useful for the operative treatment of afflicted vocal cords, as well as to the method for its production. The implant is made from water-swellable and physiologically inert material, such as a synthetic cross-linked hydrophilic gel, and has in a dry state, when it is ready for use in an operation, the shape of a straight or bent stick provided with a sharp, pointed tip. The implant body except the tip may contain physiologically inert plasticizers.
7 Claims, No Drawings a l LARYNGEAL IMPLANT BACKGROUND THE. INVENTION- unilateral disorder of motion such as paralysis of the recurrent nerve cannot be used to any normal extent when treated by known methods. To improve the voice and reduce the subjective difficulties, such as hoarseness, injections of paraffin, polytetra fluorethylene or silicone polymer particles emulsified in glycerol, or of the cartilage of the nasal septum, which was surgically removed, crushed and emulsified; in the physiologic saline, have been employed. All these methods have a distinct disadvantage that is it is impossible to determine by the injectionprecisely in which direction the injected mate-, rial shall penetrate the vocal cords. The aforementioned materials, such as paraffin and the others move inside the vocal cords over a period of time and eventu- O ally escape into the space below the glottis. The crushed cartilage, on the other hand, is absorbed in the course of time, so that the success of all the aforesaid operations is only temporary and the shape of the vocal cords after the operation cannot be determined in advance.
In the treatment of paralysis of the recurrent nerve bleeding is. sometimes used as an operative procedure,
necessitating an incision and subsequent scar on the throat. The larynx is opened from outside in this opera-. tion, as a rule by a cut between the thyroid cartilages, and a part of the cartilage of the nasal septum or of a pl s i trssns tivslyt is itsnlsntssii hslearalxssdsstsia The operations performed up untfi now have been of necessity carried out by indirect laryngoscopy and by one hand only.
SUMMARY OF THE INVENTION The implant accordingto the invention overcomes all above mentioned disadvantages comprises a physiologically inert material which swells in water and has in the dry state, as prepared for the operation, the shape of a straight or bent elongated body, such as a stick provided with a sharp, pointed tip.
Hydrophilic material with a linear swelling capacity from 10 to 45 percent may be used as an inert material swelling in water. The copolymers of glycol methacrylate (or acrylate, respectively) which contain up to 2 weight percent of glycol dimethacrylate (or diacrylate, 50
respectively) and up to 3 weight percent of methacrylic acid (or acrylic acid, respectively) are preferably used. This material can be substituted by other hydrophilic materials of similar properties which are based, for example, on acrylamide, N-substituted or N,N- disubstituted acrylamides and their copolymers. The implant may contain dyestuffs, pigments or contrast substances. The implant according to the invention has preferably the same length in a dry state as after equilibrium swelling in water. Its modulus of elasticity may be decreased, except with respect to the tip, by adding water or another physiologically inert plasticizer. Glycol as employed in the expression glycol methacrylate" (or glycol acrylate, respectively) to include not only simple ethyleneglycol, but also diethyleneglycol, triethyleneglycol, propyleneglycol, butyleneglycol and the like, that is, an arbitrary hydrophilic aliphatic diol.
Glycerol monomethacrylate or .acrylate may be also used.
DESCRIPTION OF THE PREFERRED EMBODIMENTS To prepare the implant according to this invention, the elongated body such as a stick is prepared in the dry state from the physiologically inert material swelling in water, preferably from a synthetic cross-linked hydrophilic gel, and this stick is provided with a sharp, pointed tip before or after drying. The stick is advantageously made from a material which contains a physiologically inert plasticizer or is impregnated with the plasticizer, and wherein the tip or the part used for making the tip is freed from the plasticizer by extraction. The stick can be also swollen in water, the clamped in such a way to be unable to shrink lengthwise, dried and provided with the tip, or the dried stick can be heated above the glasstransition temperature, stretched in this state, cooled and provided with the tip.
The implant according-to the invention may be prepared also in any manner such that the body has an una pointed tip. In this case the implant returns into the original uneven or combined shape after being swollen, due to its shape memory.
The characteristic glassy hard state of hydrophilic polymers in their dry condition is necessary only in the region of the stabbing tip for introduction of the implant into tissue. The remaining part of the implant need not to be in the glassy hard state. However, the body of the implant has to be sufficiently rigid to enable its introduction. into tissue by overcoming the resistance of the opening tissue. The modulus of elasticity of theimplant body is generally sufficiently high when above about kg/cm However, a modulus about 1,000 kg/cm is especially advantageous. In general the hydrophilic materials show considerable decrease of brittleness when their modulus of elasticity in the dry state is reduced from the usual value of 20,000 50,000 kg/cm to 5,000 kg/cm The required reduction of modulus and thus also the high toughness of the implant body can be achieved by introduction of a small amount of a convenient plasticizer into the three dimensional network of the hydrophillic polymer. This can even be water, in the simpliest case, which may be absorbed for instance from aqueous solutions of sodium chloride. The amount of water in the gel decreases with the increase of the-concentration of the salt in water, since it is in equilibrium with this solution. For instance, sparingly cross-linked glycol methacrylate gel softens by long soaking in a 15 percent solution of salt in such a way that its elasticity modulus is then about 500 kglcm Under these circumstances the tip is also softened. Therefore, it is necessary to dry the sharp end of the implant before application and to preserve the absorbed water in the residual material of the implant, for instance, by wrapping the implant in an aluminium foil and drying of the uncovered tip only.
If a non-volatile and physiologically inert plasticizer is used instead of water, the implant can be made so that it has a different hardness in its individual parts so that it has relatively long-term stability. For example,
larger or smaller amounts of glycerol may be absorbed by the gel along with water from dilute solutions of glycerol at elevated temperature, and will remain in the gel permanently after drying. Subsequently, all of the glycerol may be extracted from the tip by dipping the tip into water so that it leashes out from the tip leaving the presence of glycerol limited to the remaining parts of the implant. The required effect is obtained at low concentrations of glycerol, such as at 0.2 2%. The glycerol remains localized in the implant, in the slightly swollen state, for a long time and its migration into the non-plasticized tip does not take place. The implant can be prepared in this condition in a sterilized package, ready for instant use without any special preparation before use by the consumer. Besides glycerol, several other substances may be used as plasticizers which are absorbed by the gel and are physiologically unobjectionable in small amounts, such as diacetin, triethyleneglycol, butanedioll ,3,urethane acetoin, diethyl tartrate, N,N'-dilactyl urea, lactamide and the like. These compounds may be introduced into the gel either from aqueous solutions or from solutions in other volatile solvents which heavily swell the gel and thus open the gel structure for the rapid diffusion of plasticizers. The same solvents are convenient for the reverse washing of plasticizers from the tip of the implant. However, the procedure can be also employed, where the tip is protected from the softening action of the solutions by coating, e.g. with paraffin, or where only other parts of the implant are dipped into the solutions.
The operation, employing the implant according to the invention, comprises insertion of the implant into the predetermined place of the vocal cord by direct laryngoscopy methods using a multiple magnifying surgical microscope, preferably after a very small incision in the mucous membrane at the upper surface of vocal cord is made. The implant is used in a dry state and is of almost glassy hardness. The implant swells in the tissue for several minutes, increases its volume as it has been 'predeterminedly designed to do and thus increases the mass of the atrophied vocal cord, shifting its edge more to, the center and thereby contracting, or liquidating the slot between cords occuring hitherto at voice formation. This improves the voice in the objectively evident way and removes hoarseness and subjective difficulties, mainly the voice tiredness.
The implant can be employed in similar way for the treatment of paralysis of the recurrent nerve, when the afficted vocal cord is slack and excavated and the opposite vocal cord is unable to compensate for the disturbance formed by drawing across middle line. In this case the purpose of the implant is similar as in the case of atrophy of the vocal cords and it has to level the excavation by taking up the slack vocal cord, to improve the closure of glottis and to improve the voice and subjective difficulties of the patient. The application of the implant according to the invention has the distinct advantage in that the patient can speak within several minutes at the operation, while with other methods total vocal inactivity is required usually for from 3 to 7 days.
Analogously as with atrophied vocal cords, the implant can be used for surgical treatment in other regions which are afflicted with atrophy, such as with atrophy of nasal mucous membrane and the like.
EXAMPLE 1 A mixture consisting of parts of hydroxyethyl methacrylate containing 0.2 of ethylene dimethacrylate, 15 parts of 0.25 aqueous solution of ammonium persulfate and 15 parts of 0.25 aqueous solution of sodium disulfite is charged by a pipette into a plurality of thin-walled 30 cm long glass capillary tubes having a inner diameter 0.8 to 2.5 mm which are placed horizontally. Polymeriz mixture is sucked into the whole length of the tubes by capillarity. The polymerization takes place at ambient temperature and is completed within 8 hours. The several gel sticks are then isolated either by breaking the capillary tubes and careful separation of the crushed glass, or, in more convenient way, by dissolving the glass in cold 20 hydrofluoric acid. The sticks are thoroughly washed in water and then the ends cut off to remove any portions not perfectly polymerized due to diffusing oxygen. Thereafter, one end of each stick, preferably in semi-dry state, is cut with a sharp knife in a fairly oblique angle to form a shape similar to the tip of an injection needle. As a rule, the stick deforms in the course of further drying but the original shape was recovered and release of internal stress obtained by heating the stick above the softening point, i.e., to C. The sticks were thereafter either laid loose on stretched knitted fabric made from terylene monofilament or suspended in boiling xylene. Fine files and abrasive paper are used for forming the finish and sterilization is carried out in an ethylene oxide atmosphere.
In like manner other water-swelling gels can be prepared from other neutral monomers, such as from N- methyl methacrylamide, acrylamide or vinylpyrrolidone in the presence of suitable cross-linking agents, such as methylene-bis-acrylamide. Also monomers containing ionizable groups in their molecule can be employed (such as methacrylic acid) which, present in slightly cross-linked gels, when employed in the amount of upto several percent substantial increase of swelling capacity in neutral aqueous solutions. With gels based on glycol methacrylate a substantial increase of swelling may also be achieved by esterification of hydroxy groups with sulfuric acid.
EXAMPLE 2 The monomer mixture as described in Example 1 is charged into a 3 m long thin-walled silicone rubber tube having an inner diameter of 1.2 mm. The opposite end of the tube is sealed and lml more mixture is pressed into the tube by a syringe so that the tube expands and is able to compensate precisely for the polymerization contraction. Then the other end is sealed, the tube is inserted into a wider glass tube, which is freed from all oxygen by a stream of nitrogen and sealed. After polymerization is completed, the silicone tube is split by two lengthwise cuts and the casted rod is released. It is quite regular, intact and free of contraction bubbles. The rod may be, after cutting to pieces and washing in water, impregnated with plasticizers, such as by heating in a 3 aqueous solution of glycerol. if a rod is dried in the lengthwise fixed position, it is obtained in stretched state and by swelling under physiological condition only gets wider but not longer. To finish the implant, the tip is formed, freed from the plasticizer by dipping in water, and, after final drying, is sharpened with fine emery.
EXAMPLE 3 A mixture consisting of 30 parts of acrylonitrile, 70 parts of nitric acid (density 1.5) and 0. 1 parts of ammonium persulfate was charged into similar capillary tubes, as those which are described in Example 1. The capillary tubes were inerted into a pressure vessel, air was replaced by nitrogen and the pressure of nitrogen was increased to 3 atm. After five days the capillary tubes were removed from the pressure vessel and heated for hours to 45 C. Further working was analogous to Example 1. The volume swelling capacity was about 60 The foregoing fully reveals the gist of the present invention that others can by applying current knowledge readily adapt it for various applications without omitting features that, from the standpoint of the prior art, fairly constitute esential characteristics of the generic and specific aspects of this invention and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the following claims.
We claim:
1. A larynreal implant for surgical purposes, for use in the surgical treatment of vocal cords comprising a .6 body of hydrophilic polymeric crosslinked gel material having the form of a rod-like needle with a sharp, pointed tip in the dry state in which it is applied, said implant being swellable after implantation in the vocal cord to help improve closure of glottis.
2. An implant in accordance with claim 1 wherein the hydrophilic polymeric crosslinked material is an insoluble, hydrophilic gel having a linear swelling capacity in the region from 10 to 45 percent.
3. The implant according to claim 1 wherein said tip is glassy hard.
4. The implant according to claim 1 wherein the hydrophilic material is a copolymer selected from the group of glycol methecrylate and acrylate containing up to 2 weight percent of a material selected from the group consisting of glycol dimethacrylate and diacrylate and up to 3 weight percent of material selected from the group consisting of methacrylic acid or acrylic acid.
5. The implant according to claim 1 wherein a physiologically inert plasticizer is added to said material along the length of the body except at its tip to provide said rod with a lower modulus of elasticity.
6. The implant according to claim 1 wherein said material contains an additive selected from the group consisting of dyes, pigments and contrast substances.
7. The implant according to claim 1 which has approximately the same length in a dry state as after equilibrium swelling in water.

Claims (7)

1. A larynreal implant for surgical purposes, for use in the surgical treatment of vocal cords comprising a body of hydrophilic polymeric crosslinked gel material having the form of a rod-like needle with a sharp, pointed tip in the dry state in which it is applied, said implant being swellable after implantation in the vocal cord to help improve closure of glottis.
2. An implant in accordance with claim 1 wherein the hydrophilic polymeric crosslinked material is an insoluble, hydrophilic gel having a linear swelling capacity in the region from 10 to 45 percent.
3. The implant according to claim 1 wherein said tip is glassy hard.
4. The implant according to claim 1 wherein the hydrophilic material is a copolymer selected from the group of glycol methecrylate and acrylate containing up to 2 weight percent of a material selected from the group consisting of glycol dimethacrylate and diacrylate and up to 3 weight percent of material selected from the group consisting of methacrylic acid or acrylic acid.
5. The implant according to claim 1 wherein a physiologically inert plasticizer is added to said material along the length of the body except at its tip to provide said rod with a lower modulus of elasticity.
6. The implant according to claim 1 wherein said material contains an additive selected from the group consisting of dyes, pigments and contrast substances.
7. The implant according to claim 1 which has approximately the same length in a dry state as after equilibrium swelling in water.
US00215126A 1971-01-22 1972-01-03 Laryngeal implant Expired - Lifetime US3818894A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS469A CS151338B1 (en) 1971-01-22 1971-01-22

Publications (1)

Publication Number Publication Date
US3818894A true US3818894A (en) 1974-06-25

Family

ID=5336824

Family Applications (1)

Application Number Title Priority Date Filing Date
US00215126A Expired - Lifetime US3818894A (en) 1971-01-22 1972-01-03 Laryngeal implant

Country Status (8)

Country Link
US (1) US3818894A (en)
JP (1) JPS5029596B1 (en)
CS (1) CS151338B1 (en)
DE (1) DE2201861A1 (en)
FR (1) FR2122952A5 (en)
GB (1) GB1334691A (en)
IT (1) IT948034B (en)
NL (1) NL7200661A (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948271A (en) * 1972-11-07 1976-04-06 Taichiro Akiyama Drain for the eardrum and apparatus for introducing the same
NL7801015A (en) * 1978-01-27 1979-07-31 Medline Ab Swellable material used to block body ducts - is used esp. to block oviducts as a contraceptive and pref. comprises acrylic! copolymer hydrogel
US4298002A (en) * 1979-09-10 1981-11-03 National Patent Development Corporation Porous hydrophilic materials, chambers therefrom, and devices comprising such chambers and biologically active tissue and methods of preparation
US4509504A (en) * 1978-01-18 1985-04-09 Medline Ab Occlusion of body channels
US5197982A (en) * 1991-10-15 1993-03-30 Goldsmith Iii Manning M Adjustable prosthetic device for vocal cord and method
AU650646B2 (en) * 1990-04-20 1994-06-30 Ent, L.L.C Phonosurgery devices
US6161034A (en) * 1999-02-02 2000-12-12 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
US20020058882A1 (en) * 1998-06-22 2002-05-16 Artemis Medical, Incorporated Biopsy localization method and device
US6497706B1 (en) 1998-03-03 2002-12-24 Senorx, Inc. Biopsy device and method of use
US6540695B1 (en) 1998-04-08 2003-04-01 Senorx, Inc. Biopsy anchor device with cutter
US6544185B2 (en) 2000-10-23 2003-04-08 Valentino Montegrande Ultrasound imaging marker and method of use
US6638234B2 (en) 1998-03-03 2003-10-28 Senorx, Inc. Sentinel node location and biopsy
US6654629B2 (en) 2002-01-23 2003-11-25 Valentino Montegrande Implantable biomarker and method of use
US6662041B2 (en) 1999-02-02 2003-12-09 Senorx, Inc. Imageable biopsy site marker
US20030233101A1 (en) * 2002-06-17 2003-12-18 Senorx, Inc. Plugged tip delivery tube for marker placement
US6679851B2 (en) 1998-09-01 2004-01-20 Senorx, Inc. Tissue accessing and anchoring device and method
US6725083B1 (en) 1999-02-02 2004-04-20 Senorx, Inc. Tissue site markers for in VIVO imaging
US6758848B2 (en) 1998-03-03 2004-07-06 Senorx, Inc. Apparatus and method for accessing a body site
US20040204660A1 (en) * 1998-06-22 2004-10-14 Artemis Medical, Inc. Biopsy localization method and device
US20040236212A1 (en) * 2003-05-23 2004-11-25 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US20040236211A1 (en) * 2003-05-23 2004-11-25 Senorx, Inc. Marker or filler forming fluid
US6862470B2 (en) 1999-02-02 2005-03-01 Senorx, Inc. Cavity-filling biopsy site markers
US6875182B2 (en) 1998-03-03 2005-04-05 Senorx, Inc. Electrosurgical specimen-collection system
US20050113855A1 (en) * 2003-08-11 2005-05-26 Kennedy Kenneth C.Ii Surgical implant
US20050119562A1 (en) * 2003-05-23 2005-06-02 Senorx, Inc. Fibrous marker formed of synthetic polymer strands
US20060173280A1 (en) * 2003-11-17 2006-08-03 Inrad, Inc. Multi Mode Imaging Marker
US20060241411A1 (en) * 2005-04-20 2006-10-26 Inrad, Inc. Marking device with retracable cannula
US20070038146A1 (en) * 2005-08-05 2007-02-15 Quick Richard L Biopsy device with fluid delivery to tissue specimens
US20080039819A1 (en) * 2006-08-04 2008-02-14 Senorx, Inc. Marker formed of starch or other suitable polysaccharide
US20080102439A1 (en) * 2006-10-27 2008-05-01 Bin Tian Biological tissue for surgical implantation
US20080188931A1 (en) * 2006-11-01 2008-08-07 Seoul National University Hospital Cricoid wedge implant
US20080254298A1 (en) * 2006-02-23 2008-10-16 Meadwestvaco Corporation Method for treating a substrate
US20090030309A1 (en) * 2007-07-26 2009-01-29 Senorx, Inc. Deployment of polysaccharide markers
US20090112118A1 (en) * 2005-08-05 2009-04-30 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US20090171198A1 (en) * 2006-08-04 2009-07-02 Jones Michael L Powdered marker
US20090204021A1 (en) * 2004-12-16 2009-08-13 Senorx, Inc. Apparatus and method for accessing a body site
US20100010341A1 (en) * 2006-12-18 2010-01-14 Talpade Dnyanesh A Biopsy Marker with In Situ-Generated Imaging Properties
US20100030072A1 (en) * 2006-12-12 2010-02-04 Casanova R Michael Multiple Imaging Mode Tissue Marker
US20100082102A1 (en) * 2008-09-23 2010-04-01 Senorx, Inc. Porous bioabsorbable implant
US20100298696A1 (en) * 2003-11-17 2010-11-25 Bard Peripheral Vascular, Inc. Self-contained, self-piercing, side-expelling marking apparatus
US20100298698A1 (en) * 2000-11-20 2010-11-25 Senorx, Inc. Tissue site markers for in vivo imaging
US20100331668A1 (en) * 2008-01-31 2010-12-30 Ranpura Himanshu M Biopsy Tissue Marker
US20110028836A1 (en) * 2008-12-30 2011-02-03 Himanshu Ranpura Marker delivery device for tissue marker placement
US20110082547A1 (en) * 1997-10-10 2011-04-07 Senorx, Inc. Tissue marking implant
US20110166448A1 (en) * 1999-02-02 2011-07-07 Jones Michael L Marker delivery device with releasable plug
US20110184280A1 (en) * 1999-02-02 2011-07-28 Jones Michael L Intracorporeal marker and marker delivery device
US20110184449A1 (en) * 2006-08-04 2011-07-28 Senorx, Inc. Marker delivery device with obturator
US20110214398A1 (en) * 2010-03-05 2011-09-08 Edwards Lifesciences Corporation Dry Prosthetic Heart Valve Packaging System
US8343071B2 (en) 2004-12-16 2013-01-01 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US8437834B2 (en) 2006-10-23 2013-05-07 C. R. Bard, Inc. Breast marker
US8486028B2 (en) 2005-10-07 2013-07-16 Bard Peripheral Vascular, Inc. Tissue marking apparatus having drug-eluting tissue marker
US8579931B2 (en) 1999-06-17 2013-11-12 Bard Peripheral Vascular, Inc. Apparatus for the percutaneous marking of a lesion
US8641640B2 (en) 2005-05-23 2014-02-04 Senorx, Inc. Tissue cutting member for a biopsy device
US8668737B2 (en) 1997-10-10 2014-03-11 Senorx, Inc. Tissue marking implant
USD715442S1 (en) 2013-09-24 2014-10-14 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715942S1 (en) 2013-09-24 2014-10-21 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716450S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716451S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
US9408592B2 (en) 2003-12-23 2016-08-09 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US9498317B2 (en) 2010-12-16 2016-11-22 Edwards Lifesciences Corporation Prosthetic heart valve delivery systems and packaging
US9820824B2 (en) 1999-02-02 2017-11-21 Senorx, Inc. Deployment of polysaccharide markers for treating a site within a patent

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542892U (en) * 1977-06-09 1979-01-10
US5344453A (en) * 1991-05-30 1994-09-06 Boston Medical Products, Inc. Thyroplasty implant
US5201765A (en) * 1991-09-20 1993-04-13 Xomed-Treace Inc. Vocal cord medialization prosthesis
JP5224318B2 (en) * 2007-06-29 2013-07-03 財団法人ヒューマンサイエンス振興財団 Vocal cord reinforcement, electrodes for preventing vocal cord atrophy, and vocal cord atrophy preventing device provided with the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220960A (en) * 1960-12-21 1965-11-30 Wichterle Otto Cross-linked hydrophilic polymers and articles made therefrom
US3505988A (en) * 1967-04-11 1970-04-14 Norman Deane Prosthesis for chronic access to the peritoneum
US3520949A (en) * 1966-07-26 1970-07-21 Nat Patent Dev Corp Hydrophilic polymers,articles and methods of making same
US3524447A (en) * 1964-04-06 1970-08-18 Sterilon Corp Method of making a rigid tipped polyvinyl catheter
US3707150A (en) * 1970-11-05 1972-12-26 William W Montgomery Laryngeal keel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220960A (en) * 1960-12-21 1965-11-30 Wichterle Otto Cross-linked hydrophilic polymers and articles made therefrom
US3524447A (en) * 1964-04-06 1970-08-18 Sterilon Corp Method of making a rigid tipped polyvinyl catheter
US3520949A (en) * 1966-07-26 1970-07-21 Nat Patent Dev Corp Hydrophilic polymers,articles and methods of making same
US3505988A (en) * 1967-04-11 1970-04-14 Norman Deane Prosthesis for chronic access to the peritoneum
US3707150A (en) * 1970-11-05 1972-12-26 William W Montgomery Laryngeal keel

Cited By (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948271A (en) * 1972-11-07 1976-04-06 Taichiro Akiyama Drain for the eardrum and apparatus for introducing the same
US4509504A (en) * 1978-01-18 1985-04-09 Medline Ab Occlusion of body channels
NL7801015A (en) * 1978-01-27 1979-07-31 Medline Ab Swellable material used to block body ducts - is used esp. to block oviducts as a contraceptive and pref. comprises acrylic! copolymer hydrogel
US4298002A (en) * 1979-09-10 1981-11-03 National Patent Development Corporation Porous hydrophilic materials, chambers therefrom, and devices comprising such chambers and biologically active tissue and methods of preparation
AU650646B2 (en) * 1990-04-20 1994-06-30 Ent, L.L.C Phonosurgery devices
US5549673A (en) * 1990-04-20 1996-08-27 Smith & Nephew Richards Inc. Phonosurgery implant instruments and a system and method of implantation
US5197982A (en) * 1991-10-15 1993-03-30 Goldsmith Iii Manning M Adjustable prosthetic device for vocal cord and method
US8157862B2 (en) 1997-10-10 2012-04-17 Senorx, Inc. Tissue marking implant
US9039763B2 (en) 1997-10-10 2015-05-26 Senorx, Inc. Tissue marking implant
US20110082547A1 (en) * 1997-10-10 2011-04-07 Senorx, Inc. Tissue marking implant
US8668737B2 (en) 1997-10-10 2014-03-11 Senorx, Inc. Tissue marking implant
US6497706B1 (en) 1998-03-03 2002-12-24 Senorx, Inc. Biopsy device and method of use
US8147487B2 (en) 1998-03-03 2012-04-03 Senorx, Inc. Apparatus and method for accessing a body site
US7229439B2 (en) 1998-03-03 2007-06-12 Senorx, Inc. Apparatus and method for accessing a body site
US20070232955A1 (en) * 1998-03-03 2007-10-04 Senorx, Inc. Apparatus and method for accessing a body site
US6638234B2 (en) 1998-03-03 2003-10-28 Senorx, Inc. Sentinel node location and biopsy
US6758848B2 (en) 1998-03-03 2004-07-06 Senorx, Inc. Apparatus and method for accessing a body site
US6716179B2 (en) 1998-03-03 2004-04-06 Senorx, Inc. Sentinel node location and biopsy
US6875182B2 (en) 1998-03-03 2005-04-05 Senorx, Inc. Electrosurgical specimen-collection system
US20050187489A1 (en) * 1998-03-03 2005-08-25 Wardle John L. Electrosurgical specimen-collection system
US20080287828A1 (en) * 1998-04-08 2008-11-20 Fred Burbank Biopsy anchor device with cutter
US20030144605A1 (en) * 1998-04-08 2003-07-31 Senorx, Inc. Biopsy anchor device with cutter
US7377902B2 (en) 1998-04-08 2008-05-27 Senorx, Inc. Biopsy anchor device with cutter
US6540695B1 (en) 1998-04-08 2003-04-01 Senorx, Inc. Biopsy anchor device with cutter
US20040210160A1 (en) * 1998-06-22 2004-10-21 Fulton Richard E. Biopsy localization method and device
US8292822B2 (en) 1998-06-22 2012-10-23 Devicor Medical Products, Inc. Biopsy localization method and device
US20040204660A1 (en) * 1998-06-22 2004-10-14 Artemis Medical, Inc. Biopsy localization method and device
US20060079829A1 (en) * 1998-06-22 2006-04-13 Fulton Richard E Biopsy localization method and device
US10010380B2 (en) 1998-06-22 2018-07-03 Devicor Medical Products, Inc. Biopsy localization method and device
US20040267155A1 (en) * 1998-06-22 2004-12-30 Fulton Richard Eustis Biopsy localization method and device
US20050033195A1 (en) * 1998-06-22 2005-02-10 Fulton Richard E. Biopsy localization method and device
US20050045192A1 (en) * 1998-06-22 2005-03-03 Artemis Medical, Inc. Biopsy localization method and device
US20020058882A1 (en) * 1998-06-22 2002-05-16 Artemis Medical, Incorporated Biopsy localization method and device
US6679851B2 (en) 1998-09-01 2004-01-20 Senorx, Inc. Tissue accessing and anchoring device and method
US7282034B2 (en) 1998-09-01 2007-10-16 Senorx, Inc. Tissue accessing and anchoring device and method
US20050197594A1 (en) * 1998-09-01 2005-09-08 Senorx, Inc. Tissue accessing and anchoring device and method
US6993375B2 (en) 1999-02-02 2006-01-31 Senorx, Inc. Tissue site markers for in vivo imaging
US9044162B2 (en) 1999-02-02 2015-06-02 Senorx, Inc. Marker delivery device with releasable plug
US6161034A (en) * 1999-02-02 2000-12-12 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
US20050143656A1 (en) * 1999-02-02 2005-06-30 Senorx, Inc. Cavity-filling biopsy site markers
US20050063908A1 (en) * 1999-02-02 2005-03-24 Senorx, Inc. Tissue site markers for in vivo imaging
US6862470B2 (en) 1999-02-02 2005-03-01 Senorx, Inc. Cavity-filling biopsy site markers
US20110166448A1 (en) * 1999-02-02 2011-07-07 Jones Michael L Marker delivery device with releasable plug
US6996433B2 (en) 1999-02-02 2006-02-07 Senorx, Inc. Imageable biopsy site marker
US10172674B2 (en) 1999-02-02 2019-01-08 Senorx, Inc. Intracorporeal marker and marker delivery device
US20060084865A1 (en) * 1999-02-02 2006-04-20 Burbank Fred H Imageable biopsy site marker
US7047063B2 (en) 1999-02-02 2006-05-16 Senorx, Inc. Tissue site markers for in vivo imaging
US20060122503A1 (en) * 1999-02-02 2006-06-08 Senorx, Inc. Imageable biopsy site marker
US20060155190A1 (en) * 1999-02-02 2006-07-13 Senorx, Inc. Imageable biopsy site marker
US9820824B2 (en) 1999-02-02 2017-11-21 Senorx, Inc. Deployment of polysaccharide markers for treating a site within a patent
US9649093B2 (en) 1999-02-02 2017-05-16 Senorx, Inc. Cavity-filling biopsy site markers
US20100324416A1 (en) * 1999-02-02 2010-12-23 Senorx, Inc. Cavity-filling biopsy site markers
US6427081B1 (en) 1999-02-02 2002-07-30 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
US20040193044A1 (en) * 1999-02-02 2004-09-30 Senorx, Inc. Tissue site markers for in vivo imaging
US20040116806A1 (en) * 1999-02-02 2004-06-17 Senorx, Inc. Biopsy site marker and process and apparatus for applying it
US9237937B2 (en) 1999-02-02 2016-01-19 Senorx, Inc. Cavity-filling biopsy site markers
US9149341B2 (en) 1999-02-02 2015-10-06 Senorx, Inc Deployment of polysaccharide markers for treating a site within a patient
US8219182B2 (en) 1999-02-02 2012-07-10 Senorx, Inc. Cavity-filling biopsy site markers
US20040101479A1 (en) * 1999-02-02 2004-05-27 Senorx, Inc. Biopsy site marker and process and apparatus for applying it
US6725083B1 (en) 1999-02-02 2004-04-20 Senorx, Inc. Tissue site markers for in VIVO imaging
US8965486B2 (en) 1999-02-02 2015-02-24 Senorx, Inc. Cavity filling biopsy site markers
US20110184280A1 (en) * 1999-02-02 2011-07-28 Jones Michael L Intracorporeal marker and marker delivery device
US7792569B2 (en) 1999-02-02 2010-09-07 Senorx, Inc. Cavity-filling biopsy site markers
US20100198059A1 (en) * 1999-02-02 2010-08-05 Senorx, Inc. Remotely activated marker
US20090131825A1 (en) * 1999-02-02 2009-05-21 Senorx, Inc. Imageable biopsy site marker
US6662041B2 (en) 1999-02-02 2003-12-09 Senorx, Inc. Imageable biopsy site marker
US7565191B2 (en) 1999-02-02 2009-07-21 Senorx, Inc. Tissue site markers for in vivo imaging
US8626270B2 (en) 1999-02-02 2014-01-07 Senorx, Inc. Cavity-filling biopsy site markers
US8224424B2 (en) 1999-02-02 2012-07-17 Senorx, Inc. Tissue site markers for in vivo imaging
US8498693B2 (en) 1999-02-02 2013-07-30 Senorx, Inc. Intracorporeal marker and marker delivery device
US8361082B2 (en) 1999-02-02 2013-01-29 Senorx, Inc. Marker delivery device with releasable plug
US20100010342A1 (en) * 1999-02-02 2010-01-14 Senorx, Inc. Tissue site markers for in vivo imaging
US6567689B2 (en) 1999-02-02 2003-05-20 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
US9861294B2 (en) 1999-02-02 2018-01-09 Senorx, Inc. Marker delivery device with releasable plug
US8579931B2 (en) 1999-06-17 2013-11-12 Bard Peripheral Vascular, Inc. Apparatus for the percutaneous marking of a lesion
US9579159B2 (en) 1999-06-17 2017-02-28 Bard Peripheral Vascular, Inc. Apparatus for the percutaneous marking of a lesion
US6544185B2 (en) 2000-10-23 2003-04-08 Valentino Montegrande Ultrasound imaging marker and method of use
US8718745B2 (en) 2000-11-20 2014-05-06 Senorx, Inc. Tissue site markers for in vivo imaging
US20100298698A1 (en) * 2000-11-20 2010-11-25 Senorx, Inc. Tissue site markers for in vivo imaging
US6654629B2 (en) 2002-01-23 2003-11-25 Valentino Montegrande Implantable biomarker and method of use
US8177792B2 (en) 2002-06-17 2012-05-15 Senorx, Inc. Plugged tip delivery tube for marker placement
US7651505B2 (en) 2002-06-17 2010-01-26 Senorx, Inc. Plugged tip delivery for marker placement
US8784433B2 (en) 2002-06-17 2014-07-22 Senorx, Inc. Plugged tip delivery tube for marker placement
US20030233101A1 (en) * 2002-06-17 2003-12-18 Senorx, Inc. Plugged tip delivery tube for marker placement
US10813716B2 (en) 2002-11-18 2020-10-27 Bard Peripheral Vascular, Inc. Self-contained, self-piercing, side-expelling marking apparatus
US9848956B2 (en) 2002-11-18 2017-12-26 Bard Peripheral Vascular, Inc. Self-contained, self-piercing, side-expelling marking apparatus
US20110092815A1 (en) * 2003-05-23 2011-04-21 Senorx, Inc. Marker or filler forming fluid
US10299881B2 (en) 2003-05-23 2019-05-28 Senorx, Inc. Marker or filler forming fluid
US7983734B2 (en) 2003-05-23 2011-07-19 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US9801688B2 (en) 2003-05-23 2017-10-31 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US8880154B2 (en) 2003-05-23 2014-11-04 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US20050119562A1 (en) * 2003-05-23 2005-06-02 Senorx, Inc. Fibrous marker formed of synthetic polymer strands
US20040236213A1 (en) * 2003-05-23 2004-11-25 Senorx, Inc. Marker delivery device with releasable plug
US10045832B2 (en) 2003-05-23 2018-08-14 Senorx, Inc. Marker or filler forming fluid
US20110237943A1 (en) * 2003-05-23 2011-09-29 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US7877133B2 (en) 2003-05-23 2011-01-25 Senorx, Inc. Marker or filler forming fluid
US20040236211A1 (en) * 2003-05-23 2004-11-25 Senorx, Inc. Marker or filler forming fluid
US8639315B2 (en) 2003-05-23 2014-01-28 Senorx, Inc. Marker or filler forming fluid
US8626269B2 (en) 2003-05-23 2014-01-07 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US20040236212A1 (en) * 2003-05-23 2004-11-25 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US20090287078A1 (en) * 2003-05-23 2009-11-19 Senorx, Inc. Marker or filler forming fluid
US8447386B2 (en) 2003-05-23 2013-05-21 Senorx, Inc. Marker or filler forming fluid
US7970454B2 (en) 2003-05-23 2011-06-28 Senorx, Inc. Marker delivery device with releasable plug
US20100256778A1 (en) * 2003-08-11 2010-10-07 Wilson-Cook Medical Inc. Surgical Implant
US8226730B2 (en) 2003-08-11 2012-07-24 Cook Medical Technologies Llc Surgical implant
US20050113855A1 (en) * 2003-08-11 2005-05-26 Kennedy Kenneth C.Ii Surgical implant
US20060173280A1 (en) * 2003-11-17 2006-08-03 Inrad, Inc. Multi Mode Imaging Marker
US20100298696A1 (en) * 2003-11-17 2010-11-25 Bard Peripheral Vascular, Inc. Self-contained, self-piercing, side-expelling marking apparatus
US8634899B2 (en) 2003-11-17 2014-01-21 Bard Peripheral Vascular, Inc. Multi mode imaging marker
US9408592B2 (en) 2003-12-23 2016-08-09 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US10105125B2 (en) 2004-12-16 2018-10-23 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US8343071B2 (en) 2004-12-16 2013-01-01 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US20090204021A1 (en) * 2004-12-16 2009-08-13 Senorx, Inc. Apparatus and method for accessing a body site
US8360990B2 (en) 2004-12-16 2013-01-29 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US11246574B2 (en) 2004-12-16 2022-02-15 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US10342635B2 (en) 2005-04-20 2019-07-09 Bard Peripheral Vascular, Inc. Marking device with retractable cannula
US20060241411A1 (en) * 2005-04-20 2006-10-26 Inrad, Inc. Marking device with retracable cannula
US10357328B2 (en) 2005-04-20 2019-07-23 Bard Peripheral Vascular, Inc. and Bard Shannon Limited Marking device with retractable cannula
US11278370B2 (en) 2005-04-20 2022-03-22 Bard Peripheral Vascular, Inc. Marking device with retractable cannula
US8641640B2 (en) 2005-05-23 2014-02-04 Senorx, Inc. Tissue cutting member for a biopsy device
US11426149B2 (en) 2005-05-23 2022-08-30 SenoRx., Inc. Tissue cutting member for a biopsy device
US9095325B2 (en) 2005-05-23 2015-08-04 Senorx, Inc. Tissue cutting member for a biopsy device
US9750487B2 (en) 2005-05-23 2017-09-05 Senorx, Inc. Tissue cutting member for a biopsy device
US10478161B2 (en) 2005-05-23 2019-11-19 Senorx, Inc. Tissue cutting member for a biopsy device
US8915864B2 (en) 2005-08-05 2014-12-23 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US7981051B2 (en) 2005-08-05 2011-07-19 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US20070038146A1 (en) * 2005-08-05 2007-02-15 Quick Richard L Biopsy device with fluid delivery to tissue specimens
US7572236B2 (en) 2005-08-05 2009-08-11 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US10874381B2 (en) 2005-08-05 2020-12-29 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US20090112118A1 (en) * 2005-08-05 2009-04-30 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US10064609B2 (en) 2005-08-05 2018-09-04 Senorx, Inc. Method of collecting one or more tissue specimens
US8317725B2 (en) 2005-08-05 2012-11-27 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US8486028B2 (en) 2005-10-07 2013-07-16 Bard Peripheral Vascular, Inc. Tissue marking apparatus having drug-eluting tissue marker
US20080254298A1 (en) * 2006-02-23 2008-10-16 Meadwestvaco Corporation Method for treating a substrate
US20090171198A1 (en) * 2006-08-04 2009-07-02 Jones Michael L Powdered marker
US20080058640A1 (en) * 2006-08-04 2008-03-06 Senoxrx, Inc. Marker formed of starch or other suitable polysaccharide
US20080039819A1 (en) * 2006-08-04 2008-02-14 Senorx, Inc. Marker formed of starch or other suitable polysaccharide
US20110184449A1 (en) * 2006-08-04 2011-07-28 Senorx, Inc. Marker delivery device with obturator
US8437834B2 (en) 2006-10-23 2013-05-07 C. R. Bard, Inc. Breast marker
US8007992B2 (en) 2006-10-27 2011-08-30 Edwards Lifesciences Corporation Method of treating glutaraldehyde-fixed pericardial tissue with a non-aqueous mixture of glycerol and a C1-C3 alcohol
US9918832B2 (en) 2006-10-27 2018-03-20 Edwards Lifesciences Corporation Biological tissue for surgical implantation
US20080102439A1 (en) * 2006-10-27 2008-05-01 Bin Tian Biological tissue for surgical implantation
US20080188931A1 (en) * 2006-11-01 2008-08-07 Seoul National University Hospital Cricoid wedge implant
US9901415B2 (en) 2006-12-12 2018-02-27 C. R. Bard, Inc. Multiple imaging mode tissue marker
US20100030072A1 (en) * 2006-12-12 2010-02-04 Casanova R Michael Multiple Imaging Mode Tissue Marker
US10682200B2 (en) 2006-12-12 2020-06-16 C. R. Bard, Inc. Multiple imaging mode tissue marker
US11471244B2 (en) 2006-12-12 2022-10-18 C.R. Bard, Inc. Multiple imaging mode tissue marker
US9579077B2 (en) 2006-12-12 2017-02-28 C.R. Bard, Inc. Multiple imaging mode tissue marker
US8401622B2 (en) 2006-12-18 2013-03-19 C. R. Bard, Inc. Biopsy marker with in situ-generated imaging properties
US9042965B2 (en) 2006-12-18 2015-05-26 C. R. Bard, Inc. Biopsy marker with in situ-generated imaging properties
US20100010341A1 (en) * 2006-12-18 2010-01-14 Talpade Dnyanesh A Biopsy Marker with In Situ-Generated Imaging Properties
US20090030309A1 (en) * 2007-07-26 2009-01-29 Senorx, Inc. Deployment of polysaccharide markers
US20100331668A1 (en) * 2008-01-31 2010-12-30 Ranpura Himanshu M Biopsy Tissue Marker
US8311610B2 (en) 2008-01-31 2012-11-13 C. R. Bard, Inc. Biopsy tissue marker
US11833275B2 (en) 2008-09-23 2023-12-05 Senorx, Inc. Porous bioabsorbable implant
US20100082102A1 (en) * 2008-09-23 2010-04-01 Senorx, Inc. Porous bioabsorbable implant
US10786604B2 (en) 2008-09-23 2020-09-29 Senorx, Inc. Porous bioabsorbable implant
US9327061B2 (en) 2008-09-23 2016-05-03 Senorx, Inc. Porous bioabsorbable implant
US8670818B2 (en) 2008-12-30 2014-03-11 C. R. Bard, Inc. Marker delivery device for tissue marker placement
US10258428B2 (en) 2008-12-30 2019-04-16 C. R. Bard, Inc. Marker delivery device for tissue marker placement
US11779431B2 (en) 2008-12-30 2023-10-10 C. R. Bard, Inc. Marker delivery device for tissue marker placement
US20110028836A1 (en) * 2008-12-30 2011-02-03 Himanshu Ranpura Marker delivery device for tissue marker placement
US9937030B2 (en) 2010-03-05 2018-04-10 Edwards Lifesciences Corporation Dry prosthetic heart valve packaging system
US8679404B2 (en) 2010-03-05 2014-03-25 Edwards Lifesciences Corporation Dry prosthetic heart valve packaging system
US20110214398A1 (en) * 2010-03-05 2011-09-08 Edwards Lifesciences Corporation Dry Prosthetic Heart Valve Packaging System
US10561486B2 (en) 2010-03-05 2020-02-18 Edwards Lifesciences Corporation Dry prosthetic heart valve packaging system
US9539080B2 (en) 2010-03-05 2017-01-10 Edwards Lifesciences Corporation Dry prosthetic heart valve packaging system
US11911256B2 (en) 2010-03-05 2024-02-27 Edwards Lifesciences Corporation Dry prosthetic heart valve packaging system
US11027870B2 (en) 2010-12-16 2021-06-08 Edwards Lifesciences Corporation Prosthetic heart valve delivery systems and packaging
US9498317B2 (en) 2010-12-16 2016-11-22 Edwards Lifesciences Corporation Prosthetic heart valve delivery systems and packaging
USD715442S1 (en) 2013-09-24 2014-10-14 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715942S1 (en) 2013-09-24 2014-10-21 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716450S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716451S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification

Also Published As

Publication number Publication date
NL7200661A (en) 1972-07-25
CS151338B1 (en) 1973-10-19
FR2122952A5 (en) 1972-09-01
DE2201861A1 (en) 1972-08-10
JPS5029596B1 (en) 1975-09-25
IT948034B (en) 1973-05-30
GB1334691A (en) 1973-10-24

Similar Documents

Publication Publication Date Title
US3818894A (en) Laryngeal implant
JP4416151B2 (en) Hydrogels whose volume swells in response to environmental changes and methods for their production and use
US3915172A (en) Capillary drain for glaucoma
US3767759A (en) Method of molding capillary drain for surgery
Becerra et al. Structure of the tail fin in teleosts
CA2018448C (en) Injectable polymeric bodies
JP3359036B2 (en) Biocompatible hydrogel
US4267295A (en) Polymeric compositions and hydrogels formed therefrom
US4379864A (en) Polymeric compositions and hydrogels formed therefrom
US4834753A (en) Synthetic intraocular lens swellable in swelling agent and a method for preparation thereof
DE2513284A1 (en) TENDON PROSTHESIS AND METHOD OF MANUFACTURING IT
DE1617393A1 (en) Carrier for biologically active substances
US20050095269A1 (en) Gel plug for blockage of the canaliculus
PT1206293E (en) Homopolymers containing crosslinkers and ocular implants made therefrom
JPS63170320A (en) Method of increasing soft tissue by bridged polyvinylpyrrolidone
Refojo et al. Poly (methyl acrylate‐co‐hydroxyethyl acrylate) hydrogel implant material of strength and softness
BR112016024192B1 (en) CONTACT LENS OR IOL, IOL BLANK, FORMATION AND COMPOSITION METHOD
Woerly et al. Interactions of copolymeric poly (glyceryl methacrylate)-collagen hydrogels with neural tissue: effects of structure and polar groups
US20070173951A1 (en) Tissue substitute material
EP0474627A1 (en) Deswelled, hydrogel intraocular lenses.
CA1261739A (en) X-ray contrast spherical hydrogel particles based on polymers and copolymers of acrylates and methacrylates and the method for preparation thereof
US7875661B2 (en) Ordered polymer system and intraocular lens
Kolařík et al. Mechanical properties of model synthetic tendons
EP0034174B1 (en) Hydrogel implant article and method
JPWO2019182099A1 (en) A sugar-reactive composite gel composition, a method for producing the same, an insulin delivery microneedle containing the sugar-reactive composite gel composition, and a method for producing the same.