US3822334A - Process for preparing poly(tetramethylene terephthalate)yarn - Google Patents

Process for preparing poly(tetramethylene terephthalate)yarn Download PDF

Info

Publication number
US3822334A
US3822334A US00299978A US29997872A US3822334A US 3822334 A US3822334 A US 3822334A US 00299978 A US00299978 A US 00299978A US 29997872 A US29997872 A US 29997872A US 3822334 A US3822334 A US 3822334A
Authority
US
United States
Prior art keywords
filaments
polymer
extruded
degrees centigrade
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00299978A
Inventor
J Patterson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Corp
Original Assignee
Fiber Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fiber Industries Inc filed Critical Fiber Industries Inc
Priority to US00299978A priority Critical patent/US3822334A/en
Priority to US05/462,272 priority patent/US3975488A/en
Application granted granted Critical
Publication of US3822334A publication Critical patent/US3822334A/en
Assigned to CELANESE CORPORATION A DE CORP reassignment CELANESE CORPORATION A DE CORP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FIBER INDUSTRIES INC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters

Definitions

  • Poly(tetramethylene)terephthalate yarn is very useful because of its excellent tensile and dyeability properties.
  • This invention relates to a novel process for spinning and drawing a yarn comprised of at least 85 percent (by weight) of poly(tetramethylene)terephthalate.
  • polymer comprised of. at least 85 percent (byweight) of poly(tetra- I methylene) terephthalate cannot be processed in accordance with the conditions taught by the art for the processing of, e.g., poly(ethylene)terephthalate polymer.
  • the former polymer is melt spun under conditions (adjusted for differences in melting points) normally used for the latter polymer, e.g., the yarn produced crystallizes on the package, causing filament growth and eventual sloughling. If the material is carefully handled and attempts are made topc omplete the drawing process, the spun yarn elongates when heated.
  • Hot feed roll drawing is then impossible because the threadline licks back to the hot roll and entanglement ensues, causing a catastrophic thread- .,line breakage.
  • the useof a cold feed roll alone is restricted to low draw ratio processes (less than about1 6) as cold drawing at higher ratios leads to thick and thin require special equipment and are inconvenient on a large scale; theuse of steam jets, e.g.,is disadvantageous be- (cause it is expensive, generatesheat and noise", and crystalthreadline as low as possible and still wind the material ,ing from the package. Such a spun package can be processed -further.
  • the spinning temperature is from about 240 to about 280 degrees centigrade
  • the spinning threadline tension per extruded filament is at least 0.09 grams per filament
  • the total spinning threadline tension is at least O.4 +0.00174 (total spun denier of yarn) +0052 (relative viscosity of polymer) 0.0366 (spinning temperature, in degrees centigrade) +0.1414 (number of filaments extruded) +0.00381 (windup speed) -0.000000332 windup speed)
  • the product produced by applicants process has good uniformity even at high windup speeds; this is rather unobvious in view of the performance of poly(ethylene)terephthalate wherein the quality of the yarn produced decreases markedly with an increase in windup speeds.
  • applicants process is nonanalogousto processes for the preparation of poly(ethylene)terephthalate in at least two respects: it uses relatively high spinning threadline tensions, and it uses relatively high windup speeds. These features would producea polythey used to spin and draw poly(ethylene)terephthalate;
  • the polymer which is spun and drawn into yarn is comprised of at least 85 percent (by weight) of poly(te'tramethylene)terephthalate. It may be prepared by reacting terephthalic acid or its dialkyl ester and a polymethylene glycol having the formula HO(CH ),,OH wherein n is an integer from 12 to 8. At least 85 percent of said polymer is prepared "from aglycol wherein n is 4( 1,4-butanediol), and some or all' ofthe remaining 15 percent may be prepared from 1 ethylene glycol, trimethylene glycol, l,4-butanediol, and
  • Thepolymethylene glycol used to prepare some weight) or all of said remaining 15 percent may be replaced entirely or in part with other glycols such as 1,4-cyclohexanedimethanol; 1,4-bis-(2-hydroxyethyloxy) benzene, and the like. It is preferred that no more than about 10 percent of the polymer will be prepared from a glycol which is not a polymethylene glycol.
  • dicarboxylic acids and their esters may be used to prepare the polymer used in the process of this invention.
  • a dicarboxylic acid selected from the group consisting of COOH COOH
  • dicarboxylic acid wherein R is alkylene of from about 2 to about 16 carbon atoms may be used.
  • dicarboxylic acid When said dicarboxylic acid is used in the preparation of said polymer, it is preferred to use from about 3 to about 8 weight percent of said thereof.
  • dicarboxylic acids which may be used to prepare the polymer used in the process of this invention include, e.g., succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, and the like.
  • dicarboxylic acids When one or more of said dicarboxylic acids is used, it is preferred that they be of the formula HOOC-R'COOH wherein R is alkylene of from about 4 to about 10 carbon atoms; and it is most preferred that R be alkylene of 4 carbon atoms.
  • the polymer used in the process of this invention may be comprised of other compounds than the ones hereinbefore described such as, e.g., dye site additives, delustrants, antistatic agents, optical brighteners, etc.
  • the polymer used in the process of this invention essentially consists of poly(tetramethylene)terephthalate, i.e., at least 95 percent (by of the polymer is terephthalate.
  • total denier or a total spun denier
  • Total denier is the weight (in grams) of 9000 meters of yarn. It is preferred that the total spun denier of the yarn made in the process of this invention be from about 100 to about 550, and it is most preferred that said total spun denier be from about 150 to about 450.
  • terephtha'late polymer are well known to the art.
  • the relative viscosity i.e., the ratio of the viscosity of an 8 percent solution of polytetramethylene terephthalate in orthochlorophenol to the viscosity of the orthochlorophenol per se measured in the same unit at 25 degrees centigrade
  • the relative viscosity of the polymer I used in the process of this invention should be from about 10 to about 50, although it is preferred to work with a polymer with a relative viscosity of from about 15 to about 40, and it is most preferred to work with a polymer I with a relative viscosity of from about 20 to about 30.
  • filaments of said polymer are extruded through a spinnerette at a spinning temperature of from about 240 poly (tetramethylene) to about 280 degrees centigrade (spinning temperature is the temperature of the molten polymer before ex- 1 trusion), and the extruded fiber is taken up at a windup speed of from about 1000 to about 10,000 feet per minute. It ispreferred to extrude from about 10 to about 50 filaments of said polymer at a spinning temperature of from about 245 to about 270 degrees centigrade and take up the extruded filaments at a windup speed of from about 2500 to about 6000 feet per minute.
  • filaments of said polymer are extruded at a spinning temperature of from about 250 to about 265 degrees centigrade and taken up at a windup speed of from about 3000 to about 5000 feet per minute.
  • the spinning threadline tension (as measured about 70 inches from the face of the spinnerette) be at least 0.09 grams per filament, and it is preferred that it be at least 0.19 grams per filament.
  • the total spinning threadline tension i.e., the tension on the yarn bundle, as distinguished from the tension on the individual filaments comprising the yarn bundle) is at least equal to 0.4 +0.00174 (total spun denier of yarn) +0052 (relative viscosity of polymer) 0.0366 (spinning temperature, in degrees centigrade) +0.1414 (number of filaments extruded) +0.00381 (windup speed) -0.000000332 (windup speed)?
  • the extruded filaments are taken up, they are drawn to a draw ratio of from about 1.0 to about 5.0, although it is preferred to draw them to a draw ratio of from about 1.5 to about 4.5; and this can done in one or two stages, depending upon the conditions employed. A two stage draw operation is preferred if the equation specified below yields a value of 1.000 or more.
  • the first stage is conveniently a cold draw step wherein the material is drawn to a draw ratio of from about 1.0 to about 1.6 (and preferably from about 1.0 to about 1.2) while being passed over a cold feed roll which is at a temperature of from about ambient up to about 60 degrees centigrade.
  • the second stage is a hot drawn wherein the material is drawn over a hot feed roll at a temperature of from about 60 to about 180 degrees centigrade to a total draw ratio of from about 1.0 to about 5.0.
  • the total draw ratio be from about 1.5 to about 4.5 and that the second stage feed roll temperature be from about 70 to about 150 degrees centigrade, and it is most preferred to have said second stage feed roll temperature be from about to about degrees centigrade.
  • the draw speed in the hot draw step may be from about 500 to about 10,000 feet per minute.
  • the filaments are passed over a heated object such as a heated feed .roll or a hot pin or a hot plate at a temperature of from about 60 to about 180 degrees centigrade during the drawing, although it is preferred to use a heated feed roll at a temperature of from about 70 to about 150 degrees centigrade, and his most preferred to have the feed roll at a temperature of from about 80 to about 130 degrees centigrade.
  • a heated feed .roll or a hot pin or a hot plate at a temperature of from about 60 to about 180 degrees centigrade during the drawing, although it is preferred to use a heated feed roll at a temperature of from about 70 to about 150 degrees centigrade, and his most preferred to have the feed roll at a temperature of from about 80 to about 130 degrees centigrade.
  • this one stage hot draw the filaments are drawn to a draw; ratio of from about 1.0 to about 5.0, although it is preferred to use a draw ratio of from about 1.5 to about 4.5.
  • the hole size of the spinnerettes through which the only (tetramethylene) terephthalate polymer is extruded may be from about 0.005 to about 0.050 inches in diameter.
  • Uster values, cross section coefiicients of variation, birefringence, and maximum draw ratios are essentially the same for poly(tetramethylene)terephthalate filaments which are spun and drawn at the same spinning temperature and windup speed to the same denier per filament regardless of the hole size employed.
  • the extruded filaments may be quenched by any of'the methods well known to the art. Thus, e.g., they may be quenched by .water, by air blown onto the filaments, etc.
  • a quench system it is preferred for reasons of simplicity and economy to use an air .flow quench system wherein air is blown over the extruded polymer.
  • the solution is then transferred to an ester-interchange vessel equipped with a stirrer and a condensation system for the separation of distillates. 11.4 grams of the compound produced as described above are added to the solution. The reaction mixture is then heated up to a temperature of 224 degrees centigrade, and ester-interchange is allowed to occur for 77 minutes until 8.0 pounds of methanol (which is 97 percent of the theoretical amount of methanol) are evolved.
  • reaction mixture is transferred to an autoclave, 11.4 grams of triphenylphosphite sequestrant and 11.4 grams of titanium dioxide delustrant are added thereto, and it is subjected to a temperature of about 250 degrees centigrade while an absolute pressure of from about 0.08 to about 0.35 millimeters of mercury is imposed over a period of 60 minutes. After this reduced pressure is reached, polycondensation is allowed to occur for a period of 140 minutes until a polymer with a relative viscosity of 25.4 is produced.
  • the polymer is dried and then extruded and spun at a spinning temperature of about 25 degrees centigrade and a windup speed of 3500 feet per minute; during extrusion the filaments are subjected to outflow air quench at the rate of 15 cubic feet per minute, spinning threadline tension is maintained at about 0.19 grams per extruded filament, and 36 filaments are extruded.
  • the spun yarn has a total denier of 430, a birefringence of from about 0.050 to about 0.065, and a boiling water shrinkage of from about 0 to about 1 percent.
  • the spun yarn is drawn over a. heated feed roll at a temperature of degrees centigrade to a draw ratio of about 2.82; the draw speed used is 1804 feet per minute.
  • the drawn warn has a denier of 150, a tenacity of 3.4 grams/denier, an elongation of 35 percent, and a boiling water shrinkage of about 13 percent.
  • the Uster value is 0.5%, and the yarn dyes very uniformly.
  • EXAMPLE 2 Poly(tetramethylene) terephthalate is polymerized to a relative viscosity of 21.1 using zinc acetate as the polymerization catalyst. The chip is dried under vacuum, and 36 filaments are extruded at a spinning temperature of 265 degrees centigrade and a windup speed of,3000 feet per minute; spinning threadline tension is maintained at 0.125 grams per filament. The resulting spun product is cold drawn 8 percent before being drawn an additional 250 percent from a heated roll maintained at degrees centigrade. The drawn product possesses good tensile strength and excellent dye uniformity.
  • EXAMPLE 3 In substantial accordance with Example 2, poly(tetramethylene) terephthalate is polymerized to a relative viscosity of 23.9 and melt spun at a spinning temperature of 255 degrees centigrade and a windup speed of 2500 feet per minute; tension in the spinning threadline is maintained at less than about 0.09 grams per filament. After approximately 15 minutes, the yarn begins to crystallize on the bobbin preventing further takeup and utilization of the material on the package.
  • EXAMPLE 4 In substantial accordance with Example 2, poly(tetramethylene) terephthalate is polymerized to a relative viscosity of 25.4. The polymer is dried under vacuum, and 24 filaments are extruded at a spinning temperature of 255 degrees centigrade and a windup speed of 4500 feet per minute; spinning threadline tension is 0.28 grams per filament, and spun denier is 82. The yarn is predrawn 1 percent from a cold roll and subsequently extended 203% from a roll heated to 110 degrees centigrade. Yarn thus produced has good tensile properties and may be knitted into a tricot fabric having pleasing aesthetics and good dimensional stability.
  • a process for preparing yarn comprised of at least 85 percent (by weight) of poly(tetramethylene) terephthalate with a total spun denier of from about 80 to about 700 g., comprising the steps of sequentially:
  • the spinning temperature is from about 240 to about 280 degrees centigrade
  • the extruded filaments are taken up at a windup speed of from about 1000 to about 10,000 feet per minute;
  • the spinning threadline tension per extruded filament is at least 0.09 grams per filament
  • the total spinning threadline tension i.e., the tension on the yarn bundle
  • the total spinning threadline tension is at least 0.4 +0.00174 (total spun denier of yarn) +0.052 (relative viscosity of polymer) 0.0366 (spinning temperature, in degrees centigrade) +0.1414 (number of filaments extruded) +0.00381 (windup speed) (windup speed).
  • said filaments are drawn in one stage to said draw ratio of from about 1.0 to about 5.0 while being passed over a heated feed roll at a temperature of from about 60 to about 180 degrees centigrade, and
  • said spinning threadline tension is at least 0.19 grams per filament and at least equal to 0.16 +0.0005 (feed roll temperature, degrees centigrade) grams per filament.
  • the total denier of the yarn is from about 100 to about 550;
  • said polymer has a relative viscosity of from about 15 'to about 40 and from about 10 to about 50 filaments of said polymer are extruded through a spinnerette, wherein:
  • the spinning temperature is from about 245 to about 270 degrees centigrade
  • the extruded filaments are taken up at a 'Windup speed of from about 2500 to about 6000 feet per minute
  • said filaments are drawn to a draw ratio of from about 1.5 to about 4.5 in a single stage while being passed over a heated feed roll at a temperature of from about to about 150 degrees oentigrade.
  • the total denier of said yarn is from about 150 to about 450;
  • said polymer has a relative viscosity of from about 20 to about 30 and from about 15 to about 40 filaments of said polymer are extruded through a spinnerette, wherein:
  • the spinning temperature is from about 250 to about 265 degrees centigrade, and 2. the extruded filaments are taken up at a windup speed of from about 3000 to about 5000 feet pe minute;

Abstract

THERE IS PROVIDED A PROCESS FOR PREPARING YARN COMPRISED OF AT LEAST 85 PERCENT (BY WEIGHT) OF POLY(TETRAMETHYLENE) TEREPHTHALATE WITH A TOTAL SPUN DIENER OF FROM ABOUT 80 TO ABOUT 700 FROM POLYMER WITH A RELATIVE VISCOSITY OF FROM ABOUT 10 TO ABOUT 50 IN SAID PROCESS FROM ABOUT 5 TO ABOUT 70 FILAMENTS OF SAID POLYMER ARE EXTRUDED THROUGH A SPINNERETTE AT A SPINNING TEMPERATURE OF FROM ABOUT 240 TO ABOUT 280 DEGREES CENTIGRADE, AND THE EXTRUDED FILAMENTS ARE TAKEN UP AT A WINDUP SPEED OF FROM ABOUT 1000 TO ABOUT 10,000 FEET PER MINUTE; DURING SAID EXTRUSION, THE SPINNING THREADLINE TENSION PER EXTRUDED FILAMENT (AS MEASURED ABOUT 70 INCHES FROM THE FACE OF THE SPINNERETTE) IS AT LEAST 0.09 GRAMS PER FILAMENT. THEREAFTER THE EXTRUDED FILAMENTS ARE DRAWN IN ONE OR MORE STAGES TO A DRAW RATIO OF FROM ABOUT 1.0 TO ABOUT 5.0 AND, DURING THE DRAWING STEP, THE FILAMENTS ARE PASSED OVER A HEATED FEED ROLL AT A TEMPERATURE OF FROM ABOUT 60 TO ABOUT 180 DEGREES CENTIGRADE.

Description

U.S. Cl. 264-210 F United States Patent ()1 hoe No Drawing. Continuation of application Ser. No. 48,483, June 22, 1970. This application Oct. 24, 1972, Ser.
Int. Cl. D01d 5/12 4 Claims ABSTRACT OF THE DISCLOSURE truded filaments are taken up at a windup speed of from about 1000 to about 10,000 feet per minute; during said extrusion, the spinning threadline tension per extruded filament (as measured about 70 inches from the face of the spinnerette) is at least 0.09 grams per filament. Thereafter the extruded filaments are drawn in one or more stages to a draw ratio of from about 1.0 to about 5.0 and, during the drawing step, the filaments are passed over a heated feed roll at a temperature of from about 60 to about 180 degrees centigrade.
F This is a continuation, of application. Ser. No. 48,483,
filed June 22, 1970. V
Poly(tetramethylene)terephthalate yarn is very useful because of its excellent tensile and dyeability properties. This invention relates to a novel process for spinning and drawing a yarn comprised of at least 85 percent (by weight) of poly(tetramethylene)terephthalate.
In the normal processing of melt spun polymers, to fibers, it is desirable to keepthe tension in the spinning onto a package; for the use of low tensions improves uniformity and keeps spun orientation low, and low spun orientation allows relatively large draw ratios and increased productivity. A typical prior art teaching to this effect may be found, e.g., in U.S. Pat. 3,361,859. I
It has been discovered that, unexpectedly, polymer comprised of. at least 85 percent (byweight) of poly(tetra- I methylene) terephthalate cannot be processed in accordance with the conditions taught by the art for the processing of, e.g., poly(ethylene)terephthalate polymer. When the former polymer is melt spun under conditions (adjusted for differences in melting points) normally used for the latter polymer, e.g., the yarn produced crystallizes on the package, causing filament growth and eventual sloughling. If the material is carefully handled and attempts are made topc omplete the drawing process, the spun yarn elongates when heated. Hot feed roll drawing is then impossible because the threadline licks back to the hot roll and entanglement ensues, causing a catastrophic thread- .,line breakage. ,The useof a cold feed roll alone is restricted to low draw ratio processes (less than about1 6) as cold drawing at higher ratios leads to thick and thin require special equipment and are inconvenient on a large scale; theuse of steam jets, e.g.,is disadvantageous be- (cause it is expensive, generatesheat and noise", and crystalthreadline as low as possible and still wind the material ,ing from the package. Such a spun package can be processed -further. only with extreme difficulty and tedious hand- 3,822,334 Patented July 2, 1974 lizes the yarn to a point where it cannot be textured effectively; the use of a hot shoe, e.g., makes the process very difficult to run. The addition of a steam conditioning tube at spinning will prevent crystallization on the bobbin, but it does not necessarily allow the material to be drawn from a hot feed roll.
It is thus an object of this invention to provide a simple, economical process for spinning and drawing polymer comprised of at least 85 percent (by weight) of poly(tetramethylene) terephthalate into yarn. In accordance with this invention, there is provided a process for preparing yarn comprised of at least 85 percent (by weight) of poly- (tetramethylene)terephthalate with a total spun denier of from about 80 to about 700 from polymer, comprising the steps of sequentially:
1. preparing a polymer comprised of at least 85 percent (by weight) of poly(tetramethylene)terephthalate wherein said polymer has a relative viscosity of from about 10 to about 50;
2. extruding from about 5 to about 70 filaments of said polymer through a spinnerette, wherein:
(a) the spinning temperature is from about 240 to about 280 degrees centigrade, and
(b) the extruded filaments are taken up at a windup speed of from about 1000 to about 10,000 feet per minute; and
3. thereafter drawing said filaments to a draw ratio of from about 1.0 to about 5.0, said filaments being passed over a heated feed roll at a temperature of from about to about 180 degrees centigrade during said drawing step;
provided that, during said extrusion step, the spinning threadline tension per extruded filament (as measured about 70 inches from the face of the spinnerette) is at least 0.09 grams per filament, and the total spinning threadline tension (i.e., the tension on the yarn bundle) is at least O.4 +0.00174 (total spun denier of yarn) +0052 (relative viscosity of polymer) 0.0366 (spinning temperature, in degrees centigrade) +0.1414 (number of filaments extruded) +0.00381 (windup speed) -0.000000332 windup speed) It has been discovered, quite unexpectedly, that the use of the relatively high spinning threadline tension in conjunction with the other process parameters described herein produces a yarn with excellent tensile and dyeability properties and good uniformity. The product produced by applicants process has good uniformity even at high windup speeds; this is rather unobvious in view of the performance of poly(ethylene)terephthalate wherein the quality of the yarn produced decreases markedly with an increase in windup speeds. Thus applicants process is nonanalogousto processes for the preparation of poly(ethylene)terephthalate in at least two respects: it uses relatively high spinning threadline tensions, and it uses relatively high windup speeds. These features would producea polythey used to spin and draw poly(ethylene)terephthalate;
, portions in the yarn and a nonuniform product. Other drawing methods such as steam jets or hot air drawing but they produce a poly(tetramethylene)terephthalate yarn with excellent properties.
In the process of this invention the polymer which is spun and drawn into yarn is comprised of at least 85 percent (by weight) of poly(te'tramethylene)terephthalate. It may be prepared by reacting terephthalic acid or its dialkyl ester and a polymethylene glycol having the formula HO(CH ),,OH wherein n is an integer from 12 to 8. At least 85 percent of said polymer is prepared "from aglycol wherein n is 4( 1,4-butanediol), and some or all' ofthe remaining 15 percent may be prepared from 1 ethylene glycol, trimethylene glycol, l,4-butanediol, and
the Thepolymethylene glycol used to prepare some weight) or all of said remaining 15 percent may be replaced entirely or in part with other glycols such as 1,4-cyclohexanedimethanol; 1,4-bis-(2-hydroxyethyloxy) benzene, and the like. It is preferred that no more than about 10 percent of the polymer will be prepared from a glycol which is not a polymethylene glycol.
Other dicarboxylic acids and their esters may be used to prepare the polymer used in the process of this invention. Thus, e.g., from about 1 to about 10 weight percent (based on the weight of the terephthalic acid or the dialkyl ester thereof used to make the polymer) of a dicarboxylic acid selected from the group consisting of COOH COOH
and COH COOH wherein R is alkylene of from about 2 to about 16 carbon atoms may be used. When said dicarboxylic acid is used in the preparation of said polymer, it is preferred to use from about 3 to about 8 weight percent of said thereof. Some of the dicarboxylic acids which may be used to prepare the polymer used in the process of this invention include, e.g., succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, and the like. When one or more of said dicarboxylic acids is used, it is preferred that they be of the formula HOOC-R'COOH wherein R is alkylene of from about 4 to about 10 carbon atoms; and it is most preferred that R be alkylene of 4 carbon atoms.
Subject to the limitation described above (viz., at least 85 weight percent of the polymer is polytetramethylene terephthalate), the polymer used in the process of this invention may be comprised of other compounds than the ones hereinbefore described such as, e.g., dye site additives, delustrants, antistatic agents, optical brighteners, etc.
In a preferred embodiment, the polymer used in the process of this invention essentially consists of poly(tetramethylene)terephthalate, i.e., at least 95 percent (by of the polymer is terephthalate.
In the process of this invention it is preferred to prepare yarns with a total denier (or a total spun denier) of from about 80 to about 700. Total denier (or total spun denier) is the weight (in grams) of 9000 meters of yarn. It is preferred that the total spun denier of the yarn made in the process of this invention be from about 100 to about 550, and it is most preferred that said total spun denier be from about 150 to about 450.
Process for the preparation of poly(tetramethylene) Hooc-R-ooorr,
terephtha'late polymer are well known to the art. Thus,
e.g., dimethyl terephthalate and 1,4-butanediol; this is the ester-interchange process. The relative viscosity (i.e., the ratio of the viscosity of an 8 percent solution of polytetramethylene terephthalate in orthochlorophenol to the viscosity of the orthochlorophenol per se measured in the same unit at 25 degrees centigrade) of the polymer I used in the process of this invention should be from about 10 to about 50, although it is preferred to work with a polymer with a relative viscosity of from about 15 to about 40, and it is most preferred to work with a polymer I with a relative viscosity of from about 20 to about 30.
In the process of this invention from about to about 70 filaments of said polymer are extruded through a spinnerette at a spinning temperature of from about 240 poly (tetramethylene) to about 280 degrees centigrade (spinning temperature is the temperature of the molten polymer before ex- 1 trusion), and the extruded fiber is taken up at a windup speed of from about 1000 to about 10,000 feet per minute. It ispreferred to extrude from about 10 to about 50 filaments of said polymer at a spinning temperature of from about 245 to about 270 degrees centigrade and take up the extruded filaments at a windup speed of from about 2500 to about 6000 feet per minute. In the most preferred embodiment of this invention from about 15 to about 40 filaments of said polymer are extruded at a spinning temperature of from about 250 to about 265 degrees centigrade and taken up at a windup speed of from about 3000 to about 5000 feet per minute.
In the process of this invention, it is critical that the spinning threadline tension (as measured about 70 inches from the face of the spinnerette) be at least 0.09 grams per filament, and it is preferred that it be at least 0.19 grams per filament. The total spinning threadline tension (i.e., the tension on the yarn bundle, as distinguished from the tension on the individual filaments comprising the yarn bundle) is at least equal to 0.4 +0.00174 (total spun denier of yarn) +0052 (relative viscosity of polymer) 0.0366 (spinning temperature, in degrees centigrade) +0.1414 (number of filaments extruded) +0.00381 (windup speed) -0.000000332 (windup speed)? After the extruded filaments are taken up, they are drawn to a draw ratio of from about 1.0 to about 5.0, although it is preferred to draw them to a draw ratio of from about 1.5 to about 4.5; and this can done in one or two stages, depending upon the conditions employed. A two stage draw operation is preferred if the equation specified below yields a value of 1.000 or more. If 1.603-.0000174 (windup speed) +0.0001336 (spinning temperature in degrees centigrade) +0.003 863 (feed roll temperature, in degrees centigrade) 0.02377 (relative viscosity of polymer) +0.0006562 (number of filaments extruded) 0.0919 (feed roll temperature/relative viscosity) exceeds 1.000, then a two stage draw should be used; if it is less than 1.000, it is preferred to use a one stage draw.
If a two stage draw is used, the first stage is conveniently a cold draw step wherein the material is drawn to a draw ratio of from about 1.0 to about 1.6 (and preferably from about 1.0 to about 1.2) while being passed over a cold feed roll which is at a temperature of from about ambient up to about 60 degrees centigrade. The second stage is a hot drawn wherein the material is drawn over a hot feed roll at a temperature of from about 60 to about 180 degrees centigrade to a total draw ratio of from about 1.0 to about 5.0. As with the onestage draw process, in the two stage process it is preferred that the total draw ratio be from about 1.5 to about 4.5 and that the second stage feed roll temperature be from about 70 to about 150 degrees centigrade, and it is most preferred to have said second stage feed roll temperature be from about to about degrees centigrade. The draw speed in the hot draw step may be from about 500 to about 10,000 feet per minute. Inasmuch as applicants process relates to one and two stage drawing steps, the latter using a cold draw, it will be appreciated that when applicant uses the term said filaments being passed over a heated feed roll at a temperature of from about 60 to about degrees centigrade during said drawing step to describe his invention the term during describes the use of 'the heated feed roll at a temperature of from about 60 to about 180 degrees centigrade for either part of (two stage draw) or essentially all of (one stage draw) the drawing step.
If the aforementioned equation yields a valuewhich is less than 1.000 and if the spinning threadline tension is at least 0.19 grams per filament and at least equal to 0.l6+0.0005 (feed roll temperature degrees C.) grams/ filament, a one stage hot draw may be employed; and
this is the preferred method of drawing. When the onestage draw is used, the filaments are passed over a heated object such as a heated feed .roll or a hot pin or a hot plate at a temperature of from about 60 to about 180 degrees centigrade during the drawing, although it is preferred to use a heated feed roll at a temperature of from about 70 to about 150 degrees centigrade, and his most preferred to have the feed roll at a temperature of from about 80 to about 130 degrees centigrade. In this one stage hot draw the filaments are drawn to a draw; ratio of from about 1.0 to about 5.0, although it is preferred to use a draw ratio of from about 1.5 to about 4.5.
The yarn produced via the process of this invention,
when made into fabric, gives a fabric with excellent hand (softer than comparable fabric madefrom polyethylene terephthalate), dye uptakepand dye uniformity. In the process of this invention it is preferred to' prepare drawn warns which have a denier per filament d.p.f. of from'about 0.6 to about 10, although it is more preferred that the d.p,f. of said yarns be from about 1 to about *8 and it is most preferred that said d.p.f. be from about 1.2 to about 6.5.
The hole size of the spinnerettes through which the only (tetramethylene) terephthalate polymer is extruded may be from about 0.005 to about 0.050 inches in diameter. Unlike the case with poly(ethylene) terephthalate extrusion, wherein spun birefringence goes up and draw ratios decrease markedly as hole size is increased, Uster values, cross section coefiicients of variation, birefringence, and maximum draw ratios are essentially the same for poly(tetramethylene)terephthalate filaments which are spun and drawn at the same spinning temperature and windup speed to the same denier per filament regardless of the hole size employed.
In the process of this invention, as the poly(tetramethylene) terephthalate polymer is being extruded into filaments, the extruded filaments may be quenched by any of'the methods well known to the art. Thus, e.g., they may be quenched by .water, by air blown onto the filaments, etc. When a quench systemis used, it is preferred for reasons of simplicity and economy to use an air .flow quench system wherein air is blown over the extruded polymer. It has been discovered that when such a system is used with poly(tetramethylene) terephthalate 'made,e.g., in accordance with Example 1 of this specification there is a certain optimum quench rate of any one set of spinning conditions at which spun yarn orientation is at a minimum. Under otherwise constant spinning conditions, spun yarn orientation decreases to a minimum with increasing quench air flow, and as the quench rate "is further increased spun orientation increases.Thus, e.g.,
in one experiment, yarns with a spun denier of 400 were extruded, wound up at a speed of 4000 feet per minute, and drawn .to a draw ratio of 2.5. The elongations to break of the resulting products were determined, and these are indicated below. a
Velocity of Air (Outflow), I Elongation To Break Feet/ Minute of Product (percent) 0 25 '26 30 50 36 80 44 96 40 EXAMPLE 1 0.2 moles of purified diphenyl silanediol are placed in a vessel equipped with a stirrer, an addition funnel,
and a short distillation column connected to a vacuum system. 0.4 moles of tetraisopropyl titanate are added in a period of 2 minutes. An exothermic reaction results. The reactants are gently heated to 65 degrees centigrade under constant stirring. The condensation product, isopropyl alcohol, is removed quantitatively under reduced pressure (300 millimeters of mercury absolute) in a period of 3.5 hours. A viscous, slightly cloudy, tan colored liquid product is obtained in 98 percent yield. The product produced by this reaction as well as the use thereof as a catalyst is the sole invention of Luis R. Vizurraga and was not invented by Joseph Patterson.
25 pounds of dimethyl terephthalate and 16.2 pounds of 1,4-butanediol are charged to a melter and liquefied, thereby forming a solution wherein the 1,4-butanediol/ dimethyl terephthalate mole ratio is 1.4/1.
The solution is then transferred to an ester-interchange vessel equipped with a stirrer and a condensation system for the separation of distillates. 11.4 grams of the compound produced as described above are added to the solution. The reaction mixture is then heated up to a temperature of 224 degrees centigrade, and ester-interchange is allowed to occur for 77 minutes until 8.0 pounds of methanol (which is 97 percent of the theoretical amount of methanol) are evolved. Thereafter, the reaction mixture is transferred to an autoclave, 11.4 grams of triphenylphosphite sequestrant and 11.4 grams of titanium dioxide delustrant are added thereto, and it is subjected to a temperature of about 250 degrees centigrade while an absolute pressure of from about 0.08 to about 0.35 millimeters of mercury is imposed over a period of 60 minutes. After this reduced pressure is reached, polycondensation is allowed to occur for a period of 140 minutes until a polymer with a relative viscosity of 25.4 is produced.
The polymer is dried and then extruded and spun at a spinning temperature of about 25 degrees centigrade and a windup speed of 3500 feet per minute; during extrusion the filaments are subjected to outflow air quench at the rate of 15 cubic feet per minute, spinning threadline tension is maintained at about 0.19 grams per extruded filament, and 36 filaments are extruded. The spun yarn has a total denier of 430, a birefringence of from about 0.050 to about 0.065, and a boiling water shrinkage of from about 0 to about 1 percent.
The spun yarn is drawn over a. heated feed roll at a temperature of degrees centigrade to a draw ratio of about 2.82; the draw speed used is 1804 feet per minute. The drawn warn has a denier of 150, a tenacity of 3.4 grams/denier, an elongation of 35 percent, and a boiling water shrinkage of about 13 percent. The Uster value is 0.5%, and the yarn dyes very uniformly.
EXAMPLE 2 Poly(tetramethylene) terephthalate is polymerized to a relative viscosity of 21.1 using zinc acetate as the polymerization catalyst. The chip is dried under vacuum, and 36 filaments are extruded at a spinning temperature of 265 degrees centigrade and a windup speed of,3000 feet per minute; spinning threadline tension is maintained at 0.125 grams per filament. The resulting spun product is cold drawn 8 percent before being drawn an additional 250 percent from a heated roll maintained at degrees centigrade. The drawn product possesses good tensile strength and excellent dye uniformity.
EXAMPLE 3 In substantial accordance with Example 2, poly(tetramethylene) terephthalate is polymerized to a relative viscosity of 23.9 and melt spun at a spinning temperature of 255 degrees centigrade and a windup speed of 2500 feet per minute; tension in the spinning threadline is maintained at less than about 0.09 grams per filament. After approximately 15 minutes, the yarn begins to crystallize on the bobbin preventing further takeup and utilization of the material on the package.
EXAMPLE 4 In substantial accordance with Example 2, poly(tetramethylene) terephthalate is polymerized to a relative viscosity of 25.4. The polymer is dried under vacuum, and 24 filaments are extruded at a spinning temperature of 255 degrees centigrade and a windup speed of 4500 feet per minute; spinning threadline tension is 0.28 grams per filament, and spun denier is 82. The yarn is predrawn 1 percent from a cold roll and subsequently extended 203% from a roll heated to 110 degrees centigrade. Yarn thus produced has good tensile properties and may be knitted into a tricot fabric having pleasing aesthetics and good dimensional stability.
Although applicant has very specifically described many aspects of his invention, many other modifications will suggest themselves to those skilled in the art upon a reading of this disclosure. These are intended to be comprehended within the scope of this invention.
What is claimed is:
1. A process for preparing yarn comprised of at least 85 percent (by weight) of poly(tetramethylene) terephthalate with a total spun denier of from about 80 to about 700 g., comprising the steps of sequentially:
(a) preparing a polymer comprised of at least 85 percent (by weight) of poly(tetramethylene) terephthalate wherein said polymer has a relative viscosity of from about 10 to about 50;
(b) extruding from about 5 to about 70 filaments of said polymer through a spinnerette, wherein:
1. the spinning temperature is from about 240 to about 280 degrees centigrade, and
2. the extruded filaments are taken up at a windup speed of from about 1000 to about 10,000 feet per minute; and
(c) thereafter drawing said filaments to a draw ratio of from about 1.0 to about 5.0, said filaments being passed over a heated feed roll at a temperature of from about 60 to about 180 degrees centigrade during said drawing step;
provided that, during said extrusion step, the spinning threadline tension per extruded filament (as measured about 70 inches from the face of the spinnerette) is at least 0.09 grams per filament, and the total spinning threadline tension (i.e., the tension on the yarn bundle) is at least 0.4 +0.00174 (total spun denier of yarn) +0.052 (relative viscosity of polymer) 0.0366 (spinning temperature, in degrees centigrade) +0.1414 (number of filaments extruded) +0.00381 (windup speed) (windup speed).
2. The process of claim 1, wherein:
(a) 1.000 is greater than 1.6030.0000174 (windup speed, feet/minute) +0.0001336 (spinning temperature, degrees centigrade) +0.003863 (feed roll temperature, degrees centigrade) 0.02377 (relative viscosity of polymer) +0.00065 62 (number of filaments extruded) 0.0919 (feed roll temperature/relative .viscosity),
(b) said filaments are drawn in one stage to said draw ratio of from about 1.0 to about 5.0 while being passed over a heated feed roll at a temperature of from about 60 to about 180 degrees centigrade, and
(c) said spinning threadline tension is at least 0.19 grams per filament and at least equal to 0.16 +0.0005 (feed roll temperature, degrees centigrade) grams per filament.
3. The process of claim 2, wherein:
(a) the total denier of the yarn is from about 100 to about 550;
(b) said polymer has a relative viscosity of from about 15 'to about 40 and from about 10 to about 50 filaments of said polymer are extruded through a spinnerette, wherein:
, 1. the spinning temperature is from about 245 to about 270 degrees centigrade, and 2. the extruded filaments are taken up at a 'Windup speed of from about 2500 to about 6000 feet per minute; and
(c) thereafter said filaments are drawn to a draw ratio of from about 1.5 to about 4.5 in a single stage while being passed over a heated feed roll at a temperature of from about to about 150 degrees oentigrade.
4. The process of claim 3, wherein:
(a) the total denier of said yarn is from about 150 to about 450;
(b) said polymer has a relative viscosity of from about 20 to about 30 and from about 15 to about 40 filaments of said polymer are extruded through a spinnerette, wherein:
1. the spinning temperature is from about 250 to about 265 degrees centigrade, and 2. the extruded filaments are taken up at a windup speed of from about 3000 to about 5000 feet pe minute; and
(c) thereafter said filaments are drawn while being passed over a heated feed roll at a temperature of from about to about degrees centigrade.
References Cited UNITED STATES PATENTS 2,465,319 3/ 1949 Whitfield et a1. 260-75 2,957,747 10/1960 Bowling 264-168 3,103,407 9/1963 Clark et a1 264-290 T 3,213,171 10/1965 Kilian 264-210 F 3,361,859 1/1968 Cenzato 264-210 F 3,499,953 3/1970 Stanley 264-210 F 3,527,862 9/1970 Shimosaka 264-290 T 3,539,680 11/1970 Fukushima et a1. 264-290 T 3,553,305 1/1971 Au 264-210 F 3,584,103 6/1971 Harris 264-342 .JAY WOQ, Primary Examiner us. 01. X.R. 260-75 T; 264-178 F
US00299978A 1970-06-22 1972-10-24 Process for preparing poly(tetramethylene terephthalate)yarn Expired - Lifetime US3822334A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00299978A US3822334A (en) 1970-06-22 1972-10-24 Process for preparing poly(tetramethylene terephthalate)yarn
US05/462,272 US3975488A (en) 1972-10-24 1974-04-19 Process for preparing poly(tetramethylene terephthalate) yarn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4848370A 1970-06-22 1970-06-22
US00299978A US3822334A (en) 1970-06-22 1972-10-24 Process for preparing poly(tetramethylene terephthalate)yarn

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US4848370A Continuation 1970-06-22 1970-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/462,272 Continuation-In-Part US3975488A (en) 1972-10-24 1974-04-19 Process for preparing poly(tetramethylene terephthalate) yarn

Publications (1)

Publication Number Publication Date
US3822334A true US3822334A (en) 1974-07-02

Family

ID=26726160

Family Applications (1)

Application Number Title Priority Date Filing Date
US00299978A Expired - Lifetime US3822334A (en) 1970-06-22 1972-10-24 Process for preparing poly(tetramethylene terephthalate)yarn

Country Status (1)

Country Link
US (1) US3822334A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975488A (en) * 1972-10-24 1976-08-17 Fiber Industries, Inc. Process for preparing poly(tetramethylene terephthalate) yarn
US3984600A (en) * 1974-07-15 1976-10-05 Teijin Limited Zip fasteners made of polyester monofilaments
US4072663A (en) * 1977-02-22 1978-02-07 Allied Chemical Corporation Transfer system for conveying polyester polymer
US4092299A (en) * 1976-06-23 1978-05-30 Monsanto Company High draw ratio polyester feed yarn and its draw texturing
US4202854A (en) * 1977-12-23 1980-05-13 Monsanto Company Polyamide spin-texture process
DE3714972A1 (en) * 1986-05-14 1987-11-19 Celanese Corp POLYESTER MIXED FIBER
WO2000047507A1 (en) * 1999-02-10 2000-08-17 Asahi Kasei Kabushiki Kaisha Package for taking up false twist yarns

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975488A (en) * 1972-10-24 1976-08-17 Fiber Industries, Inc. Process for preparing poly(tetramethylene terephthalate) yarn
US3984600A (en) * 1974-07-15 1976-10-05 Teijin Limited Zip fasteners made of polyester monofilaments
US4092299A (en) * 1976-06-23 1978-05-30 Monsanto Company High draw ratio polyester feed yarn and its draw texturing
US4072663A (en) * 1977-02-22 1978-02-07 Allied Chemical Corporation Transfer system for conveying polyester polymer
US4202854A (en) * 1977-12-23 1980-05-13 Monsanto Company Polyamide spin-texture process
DE3714972A1 (en) * 1986-05-14 1987-11-19 Celanese Corp POLYESTER MIXED FIBER
US4755336A (en) * 1986-05-14 1988-07-05 Hoechst Celanese Corporation Process for making polyester blend fiber
WO2000047507A1 (en) * 1999-02-10 2000-08-17 Asahi Kasei Kabushiki Kaisha Package for taking up false twist yarns
US6440555B1 (en) 1999-02-10 2002-08-27 Asahi Kasei Kabushiki Kaisha Package for taking up false twist yarns

Similar Documents

Publication Publication Date Title
US2604667A (en) Yarn process
US4082731A (en) Method for producing a high modulus polyester yarn
US6645619B2 (en) Modified polytrimethylene terephthalate
JPH02248425A (en) Polyester-ether copolymer elastomer having hard segment of poly (1,3-propylene terephthalate)
CN1239763C (en) Fine denier yarn from poly(thimethylene terephthalate)
EP0201189B2 (en) Improved high speed process of making polyamide filaments
US5955196A (en) Polyester fibers containing naphthalate units
US3822334A (en) Process for preparing poly(tetramethylene terephthalate)yarn
US4415521A (en) Process for achieving higher orientation in partially oriented yarns
US3975488A (en) Process for preparing poly(tetramethylene terephthalate) yarn
KR20050003123A (en) High tenacity polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
US4945151A (en) Continuous production of polyester filaments
US5034174A (en) Texturing yarns
US4968778A (en) Elastomeric polymers
US2924500A (en) Wet-spinning of polyester fibers
US5464694A (en) Spinnable polyester based on modified polyethylene terephthalate and aliphatic dicarboxylic acids
US2924503A (en) Process for melt spinning polyesters containing an alkaline earth sulfate filler
US3377320A (en) Process of using germanium dioxide as a polyester condensation catalyst
JP3247777B2 (en) Polyurethane elastic body and method for producing the same
JP3998672B2 (en) Copolymer polytrimethylene terephthalate fiber
US4287713A (en) Process for low-torque textured yarn
JPS63530B2 (en)
JPS58144117A (en) Spinning method for polyester fiber
JPH04361610A (en) Production of polyester fiber
KR100587123B1 (en) High shrinkable polyester yarn and preparation thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: CELANESE CORPORATION A DE CORP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FIBER INDUSTRIES INC;REEL/FRAME:004239/0763

Effective date: 19841230

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)