US3828768A - Method and apparatus for detecting cardiac arrhythmias - Google Patents

Method and apparatus for detecting cardiac arrhythmias Download PDF

Info

Publication number
US3828768A
US3828768A US00271373A US27137372A US3828768A US 3828768 A US3828768 A US 3828768A US 00271373 A US00271373 A US 00271373A US 27137372 A US27137372 A US 27137372A US 3828768 A US3828768 A US 3828768A
Authority
US
United States
Prior art keywords
frequency components
reference standard
wave
hertz
timing signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00271373A
Inventor
D Douglas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Physiological Electronics Corp
Original Assignee
Physiological Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Physiological Electronics Corp filed Critical Physiological Electronics Corp
Priority to US00271373A priority Critical patent/US3828768A/en
Application granted granted Critical
Publication of US3828768A publication Critical patent/US3828768A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/364Detecting abnormal ECG interval, e.g. extrasystoles, ectopic heartbeats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7242Details of waveform analysis using integration

Definitions

  • the cardiac arrhythmias include certain ventricular ectopic beats or contractions, and more particularly those known as ventricular tachycardia, coupled beats, ventricular 'premature complex (V'PC), and fusion beats. It is known that all of these abnormalities indicate a probability that, if the patient is not properly treated, his heart may soon cease to pump blood because of ventricular fibrillation.
  • the patient may have a heart beat rate of 60 per minute, and if the highly dangerous beats are occurring at the rate of one per minute or less then treatment on an emergency basis may not be required while if the dangerously abnormal beats are occurring at the rate of five or more per minute then this may indicate an emergency situation.
  • the object and purpose of the present-invention is to provide a method or formula for analyzing the ECG wave in a predetermined manner, in order to identify the dangerously abnormal type of heartbeats.
  • German Pat. No. 2,109,179 issued Oct. 14, 1971.
  • the German patent discloses the method of analyzing an ECG wave into a relatively high frequency band and a relatively low frequency band, and then comparing the energy levels in the two frequency bands in order to detect abnormality of the'heart function.
  • All of the ventricular ectopic beats are characteri-zed by a'QRS complex which isof longer time duration than a normal QRS complex for the same patient.
  • the frequency components in the ECG wave which reliably indicate the occurrence of a 'QR S complex are significantly different for heart patients taken as a 'group, than for people of excellent health.
  • the heart beats of astronauts may be most reliably detected by monitoringfrequencies centered at 30 Hertz.
  • 1 have concluded that the occurrence of a QRS complex whether normal or abnormal) in a heart patient is most reliably indicated by frequency components centered at 14 Hertz, and preferably inth'e range of about 10 Hertz to about 18 Hertz.
  • the measurable duration of the low frequency components is greater than that of the higher frequency components.
  • the occurrence of a cardiac arrhythmia is detected in the following manner.
  • the ECG wave is produced in conventional fashion.
  • the ECG wave is sensed in any appropriate manner to determine the occurrence of a QRS complex, whether normal or abnormal.
  • the ECG wave is independently sensed for those frequency components which lie predominantly below the frequency range of the normal QRS complex.
  • These independently-sensed low-frequency components are then integrated throughout a time period which commences upon detection of a QRS complex and extends at least throughout its time duration.
  • the magnitude of the integral is then compared to a reference standard, and if it exceeds the standard the conclusion will be drawn that a cardiac arrhythmia has occurred.
  • the reference standard referred to above is not a constant which can be used indiscriminately for every patient in a group of patients, but rather, that its value will differ significantly from one patient to the next.
  • My invention also includes a method of determining the reference standard applicable to a particular patient.
  • FIG. 1 is a typical electrocardiogram of a heart patient having a mixture of normal and abnormal beats
  • FIG. 2 is a schematic block diagram of an apparatus suitable for carrying out the method of my invention
  • FIG. 3 is a waveform diagram of bigeminy (alternating normal and abnormal) showing how the various wave forms are related in accordance with my invention
  • FIG. 4 is a more detailed schematic diagram of the apparatus shown in FIG. 2;
  • FIG. 4(a) and 4(b) show the pass bands of filters used in the circuit of FIG. 4;
  • FIG. 4(0) shows a timing pulse
  • FIG. 5 is a still more detailed schematic diagram of certain portions of the circuit of FIG. 4.
  • FIG. I there is shown the electrocardiogram of a heart patient characterized by a mixture of normal and abnormal beats. Specifically, two normal beats spaced at a proper time interval are followed by one abnormal beat which is premature, and hence follows much too closely after the second one of the normal beats.
  • Different characteristic portions of the wave forms are identified by the conventional symbols P, Q, R, S, and T.
  • FIG. 1 is indicative in a general way of the problem to be solved. No effort is made here to illustrate the wave forms corresponding to the numerous different types of ECG abnormalities.
  • FIG. 2 illustrates an apparatus suitable for carrying out the method of the present invention.
  • An input means is used to produce a continuous electrical wave representing the electrical action of a patients heart (the ECG wave), and in FIG. 2 this is indicated simply by the letters ECG.
  • the ECG wave is applied both to a QRS Detector, a high bandpass filter, and to a V.E. Filter, a low bandpass filter.
  • the letters V. E. in the diagram refer to ventricular ectopic.
  • the output of the QRS Detector is fed to a Timer.
  • the main function of the Timer is to measure out a time period which at least equals, and perhaps exceeds, the time duration of the QRS complex, and for this purpose it produces an output identified as Timing Pulse.”
  • the output of the V. E. Filter is fed to an Integrator.
  • the output of the Timer is also fed to the Integrator, enabling the Timer to control the Integrator so that integration of frequency components passed through the V. E. Filter will continue at least throughout the duration of the QRS complex.
  • the output of the Integrator is fed to a Comparator, to which a Reference Standard is also supplied, and the Comparator produces an output indicating a potentially life-threatening cardiac arrhythmia and which is accordingly marked as LTCA pulse.
  • the heart beats are occurring regularly once each second.
  • the time duration of the QRScomplex is about 50 milliseconds to about milliseconds.
  • the time duration of the QRS complex is always prolonged, and will be about milliseconds to about 200 milliseconds.
  • the relatively low frequency portion of the abnormal QRS complex tends to have a longer time duration than the relatively high frequency portion.
  • the Timer in carrying out my invention I prefer to construct the Timer so that it will continue to operate at least several milliseconds beyond the duration of the QRS complex as detected by the QRS Detector. In this manner I am able to have the Integrator pick up essentially the entire energy content of the low-frequency components that are sensed through the V. E. Filter, that is, the frequency components that lie predominantly below the normal frequency range of a normal QRS complex and are preferably in the frequency range of about 2 Hertz to about 8 Hertz.
  • FIG. 3 illustrating the relationship of actual wave forms which occur during the operation of my invention.
  • a prerecorded ECG wave which was used for purpose of the test.
  • the Integrator Output which resulted.
  • These wave forms are actual tracings taken from a test which I made, using the method of my invention, on Thursday, Apr. 20, 1972.
  • the Comparator Output At the bottom of FIG. 3 there is shown the Comparator Output.
  • FIG. 4 schematically illustrates in somewhat greater detail the presently preferred circuit for carrying out the method of the present invention.
  • an input signal is taken from the patient and fed to a pre-amplifier in order to provide a standard 1 volt signal, and that an input signal can also be taken from a monitor. Only one of these inputs is used. Whichever input is used, an input attenuation control (not shown) may be adjusted to produce a nominal one volt signal which refers to the vertical height (either positive or negative) of the R wave from its base line.
  • each of these circuits feeds both into and around an accompanying Inverter followed by a Summing Network having a summing point 31 or S2 also.
  • Each Summing Network includes a full-wave rectifier.
  • the reason for use of these Inverters is that sometimes the'elec'trodes are connected to the patientin the wrong polarity, and also in some instances the electrical polarization of the heart occurs in the proper manner but with inverted polarity.
  • the method of'my invention is notconcerned with detecting the polarity; therefore, the use of an inverter in conjunction with each circuit serves to produce the proper form and magnitude of the wave regardless of polarity. That is what is desired for the purposes of my invention.
  • the QRS Detector is, in general, responsive to frequencies in the range from to'30 Hertz.
  • FIG. 4a illustrates a preferred'pass band for the QRS detector. As there shown, a filter is peaked at 14 Hertz and has a smaller receptivity to the low frequency of 10 Hertz and the high-frequency of 18 Hertz. I have found that sensing the ECG wave for frequency components in this frequency range provides a reliable indication of the occurrence of a QRS complex, regardless of whether the QRS complex is normal or abnormal. In other words, this range of frequencies does not so much characterize the normal QRS complex but rather is common to both normal and abnormal. Furthermore, the QRS filter will not pass any significant amount of the P and T waves, because of their lower frequency content.
  • FIG. 48 illustrates the preferred frequency range for the Ventricular Ectopic Filter. As shown in the drawing this filter is peaked at 4 Hertz and has a smaller energy reception at 2 Hertz at the low frequency end and at 8 Hertz on the high frequency end. I have found this frequency range to be'optimum for indicating the Ventricular Ectopic form of the QRS complex.
  • the Timer circuit In response to each QRS complex the Timer circuit produces a Timing Pulse which is approximately fifty milliseconds longer than the duration of those frequencies passed by the QRS filter.
  • the QRS filter is used to sense the frequency components of the ECG wave in the range of 10 Hertz to 18 Hertz. and the continuance of these frequencies at a significant energy level is considered as representing the continuation of the QRS complex itself.
  • these frequency components drop below their significant level the timing pulse generated by the Timer nevertheless continues for approximately fifty milliseconds. It is this timing pulse which keeps the Integrator turned on.
  • a typical shape of the Timing Pulse is shown in FIG. 4(0).
  • a standard reference voltage is supplied. to the Comparator. If the magnitude of the resulting integral produced by the Integrator output exceeds the reference standard. then the Comparator produces an output pulse in the manner illustrated in FIG. 3. However. if the magnitude of the integral is less than the reference standard then no output pulse is pro? cuted.
  • the Timer output' is also applied to a QRS Driver which applies the QRS Pulse to a White Light.
  • QRS Driver which applies the QRS Pulse to a White Light.
  • this output signal indicated as for example by the flashingof the light bulb, demonstrates that the machine is working and that the patients heart is working also.
  • Another reason for this output is that an irregular, slow, orlrapid flashing of the QRS indicator light would indicateheart rate, premature beats and other information available from atimed relation of successive QRS'complexes.
  • the LTCA Pulse from the Comparator output is fed to a monostable multivibrator having. an on cycle of two hundred fifty millisecondsand which is identified on the drawings as 250 MS MONO.” This device is used simply to impose a A second time standardization in the V. E. output.
  • the monostable multivibrator drives a V. E. Driver which is coupled to both a horn and a red light bulb which represent parallel loads for the LTCA output signal.
  • the apparatus as shown in FIG. 4 may be connected to the patient, with the ECG wave being also coupled to an oscilloscope to be "visually displayed at the same time. I prefer to initially set the ref erence standard voltage which is applied to the comparator so that it will be too low. The result of this procedure is that all of the heart beats will produce a V. E. output indication.
  • a trained person is observing the visual display of the ECG wave and knows that the output indications are false. Then the Reference Standard voltage is adjusted to a higher value until some of the output indications disappear. The Reference Standard is then higher than the minimum value of the integral produced by the Integrator. The Reference Standard is increased further until all V. E. output signals disappear during normal heart action. This is one of several methods of achieving standardization. In general the approach is that the Reference Standard will be set to a value significantly greater than the largest integral from a sample set.
  • FIG. 5 illustrates in detail the main portions of the circuit of FIG. 4.
  • eight operational amplifiers each one of which is constructed as an integrated circuit, and these devices are identified as I'Cl ICS, respectively.
  • suitable filter sections are combined with the two operational amplifiers, ICl and IC2, so as to provide the overall characteristics of amplification and band pass which are desired.
  • Cl and the equivalent resistance looking into R1 form one pole of a high-pass filter section.
  • R1 and C2 form one pole of a low-pass filter section.
  • R1 plus R2 and C3, modified somewhat by R3, form a second pole of the low-pass filter.
  • C4 and R5 form one pole of another high-pass filter section.
  • C5 together with the equivalent resistance provided by the combination of R4, R6, and R31 provides another low-pass filter section.
  • the gain characteristic is essentially as shown in FIG. 4(a).
  • the output of the QRS Filter passes through resistor R7 to an Inverter consisting of IC3 and resistor R8.
  • the Inverter output passes through a capacitor C7 and diode D2 to a Summing Point S2.
  • the direct output of the QRS Filter also passes through a capacitor C6 and a diode D1 to the same summing point.
  • the voltage at the summing point S2 appears across a load consisting of the parallel combination of capacitor C8 and resistor R11. It will be noted that the summing circuit is also a full-wave rectifier.
  • capacitor C8 provides a filtering function, to filter out the ripple voltage in the fully rectified wave, and this separate and distinct function has been indicated in FIG. 4 by the separate box entitled Ripple Filter.
  • the Timer includes operational amplifier IC4.
  • a fixed reference voltage is developed from a source of minus l0 volts through a voltage divider including resistors R12 and R14, and is coupled through resistor R13 to the inverting input of the operational amplifier.
  • the output of the QRS Filter after passing through the full-wave rectifier, summing circuit, and ripple filter as previously described, is then applied to the noninverting input of amplifier IC4.
  • the circuit functions in this manner.
  • the fixed reference voltage is so selected as to avoid a response to noise or spurious signals, but to provide a response to the signals in the frequency band of about 10 to about 18 Hertz so long as they have significant value.
  • a capacitor C9 is coupled between the noninverting input terminal of IC4 and its output terminal. This provides a regenerative feedback loop. Once an output signal has been developed by the amplifier, capacitor C9 tends to maintain that output signal, and delay its discontinuance or shut-off. Therefore, when the input signal falls below the level of the fixed reference voltage, the output signal from the operational amplifier does not shut off until some time afterwards. This time delay is approximately 50 milliseconds. The typical configuration of this timing pulse, or T Pulse, is shown in FIG. 4(0).
  • the T Pulse is applied to resistor R25 to the gate of FETl, which controls the action of the Integrator.
  • the V. E. Filter includes operational amplifier ICS.
  • a high-pass filter section is formed by capacitor C10 in series with the equivalent resistance provided by resistors R16, R17, R32, and R18.
  • a low-pass filter section is provided by R16 and C11.
  • Another low-pass filter section is formed by capacitor C12 together with the equivalent resistance of the circuit.
  • the over-all circuit provides the desired amount of gain, and a frequency response essentially as shown in FIG. 4(b).
  • the output of the V. E. Filter is supplied through a capacitor C14 and a diode D4 to a summing point SI above resistor R23. It is also supplied through a resistor R19 to an lnvertor which includes IC6 and R20. The invertor output is supplied through C13 and D5 to the same summing point. As before, the summing circuit is also a full-wave rectifier. No filtering is provided in this portion of the circuit, however.
  • the Integrator includes operational amplifier IC7, whose non-inverting input terminal is grounded.
  • the output of the summing circuit that follows the V. E. Filter is supplied through a resistor R24 to the inverting input terminal of IC7.
  • a capacitor C15 is connected between the inverting input of IC7 and its output terminal.
  • the drain and source of field effect transistor FET 1 are connected across C15. When a QRS pulse is not being received, the impedance between drain and source of FET 1 is low, C15 is essentially shorted out, and IC7 does not integrate.
  • timing pulse T When timing pulse T is applied, however, FET l is turned off, effectively putting C15 back in the circuit.
  • the series combination of R24 and C15 then provide an integrator whose output appears at the inverting input of IC7.
  • the output of IC7 therefore produces the integral of the applied signal (from V. E. Filter) throughout the continuation of the timing pulse T.
  • the Integrator output goes to the non-inverting input of Comparator IC8.
  • the Reference Standard (selected as earlier described) is applied to the inverting input.
  • a positive-going LTCA pulse is produced on the output terminal of IC8 whenever the Integrator output exceeds the Reference Standard.
  • said low frequency filter is selected to be predominatly responsive to frequencies in the range from 2 to 8 Hertz.
  • step of producing a timing signal includes continuing said timing signal for about 50 milliseconds after discontinuance of an output from said high frequency filter.
  • step of producing a timing signal includes continuing said timing signal so long as an output in being produced by said high frequency filter and for at least several milliseconds thereafter.
  • Apparatus for detecting cardiac arrhythmias comprising, in combination:
  • a filter coupled to said input means for filtering from the wave a band of frequency components selected from the range below about 10 Hertz;
  • a full-wave rectifier coupled to said filter for rectifying said band of frequency components
  • an integrator coupled to said rectifier and operable for integrating said band of frequency components
  • timing means coupled to said integrator for enabling the same upon the occurrence of each one of a succession of QRS complexes
  • comparison means coupled to said integrator and to said reference standard means for comparing each one of the resulting integrals with the reference standard
  • output means responsive to said comparison means whenever one of said resulting integrals exceeds said reference standard for producing an output signal indicating that a cardiac arrhythmia has occurred.
  • timing means includes:
  • an additional filter coupled to said input means for filtering from the wave a band of relatively high fre- 1 1 12 quency components selected from the range of tor on and off in response to said timing signal. about to about 30 Hertz; and 21.
  • said means coupled to said additional filter for generating generating means is adapted to generate said timing siga timing signal in response to the existence of said nal throughout the existence of said high frequency high frequency components; 5 components and for at least several milliseconds therethe output of said generating means being coupled to after.
  • said integrator for selectively turning said integra-

Abstract

A continuous electrical wave representing the electrical action of a patient''s heart is produced (the ECG wave). Frequency components of the ECG wave that lie predominantly below the frequency range of the normal QRS complex are sensed, these frequency components being typically in the range of about two Hertz to about eight Hertz. These frequency components are integrated upon the occurrence of a QRS complex, and the magnitude of the result is then compared to a reference standard. If the magnitude of the integral exceeds the reference standard an output signal indicative of a cardiac arrhythmia is then produced.

Description

United States Patent 1191 Douglas 1111 3,828,768 1451 Aug. 13, 1974 METHOD AND APPARATUS FOR DETECTING CARDEAC ARRHYTHMIAS 3,698,386 10/1972 Fried ..l28/2.06A
Primary Examiner-William E. Kamm [75] Inventor: David W. Douglas, Columbia, Mo. Attorney, Agent, or Firm vemon D. B ee'hl e r [73] Assignee: Physiological Electronics Corporation, San Marino, Calif. [57] ABSTRACT [22] Filed; July 13, 97 A continuous electrical wave representing the electrical action of a patient's heart is produced (the ECG PP N04 271,373 wave). Frequency components of the ECG wave that lie predominantly below the frequency range of the [52] US. Cl 128/2.06 A normal QRS complex are sfinsed, these frequency 51 1111. c1 A611) 5/04 components being typically in the range of about two [58] Field of Search" 123/206 A, 206 RF, 05 p Hertz'to about eight Hertz. These frequency compo- 2 205 R, 205 T nents are integrated upon the occurrence of a QRS complex, and the magnitude of the result is then com- [56] References Cited pared to a reference standard. If the magnitude of the UNITED STATES PATENTS integral exceeds the reference standard an output signal indicative of a cardiac arrhythmia is then pro- 3,352,300 11/1967 Rose 128/206 A duced. 3,524,442 8/1970 Horth 128/206 A 3,616,790 11/1971 Harris 128/2.06 A 21 Claims, 8 Drawing Figures $70. 1 v e044 l/EVTG/CULAQ I U-CA 260 MON/70? E C 701 /6 M59756 01/766247'02 (044%154702 n S /4 7542 PULSE MQ/VO /05 /C6 5/ /c7 m9 J VOLT 1/5 @50 02/1/59 new" are? 2e5- 4/14/ 4.
T g U 05 7 5270 M5275? 7/445? 553% if; /c1, /c2 /c5 52 m PAIENIEU mm 3x914 SHEET 2 (IF 4 J pdcddcccc Q mum sum 3 or 4 PAIENIED ma: man
a Q Q.
BACKGROUND OF THE INVENTION In the field of cardiology it is well known that the muscular action of the heart is controlled by a continuously changing electrical potential. It is a longestablished technique to attach electrodes to the body of a patient to thereby obtain a continuous electrical wave representing the electrical action of a patients heart. This continuous electrical wave (the-ECG wave) is then conventionally graphically recorded on a stripchart to provide the conventional electrocardiogram, or it may be momentarily displayed on an oscilloscope (the cardioscope) for purpose of visual examination of the wave form by a doctor or a specially trained nurse.
preconceived method or formula, that the QRS complex has occurred. However, to differentiate between a QRS complex which corresponds to a normal heart action, and a QRS complex which corresponds to abnormal heart action, has proven a far more difficult problem.
Many different types of abnormal heartactions have been identified and studied, and it is known that some are relatively harmless while others indicate a fairly immediate threat to the life of the patient. The cardiac arrhythmias include certain ventricular ectopic beats or contractions, and more particularly those known as ventricular tachycardia, coupled beats, ventricular 'premature complex (V'PC), and fusion beats. It is known that all of these abnormalities indicate a probability that, if the patient is not properly treated, his heart may soon cease to pump blood because of ventricular fibrillation.
Thus it is of extreme importance to=be able to analyze the ECG wave in accordance with a predetermined method or formula in order to determine whether the heart action falls within one of the highly dangerous categories mentioned above. This approach to the problem is particularly applicable to the coronary care units of hospitals, which have been established in rapidly increasing numbers since the year 1962. These coronary care units are devoted exclusively to the care and treatment of patients who have had one or more heart attacks. The patient himself is unable to determine whether his heart action is characterized by a highly dangerous type of abnormality. Furthermore, it is often the case that there will be many normal heart beats, then a single abnormal one, and then many more normal beats thereafter. In other instances the abnormal beats occur with some regularity and a significant frequency. The patient may have a heart beat rate of 60 per minute, and if the highly dangerous beats are occurring at the rate of one per minute or less then treatment on an emergency basis may not be required while if the dangerously abnormal beats are occurring at the rate of five or more per minute then this may indicate an emergency situation.
Thus the object and purpose of the present-invention is to provide a method or formula for analyzing the ECG wave in a predetermined manner, in order to identify the dangerously abnormal type of heartbeats.
REFERENCE TO PRIOR ART Among the applicable prior art is U.S. Pat. No. 3,138,151 entitled Detector and Alarm Ventricular impulses and issued June 23, 1964.
Also included among the prior art is German Pat. No. 2,109,179 issued Oct. 14, 1971. The German patent discloses the method of analyzing an ECG wave into a relatively high frequency band and a relatively low frequency band, and then comparing the energy levels in the two frequency bands in order to detect abnormality of the'heart function.
SUMMARY OF THE INVENTION The present invention is based upon my study and analysis of the ECG waves of many patients. From this extensive study I have drawn certain conclusions, and
low, the frequency range of the normal QRS complex.
2. All of the ventricular ectopic beats are characteri-zed by a'QRS complex which isof longer time duration than a normal QRS complex for the same patient.
3. The frequency components in the ECG wave which reliably indicate the occurrence of a 'QR S complex are significantly different for heart patients taken as a 'group, than for people of excellent health. horaxample, the heart beats of astronauts (assumed 'to be persons of "excellent health) may be most reliably detected by monitoringfrequencies centered at 30 Hertz. By contrast, 1 have concluded that the occurrence of a QRS complex whether normal or abnormal) in a heart patient is most reliably indicated by frequency components centered at 14 Hertz, and preferably inth'e range of about 10 Hertz to about 18 Hertz.
4. I have concluded that the low frequency components of the QRS complex which indicate that the heart beat is of the highly dangerous variety, i.'e., a ventricular ectopic beat, are centered at about 4 Hertz and typically in the range of about 2 Hertz to about 8 Hertz.
5. 1n the abnormal QRS complex the measurable duration of the low frequency components is greater than that of the higher frequency components.
According to my invention the occurrence of a cardiac arrhythmia is detected in the following manner. The ECG wave is produced in conventional fashion. The ECG wave is sensed in any appropriate manner to determine the occurrence of a QRS complex, whether normal or abnormal. At the same time, the ECG wave is independently sensed for those frequency components which lie predominantly below the frequency range of the normal QRS complex. These independently-sensed low-frequency components are then integrated throughout a time period which commences upon detection of a QRS complex and extends at least throughout its time duration. The magnitude of the integral is then compared to a reference standard, and if it exceeds the standard the conclusion will be drawn that a cardiac arrhythmia has occurred.
According to another phase of my invention I have determined that the reference standard referred to above is not a constant which can be used indiscriminately for every patient in a group of patients, but rather, that its value will differ significantly from one patient to the next. My invention also includes a method of determining the reference standard applicable to a particular patient.
DRAWING SUMMARY FIG. 1 is a typical electrocardiogram of a heart patient having a mixture of normal and abnormal beats;
FIG. 2 is a schematic block diagram of an apparatus suitable for carrying out the method of my invention;
FIG. 3 is a waveform diagram of bigeminy (alternating normal and abnormal) showing how the various wave forms are related in accordance with my invention;
FIG. 4 is a more detailed schematic diagram of the apparatus shown in FIG. 2;
FIG. 4(a) and 4(b) show the pass bands of filters used in the circuit of FIG. 4;
FIG. 4(0) shows a timing pulse; and
FIG. 5 is a still more detailed schematic diagram of certain portions of the circuit of FIG. 4.
PREFERRED EMBODIMENT In FIG. I there is shown the electrocardiogram of a heart patient characterized by a mixture of normal and abnormal beats. Specifically, two normal beats spaced at a proper time interval are followed by one abnormal beat which is premature, and hence follows much too closely after the second one of the normal beats. Different characteristic portions of the wave forms are identified by the conventional symbols P, Q, R, S, and T. FIG. 1 is indicative in a general way of the problem to be solved. No effort is made here to illustrate the wave forms corresponding to the numerous different types of ECG abnormalities.
FIG. 2 illustrates an apparatus suitable for carrying out the method of the present invention. An input means is used to produce a continuous electrical wave representing the electrical action of a patients heart (the ECG wave), and in FIG. 2 this is indicated simply by the letters ECG. The ECG wave is applied both to a QRS Detector, a high bandpass filter, and to a V.E. Filter, a low bandpass filter. The letters V. E. in the diagram refer to ventricular ectopic. The output of the QRS Detector is fed to a Timer. The main function of the Timer is to measure out a time period which at least equals, and perhaps exceeds, the time duration of the QRS complex, and for this purpose it produces an output identified as Timing Pulse."
The output of the V. E. Filter is fed to an Integrator. The output of the Timer is also fed to the Integrator, enabling the Timer to control the Integrator so that integration of frequency components passed through the V. E. Filter will continue at least throughout the duration of the QRS complex. The output of the Integrator is fed to a Comparator, to which a Reference Standard is also supplied, and the Comparator produces an output indicating a potentially life-threatening cardiac arrhythmia and which is accordingly marked as LTCA pulse.
At the usual heart beat rate of about 60 per minute the heart beats are occurring regularly once each second. For a normal heart beat the time duration of the QRScomplex is about 50 milliseconds to about milliseconds. For a ventricular ectopic beat the time duration of the QRS complex is always prolonged, and will be about milliseconds to about 200 milliseconds. The relatively low frequency portion of the abnormal QRS complex tends to have a longer time duration than the relatively high frequency portion.
In carrying out my invention I prefer to construct the Timer so that it will continue to operate at least several milliseconds beyond the duration of the QRS complex as detected by the QRS Detector. In this manner I am able to have the Integrator pick up essentially the entire energy content of the low-frequency components that are sensed through the V. E. Filter, that is, the frequency components that lie predominantly below the normal frequency range of a normal QRS complex and are preferably in the frequency range of about 2 Hertz to about 8 Hertz.
Reference is now made to FIG. 3 illustrating the relationship of actual wave forms which occur during the operation of my invention. At the top of FIG. 3 there is shown a prerecorded ECG wave which was used for purpose of the test. Next, below the ECG wave there is shown the Integrator Output which resulted. These wave forms are actual tracings taken from a test which I made, using the method of my invention, on Thursday, Apr. 20, 1972. At the bottom of FIG. 3 there is shown the Comparator Output.
It will be seen from FIG. 3 that for each occurrence of a normal QRS complex in the ECG wave the Integrator Output peaks at a relatively small value. However, for each abnormal QRS complex the Integrator peaks at a much higher value. The Comparator Output produces a square pulse each time that the Integrator peaks at the relatively high value. Therefore, each output pulse from the Comparator indicates the occurrence of an abnormal QRS complex.
Reference is now made to FIG. 4 which schematically illustrates in somewhat greater detail the presently preferred circuit for carrying out the method of the present invention.
In FIG. 4 it is indicated that an input signal is taken from the patient and fed to a pre-amplifier in order to provide a standard 1 volt signal, and that an input signal can also be taken from a monitor. Only one of these inputs is used. Whichever input is used, an input attenuation control (not shown) may be adjusted to produce a nominal one volt signal which refers to the vertical height (either positive or negative) of the R wave from its base line.
As shown in FIG. 4 the ECG wave feeds both the Ventricular Ectopic Filter and the QRS Detector, the same as shown in FIG. 2. An added feature is that each of these circuits feeds both into and around an accompanying Inverter followed by a Summing Network having a summing point 31 or S2 also. Each Summing Network includes a full-wave rectifier. The reason for use of these Inverters is that sometimes the'elec'trodes are connected to the patientin the wrong polarity, and also in some instances the electrical polarization of the heart occurs in the proper manner but with inverted polarity. The method of'my invention is notconcerned with detecting the polarity; therefore, the use of an inverter in conjunction with each circuit serves to produce the proper form and magnitude of the wave regardless of polarity. That is what is desired for the purposes of my invention.
The QRS Detector is, in general, responsive to frequencies in the range from to'30 Hertz. FIG. 4a illustrates a preferred'pass band for the QRS detector. As there shown, a filter is peaked at 14 Hertz and has a smaller receptivity to the low frequency of 10 Hertz and the high-frequency of 18 Hertz. I have found that sensing the ECG wave for frequency components in this frequency range provides a reliable indication of the occurrence of a QRS complex, regardless of whether the QRS complex is normal or abnormal. In other words, this range of frequencies does not so much characterize the normal QRS complex but rather is common to both normal and abnormal. Furthermore, the QRS filter will not pass any significant amount of the P and T waves, because of their lower frequency content.
FIG. 48 illustrates the preferred frequency range for the Ventricular Ectopic Filter. As shown in the drawing this filter is peaked at 4 Hertz and has a smaller energy reception at 2 Hertz at the low frequency end and at 8 Hertz on the high frequency end. I have found this frequency range to be'optimum for indicating the Ventricular Ectopic form of the QRS complex.
In response to each QRS complex the Timer circuit produces a Timing Pulse which is approximately fifty milliseconds longer than the duration of those frequencies passed by the QRS filter.
More specifically, the QRS filter is used to sense the frequency components of the ECG wave in the range of 10 Hertz to 18 Hertz. and the continuance of these frequencies at a significant energy level is considered as representing the continuation of the QRS complex itself. When these frequency components drop below their significant level the timing pulse generated by the Timer nevertheless continues for approximately fifty milliseconds. It is this timing pulse which keeps the Integrator turned on. A typical shape of the Timing Pulse is shown in FIG. 4(0).
Therefore, after the frequencies in the range of about l0 Hertz to about 18 Hertz have fallen below a significant value, the frequencies in the lower range of about 2 Hertz to about 8 Hertz which are passed through the V. E. Filter continue to be integrated by the Integrator. The result of this integrating process is a voltage magni tude which is fed to the Comparator throughout the duration of Timing Pulse.
As also shown in FIG. 4 a standard reference voltage is supplied. to the Comparator. If the magnitude of the resulting integral produced by the Integrator output exceeds the reference standard. then the Comparator produces an output pulse in the manner illustrated in FIG. 3. However. if the magnitude of the integral is less than the reference standard then no output pulse is pro? duced.
As shown in FIG. 4 the Timer output'is also applied to a QRS Driver which applies the QRS Pulse to a White Light. There are at least two reasons why a sepa rate QRS output is useful. One reason is that this output signal, indicated as for example by the flashingof the light bulb, demonstrates that the machine is working and that the patients heart is working also. Another reason for this output is that an irregular, slow, orlrapid flashing of the QRS indicator light would indicateheart rate, premature beats and other information available from atimed relation of successive QRS'complexes.
In the circuit of FIG. 4 the LTCA Pulse from the Comparator output is fed toa monostable multivibrator having. an on cycle of two hundred fifty millisecondsand which is identified on the drawings as 250 MS MONO." This device is used simply to impose a A second time standardization in the V. E. output. The monostable multivibrator drives a V. E. Driver which is coupled to both a horn and a red light bulb which represent parallel loads for the LTCA output signal.
Whenevei'the comparator produces an output pulse the red bulb will light up and the horn will sound for A second.
According to the present invention it is preferred to establish the value of the Reference Standard voltage for each individual patient. The reason is that the characteristics of the heart action differ significantly from one individual to the next, and therefore a reference standard established for the population as a whole or for a particular group of people would not be entirely accurate as applied to a particular individual. I have found that it is most advantageous to establish the reference standard for an individual patient by empirical means. For example, the apparatus as shown in FIG. 4 may be connected to the patient, with the ECG wave being also coupled to an oscilloscope to be "visually displayed at the same time. I prefer to initially set the ref erence standard voltage which is applied to the comparator so that it will be too low. The result of this procedure is that all of the heart beats will produce a V. E. output indication. A trained person is observing the visual display of the ECG wave and knows that the output indications are false. Then the Reference Standard voltage is adjusted to a higher value until some of the output indications disappear. The Reference Standard is then higher than the minimum value of the integral produced by the Integrator. The Reference Standard is increased further until all V. E. output signals disappear during normal heart action. This is one of several methods of achieving standardization. In general the approach is that the Reference Standard will be set to a value significantly greater than the largest integral from a sample set.
My novel method of detecting cardiac arrhythmias is believed to be some artifacts), where the reference standard has been empiricallyselected for the individual patient in the manner outlined above. The ratio of integrator output of a clearly abnormal wave form as compared to a clearly normal wave form is about two to one, and this difference is quite adequate for reliable operation of the instrumentation.
DETAILED CIRCUIT Reference is now made to FIG. 5 which illustrates in detail the main portions of the circuit of FIG. 4. In,- cluded in the circuit of FIG. 5 are eight operational amplifiers, each one of which is constructed as an integrated circuit, and these devices are identified as I'Cl ICS, respectively.
percent reliable (not considering- Referring briefly back to FIG. 4, it will be noted that the drawing indicates the location in the circuit of each one of these operational amplifiers. For example, [C1 and IC2 are contained in the QRS Filter, while IC8 is contained in the Comparator.
Referring again to FIG. 5, suitable filter sections are combined with the two operational amplifiers, ICl and IC2, so as to provide the overall characteristics of amplification and band pass which are desired. Thus, Cl and the equivalent resistance looking into R1 form one pole of a high-pass filter section. R1 and C2 form one pole of a low-pass filter section. R1 plus R2 and C3, modified somewhat by R3, form a second pole of the low-pass filter. C4 and R5 form one pole of another high-pass filter section. C5 together with the equivalent resistance provided by the combination of R4, R6, and R31 provides another low-pass filter section. The gain characteristic is essentially as shown in FIG. 4(a).
The output of the QRS Filter passes through resistor R7 to an Inverter consisting of IC3 and resistor R8. The Inverter output passes through a capacitor C7 and diode D2 to a Summing Point S2. The direct output of the QRS Filter also passes through a capacitor C6 and a diode D1 to the same summing point. The voltage at the summing point S2 appears across a load consisting of the parallel combination of capacitor C8 and resistor R11. It will be noted that the summing circuit is also a full-wave rectifier. It will also be noted that capacitor C8 provides a filtering function, to filter out the ripple voltage in the fully rectified wave, and this separate and distinct function has been indicated in FIG. 4 by the separate box entitled Ripple Filter.
The Timer includes operational amplifier IC4. A fixed reference voltage is developed from a source of minus l0 volts through a voltage divider including resistors R12 and R14, and is coupled through resistor R13 to the inverting input of the operational amplifier. The output of the QRS Filter, after passing through the full-wave rectifier, summing circuit, and ripple filter as previously described, is then applied to the noninverting input of amplifier IC4. The circuit functions in this manner. When the level of the applied signal exceeds the fixed reference voltage, an output is produced at the output terminal ofthe amplifier. When the level of the applied signal does not exceed the reference voltage, no output is produced from the amplifier. The fixed reference voltage is so selected as to avoid a response to noise or spurious signals, but to provide a response to the signals in the frequency band of about 10 to about 18 Hertz so long as they have significant value.
In the Timer a capacitor C9 is coupled between the noninverting input terminal of IC4 and its output terminal. This provides a regenerative feedback loop. Once an output signal has been developed by the amplifier, capacitor C9 tends to maintain that output signal, and delay its discontinuance or shut-off. Therefore, when the input signal falls below the level of the fixed reference voltage, the output signal from the operational amplifier does not shut off until some time afterwards. This time delay is approximately 50 milliseconds. The typical configuration of this timing pulse, or T Pulse, is shown in FIG. 4(0).
The T Pulse is applied to resistor R25 to the gate of FETl, which controls the action of the Integrator.
The V. E. Filter includes operational amplifier ICS. A high-pass filter section is formed by capacitor C10 in series with the equivalent resistance provided by resistors R16, R17, R32, and R18. A low-pass filter section is provided by R16 and C11. Another low-pass filter section is formed by capacitor C12 together with the equivalent resistance of the circuit. The over-all circuit provides the desired amount of gain, and a frequency response essentially as shown in FIG. 4(b).
The output of the V. E. Filter is supplied through a capacitor C14 and a diode D4 to a summing point SI above resistor R23. It is also supplied through a resistor R19 to an lnvertor which includes IC6 and R20. The invertor output is supplied through C13 and D5 to the same summing point. As before, the summing circuit is also a full-wave rectifier. No filtering is provided in this portion of the circuit, however.
The Integrator includes operational amplifier IC7, whose non-inverting input terminal is grounded. The output of the summing circuit that follows the V. E. Filter is supplied through a resistor R24 to the inverting input terminal of IC7. A capacitor C15 is connected between the inverting input of IC7 and its output terminal. The drain and source of field effect transistor FET 1 are connected across C15. When a QRS pulse is not being received, the impedance between drain and source of FET 1 is low, C15 is essentially shorted out, and IC7 does not integrate.
When timing pulse T is applied, however, FET l is turned off, effectively putting C15 back in the circuit. The series combination of R24 and C15 then provide an integrator whose output appears at the inverting input of IC7. The output of IC7 therefore produces the integral of the applied signal (from V. E. Filter) throughout the continuation of the timing pulse T.
The Integrator output goes to the non-inverting input of Comparator IC8. The Reference Standard (selected as earlier described) is applied to the inverting input. A positive-going LTCA pulse is produced on the output terminal of IC8 whenever the Integrator output exceeds the Reference Standard.
As will be understood by those skilled in the art, what has been described are preferred embodiments in which modifications and changes may be made without departing from the spirit and scope of the accompanying claims.
I claim:
1. The method of analyzing a continuous electrical wave representing the electrical action of a patients heart in order to detect cardiac arrhythmias, comprising the steps of:
applying the wave concurrently to a relatively high frequency band pass filter which is responsive to frequencies in the range from 10 to 30 Hertz, and to a relatively low frequency band pass filter which is responsive to frequencies in the range below 10 Hertz;
producing a timing signal in response to an output from said high frequency filter;
integrating the output of said low frequency filter throughout the duration of said timing signal; comparing the integral to a reference standard; and
whenever the integral exceed the reference standard, producing an output signal indicating that a cardiac arrhythmia has occurred. 2. The method of claim 1 wherein said high frequency filter is selected to be predominantly responsive to frequencies in the range from 10 to 18 Hertz.
3. The method of claim 1 wherein said low frequency filter is selected to be predominatly responsive to frequencies in the range from 2 to 8 Hertz.
4. The method of claim 1 wherein said step of producing a timing signal includes continuing said timing signal for about 50 milliseconds after discontinuance of an output from said high frequency filter.
5. The method of claim l which additionally includes the prior step of first selecting a particular value of said reference standard which is applicable to the particular patient whose cardiac action is to be monitored.
6. The method of claim 1 wherein said step of producing a timing signal includes continuing said timing signal so long as an output in being produced by said high frequency filter and for at least several milliseconds thereafter.
7. The method of analyzing the ECG wave of a patient comprising the steps of:
filtering from the wave relatively high frequency components in the range from 10 to 18 Hertz; filtering from the wave relatively low frequency components in the range from 2 to 8 Hertz; producing a timing signal in response to the occurrence of said high frequency components; integrating said low frequency components throughout the duration of said timing signal; and whenever the value of the integral exceeds a predetermined reference standard, producing an output signal indicating that a cardiac arrhythmia has occurred. 8. The method of claim 7 which includes the further step of maintaining said timing signal so long as said high frequency components exist and for about 50 milliseconds thereafter.
9. The method of claim 7 wherein said reference standard is previously selected for the particular patient.
10. The method of analyzing the ECG wave of a patient, comprising the steps of:
filtering from the wave a band of high frequencies selected from the range of about 10 to about 30 Hertz;
concurrently filtering from the wave a band of low frequencies selected from the range below about l Hertz;
producing a timing signal in response to the occurrence of said high frequencies;
and first rectifying and then integrating said low frequencies throughout each occurrence of said timing signal in order to determine whether a cardiac arrhythmia has occurred.
11. The method claimed in claim 10 wherein the resulting integral is compared to a reference standard.
12. The method claimed in claim 11 wherein said reference standard is previously established to reflect the normal heart action of the patient, and an output signal indicating a cardiac arrhythmia is produced whenever said resulting integral exceeds said standard.
13. The method claimed in claim 12 wherein said reference standard is selected to be significantly greater than the minimum integral of said low frequencies which is produced during normal heart action of the patient.
14. The method of analyzing the ECG wave of a patient, comprising the steps of:
filtering from the wave a band of relatively low frequency components selected from the range below about 10 Hertz;
integrating said low frequency components in response to the occurrence of each one of a succession of QRS complexes;
comparing each one of the resulting integrals with a reference standard; and
whenever one of said resulting integrals exceeds said reference standard, producing an output signal indicating that a cardiac arrhythmia has occurred.
.15. The method claimed in claim 14 which includes the further steps of:
filtering from the wave a band of relatively high frequency components selected from the range of about 10 to about 18 Hertz; and
generating a timing signal throughout the existence of said frequency components and for at least sev eral milliseconds thereafter;
and wherein said low frequency components are integrated throughout the duration of said timing signal.
16. The method claimed in claim 15 which includes the additional step of maintaining said timing signal for about fifty milliseconds after said high frequency components cease to exist.
17. The method claimed in claim 14 wherein said reference standard is established by;
integrating said low frequency components throughout the duration of each one of sample sets of QRS complexes of that patient to obtain a corresponding sample set of integrals; and
selecting said reference standard to be significantly greater than the value of the largest integral of said sample set.
18. The method claimed in claim 17 which includes the additional step of visually displaying said sample set of QRS complexes before selecting said reference standard.
19. Apparatus for detecting cardiac arrhythmias comprising, in combination:
input means for producing the ECG wave;
a filter coupled to said input means for filtering from the wave a band of frequency components selected from the range below about 10 Hertz;
a full-wave rectifier coupled to said filter for rectifying said band of frequency components;
an integrator coupled to said rectifier and operable for integrating said band of frequency components;
timing means coupled to said integrator for enabling the same upon the occurrence of each one of a succession of QRS complexes;
means for providing a reference standard;
comparison means coupled to said integrator and to said reference standard means for comparing each one of the resulting integrals with the reference standard; and
output means responsive to said comparison means whenever one of said resulting integrals exceeds said reference standard for producing an output signal indicating that a cardiac arrhythmia has occurred.
20. Apparatus as claimed in claim 19 wherein said timing means includes:
an additional filter coupled to said input means for filtering from the wave a band of relatively high fre- 1 1 12 quency components selected from the range of tor on and off in response to said timing signal. about to about 30 Hertz; and 21. Apparatus as claimed in claim wherein said means coupled to said additional filter for generating generating means is adapted to generate said timing siga timing signal in response to the existence of said nal throughout the existence of said high frequency high frequency components; 5 components and for at least several milliseconds therethe output of said generating means being coupled to after.
said integrator for selectively turning said integra-

Claims (21)

1. The method of analyzing a continuous electrical wave representing the electrical action of a patient''s heart in order to detect cardiac arrhythmias, comprising the steps of: applying the wave concurrently to a relativeLy high frequency band pass filter which is responsive to frequencies in the range from 10 to 30 Hertz, and to a relatively low frequency band pass filter which is responsive to frequencies in the range below 10 Hertz; producing a timing signal in response to an output from said high frequency filter; integrating the output of said low frequency filter throughout the duration of said timing signal; comparing the integral to a reference standard; and whenever the integral exceed the reference standard, producing an output signal indicating that a cardiac arrhythmia has occurred.
2. The method of claim 1 wherein said high frequency filter is selected to be predominantly responsive to frequencies in the range from 10 to 18 Hertz.
3. The method of claim 1 wherein said low frequency filter is selected to be predominatly responsive to frequencies in the range from 2 to 8 Hertz.
4. The method of claim 1 wherein said step of producing a timing signal includes continuing said timing signal for about 50 milliseconds after discontinuance of an output from said high frequency filter.
5. The method of claim 1 which additionally includes the prior step of first selecting a particular value of said reference standard which is applicable to the particular patient whose cardiac action is to be monitored.
6. The method of claim 1 wherein said step of producing a timing signal includes continuing said timing signal so long as an output in being produced by said high frequency filter and for at least several milliseconds thereafter.
7. The method of analyzing the ECG wave of a patient comprising the steps of: filtering from the wave relatively high frequency components in the range from 10 to 18 Hertz; filtering from the wave relatively low frequency components in the range from 2 to 8 Hertz; producing a timing signal in response to the occurrence of said high frequency components; integrating said low frequency components throughout the duration of said timing signal; and whenever the value of the integral exceeds a predetermined reference standard, producing an output signal indicating that a cardiac arrhythmia has occurred.
8. The method of claim 7 which includes the further step of maintaining said timing signal so long as said high frequency components exist and for about 50 milliseconds thereafter.
9. The method of claim 7 wherein said reference standard is previously selected for the particular patient.
10. The method of analyzing the ECG wave of a patient, comprising the steps of: filtering from the wave a band of high frequencies selected from the range of about 10 to about 30 Hertz; concurrently filtering from the wave a band of low frequencies selected from the range below about 10 Hertz; producing a timing signal in response to the occurrence of said high frequencies; and first rectifying and then integrating said low frequencies throughout each occurrence of said timing signal in order to determine whether a cardiac arrhythmia has occurred.
11. The method claimed in claim 10 wherein the resulting integral is compared to a reference standard.
12. The method claimed in claim 11 wherein said reference standard is previously established to reflect the normal heart action of the patient, and an output signal indicating a cardiac arrhythmia is produced whenever said resulting integral exceeds said standard.
13. The method claimed in claim 12 wherein said reference standard is selected to be significantly greater than the minimum integral of said low frequencies which is produced during normal heart action of the patient.
14. The method of analyzing the ECG wave of a patient, comprising the steps of: filtering from the wave a band of relatively low frequency components selected from the range below about 10 Hertz; integrating said low frequency cOmponents in response to the occurrence of each one of a succession of QRS complexes; comparing each one of the resulting integrals with a reference standard; and whenever one of said resulting integrals exceeds said reference standard, producing an output signal indicating that a cardiac arrhythmia has occurred.
15. The method claimed in claim 14 which includes the further steps of: filtering from the wave a band of relatively high frequency components selected from the range of about 10 to about 18 Hertz; and generating a timing signal throughout the existence of said frequency components and for at least several milliseconds thereafter; and wherein said low frequency components are integrated throughout the duration of said timing signal.
16. The method claimed in claim 15 which includes the additional step of maintaining said timing signal for about fifty milliseconds after said high frequency components cease to exist.
17. The method claimed in claim 14 wherein said reference standard is established by: integrating said low frequency components throughout the duration of each one of sample sets of QRS complexes of that patient to obtain a corresponding sample set of integrals; and selecting said reference standard to be significantly greater than the value of the largest integral of said sample set.
18. The method claimed in claim 17 which includes the additional step of visually displaying said sample set of QRS complexes before selecting said reference standard.
19. Apparatus for detecting cardiac arrhythmias comprising, in combination: input means for producing the ECG wave; a filter coupled to said input means for filtering from the wave a band of frequency components selected from the range below about 10 Hertz; a full-wave rectifier coupled to said filter for rectifying said band of frequency components; an integrator coupled to said rectifier and operable for integrating said band of frequency components; timing means coupled to said integrator for enabling the same upon the occurrence of each one of a succession of QRS complexes; means for providing a reference standard; comparison means coupled to said integrator and to said reference standard means for comparing each one of the resulting integrals with the reference standard; and output means responsive to said comparison means whenever one of said resulting integrals exceeds said reference standard for producing an output signal indicating that a cardiac arrhythmia has occurred.
20. Apparatus as claimed in claim 19 wherein said timing means includes: an additional filter coupled to said input means for filtering from the wave a band of relatively high frequency components selected from the range of about 10 to about 30 Hertz; and means coupled to said additional filter for generating a timing signal in response to the existence of said high frequency components; the output of said generating means being coupled to said integrator for selectively turning said integrator on and off in response to said timing signal.
21. Apparatus as claimed in claim 20 wherein said generating means is adapted to generate said timing signal throughout the existence of said high frequency components and for at least several milliseconds thereafter.
US00271373A 1972-07-13 1972-07-13 Method and apparatus for detecting cardiac arrhythmias Expired - Lifetime US3828768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00271373A US3828768A (en) 1972-07-13 1972-07-13 Method and apparatus for detecting cardiac arrhythmias

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00271373A US3828768A (en) 1972-07-13 1972-07-13 Method and apparatus for detecting cardiac arrhythmias

Publications (1)

Publication Number Publication Date
US3828768A true US3828768A (en) 1974-08-13

Family

ID=23035282

Family Applications (1)

Application Number Title Priority Date Filing Date
US00271373A Expired - Lifetime US3828768A (en) 1972-07-13 1972-07-13 Method and apparatus for detecting cardiac arrhythmias

Country Status (1)

Country Link
US (1) US3828768A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927663A (en) * 1974-05-02 1975-12-23 Phsiological Electronics Corp Method and apparatus for detecting cardiac arrhythmias
US3995622A (en) * 1975-04-25 1976-12-07 Siemens Aktiengesellschaft Device for determining changed pulses
US3998214A (en) * 1975-05-19 1976-12-21 Brondy Laboratories, Inc. Premature ventricular contraction detector and method
US4108166A (en) * 1976-05-19 1978-08-22 Walter Schmid Cardiac frequency measuring instrument
US4112927A (en) * 1975-12-04 1978-09-12 Renco Corporation Ultrasonic detector with audible indication signal
US4231372A (en) * 1974-11-04 1980-11-04 Valleylab, Inc. Safety monitoring circuit for electrosurgical unit
WO1982000002A1 (en) * 1980-06-23 1982-01-07 Corp Renco Automatic digital backfat meter
US4359055A (en) * 1980-06-23 1982-11-16 Renco Corporation Automatic digital backfat meter
US5842997A (en) * 1991-02-20 1998-12-01 Georgetown University Non-invasive, dynamic tracking of cardiac vulnerability by simultaneous analysis of heart rate variability and T-wave alternans
US6434417B1 (en) * 2000-03-28 2002-08-13 Cardiac Pacemakers, Inc. Method and system for detecting cardiac depolarization
US20040219600A1 (en) * 2002-12-13 2004-11-04 Williams Robert Wood Method for determining sensitivity to environmental toxins and susceptibility to parkinson's disease
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US20060211949A1 (en) * 2001-06-05 2006-09-21 Cardiac Pacemakers, Inc. System and method for classifying cardiac depolarization complexes with multi-dimensional correlation
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US7218960B1 (en) * 2003-06-24 2007-05-15 Pacesetter, Inc. System and method for detecting cardiac ischemia based on T-waves using an implantable medical device
US7225015B1 (en) 2003-06-24 2007-05-29 Pacesetter, Inc. System and method for detecting cardiac ischemia based on T-waves using an implantable medical device
US7255694B2 (en) 2002-12-10 2007-08-14 Sherwood Services Ag Variable output crest factor electrosurgical generator
US7274959B1 (en) 2003-06-24 2007-09-25 Pacesetter, Inc. System and method for detecting cardiac ischemia using an implantable medical device
US7289845B2 (en) 2000-10-31 2007-10-30 Cardiac Pacemakers, Inc. Curvature based method for selecting features from an electrophysiologic signal for purpose of complex identification and classification
US7300435B2 (en) 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7303557B2 (en) 1998-10-23 2007-12-04 Sherwood Services Ag Vessel sealing system
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
USRE40388E1 (en) 1997-04-09 2008-06-17 Covidien Ag Electrosurgical generator with adaptive power control
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US7749217B2 (en) 2002-05-06 2010-07-06 Covidien Ag Method and system for optically detecting blood and controlling a generator during electrosurgery
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
US8409107B2 (en) 2003-06-27 2013-04-02 Cardiac Pacemakers, Inc. Tachyarrhythmia detection and discrimination based on curvature parameters
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US8808161B2 (en) 2003-10-23 2014-08-19 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3352300A (en) * 1964-10-28 1967-11-14 Fred A Rose Cardiac monitor
US3524442A (en) * 1967-12-01 1970-08-18 Hewlett Packard Co Arrhythmia detector and method
US3616790A (en) * 1970-01-21 1971-11-02 American Optical Corp Multiform ventricular premature beat detector
US3698386A (en) * 1971-07-16 1972-10-17 Robert Fried Cardiac rhythm computer device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3352300A (en) * 1964-10-28 1967-11-14 Fred A Rose Cardiac monitor
US3524442A (en) * 1967-12-01 1970-08-18 Hewlett Packard Co Arrhythmia detector and method
US3616790A (en) * 1970-01-21 1971-11-02 American Optical Corp Multiform ventricular premature beat detector
US3698386A (en) * 1971-07-16 1972-10-17 Robert Fried Cardiac rhythm computer device

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927663A (en) * 1974-05-02 1975-12-23 Phsiological Electronics Corp Method and apparatus for detecting cardiac arrhythmias
US4231372A (en) * 1974-11-04 1980-11-04 Valleylab, Inc. Safety monitoring circuit for electrosurgical unit
US3995622A (en) * 1975-04-25 1976-12-07 Siemens Aktiengesellschaft Device for determining changed pulses
US3998214A (en) * 1975-05-19 1976-12-21 Brondy Laboratories, Inc. Premature ventricular contraction detector and method
US4112927A (en) * 1975-12-04 1978-09-12 Renco Corporation Ultrasonic detector with audible indication signal
US4108166A (en) * 1976-05-19 1978-08-22 Walter Schmid Cardiac frequency measuring instrument
WO1982000002A1 (en) * 1980-06-23 1982-01-07 Corp Renco Automatic digital backfat meter
US4359055A (en) * 1980-06-23 1982-11-16 Renco Corporation Automatic digital backfat meter
US4359056A (en) * 1980-06-23 1982-11-16 Renco Corporation Automatic digital backfat meter
US5842997A (en) * 1991-02-20 1998-12-01 Georgetown University Non-invasive, dynamic tracking of cardiac vulnerability by simultaneous analysis of heart rate variability and T-wave alternans
US5921940A (en) * 1991-02-20 1999-07-13 Georgetown University Method and apparatus for using physiologic stress in assessing myocardial electrical stability
USRE40388E1 (en) 1997-04-09 2008-06-17 Covidien Ag Electrosurgical generator with adaptive power control
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7303557B2 (en) 1998-10-23 2007-12-04 Sherwood Services Ag Vessel sealing system
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US6434417B1 (en) * 2000-03-28 2002-08-13 Cardiac Pacemakers, Inc. Method and system for detecting cardiac depolarization
US7289845B2 (en) 2000-10-31 2007-10-30 Cardiac Pacemakers, Inc. Curvature based method for selecting features from an electrophysiologic signal for purpose of complex identification and classification
US20060211949A1 (en) * 2001-06-05 2006-09-21 Cardiac Pacemakers, Inc. System and method for classifying cardiac depolarization complexes with multi-dimensional correlation
US7610084B2 (en) 2001-06-05 2009-10-27 Cardiac Pacemakers, Inc. System and method for classifying cardiac depolarization complexes with multi-dimensional correlation
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7749217B2 (en) 2002-05-06 2010-07-06 Covidien Ag Method and system for optically detecting blood and controlling a generator during electrosurgery
US7824400B2 (en) 2002-12-10 2010-11-02 Covidien Ag Circuit for controlling arc energy from an electrosurgical generator
US7255694B2 (en) 2002-12-10 2007-08-14 Sherwood Services Ag Variable output crest factor electrosurgical generator
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US20040219600A1 (en) * 2002-12-13 2004-11-04 Williams Robert Wood Method for determining sensitivity to environmental toxins and susceptibility to parkinson's disease
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8012150B2 (en) 2003-05-01 2011-09-06 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US20070156056A1 (en) * 2003-06-24 2007-07-05 Pacesetter, Inc. System and method for detecting cardiac ischemia based on t-waves using an implantable medical device
US7225015B1 (en) 2003-06-24 2007-05-29 Pacesetter, Inc. System and method for detecting cardiac ischemia based on T-waves using an implantable medical device
US7274959B1 (en) 2003-06-24 2007-09-25 Pacesetter, Inc. System and method for detecting cardiac ischemia using an implantable medical device
US7218960B1 (en) * 2003-06-24 2007-05-15 Pacesetter, Inc. System and method for detecting cardiac ischemia based on T-waves using an implantable medical device
US7643872B2 (en) 2003-06-24 2010-01-05 Pacesetter, Inc. System and method for detecting cardiac ischemia based on T-Waves using an implantable medical device
US8409107B2 (en) 2003-06-27 2013-04-02 Cardiac Pacemakers, Inc. Tachyarrhythmia detection and discrimination based on curvature parameters
US8808161B2 (en) 2003-10-23 2014-08-19 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US9768373B2 (en) 2003-10-30 2017-09-19 Covidien Ag Switched resonant ultrasonic power amplifier system
US7766693B2 (en) 2003-11-20 2010-08-03 Covidien Ag Connector systems for electrosurgical generator
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7300435B2 (en) 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US9522032B2 (en) 2005-10-21 2016-12-20 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares

Similar Documents

Publication Publication Date Title
US3828768A (en) Method and apparatus for detecting cardiac arrhythmias
US8805482B2 (en) System and method for signal quality indication and false alarm reduction in ECG monitoring systems
US3978856A (en) Heart beat waveform monitoring apparatus
US6519490B1 (en) Method of and apparatus for detecting arrhythmia and fibrillation
Cerutti et al. Variability analysis of fetal heart rate signals as obtained from abdominal electrocardiographic recordings
US4240442A (en) Variable threshold R-wave detector
US4379460A (en) Method and apparatus for removing cardiac artifact in impedance plethysmographic respiration monitoring
Babloyantz et al. Is the normal heart a periodic oscillator?
US3780727A (en) Cardiac pacer monitoring means with rate and pulse discrimination
EP1745740B1 (en) Apparatus for obtaining cardiac data
US4181135A (en) Method and apparatus for monitoring electrocardiographic waveforms
CA1322252C (en) Apparatus for monitoring degree of mental tension
US5423863A (en) Method of recognizing a ventricular cardiac pathological condition for automatic defibrillation purposes, and monitor-defibrillator for implementing said method
US4546776A (en) Portable EKG monitoring device for ST deviation
Plesinger et al. False alarms in intensive care unit monitors: detection of life-threatening arrhythmias using elementary algebra, descriptive statistics and fuzzy logic
Amann et al. A new ventricular fibrillation detection algorithm for automated external defibrillators
JPH01110344A (en) Monitor for baby during parturition
JPH07163535A (en) Patient monitor
Lee et al. A novel QRS detection algorithm applied to the analysis for heart rate variability of patients with sleep apnea
US20100152598A1 (en) System for Heart Performance Characterization and Abnormality Detection
US3821948A (en) System and method for analyzing absolute derivative signal from heartbeat
US4499904A (en) Heart monitoring device
Chou et al. Comparison between heart rate variability and pulse rate variability for bradycardia and tachycardia subjects
US3699946A (en) Waveform abnormality monitor
US3921624A (en) Apparatus for recording heart rate rhythm