US3837788A - Reduction of gaseous pollutants in combustion fuel gas - Google Patents

Reduction of gaseous pollutants in combustion fuel gas Download PDF

Info

Publication number
US3837788A
US3837788A US00295249A US29524972A US3837788A US 3837788 A US3837788 A US 3837788A US 00295249 A US00295249 A US 00295249A US 29524972 A US29524972 A US 29524972A US 3837788 A US3837788 A US 3837788A
Authority
US
United States
Prior art keywords
combustion
tube means
set forth
tube
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00295249A
Inventor
G Craig
D Feuling
Haye P La
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aqua Chem Inc
Original Assignee
Aqua Chem Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BE793696D priority Critical patent/BE793696A/en
Priority to US00198767A priority patent/US3816595A/en
Priority to US00215762A priority patent/US3832122A/en
Application filed by Aqua Chem Inc filed Critical Aqua Chem Inc
Priority to US00295249A priority patent/US3837788A/en
Priority to ZA729071A priority patent/ZA729071B/en
Priority to GB20673A priority patent/GB1427231A/en
Priority to NL7300154A priority patent/NL7300154A/xx
Priority to DE2300522A priority patent/DE2300522C2/en
Priority to LU66797A priority patent/LU66797A1/xx
Priority to ES410405A priority patent/ES410405A1/en
Priority to CH11573A priority patent/CH575574A5/xx
Priority to FR7300369A priority patent/FR2167747B1/fr
Priority to IT19071/73A priority patent/IT978041B/en
Priority to CA160,688A priority patent/CA986369A/en
Priority to AU50835/73A priority patent/AU475791B2/en
Priority to JP5875773A priority patent/JPS5614923B2/ja
Priority to US05/488,057 priority patent/US3955909A/en
Application granted granted Critical
Publication of US3837788A publication Critical patent/US3837788A/en
Priority to CA233,277A priority patent/CA1006401A/en
Assigned to WALTER E. HELLER & COMPANY, INC., A CORP. OF DE reassignment WALTER E. HELLER & COMPANY, INC., A CORP. OF DE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAGUE INTERNATIONAL
Assigned to AQUA-CHEM HOLDING, INC., A CORP. OF DE reassignment AQUA-CHEM HOLDING, INC., A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AQUA-CHEM, INC. A DE CORP.
Assigned to AQUA-CHEM, INC. reassignment AQUA-CHEM, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE JAN. 18, 1982. Assignors: AQUA-CHEM HOLDING, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B5/00Combustion apparatus with arrangements for burning uncombusted material from primary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1832Arrangement or mounting of combustion heating means, e.g. grates or burners
    • F24H9/1845Arrangement or mounting of combustion heating means, e.g. grates or burners using solid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B2700/00Combustion apparatus for solid fuel
    • F23B2700/018Combustion apparatus for solid fuel with fume afterburning by staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/0027Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using fluid fuel
    • F24H1/0045Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using fluid fuel with catalytic combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Incineration Of Waste (AREA)
  • Filtering Materials (AREA)

Abstract

Fuel is burned in a primary combustion chamber with less than the air required for stoichiometric combustion so that the combustion gases have a high carbon monoxide (CO) and a hydrocarbon content and the temperature of the gases is held below that at which significant nitrogen oxides (NOx) would be produced. The combustion gases are then passed through a secondary combustion zone in which more air is injected into the gas stream to oxidize the CO and hydrocarbons to carbon dioxide (CO2). The secondary burner comprises a plurality of foraminous tubes through which secondary air is emitted. Combustion in the secondary zone is maintained at a temperature below that at which nitrogen oxides (NOx) will be produced in significant quantities.

Description

ilnited States Patent 11 1 Craig et al.
[ REDUCTION OF GASEOUS POLLUTANTS IN COMBUSTION FUEL GAS [75] Inventors: Glenn D. Craig, Menomonee Falls; David T. Feuling, Milwaukee, both of Wis; Paul G. LaHaye, Cape Elizabeth, Maine [73] Assignee: Aqua-Chem, Inc., Milwaukee, Wis.
122] Filed: Oct. 5, 1972 [21] Appl. No: 295,249
FOREIGN PATENTS OR APPLICATIONS 691,430 5/1940 Germany 431 351 1 1 Sept. 24, 1974 Primary ExaminerEdward G. Favors [57] ABSTRACT Fuel is burned in a primary combustion chamber with less than the air required for stoichiometric combustion so that the combustion gases have a high carbon monoxide (CO) and a hydrocarbon content and the temperature of the gases is held below that at which significant nitrogen oxides (N0 would be produced. The combustion gases are then passed through a secondary combustion zone in which more air is injected into the gas stream to oxidize the CO and hydrocarbons to carbon dioxide (C0 The secondary burner comprises a plurality of foraminous tubes through which secondary air is emitted. Combustion in the secondary zone is maintained at a temperature below that at which nitrogen oxides (No will be produced in significant quantities.
18 Claims, 7 Drawing Figures PATENIEB 2 74 Go I\ I l M I I I I I I PAIENIEB swemm sum 3W 3 FIG 6 FIG 5 REDUCTION OF GASEOUS POLLUTANTS IN COMBUSTION FUEL GAS BACKGROUND OF THE INVENTION SUMMARY OF THE INVENTION The invention comprises a combustion method and apparatus which is characterized by burning carbonaceous or hydrocarbon fuel in a primary combustion zone with less than the stoichiometric amount of air required for complete combustion. Generally up to about 75 or 80 percent of the stoichiometric amount is supplied to the primary zone. Incomplete combustion results in the temperature of the combustion gases remaining below 2700 F, a temperature above which significant quantities of NO would be produced. Incomplete combustion in the primary zone results in the gaseous combustion products containing a high percentage of CO, unburned hydrocarbons and carbonaceous materials. All of the hot gases from the primary zone are then passed through a secondary combustion zone where air is injected in the gas stream for oxidizing the CO, unburned hydrocarbons and carbonaceous materials to innocuous CO under such conditions that a temperature is never exceeded at which nitrogen from the air or from the fuel might be oxidized to NO, in significant quantities.
The secondary combustion zone includes a plurality of foraminous tubes over which the gaseous combustion products exiting the primary combustion zone are constrained to pass. Air at positive pressure is fed into the tubes from any suitable source. The tubes have framina of some kind such as pores or perforations for emitting air into the gaseous combustion product stream. The secondary air mixes with the gases to support a low temperature combustion process which oxidizes the CO, unburned hydrocarbons and carbonaceous materials to CO under temperature conditions which minimize production of N0 The invention is further characterized by controlling the total air required for combustion of the fuel at prevailing feed rates in the usual way. More specifically, a primary damper is provided for controlling air flow to the primary combustion zone. This primary damper operates coordinately with the fuel feed control device in response to the thermal demand of the system. A secondary damper is also provided for automatically regulating the secondary air flow in response to the CO level in the flue or stack gas.
A primary object of this invention is to reduce air pollution by reducing NO,, CO, hydrocarbon and particulate content of the exhaust gases from carbonaceous and hydrocarbon fuel burners.
A further object of this invention is to provide a combustion system and method in which combustion conditions are so controlled that consequential quantities of NO, are not produced, thereby obviating the need for removing any NO, from the flue gases.
A still further object is to minimize NO, production without adversely affecting the thermal efiiciency of the combustion apparatus.
Another object is to provide a device for reducing air pollutants, expecially NO, which device can be readily adapted to various types of boilers and other fuel burning devices as well.
How the foregoing and other more specific objects of the invention are achieved will appear in the detailed description of an illustrative embodiment of the invention which will be set forth shortly hereinafter in reference to the drawings.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical side elevation, partly in section, of a boiler incorporating the invention;
FIG. 2 is a front elevation view of the boiler shown in the preceding figure;
FIG. 3 is a front elevation view of the secondary burner as viewed in the direction of the arrows 3-3 in FIG. 1;
FIG. 4 is a top view of the secondary burner assembly shown in the preceding figure;
FIG. 5 is a front elevation view of an alternative type of secondary burner, with some parts broken away and in section;
FIG. 6 is a transverse section taken on the line 66 in FIG. 5; and
FIG. 7 is a section of one of the burner tube assemblies taken on the line 7-7 in FIG. 5.
DESCRIPTION OF A PREFERRED EMBODIMENT Although the invention is applicable to various fuel burning apparatus it will bediscussed for purposes of illustration in connection with a steam or hot water boiler.
FIGS. 1 and 2 show a boiler which is somewhat schematically represented and which incorporates the new pollutant reduction system. The illustrative boiler comprises a housing it) in which there is an upper steam or hot water drum 11 that connects with a lower feed water drum 12 by means of a group of water filled tubes 13. The tubes have webs 14 welded between them to enlarge the heat absorption surface and to confine the flue gases to flow in a predetermined path. There isa group of tubes 13 on the other side of the boiler also extending from upper drum 11 to lower drum 12. These tubes together with drums 11 and 12 define a space in which heat is absorbed by radiation from the combustion devices and from the hot combustion gases that flow through the boiler. Ultimately, the combustion gases reach an adapter 15 from which the gases are piped to a stack, not shown, for discharge to the atmosphere.
The boiler has a primary combustion chamber 20 comprising a cylindrical refractory shell 21 which is continuous with a conical extension 22 and which defines an internal volume 24 which is herein called a primary combustion zone. Gaseous or vaporized liquid fuel may be burned in the primary combustion zone. The fuel is injected with a nozzle 25 which has a pipe 26 leading back to a burner block 27 where a fuel line connection 28 is made thereto. Nozzle 25 is supported on its feed pipe 26 centrally within a hollow cylindrical element 29 which has a plurality of openings 30 that act as a diffuser for air which is supplied for combustion in primary combustion zone 24. The burner assembly may be any conventional type that is suitably adapted for burning gas or liquid fuel.
Supported on the front of the boiler is a motor 31 on whose shaft 32 there is mounted a fan 33. In a conventional manner. rotation of fan 33 causes generation of pressurized air in a compartment 34. The pressurized air is supplied both to the primary combustion zone 24 and to a secondary combustion zone 61 and, in some designs in accordance with the invention, to a tertiary combustion zone, not shown, as will be explained shortly hereinafter.
In the depicted embodiment, there is a main duct 35 directing combustion air to two subdividing ducts, a primary combustion air duct 41 and a secondary combustion air duct 40. Primary air duct 41 has a damper 46 mounted in it for rotation on a shaft 47. Damper 46 may be turned to regulate air flow through primary air duct 41. Shaft 47 is driven by a motor 39 as indicated by the dashed line 38. Also driven by motor 39, as indicated by the dashed line 38', is a cam 36 whose follower 37 operates a fuel flow control valve, not shown. By conventional means which are not shown, motor 39 is driven bidirectionally to operate damper 46 and control primary combustion air flow in response to boiler operating conditions including steam or hot water load demand. Thus, damper 46 and fuel control cam 36 are operated coordinately to maintain the desired fuel-toair ratio in the primary combustion zone 24 throughout the entire range of boiler operating conditions. In accordance with the invention, less than the amount of air for complete combustion is normally supplied to primary combustion zone 24.
In general, from about 75 to 80 percent of the air delivered by the fan 33 is furnished to the primary combustion zone 24 and the balance is furnished to the secondary combustion device 42 which is in secondary zone 61. Primary air duct 41 leads to a compartment 43 from which air flows through diffuser ports 30 into primary combustion zone 24 where the air enables the fuel injected by nozzle 25 to be burned incompletely, in accordance with the invention, by suitably predetermining the fuel-to-air ratio throughout the operating range of the boiler.
The smaller secondary air duct 40 has a damper 44 in it which is mounted for rotation on a shaft 45. Shaft 45 is turnable bidirectionally by a motor 49 in response to a condition such as the CO level which prevails in the flue gas stack leading from the boiler. Motor 49 is controlled by a servo-controller 50 which in turn responds to CO level in the stack as sensed by a suitable sensor 51. Changes in CO level result in secondary damper 44 altering the amount of air delivered to the secondary combustion device 42 by way of duct 40.
In one operating mode the secondary air damper 44 may be wide open when the boiler is being started. This results in substantially complete combustion in the secondary zone 61 of the residual carbonaceous solids, other particular matter, hydrocarbons and CO which are not completely oxidized in the primary combustion zone 24. Then the small damper 44 may be gradually closed until CO is sensed in the stack gas. The system then goes on automatic operation to maintain the CO level near zero or below a preset minimum substantially by controlling secondary combustion air flow through regulation of damper 44. The primary combustion air flow is, during normal operation of the boiler, regulated coordinateiy with the proper fuel ratio in accordance with the thermal load on the boiler and on other conditions.
The total amount of air supplied for combustion in the primary and secondary combustion zones is generally slightly greater than the stoichiometric requirements for complete combustion of the combustible components of the fuel. but it will be understood that stoichiometric combustion conditions are not ap proached in the primary zone 24, in accordance with the invention, because gas temperature in the primary zone under these conditions could reach 2700 F and cause much N0 to be produced which is contrary to the invention. For the purposes of the invention, the boiler is operated so that gases in the primary combustion zone are maintained well below 2700 F and some incompletely oxidized products result.
in an alternative form of the invention, a main damper, not shown, is installed in main duct 35 preceding the ducts and 41. This main damper may be driven by motor 39 which also drives fuel control cam 36 and damper 46 in response to boiler demands as in the illustrated embodiment. The smaller secondary air control damper is then used for fine control in response to CO level in the stack gas. Control over the composition of the effluent combustion products may also be achieved with another alternative in which the main damper, not shown, in main duct 35 and the fuel control cam 36 are controlled by motor 39 in response to demand on the boiler while the primary damper 46 in duct 41 and secondary damper 45 in duct 40 are jointly controlled by CO level responsive motor 49.
Attention is now invited to FIGS. 1, 3 and 4 for a more detailed description of the new secondary combustion device 42. As indicated heretofore, the secondary combustion device is situated in a secondary combustion zone 61 at the outlet end of the primary combustion chamber 20 so that all gases of combustion must flow through or near the device 42. Basically, the secondary combustion device 42 comprises two parallel rows of foraminous tubes, the tubes in one row being marked 54 and the tubes in the other row being marked 53. The purpose of the tubes is to diffuse or inject secondary combustion air uniformly into the stream of gaseous combustion products flowing from primary combustion chamber 20 to promote mixing and insure complete combustion without an excessive amount of secondary air. Thus, in this embodiment, a tube such as 54 is provided with two longitudinally extending rows of small holes 55 and 56 through which air may emerge into the gaseous combustion product stream. In this case, the tubes are supported in a header 57 over which there is a cap 58 to prevent evolution of undispersed air from the ends of the tubes into the gas stream. The lower ends of the tubes are also in a header 59 but the lower ends of the tubes communicate with the secondary air duct 40 which is under control of small damper 44. Air evolving from tubes 53 and 54 through the rows of small holes 55 and 56 effectuates combustion of CO and unburned substances such as hydrocarbons ema nating from the primary combustion chamber. The tubes are mounted in a supporting structure 60 which maintains their position in the gaseous combustion product stream. The temperature in the secondary combustion zone is dependent upon the temperature and quantity of air discharged from tubes 53 and 54 and the radiation of heat away from this zone. The boiler tubes to which the secondary combustion device 42 is exposed insures that the secondary combustion occurs at a temperature of 2500 F or below which is low enough to minimize oxidizing nitrogen from the fuel or the combustion air to nitrogen oxides. In this embodiment, tubes 53 and 54 may be comprised of a suitable refractory or stainless steel or other material which will not degrade at prevailing temperatures. It is desirable to locate and arrange the secondary combustion device 42 in such manner that it can radiate heat to the boiler tubes so that the secondary combustion air flowing through the perforated tubes will not be significantly preheated before it emerges.
In FIG. 4, the rows of holes 55 and 56 are circumferentially spaced apart so as to intercept a central angle of about 120. It will be understood that the rows of holes may be angularly closer or farther from each other as well without defeating the purposes of the invention. An angle of about 120 is, however, desirable since it enhances turbulence and mixing of the injected air and stream of gaseous combustion products in which case more complete combustion is promoted. With this angle, turbulence and good mixing are obtained because the air emitted from the small holes at just about the point where the gas stream flowing past the tubes begins to separate therefrom to form vortices.
Various kinds of hollow air dispersing means may be substituted for the perforated metal tubes 53 and 54 which were described. For instance, the hollow means may be made sintered metal or ceramic or other refractory which is perforated or porous partially or entirely around their perimeters. The means may also be provided with narrow continuous or interrupted longitudinal slots for emitting air instead of being provided with many small holes or pores. The tubes may be made of any material that withstands the conditions that prevail in the vicinity of the secondary combustion device, 42. There may also be more or fewer air supply tubes in a row or more or fewer than the two rows illustrated depending upon requirements of the system.
A modified form of secondary combustion device will now be described in reference to FIGS. 5-7. This embodiment is distinguished by its having means for keeping the air emitting tubes cool and for precooling or, at least preventing, preheating of the incoming secondary air.
In FIG. 5, the modified secondary combustion device is generally designated by the reference numeral 70. It comprises a frame 71 which supports a water feed header 72 and a water discharge header 73. Beneath the lower water header 72 is a secondary air feed header 74 that is supplied through secondary air duct 40 under the control of damper 44. As can be seen in FIG. 6, in this exemplary embodiment there are again two rows of water cooled, air emitting tube structures, the structures in the back row being marked 75 and those in the front row 76. As in the previous embodiment, it will be understood that the number of tube structures in each of the rows and their size and geometry will depend on the gas quantities handled in a particular boiler size.
One of the air emitting tube structures 75 will be described since they may all be the same. Referring to FIG. 5, one may see that the structure 75 comprises a central secondary air conducting tube 80 which has two longitudinally extending rows of small holes such as 81 and 82 through which secondary combustion air may emerge into the gaseous combustion products stream. As can be seen particularly well in the cross sectional view of one of the tube structure in FIG. 7, the rows of holes 811 and 82 are aligned with angularly diverging longitudinally disposed hollow flutes 83 and 84, respectively. Both flutes have the same geometry. For instance, flute 84 extends radially from tube and has a longitudinally extending open ended slot 85 which conducts the secondary air emitted through the row of holes 82 to the gaseous combustion product stream surrounding the secondary combustion device. As can be seen in FIG. 7, the tips of the slotted flutes are beveled so that the slots 85 open substantially exclusively on the leeward side of gaseous combustion product flow.
The center tube 80 in this embodiment is capped at its upper end 86 so as to constrain all of secondary combustion air to flow through the orifices or small holes 81 and 82. The lower ends of center tubes 80 are connected with header 74 through which secondary combustion air is supplied through duct 40 under the control of small damper 45. The inner tube is surrounded by a concentric outer tube 87 which defines a water jacket 89 around the inner tube. Water flows axially in the segments of the jacket between the flutes 83 and 84. This results from the fact that the lower end 88 of outer tube 87 connects into water feed head 72 as is particularly evident in FIG. 5 in the lower broken away portion of the tube structure. The inner and outer tubes are suitably welded or otherwise sealed where they pass through or into their respective headers. Water flowing axially through the water jacket area 89 emerges at the top end of the structure and continues its flow path through a cavity 90 and through a hole 91 in upper water exit header 73. Of course, the inner air tube 80 may be adapted to extend through upper water exit header 73 to another secondary air header, not shown, or the air inlet header may be arranged to feed the tubes 80 from the top instead of the bottom or there may even be two independent air headers feed tubes from the top and bottom. The design will depend on the quantity of primary gaseous combustion products to be burned and upon meeting the condition that secondary combustion should be well below 2700 F such as at about 2100 F to oxidize the CO and hydrocarbons completely and yet inhibit NO, production.
In FIG. 7, an incremental filament of the gaseous combustion product stream is indicated by the arrowed line 95. It will be noted that this typical incremental stream deflects off of the periphery of the outer tube 87 at an angle such that the stream will intersect with the secondary air stream emerging from the slotted flutes 83, 84 in which case turbulence is maximized. This promotes oxidation of the residual hydrocarbons and carbon monoxide and any other burnable matter in the gaseous combustion product stream from the primary combustion chamber 20. The fact that the tube structure is water cooled not only prevents its thermal degradation but it also results in precooling of the incoming secondary combustion air which aids in suppressing the temperature of the secondary combustion products to well below the 2700 F at which nitrogen oxide might be formed. It is also desirable to position the secondary combustion device in relation to the heat absorbing surfaces of the boiler such that the device will be cooled by radiating to the surfaces. The existence of a fairly high CO level in the secondary combustion gases also tends to inhibit formation of nitrogen oxide because the air reacts preferentially with the carbon monoxide rather than with the nitrogen derived from the air or the fuel.
In the previously described embodiments, there are primary and secondary combustion zones. For example, in the secondary combustion device 42 shown in FIGS. 1, 3 and 4 the rows of foraminous tubular elements 53 and 54 are both supplied from the same secondary air duct 40 in which case there is actually a single secondary combustion zone in the vicinity of device 42. Similarly, in the FIGS. 5-7 embodiment, the foraminous tubes such as 80 are all connected into a common header 74 which is supplied from the secondary air duct 40 in which case all of the tubes contribute air to a single secondary combustion region. Although specific structure is not shown, those skilled in the art may readily infer from what has been disclosed that a tertiary combustion zone may also be provided. This can be done by connecting the leading rows of tube structures 54 or 75 in the FIG. 1 or FIG. 6 embodiments, respectively, to one secondary air supply. The other rows of tubes 53 or 76 in the respective embodiments, may then be connected into a third pressurized air supply, not shown. Thus, primary, secondary and tertiary combustion zones are created. The zone ahead of the rows of tubes 53 or 76 becomes the secondary zone and the zone in front of the rows of tubes 54 or 75 become the tertiary combustion zone. In this arrangement, the gaseous combustion products which are rich in CO and unburned hydrocarbons from primary combustion chamber undergo further burning in two stages in the secondary and tertiary combustion zones so that the probability of elevating the gas temperature to that above which NO might be formed is further reduced. In this arrangement, it is easier to keep the tubes cool since the flame surrounding each of the rows is not as intense.
During operation of the illustrated embodiment, changes in the CO level of the effluent stack gas are sensed and used to control the small damper 44 in the secondary sir supply duct 41 If CO in the stack increases, secondary air is increased by automatic increased opening of damper 44 in which case the combustion products from the primary zone are more effectively oxidized in the secondary zone and the CO level goes down again. A decrease in stack gas CO level brings about converse action. The essence of the system is to assure that gases passing through the secondary combustion device are oxidized but to minimize the intensity of flame in that region so that the temperature will not be increased to the point where nitrogen oxides would be produced. Usually, the CO level of the stack gases will reach a steady state as long as load requirements on the boiler are fairly constant. However, if there is greater or lesser load, the fuel and air to the primary combustion zone change accordingly in which case the CO level in the flue gases may change and effectuate automatic readjustment of the secondary air.
Although embodiments of the invention have been described in considerable detail, such description is to be considered illustrative rather than limiting for the invention may be variously embodied and is to be limited only by interpretation of the claims which follow. 6
We claim:
1. Fuel burning apparatus constructed and arranged for minimizing the discharge of nitrogen oxide in its exhaust gases comprising:
means defining a primary combustion zone having an inlet for primary combustion air and an outlet for gaseous combustion products,
fuel delivery means for providing fuel to said primary combustion zone, air delivery means coupled to said primary combustion zone and constructed and arranged for delivering less than the stoichiometric amount of air to said inlet to burn said fuel at a temperature and under conditions whereby the combustion products include significant residual amounts of unoxidized hydrocarbons and carbon monoxide,
means defining a secondary combustion zone coupled to the outlet of the primary combustion zone for receiving the stream of hot gaseous combustion products from the primary combustion zone, the direction of gas flow from said primary combustion zone to said secondary combustion zone defining a downstream direction,
gas supply means coupled to a source of combustion supporting gas and including a plurality of tube means extending across said secondary combustion zone whereby said gaseous combustion product stream is forced to flow between and around said tube means,
and means defining a plurality of spaced apart gas passages formed in the downstream side of said tube means for injecting combustion supporting gas into plural regions of said gas stream as the latter passes around said tube means whereby to oxidize the residual unoxidized hydrocarbon and car bon monoxide at a temperature below which significant amounts of nitrogen oxides are formed.
2. The combustion device set forth in claim I wherein:
a. said tube means are comprised of porous material which is refractory to the heat prevailing in the secondary combustion zone and said openings are the pores of said material.
3. The combustion device set forth in claim i wherein:
a. said supply means are a plurality of metal tubular elements wherein said gas dispersing passages comprise openings located on the downstream side thereof.
4. The combustion device set forth in claim I wherein:
a. said supply means are a plurality of tubular elements of refractory material wherein said gas dispersing passages comprise openings located on the downstream side thereof.
5. The combustion device set forth in claim I wherein each of said tube means comprises:
a. an inner tubular element which is adapted for being connected to said source of combustion supporting gas, said inner tubular elements having said openings through their walls,
b. an outer tubular element surrounding each inner tubular element to define a cooling fluid flow space therewith,
c. hollow means extending sealingly from said openings through said cooling fluid space and said outer tubular element for permitting the combustion supporting gas to discharge from said inner tubular elements into said gas stream, and
(1. means for coupling said outer tubular elements to a source of cooling fluid.
6. The combustion device set forth in claim 1 wherein said plurality of tube means are a plurality of spaced apart tubular means, each said tubular means comprising:
a. an inner tubular element having at least two elements having passageways extending radially therefrom and communicating with the interior of said inner tubular element at one end and with said secondary combustion zone at the other end so that combustion supporting gas may flow to said zone,
b. an outer tubular element surrounding said inner element with said passageway elements extending therethrough in a sealed manner, said outer element and inner element defining a cooling fluid flow space.
7. The device set forth in claim 6 wherein: p
a. said passageway elements are elongated and substantially axially coextensive with said tubular elements and the radially remote gas discharge ends thereof are directed generally downstream of the gaseous combustion product stream.
8. The device set forth in claim 7 wherein:
a. said passagewayelements are substantially at an angle of about 120 from each other and are disposed on the downstream side of the tubular means equiangularly from a plane extending in the general direction of gas flow and through the center of the tubular elements.
9. The apparatus set forth in claim 1 wherein each of said tube means comprises a tube extending across said secondary combustion zone, said tubes being spaced apart in a direction generally transverse to the direction of said gas flow, whereby gas flow paths are defined between adjacent tubes, said passages for combustion supporting gas being formed in each tube in the downstream side thereof for injecting said combustion supporting gas into said gas flow paths.
10. The apparatus set forth in claim 1 wherein each of said plurality of tube means includes a first and a second group of tube means, the tube means in each group being separated from each other in a direction that is substantially transverse to the flow direction of said gaseous combustion products, said second group of tube means being located on the downstream side of said first group of tube means.
11. The apparatus set forth in claim 10 wherein said tube means from each group are spaced from each other and arranged in rows which extend substantially transversely to the general flow direction of said gaseous combustion products. the row defined by said second group of tube means being displaced in the downstream direction from the row defined by said first group of tube means and the tube means in each row being disposed in the path of gaseous flow between the tube means in the other row.
12. The apparatus set forth in claim 1 wherein said tube means are elongate, a plurality of gas dispersing openings formed longitudinally in said tube means, a first portion of said openings also being spaced longitudinally on said tube means relative to the remainder of said openings.
13. The apparatus set forth in claim 12 wherein said openings are arranged in at least a pair of longitudinal rows, said rows being displaced from each other at an angle of about relative to the longitudinal axis of said tube means.
14. The apparatus set forth in claim 13 wherein said tube means have nozzle means extending therefrom, said nozzle means having openings formed therein for dispersing said combustion supporting gas.
15. The apparatus set forth in claim 14 and including cooling means disposed adjacent said tube means for defining a space for conducting a coolant in a heat exchange relationship with said tube means.
16. The apparatus set forth in claim 15 wherein each of said cooling means comprises tubular means em bracing its respective one of said tube 5655s. said nozzles extending through said cooling tubes for dispersing gas into said secondary combustion zone.
17. The apparatus set forth in claim 16 and including first header means connected to each of said tube means for conducting combustion supporting gas thereto and second header means connected to said cooling tubular means for conducting a coolant thereto.
18. The apparatus set forth in claim 17 wherein each of said plurality of tube means includes a first and a second group of tube means, the tube means in each group being separated from each other in a direction that-is substantially transverse to the flow direction of said gaseous combustion products, said second group of tube means being located on the downstream side of said first group of tube means.

Claims (17)

  1. 2. The combustion device set forth in claim 1 wherein: a. said tube means are comprised of porous material which is refractory to the heat prevailing in the secondary combustion zone and said openings are the pores of said material.
  2. 3. The combustion device set forth in claim 1 wherein: a. said supply means are a plurality of metal tubular elements wherein said gas dispersing passages comprise openings located on the downstream side thereof.
  3. 4. The combustion device set forth in claim 1 wherein: a. said supply means are a plurality of tubular elements of refractory material wherein said gas dispersing passages comprise openings located on the downstream side thereof.
  4. 5. The combustion device set forth in claim 1 wherein each of said tube means comprises: a. an inner tubular element which is adapted for being connected to said source of combustion supporting gas, said inner tubular elements having said openings through their walls, b. an outer tubular element surrounding each inner tubular element to define a cooling fluid flow space therewith, c. hollow means extending sealingly from said openings through said cooling fluid space and said outer tubular element for permitting the combustion supporting gas to discharge from said inner tubular elements into said gas stream, and d. means for couplIng said outer tubular elements to a source of cooling fluid.
  5. 6. The combustion device set forth in claim 1 wherein said plurality of tube means are a plurality of spaced apart tubular means, each said tubular means comprising: a. an inner tubular element having at least two elements having passageways extending radially therefrom and communicating with the interior of said inner tubular element at one end and with said secondary combustion zone at the other end so that combustion supporting gas may flow to said zone, b. an outer tubular element surrounding said inner element with said passageway elements extending therethrough in a sealed manner, said outer element and inner element defining a cooling fluid flow space.
  6. 7. The device set forth in claim 6 wherein: a. said passageway elements are elongated and substantially axially coextensive with said tubular elements and the radially remote gas discharge ends thereof are directed generally downstream of the gaseous combustion product stream.
  7. 8. The device set forth in claim 7 wherein: a. said passageway elements are substantially at an angle of about 120* from each other and are disposed on the downstream side of the tubular means equiangularly from a plane extending in the general direction of gas flow and through the center of the tubular elements.
  8. 9. The apparatus set forth in claim 1 wherein each of said tube means comprises a tube extending across said secondary combustion zone, said tubes being spaced apart in a direction generally transverse to the direction of said gas flow, whereby gas flow paths are defined between adjacent tubes, said passages for combustion supporting gas being formed in each tube in the downstream side thereof for injecting said combustion supporting gas into said gas flow paths.
  9. 10. The apparatus set forth in claim 1 wherein each of said plurality of tube means includes a first and a second group of tube means, the tube means in each group being separated from each other in a direction that is substantially transverse to the flow direction of said gaseous combustion products, said second group of tube means being located on the downstream side of said first group of tube means.
  10. 11. The apparatus set forth in claim 10 wherein said tube means from each group are spaced from each other and arranged in rows which extend substantially transversely to the general flow direction of said gaseous combustion products, the rows defined by said second group of tube means being displaced in the downstream direction from the row defined by said first group of tube means and the tube means in each row being disposed in the path of gaseous flow between the tube means in the other row.
  11. 12. The apparatus set forth in claim 1 wherein said tube means are elongate, a plurality of gas dispersing openings formed longitudinally in said tube means, a first portion of said openings also being spaced longitudinally on said tube means relative to the remainder of said openings.
  12. 13. The apparatus set forth in claim 12 wherein said openings are arranged in at least a pair of longitudinal rows, said rows being displaced from each other at an angle of about 120* relative to the longitudinal axis of said tube means.
  13. 14. The apparatus set forth in claim 13 wherein said tube means have nozzle means extending therefrom, said nozzle means having openings formed therein for dispersing said combustion supporting gas.
  14. 15. The apparatus set forth in claim 14 and including cooling means disposed adjacent said tube means for defining a space for conducting a coolant in a heat exchange relationship with said tube means.
  15. 16. The apparatus set forth in claim 15 wherein each of said cooling means comprises tubular means embracing its respective said tube means, said nozzles extending through said cooling tubes for dispersing gas into said secondary combustion zone.
  16. 17. The apparatus set forth in claim 16 and including first header means connected to each Of said tube means for conducting combustion supporting gas thereto and second header means connected to said cooling tubular means for conducting a coolant thereto.
  17. 18. The apparatus set forth in claim 17 wherein each of said plurality of tube means includes a first and a second group of tube means, the tube means in each group being separated from each other in a direction that is substantially transverse to the flow direction of said gaseous combustion products, said second group of tube means being located on the downstream side of said first group of tube means.
US00295249A 1971-11-15 1972-10-05 Reduction of gaseous pollutants in combustion fuel gas Expired - Lifetime US3837788A (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
BE793696D BE793696A (en) 1972-01-06 Air pollution control system - to reduce content of oxides of nitrogen in combustion gases
US00198767A US3816595A (en) 1971-11-15 1971-11-15 Method and apparatus for removing nitrogen oxides from a gas stream
US00215762A US3832122A (en) 1971-11-15 1972-01-06 Reduction of nitrogen oxides from products of hydrocarbon combustion with air
US00295249A US3837788A (en) 1971-11-15 1972-10-05 Reduction of gaseous pollutants in combustion fuel gas
ZA729071A ZA729071B (en) 1972-10-05 1972-12-21 Reduction of gaseous pollutants in combustion flue gas
GB20673A GB1427231A (en) 1971-11-15 1973-01-02 Diminishing gaseous pollutants in combustion flue gas
CH11573A CH575574A5 (en) 1971-11-15 1973-01-05
DE2300522A DE2300522C2 (en) 1971-11-15 1973-01-05 Combustion system
LU66797A LU66797A1 (en) 1971-11-15 1973-01-05
ES410405A ES410405A1 (en) 1972-01-06 1973-01-05 Fuel burner installation adapted to reduce nitrogen oxides in its expulsion gases and method of reduction of such oxides. (Machine-translation by Google Translate, not legally binding)
NL7300154A NL7300154A (en) 1971-11-15 1973-01-05
FR7300369A FR2167747B1 (en) 1971-11-15 1973-01-05
IT19071/73A IT978041B (en) 1972-01-06 1973-01-05 EQUIPMENT FOR THE REDUCTION OF POLLUTION CAUSED BY EXHAUST GASES
CA160,688A CA986369A (en) 1971-11-15 1973-01-05 Reduction of gaseous pollutants in combustion flue gas
AU50835/73A AU475791B2 (en) 1971-11-15 1973-01-08 Reduction of gaseous pollutants in combustion flue gas
JP5875773A JPS5614923B2 (en) 1972-10-05 1973-05-28
US05/488,057 US3955909A (en) 1971-11-15 1974-07-12 Reduction of gaseous pollutants in combustion flue gas
CA233,277A CA1006401A (en) 1971-11-15 1975-08-12 Reduction of gaseous pollutants in combustion flue gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US00198767A US3816595A (en) 1971-11-15 1971-11-15 Method and apparatus for removing nitrogen oxides from a gas stream
US00215762A US3832122A (en) 1971-11-15 1972-01-06 Reduction of nitrogen oxides from products of hydrocarbon combustion with air
US00295249A US3837788A (en) 1971-11-15 1972-10-05 Reduction of gaseous pollutants in combustion fuel gas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/488,057 Division US3955909A (en) 1971-11-15 1974-07-12 Reduction of gaseous pollutants in combustion flue gas

Publications (1)

Publication Number Publication Date
US3837788A true US3837788A (en) 1974-09-24

Family

ID=27393929

Family Applications (3)

Application Number Title Priority Date Filing Date
US00198767A Expired - Lifetime US3816595A (en) 1971-11-15 1971-11-15 Method and apparatus for removing nitrogen oxides from a gas stream
US00215762A Expired - Lifetime US3832122A (en) 1971-11-15 1972-01-06 Reduction of nitrogen oxides from products of hydrocarbon combustion with air
US00295249A Expired - Lifetime US3837788A (en) 1971-11-15 1972-10-05 Reduction of gaseous pollutants in combustion fuel gas

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US00198767A Expired - Lifetime US3816595A (en) 1971-11-15 1971-11-15 Method and apparatus for removing nitrogen oxides from a gas stream
US00215762A Expired - Lifetime US3832122A (en) 1971-11-15 1972-01-06 Reduction of nitrogen oxides from products of hydrocarbon combustion with air

Country Status (9)

Country Link
US (3) US3816595A (en)
AU (1) AU475791B2 (en)
CA (1) CA986369A (en)
CH (1) CH575574A5 (en)
DE (1) DE2300522C2 (en)
FR (1) FR2167747B1 (en)
GB (1) GB1427231A (en)
LU (1) LU66797A1 (en)
NL (1) NL7300154A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982879A (en) * 1971-05-13 1976-09-28 Engelhard Minerals & Chemicals Corporation Furnace apparatus and method
US4021188A (en) * 1973-03-12 1977-05-03 Tokyo Gas Company Limited Burner configurations for staged combustion
FR2337305A1 (en) * 1975-12-29 1977-07-29 Engelhard Min & Chem PROCESS FOR BURNING FUELS CONTAINING NITROGEN
DE3132224A1 (en) * 1980-08-14 1982-04-22 Rockwell International Corp., 90245 El Segundo, Calif. COMBUSTION METHOD AND DEVICE FOR CARRYING OUT THE SAME
US4421478A (en) * 1981-08-03 1983-12-20 Magic Chef, Inc. High efficiency fuel burner
US4761132A (en) * 1987-03-04 1988-08-02 Combustion Tec, Inc. Oxygen enriched combustion
US4878830A (en) * 1988-06-20 1989-11-07 Exxon Research And Engineering Company Substoichiometric fuel firing for minimum NOx emissions
US4909727A (en) * 1987-03-04 1990-03-20 Combustion Tec, Inc. Oxygen enriched continuous combustion in a regenerative furance
US5209187A (en) * 1991-08-01 1993-05-11 Institute Of Gas Technology Low pollutant - emission, high efficiency cyclonic burner for firetube boilers and heaters
US5220888A (en) * 1991-08-01 1993-06-22 Institute Of Gas Technology Cyclonic combustion
US5350293A (en) * 1993-07-20 1994-09-27 Institute Of Gas Technology Method for two-stage combustion utilizing forced internal recirculation
US5427525A (en) * 1993-07-01 1995-06-27 Southern California Gas Company Lox NOx staged atmospheric burner
US5462430A (en) * 1991-05-23 1995-10-31 Institute Of Gas Technology Process and apparatus for cyclonic combustion
US6085786A (en) * 1998-04-28 2000-07-11 Gt Development Corporation Cyclic flow valve
US6672859B1 (en) 2002-08-16 2004-01-06 Gas Technology Institute Method and apparatus for transversely staged combustion utilizing forced internal recirculation
US20040050070A1 (en) * 2002-09-12 2004-03-18 The Boeing Company Fluid injector and injection method
US6755359B2 (en) 2002-09-12 2004-06-29 The Boeing Company Fluid mixing injector and method
US6775987B2 (en) 2002-09-12 2004-08-17 The Boeing Company Low-emission, staged-combustion power generation
US8596075B2 (en) 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US8776532B2 (en) 2012-02-11 2014-07-15 Palmer Labs, Llc Partial oxidation reaction with closed cycle quench
US8869889B2 (en) 2010-09-21 2014-10-28 Palmer Labs, Llc Method of using carbon dioxide in recovery of formation deposits
US8959887B2 (en) 2009-02-26 2015-02-24 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US9523312B2 (en) 2011-11-02 2016-12-20 8 Rivers Capital, Llc Integrated LNG gasification and power production cycle
US9562473B2 (en) 2013-08-27 2017-02-07 8 Rivers Capital, Llc Gas turbine facility
US9850815B2 (en) 2014-07-08 2017-12-26 8 Rivers Capital, Llc Method and system for power production with improved efficiency
US10018115B2 (en) 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10047673B2 (en) 2014-09-09 2018-08-14 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US10103737B2 (en) 2014-11-12 2018-10-16 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10533461B2 (en) 2015-06-15 2020-01-14 8 Rivers Capital, Llc System and method for startup of a power production plant
US10634048B2 (en) 2016-02-18 2020-04-28 8 Rivers Capital, Llc System and method for power production including methanation
US10731571B2 (en) 2016-02-26 2020-08-04 8 Rivers Capital, Llc Systems and methods for controlling a power plant
US10914232B2 (en) 2018-03-02 2021-02-09 8 Rivers Capital, Llc Systems and methods for power production using a carbon dioxide working fluid
US10927679B2 (en) 2010-09-21 2021-02-23 8 Rivers Capital, Llc High efficiency power production methods, assemblies, and systems
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10989113B2 (en) 2016-09-13 2021-04-27 8 Rivers Capital, Llc System and method for power production using partial oxidation
US11125159B2 (en) 2017-08-28 2021-09-21 8 Rivers Capital, Llc Low-grade heat optimization of recuperative supercritical CO2 power cycles
US11231224B2 (en) 2014-09-09 2022-01-25 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US11686258B2 (en) 2014-11-12 2023-06-27 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7314826A (en) * 1972-12-11 1974-06-13
JPS5237611B2 (en) * 1973-03-01 1977-09-24
JPS536099B2 (en) * 1974-12-28 1978-03-04
MX143430A (en) * 1975-01-02 1981-05-12 Engelhard Min & Chem IMPROVEMENTS IN METHOD AND APPARATUS FOR BURNING CARBONACEOUS FUELS TO PRODUCE ENERGY IN THE FORM OF HEAT
US4067681A (en) * 1975-03-10 1978-01-10 Columbia Gas System Service Corporation Gas-fired smooth top range
JPS5261167A (en) * 1975-11-15 1977-05-20 Agency Of Ind Science & Technol Method of converting no2 to no and composition for converting
GB1590023A (en) * 1976-08-24 1981-05-28 Johnson Matthey Co Ltd Catalytic decomposition of nitrogen oxides
US4144017A (en) * 1976-11-15 1979-03-13 The Babcock & Wilcox Company Pulverized coal combustor
US4191730A (en) * 1977-09-21 1980-03-04 The Carborundum Company Method of removing nitrogen oxides from exhaust gas mixtures
DE2850551A1 (en) * 1977-11-29 1979-06-07 Exxon Research Engineering Co MULTISTAGE PROCESS FOR COMBUSTION OF COMBINED NITROGEN CONTAINING FUELS
EP0009523B1 (en) * 1978-10-02 1983-05-18 Exxon Research And Engineering Company A method of at least partially burning a hydrocarbon and/or carbonaceous fuel
US4375949A (en) * 1978-10-03 1983-03-08 Exxon Research And Engineering Co. Method of at least partially burning a hydrocarbon and/or carbonaceous fuel
US4244325A (en) * 1979-03-01 1981-01-13 John Zink Company Disposal of oxides of nitrogen and heat recovery in a single self-contained structure
USRE33077E (en) * 1980-07-28 1989-10-03 Corning Glass Works Wood burning stove
DK147549C (en) * 1980-12-02 1985-02-25 Conblock Aps INPUT TO CABLE CLIPS
DK148123C (en) * 1980-12-02 1985-08-05 Passat 81 A S CENTRAL HEATING BOILER WITH BURNER
US4492185A (en) * 1981-10-05 1985-01-08 Alzeta Corporation High efficiency, reduced emissions water heater
US4510890A (en) * 1983-04-11 1985-04-16 Cowan Edwin J Infrared water heater
DE3329567A1 (en) * 1983-08-16 1985-03-21 Hölter, Heinz, Dipl.-Ing., 4390 Gladbeck Fossil combustion boiler with chemisorption inserts
EP0264647A1 (en) * 1986-09-30 1988-04-27 Siemens Aktiengesellschaft Combustion plant with a device for decreasing nitrogen oxide in fumes
US4726181A (en) * 1987-03-23 1988-02-23 Westinghouse Electric Corp. Method of reducing nox emissions from a stationary combustion turbine
DE3823575A1 (en) * 1988-07-12 1990-01-18 Rothemuehle Brandt Kritzler METHOD FOR REDUCING NITROGEN OXIDES (NO (DOWN ARROW) X (DOWN ARROW)) FROM FIRE EXHAUST GASES
CN1017744B (en) * 1988-12-26 1992-08-05 株式会社日立制作所 Boiler for low nitrogen oxide
DE3905775A1 (en) * 1989-02-24 1990-08-30 Kat Tec Ges Fuer Katalysatorte METHOD AND DEVICE FOR REDUCING POLLUTANTS IN A COMBUSTION PROCESS WITH OXIDATION HONEYCOMB CATALYSTS AND CATALYSTS WITH DESULFURATION PROPERTIES AND EXHAUST GAS RECIRCULATION
US5275554A (en) * 1990-08-31 1994-01-04 Power-Flame, Inc. Combustion system with low NOx adapter assembly
US5476375A (en) * 1993-07-12 1995-12-19 Institute Of Gas Technology Staged combustion in a porous-matrix surface combustor to promote ultra-low NOx Emissions
DE10051733B4 (en) * 2000-10-18 2005-08-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the gradual combustion of fuels
US20030134241A1 (en) * 2002-01-14 2003-07-17 Ovidiu Marin Process and apparatus of combustion for reduction of nitrogen oxide emissions
US20060246387A1 (en) * 2005-04-27 2006-11-02 Eclipse Combustion, Inc. Low NOx burner having split air flow
EP2224121B1 (en) 2005-10-12 2013-03-06 Kohler Co. Air cleaner assembly
KR101373590B1 (en) * 2006-07-04 2014-03-12 미우라고교 가부시키카이샤 Boiler
EP2039995A1 (en) * 2006-07-04 2009-03-25 Miura Co., Ltd. Method of combustion and combustion apparatus
JP5088675B2 (en) * 2007-03-29 2012-12-05 三浦工業株式会社 Low NOx combustion equipment
USD632770S1 (en) 2008-06-13 2011-02-15 Kohler Co. Cyclonic air cleaner housing
US8808432B2 (en) * 2008-06-13 2014-08-19 Kohler Co. Cyclonic air cleaner
MX2012008227A (en) * 2010-01-26 2012-08-03 Shell Int Research A process for removing nitrous oxide from a gas stream.
CN105003911B (en) * 2015-08-05 2017-06-16 冯之军 The nitric oxide production device of removing in a kind of biomass combustion furnace and stove
CN113606955A (en) * 2021-07-16 2021-11-05 太原锅炉集团有限公司 Deep purification and waste heat recycling method for flue gas of sintering machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE691430C (en) * 1937-02-10 1940-05-25 Erwin Folger Burners for liquid or gaseous fuels
US3247884A (en) * 1964-03-17 1966-04-26 Bickley Furnaces Inc Burner means for furnaces
US3730668A (en) * 1971-03-03 1973-05-01 Tokyo Gas Co Ltd Combustion method of gas burners for suppressing the formation of nitrogen oxides and burner apparatus for practicing said method
US3746498A (en) * 1972-01-24 1973-07-17 Combustion Eng Reducing no{11 {11 emissions by additive injection

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1846978A (en) * 1925-10-02 1932-02-23 Arthur R Parker Method for burning fluid fuel
US2895297A (en) * 1956-05-10 1959-07-21 Power Jets Res & Dev Ltd Combustion apparatus for burning ash-forming liquid fuel
DE1196603B (en) * 1960-11-29 1965-07-15 Willi Broedlin Infrared burner for liquid fuels
BE610848A (en) * 1960-11-29 1962-03-16 Willi Broedlin Gasification process followed by combustion of a fuel oil
US3291182A (en) * 1965-02-23 1966-12-13 Dow Means for improving combustion of fuel
US3407024A (en) * 1966-12-23 1968-10-22 Eclipse Fuel Eng Co Gas burner
US3421826A (en) * 1967-02-21 1969-01-14 Whirlpool Co Catalytic burner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE691430C (en) * 1937-02-10 1940-05-25 Erwin Folger Burners for liquid or gaseous fuels
US3247884A (en) * 1964-03-17 1966-04-26 Bickley Furnaces Inc Burner means for furnaces
US3730668A (en) * 1971-03-03 1973-05-01 Tokyo Gas Co Ltd Combustion method of gas burners for suppressing the formation of nitrogen oxides and burner apparatus for practicing said method
US3746498A (en) * 1972-01-24 1973-07-17 Combustion Eng Reducing no{11 {11 emissions by additive injection

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982879A (en) * 1971-05-13 1976-09-28 Engelhard Minerals & Chemicals Corporation Furnace apparatus and method
US4021188A (en) * 1973-03-12 1977-05-03 Tokyo Gas Company Limited Burner configurations for staged combustion
FR2337305A1 (en) * 1975-12-29 1977-07-29 Engelhard Min & Chem PROCESS FOR BURNING FUELS CONTAINING NITROGEN
US4054407A (en) * 1975-12-29 1977-10-18 Engelhard Minerals & Chemicals Corporation Method of combusting nitrogen-containing fuels
DE3132224A1 (en) * 1980-08-14 1982-04-22 Rockwell International Corp., 90245 El Segundo, Calif. COMBUSTION METHOD AND DEVICE FOR CARRYING OUT THE SAME
US4421478A (en) * 1981-08-03 1983-12-20 Magic Chef, Inc. High efficiency fuel burner
EP0281144A3 (en) * 1987-03-04 1990-04-04 Combustion Tec. Inc. Oxygen enriched combustion
US4761132A (en) * 1987-03-04 1988-08-02 Combustion Tec, Inc. Oxygen enriched combustion
EP0281144A2 (en) * 1987-03-04 1988-09-07 Combustion Tec. Inc. Oxygen enriched combustion
US4909727A (en) * 1987-03-04 1990-03-20 Combustion Tec, Inc. Oxygen enriched continuous combustion in a regenerative furance
US4878830A (en) * 1988-06-20 1989-11-07 Exxon Research And Engineering Company Substoichiometric fuel firing for minimum NOx emissions
US5462430A (en) * 1991-05-23 1995-10-31 Institute Of Gas Technology Process and apparatus for cyclonic combustion
US5209187A (en) * 1991-08-01 1993-05-11 Institute Of Gas Technology Low pollutant - emission, high efficiency cyclonic burner for firetube boilers and heaters
US5220888A (en) * 1991-08-01 1993-06-22 Institute Of Gas Technology Cyclonic combustion
US5427525A (en) * 1993-07-01 1995-06-27 Southern California Gas Company Lox NOx staged atmospheric burner
US5350293A (en) * 1993-07-20 1994-09-27 Institute Of Gas Technology Method for two-stage combustion utilizing forced internal recirculation
US6085786A (en) * 1998-04-28 2000-07-11 Gt Development Corporation Cyclic flow valve
US6672859B1 (en) 2002-08-16 2004-01-06 Gas Technology Institute Method and apparatus for transversely staged combustion utilizing forced internal recirculation
US20040050070A1 (en) * 2002-09-12 2004-03-18 The Boeing Company Fluid injector and injection method
US6755359B2 (en) 2002-09-12 2004-06-29 The Boeing Company Fluid mixing injector and method
US6775987B2 (en) 2002-09-12 2004-08-17 The Boeing Company Low-emission, staged-combustion power generation
US20040177619A1 (en) * 2002-09-12 2004-09-16 The Boeing Company Fluid injector and injection method
US6802178B2 (en) 2002-09-12 2004-10-12 The Boeing Company Fluid injection and injection method
US6857274B2 (en) 2002-09-12 2005-02-22 The Boeing Company Fluid injector and injection method
US8959887B2 (en) 2009-02-26 2015-02-24 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10018115B2 (en) 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10047671B2 (en) 2009-02-26 2018-08-14 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US8596075B2 (en) 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US9062608B2 (en) 2009-02-26 2015-06-23 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10975766B2 (en) 2009-02-26 2021-04-13 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US11674436B2 (en) 2009-02-26 2023-06-13 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US9869245B2 (en) 2009-02-26 2018-01-16 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US11459896B2 (en) 2010-09-21 2022-10-04 8 Rivers Capital, Llc High efficiency power production methods, assemblies, and systems
US11859496B2 (en) 2010-09-21 2024-01-02 8 Rivers Capital, Llc High efficiency power production methods, assemblies, and systems
US8869889B2 (en) 2010-09-21 2014-10-28 Palmer Labs, Llc Method of using carbon dioxide in recovery of formation deposits
US10927679B2 (en) 2010-09-21 2021-02-23 8 Rivers Capital, Llc High efficiency power production methods, assemblies, and systems
US10415434B2 (en) 2011-11-02 2019-09-17 8 Rivers Capital, Llc Integrated LNG gasification and power production cycle
US9523312B2 (en) 2011-11-02 2016-12-20 8 Rivers Capital, Llc Integrated LNG gasification and power production cycle
US9581082B2 (en) 2012-02-11 2017-02-28 8 Rivers Capital, Llc Partial oxidation reaction with closed cycle quench
US8776532B2 (en) 2012-02-11 2014-07-15 Palmer Labs, Llc Partial oxidation reaction with closed cycle quench
US9562473B2 (en) 2013-08-27 2017-02-07 8 Rivers Capital, Llc Gas turbine facility
US10794274B2 (en) 2013-08-27 2020-10-06 8 Rivers Capital, Llc Gas turbine facility with supercritical fluid “CO2” recirculation
US9850815B2 (en) 2014-07-08 2017-12-26 8 Rivers Capital, Llc Method and system for power production with improved efficiency
US10711695B2 (en) 2014-07-08 2020-07-14 8 Rivers Capital, Llc Method and system for power production with improved efficiency
US11365679B2 (en) 2014-07-08 2022-06-21 8 Rivers Capital, Llc Method and system for power production with improved efficiency
US10047673B2 (en) 2014-09-09 2018-08-14 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US11231224B2 (en) 2014-09-09 2022-01-25 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US11686258B2 (en) 2014-11-12 2023-06-27 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10103737B2 (en) 2014-11-12 2018-10-16 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US11473509B2 (en) 2014-11-12 2022-10-18 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10533461B2 (en) 2015-06-15 2020-01-14 8 Rivers Capital, Llc System and method for startup of a power production plant
US11208323B2 (en) 2016-02-18 2021-12-28 8 Rivers Capital, Llc System and method for power production including methanation
US10634048B2 (en) 2016-02-18 2020-04-28 8 Rivers Capital, Llc System and method for power production including methanation
US10731571B2 (en) 2016-02-26 2020-08-04 8 Rivers Capital, Llc Systems and methods for controlling a power plant
US11466627B2 (en) 2016-02-26 2022-10-11 8 Rivers Capital, Llc Systems and methods for controlling a power plant
US10989113B2 (en) 2016-09-13 2021-04-27 8 Rivers Capital, Llc System and method for power production using partial oxidation
US11125159B2 (en) 2017-08-28 2021-09-21 8 Rivers Capital, Llc Low-grade heat optimization of recuperative supercritical CO2 power cycles
US11846232B2 (en) 2017-08-28 2023-12-19 8 Rivers Capital, Llc Low-grade heat optimization of recuperative supercritical CO2 power cycles
US11560838B2 (en) 2018-03-02 2023-01-24 8 Rivers Capital, Llc Systems and methods for power production using a carbon dioxide working fluid
US10914232B2 (en) 2018-03-02 2021-02-09 8 Rivers Capital, Llc Systems and methods for power production using a carbon dioxide working fluid
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods

Also Published As

Publication number Publication date
AU475791B2 (en) 1976-09-02
AU5083573A (en) 1974-07-11
DE2300522A1 (en) 1973-07-26
NL7300154A (en) 1973-07-10
CH575574A5 (en) 1976-05-14
LU66797A1 (en) 1974-08-19
DE2300522C2 (en) 1982-11-25
US3832122A (en) 1974-08-27
US3816595A (en) 1974-06-11
FR2167747B1 (en) 1974-11-08
CA986369A (en) 1976-03-30
GB1427231A (en) 1976-03-10
FR2167747A1 (en) 1973-08-24

Similar Documents

Publication Publication Date Title
US3837788A (en) Reduction of gaseous pollutants in combustion fuel gas
US3955909A (en) Reduction of gaseous pollutants in combustion flue gas
US4050877A (en) Reduction of gaseous pollutants in combustion flue gas
US4013399A (en) Reduction of gaseous pollutants in combustion flue gas
EP0717237B1 (en) Process and apparatus for burning oxygenic constituents in process gas
US3868211A (en) Pollutant reduction with selective gas stack recirculation
US5154599A (en) Method for apparatus for combusting fuel in a combustion chamber
CA1135172A (en) Low nox burner
EP0376259B1 (en) Low NOx boiler
US4047877A (en) Combustion method and apparatus
US5361576A (en) Method for operating a combustion chamber of a gas turbine
US6267585B1 (en) Method and combustor for combusting hydrogen
KR100850697B1 (en) Burner device with a porous body
US4488869A (en) High efficiency, low NOX emitting, staged combustion burner
US5494437A (en) Gas burner
JP3404981B2 (en) Gas heating device
US4304549A (en) Recuperator burner for industrial furnaces
US5044935A (en) Method and apparatus for operating a firing plant using fossil fuels
US5118283A (en) Combustion installation
US6029647A (en) Recuperative radiant tube with hot side vitiation
JPH0233505A (en) Burner
US6736634B2 (en) NOx reduction with a combination of radiation baffle and catalytic device
US4470798A (en) Method of operating a burner without using a fuel pump, and burner assembly operating in accordance with such method
KR102427483B1 (en) Low-NOx water-cooled burner for steam generation
US4021191A (en) Reduction of pollutants in gaseous hydrocarbon combustion products

Legal Events

Date Code Title Description
AS Assignment

Owner name: WALTER E. HELLER & COMPANY, INC., 200 PARK AVE., N

Free format text: SECURITY INTEREST;ASSIGNOR:HAGUE INTERNATIONAL;REEL/FRAME:003868/0633

Effective date: 19810116

AS Assignment

Owner name: AQUA-CHEM HOLDING, INC., 3707 NORTH RICHARDS ST.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AQUA-CHEM, INC. A DE CORP.;REEL/FRAME:004055/0065

Effective date: 19811230

AS Assignment

Owner name: AQUA-CHEM, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:AQUA-CHEM HOLDING, INC.;REEL/FRAME:004081/0448

Effective date: 19820104

Owner name: AQUA-CHEM, INC., WISCONSIN

Free format text: CHANGE OF NAME;ASSIGNOR:AQUA-CHEM HOLDING, INC.;REEL/FRAME:004081/0448

Effective date: 19820104