US3837820A - Combustion control by additives introduced in both hot and cold zones - Google Patents

Combustion control by additives introduced in both hot and cold zones Download PDF

Info

Publication number
US3837820A
US3837820A US00176979A US17697971A US3837820A US 3837820 A US3837820 A US 3837820A US 00176979 A US00176979 A US 00176979A US 17697971 A US17697971 A US 17697971A US 3837820 A US3837820 A US 3837820A
Authority
US
United States
Prior art keywords
magnesium
fuel
substance
magnesium oxide
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00176979A
Inventor
I Kukin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecolab Inc
Original Assignee
Apollo Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apollo Chemical Corp filed Critical Apollo Chemical Corp
Priority to US00176979A priority Critical patent/US3837820A/en
Application granted granted Critical
Publication of US3837820A publication Critical patent/US3837820A/en
Assigned to ECONOMICS LABORATORY, INC. reassignment ECONOMICS LABORATORY, INC. MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE DEC. 28, 1981 Assignors: APPOLLO TECHNOLOGIES, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1233Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof

Definitions

  • the present invention relates to a method for improving fuel combustion in furnaces, thereby to greatly improve stack emission problems and to minimize boiler fouling.
  • One standard approach to minimizing pollution problems is to add various substances to the fuel with a vew to having those substances enter into chemical combination with the undesired products of combustion in order to render them less undesirable or more readily removable from the stack emissions.
  • Many different substances have been proposed to this end, including manganese and magnesium, usually introduced into the fuel in the form of compounds such as oxides and hydroxides. It is the manganese and magnesium which are the active ingredients, the oxides ane hydroxides being chosen as the addition media because they are more readily available and handleable than the active metals themselves.
  • additives As with other additives, problems often arise. in some instances the additives, while entering into the expected reactions, also enter into side reactions the products of which present their own individual problems, which sometimes outweigh the problems which are intended to be cured. Also, in some instances particular additives, especially when used in large quantities, cause such fouling of the interior of the boilers as to make them undesirable from an economic point of view. Moreover, all additives are costly, and if especially large amounts of a particular additive are required in order to produce a given improvement the cost may be prohibitive from a commercial point of view.
  • the process of the present invention involving as it does the presence of manganese or magnesium at the time of combustion, not only inhibits the formation of hard slag within the boiler, thereby to reduce boiler fouling, but also, by combining with vanadium in the fuel to form a relatively soft coating on the iron tubes within the boiler, reduces the production of sulphur trioxide by minimizing the availability of iron and vanadium to catalyze the formation of S0 This is done by burning the fuel in the presence of magnesium or manganese additives in minimal amounts. This alone is known in the prior art; it produces a reduction of by about 2540 percent.
  • the method in question can be used with many different types of fuel and many different types of furnaces. It may be used in oil-fired boilers such as those employed by utility companies, refineries and large industrial plants, with the additive feed to the relatively low temperature zone (hereinafter sometimes called cold-end feed) occurring at the economizer outlet, for example. The combustion of both residual fuel and crude oil is greatly improved in that manner.
  • the process may also be used with coal-fired and waste gasfired boilers with a cold end feed occurring at the uptakes, for example.
  • the process is also applicable for use in steel mills burning waste gases, either alone or with Bunker C fuels, by refineries burning waste gas in boilers, and in refinery process heaters burning waste gas or waste gas in combination with Bunker C fuel. This list of examples is not intended to be all-inclusive.
  • magnesium-containing substance When the magnesium-containing substance is added to the combustion products at a relatively low temperature station, it reacts directly and catalytically with the S in the flue gas. It dramatically reduces acid particulates, acid condensation and dew point of the flue gas.
  • the cold zone supplemental treatment has been found to be more effective in controlling acid conditions than the standard oil treatment methods.
  • One reason for this greater reactivity is that the cold zone additive does not have to first pass through the flame zone before combining with S0 in the colder zones of the boiler.
  • oil dispersed additives such as MgO or MgozAl O do not react with S0 at the high temperatures involved.
  • the sulfate complexes decompose, actually releasing S0
  • the dryer and less hygroscopic ash resulting from the cold-end feed reduces cold end corrosion and at the same time will often eliminate acid smut emission problems.
  • an improvement in the stack plume appearance will often result from cold-end feed, with the consequent elimination of nuisance and legal complaints, particularly when the plant is in a residential area.
  • the most practical and least costly way of carrying out the method here disclosed is by initial treatment of the fuel oil with a manganeseor magnesiumcontaining substance in order to minimize the amount of S0,; in the stack gases and thus to minimize the amount of magnesium containing substance to be added at the cold zone.
  • the amount of additive can be reduced considerably, by or 50 percent or more, over what was normally thought to be required with a particular fuel, yet the overall reduction in S0 content in the exit gases is very greatly improved over what had previously been possible through the use of relatively large amounts of additive in the fuel oil.
  • the method of the present invention can be practiced by adding a magnesiumcontaining substance to the combustion products in advance of the point where recirculation takes place. This not only constitutes the cold-end feed," but also, by reason of the recirculation of a portion of the combustion products back to the combustion zone, serves in effect to add the magnesium-containing substance to the fuel oil in the combustion chamber.
  • the combustion chamber additive be a manganese-containing substance.
  • a manganese-containing substance reduces the amount of carbon in the fly ash because manganese is known to be a carhon-destroying catalyst. This in itself is an advantage, since wet carbon leaving the boiler tends to absorb S0 Moreover, the presence of manganese tends to cause the formation of S0 rather than S0
  • the addition of the magnesium-containing substance thereafter in the low temperature zone is effective to remove virtually all of the $0 which does form in the boiler.
  • FIG. 1 is a schematic representation of an exemplary fuel-burning boiler installation of the non-recirculating type
  • FIG. 2 is a schematic representation of an exemplary fuel-burning boiler installation in which a portion of the products of combustion are recirculated back to the combustion chamber.
  • FIG. 1 represents a particular boiler installation where no recirculation of the products of combustion takes place.
  • An appropriate fuel such as fuel oil, coal or combustible gas
  • Air preferably heated, is supplied to the furnace in any appropriate manner to combine with the fuel. Combustion of the fuel takes place in the furnace 1, the portion of the heat energy produced by that combustion being transmitted to the tubes (not shown) covering the furnace walls, thus converting the water in those tubes to steam.
  • Combustion of the hot gas may be completed by means of the addition thereto of secondary heated air from the heated air duct 21, air being supplied to that duct by air inlet 16, blower 17, air duct 18, air preheater l9 and air ducts 20 and 21.
  • the products of combustion then pass through the platen superheater 2 and reheater 3, pendant superheater 4, and the horizontal superheater 5.
  • the products of combustion then flow through the economizer 6 which preheats the water entering the steam-producing tubes inside the furnace l.
  • the products of combustion then flow into the gas duct 7 at a temperature of 650-700 F. They then flow through duct 8 and air heater 9, the air heater 9 tending to transfer the heat from the exiting gases to the air preheater 19. At this point the temperature of the products of combustion is approximately 300 F.
  • the products of combustion then flow through duct 10 and precipitators 11 where ash is removed from the stream of gas. The thus cleaned gas flows through duct 12 and induced draft fan 13 into breeching and then out through the stack 15.
  • the conventional approach to minimize this situation is to introduce into the furnace a suitable quantity of a magnesium compound, such as magnesium oxide. This is done by mixing it with the fuel or by applying it to the coil before the latter is burned or by adding the substance to the furnace while combustion takes place.
  • a magnesium compound such as magnesium oxide.
  • Such an additive has several effects. It reacts with the vanadium in the fuel to prevent high temperature corrosion and the formation of hard slag inside the furnace. It acts itself to coat the superheater tubes and thus insulate the products of combustion from the iron surfaces of those tubes.
  • the magnesium compound reacts with vanadium, thus reducing the amount of vanadium oxide which is formed, that vanadium oxide also tending to catalyze the formation of 50
  • the magnesium oxide can be added to the fuel in any suitable form, such for example as a premix with the fuel, as a liquid slurry added to the fuel, or as a powder injected into the furnace proper.
  • magnesium compound which can be provided at the high temperature combustion zone in the furnace. If too much such material is provided large amounts of ash will result; this ash will build up in and eventually block the furnace, requiring that it be shut down and cleaned. Moreover, the greater the amount of ash, the greater the amount of inorganic particulate matter emitted through the stack.
  • the mechanism by which magnesium reduces the amount of S0, in the products of combustion involves the formation of magnesium sulphate. Magnesium sulphate decomposes at temperatures above l,500 F, and since the temperatures in the furnace are well above that value the decomposition of magnesium sulphate undoes what the added magnesium initially accomplishes. Indeed, the nature of the reactions involving S0 are such that the introduction of massive amounts of magnesium oxide into the hot end of the furnace may actually increase the production of S0 rather than decrease it.
  • the substance added to the combustion zone is a manganese-containing substance such as manganese oxide, and if it is added solely to the furnace, the total S0 removed is 40 percent or better, under exceptional circumstances sometimes going as high as 75 percent. If, in conjunction with the addition of such manganese oxide to the combustion zone, a magnesium-containing compound such as magnesium oxide is added at the cold end, the total S0 emitted is easily reduced by I -95 percent.
  • the active components of the additive materials here under discussion are manganese and/or magnesium. However, the handling of those metals is not particularly convenient, nor are they commercially available in quantity at reasonable prices. Accordingly, the preferred additives are compounds of magnesium and/or manganese, usually the oxides or hydroxides thereof because of their ready and economic availability and ease of handling.
  • Bunker C fuel containing an average of 225 parts per million vanadium, a sulfur content of an average of 2.05 percent and an ash content of 0.07 to 0.10 percent was burned in a front fired boiler with a 375 megawatt output and a superheat steam temperature of 1,050 F.
  • Example I A slurry of magnesium oxide was injected directly into the fuel oil being burned at a treatment rate of 3.1 lbs, MgO/8,000 lbs. of fuel oil. The temperature in the flame zone was in excess of 2,300 F.
  • Example 2 The MgO was aspirated into the economizer outlet of the boiler at a temperature of 700 F. rather than being injected into the fuel oil. On a dry powder basis, 3.1 lbs. of magnesium oxide was injected for each 8,000 lbs. of fuel oil burned in the above boiler.
  • the $0 was reduced from 60 to 45 parts per million.
  • Example 3 A slurry of the magnesium oxide was introduced into the boiler to provide 1.5 lbs. of magnesium oxide for each 8.000 lbs. of fuel burned. At the same time the dry, powdered, MgO was concurrently aspirated into the economizer outlet, to provide 1.6 lbs. MgO for each 8,000 lbs. of fuel in the same boiler. In other words, although the same amount of MgO was used in Example 3 as in either Example I or 2 above, the quantity was split up so that half of the MgO was added to the boiler proper and the other half was added to the outlet section of the boiler in the economizer region at temperatures of 500 to 600 F.
  • the S0 was reduced from 60 to 30 parts per million.
  • Example 4 In this case, the slurry of MgO was added exactly as in Example I so as to provide 3.1 lbs. MgO for 8,000 lbs. of fuel oil. In addition, 1.6 lbs. MgO as a dry powder was aspirated into the economizer outlet.
  • the 50 was reduced from 60 to 27 parts per million. In other words, increasing the amount of MgO added to the fuel oil did not significantly reduce the S0 content of the flue gas. Stated in another way, there was a limiting factor in how far one could reduce the 80;, when injecting the magnesium oxide through the furnace by direct addition to the fuel oil.
  • Example 5 The addition of 1.5 lbs. of MgO as a slurry to the fuel oil was supplemented by the direct injection of dry powdered magnesium oxide into the economizer outlet, to provide a total of 3 lbs. of MgO aspirated directly into the flue gas through the economizer outlet.
  • the 80; was reduced from 60 to 21 parts per million. This further shows that once a minimum amount of MgO is added to the fuel oil to provide a coating within the boilers, then the further addition of MgO as a dry powder into the flue gas has a much greater effect in reducing S0 than adding that equivalent amount or adding that same amount of MgO to the fuel oil through the burner. This could indicate that cold-end injection (at temperatures of 200 to 1,000 F.) is more effective than the addition of the MgO through the furnace where temperatures reach 2,000 to 3.300 F. or thereabouts.
  • Example 6 In this example. and in subsequent ones, the magne sium oxide was added to the fuel oil to provide 1.5 lbs/8,000 lbs. of fuel oil resulting in a reduction of the from 60 to 55 parts per million. In addition the fuel was further treated with a slurry of a manganese oxide to provide 16.5 parts per million of manganese to the fuel oil.
  • the 50 in the flue gas was reduced from 60 to 47 parts per million. This shows that the manganese is even more effective than the magnesium for reducing 30;, when added to the fuel, but the reduction of the $0 in the flue gas is still insufiicient to prevent low temperature corrosion.
  • Example 7 The fuel was treated with both the magnesium and manganese as in Example 6 above and magnesium oxide, as a cold dry powder, was aspirated into the economizer outlet at 700 F. to provide an additional 1 .6 lbs. of MgO for each 8,000 pounds of fuel oil. The 50;, was reduced from 60 to 26 parts per million.
  • Example 8 The fuel was treated with a slurry of manganese oxide to provide 40 parts per million manganese to the fuel. The $0 in the flue gas was reduced from 60 to 48 parts per million.
  • Example 9 The fuel was treated with the manganese oxide slurry to provide 40 parts per million manganese to the fuel oil.
  • magnesium oxide was aspirated as a dry powder into the economizer outlet so that the flue gas was being treated with '1 .6 lbs. of MgO for each 8,000 lbs. of fuel burned.
  • the S0 was reduced from 60 to 23 parts per million. This shows that the combination of manganese addition to the fuel oil with magnesium oxide powder added to the flue gas is effective for substantially reducing the S0 and even more effective than the combination of magnesium oxide addition to the fuel supplemented with magnesium oxide addition to the flue gas.
  • Example 10 In this example, a slurry of manganese oxide was added to the fuel oil as in Example 8. This then was supplemented by the injection of a magnesium oxide powder into the economizer outlet. However instead of adding the magnesium oxide on a continuous basis. the total daily amount of magnesium oxide was split into two portions and half of this quantity was injected at 12 hour intervals one hour each time. A coating of the magnesium oxide was thus formed on the air preheater section of the boiler.
  • the total amount of additive was equivalent to 0.32 lbs. of MnO added to the fuel oil and 1.6 lbs. of MgO aspirated into the economizer (per each 8,000 lbs. of fuel burned).
  • the sulphur trioxide in the flue gas when the MgO powder was not being fed remained at 48 parts per million but during the period when the MgO powder was being fed the S0 reduced to 30 ppm.
  • Example 11 This is similar to Example 10 above except that the additive is added directly to the fuel oil was a magnesium oxide slurry.
  • Powder zer Outlet 8 Slurry of Fuel Oil 48 2.7 Slightly Slight 40 ppm Mn Manganese Corroded Blue Plume (0.32 lbs. 3.9 Oxide MnO) 9(a) Slurry of Fuel Oil 40 ppm Mn Manganese (0.32 lbs 3.9) Oxide 23 4.6 Negligible Almost MnO) 23.4 Plus Clear (b) MgO Economig 1.6 0.5:]
  • Example 12 A novel feature of the present invention is the adding of a magnesium oxide powder into a furnace in such a way that we get complete control and arresting of corrosion of the air heaters, complete elimination of acid smut emissions, the capabilities of reducing the exit gas temperature by to 100 F. (which is a fuel savings of 2.5 percent for each 100 drop in exit temperature), as well as a means of keeping the furnace clean.
  • the method described in this Example is a unique through burner guns 19'. Heated air from heated air duct 18' combines with the fuel and helps to atomize it, that heated air being sucked in from the atmosphere at air inlet 14', blown through duct 16' by fan 15', passing through air heater l7 and then flowing through duct 18' into the furnace l'. Combustion of the fuel takes place in the furnace at a high temperature, and the heat produced thereby is transmitted to the tubes (not shown ⁇ covering the walls of the furnace, coverting the water in those tubes to steam.
  • the products of combustion pass through a secondary superheater 2', a reheater 3, a primary superheater 4', a duct 5, an economizer 6 and a duct 7' into heater 8 which transmits some of the heat from the exhaust products to the heater 17'.
  • the exhaust products then flow through duct 10' to a point where duct 11' and induced draft fan 12 are located. There some of the products of combustion are forced through the duct 11' back into the furnace 1' (this being the recirculated portion of the products of combustion) while the bulk of those products of combustion pass through duct 13 to a collection device and thence to the stack.
  • the magnesium-containing additive such as magnesium oxide or magnesium hydroxide may be added completely at a relatively low temperature zone, such as the outlet of the economizer 6.
  • the bulk of the material thus added remains with low temperature combustion products, but that portion of the additive entrained with the recirculated combustion products passing through duct 11 are returned to the furnace or combustion zone 1', where they are subjected to the high temperatures of combustion.
  • the magnesium additive is introduced into the system only at a single location, in fact some of that additive finds its way to the combustion station, while another portion of the additive remains in contact with the low temperature combustion products, and hence in effect some of the additive is introduced at a high temperature zone and another portion of the additive is subjected only to low temperature conditions.
  • Table 2 discloses the results obtained in connection with a furnace of the type disclosed in FIG. 2 in which fuel oil was burned, the fuel oil containing 0.97 percent sulphur and having a vanadium content of 100 parts per million and an ash content of 0.035 percent.
  • MgO added as 2 Furnace walls have only a a powder into minimum of deposit buildup.
  • economizer Superheater tubes show soft outlet and white deposits that are easily recirculated removed by manual or air back into lancing. Completely cleaned furnace. to bare metal by air lancing.
  • Example 13 This example, like Example 12, involves cold-end feed of magnesium oxide and recirculation of a portion of the additive back to the furnace through the gas recirculation duct 11'.
  • the superheat temperature within the furnace was 900 F. and particularly when burning fuel oils having a sulfur content of 2 to 2.5 percent and vanadium contents of 100 to 400 ppm, there was a further problem of hard deposits formed on the superheater tubes, which were difficult to clean off.
  • a blend of the additive of this invention was added to the economizer outlet with approximately 50.percent of the powder being recirculated through the boiler into the superheat cavity.
  • the additive blend consisted of 70 percent magnesium oxide, percent calcium oxide, 5 percent manganous oxide and 5 percent urea. The addition rate was 14 lbs/hour at a steam level of 300,000 lbs/hour. Utilizing this cold-end feed, the pH of the deposits collected in the mechanical hoppers as well as on the surrounding plant was 4.2 and the deposits were light and fluffy with a whitish appearance. They did not adhere to the paint surface of the cars or homes.
  • the boiler tubes remained ex- I pared to 3 months prior to the use of the additive either when the fuel was untreated or treated with any of the magnesium oxide, aluminum oxide or manganese containing oxide slurries described above.
  • Example 14 This example illustrates the use of the method of the present invention in connection with a furnace which had been converted from coal firing to oil firing, utilizing Bunker C fuel oil with an 80 megawatt rating.
  • the particle size of the powder mixture averaged 25 to 40 microns.
  • the addition rate of the powder was 7.5 lbs/8,000 lbs. of fuel burned, the fuel having a sulphur content of 2.7 percent, a vanadium content of 375 parts per million and an ash of 0.14 percent.
  • the cold-end additive is used to minimize the presence of SO in the flue gas
  • at least enough additive should be used to accomplish the maximum neutralization of 80;.
  • This will, of course, depend upon the amount of sulphur in the fuel to begin with, the percent of conversion of that sulphur (as S0 to S0 in the course of combustion (generally ranging from 1 to percent depending upon the particular combustion conditions and hot-end additives used) and also the amount of excess air present.
  • S0 to S0 in the course of combustion
  • the percent of conversion of that sulphur as S0 to S0 in the course of combustion
  • the amount of excess air present generally if a fuel oil contains 0.25 percent sulphur, for optimum minimum use of a 1:1 equivalent neutralizing mole ratio of additive to S0 then 0.2 lbs. of cold-end additive in the form of MgO per 8,000 lbs.
  • the cold-end feed additive may be introduced into the system continuously or intermittently. depending upon economic and environmental needs and operating conditions to which the plant in question is subject, but in general it is preferred that the cold-end addition occur continuously, since only in that way will the undesirable SO emissions from the plant be fully minimized.
  • the additives used in accordance with the present invention may contain substances other than the manganeseand magnesium-containing substances here specified, those other substances sometimes adding combustion control effects of their own and sometimes enhancing the effect of the manganese and/or magne sium here involved.
  • the additives may be introduced into the cold end in any convenient form e.g., as a dry powder, as a liquid slurry, either aqueous or non-aqueous. or as a solution.
  • said second amount is from about 1.7 to 5.2 pounds of magnesium oxide, or the equivalent thereof in the case of other substances, per ton of sulphur in the fuel.
  • said second amount is from about 1.7 to 17 pounds of magnesium oxide, or the equivalent thereof in the case of other substances, per ton of sulphur in the fuel.
  • step (c) comprises a substance selected from the group consisting of magnesium oxide and magnesium hydroxide.
  • said second amount is at least about 1.7 pounds of magnesium or magnesium compound, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  • said second amount is from about 1.7 to 5.2 pounds of magnesium substance, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  • step (0) comprises a substance selected from the group consisting of magnesium oxide and magnesium hydroxide.
  • said second amount is at least about 1.7 pounds of magnesium or magnesium compound, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  • said second amount is from about 1.7 to 5.2 pounds of magnesium substance, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  • step (c) comprises a substance selected from the group consisting of magnesium oxide and magnesium hydroxide.
  • said second amount is at least about l.7 pounds of magnesium or magnesium compound, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  • said second amount is from about 1.7 to 5.2 pounds of magnesium substance, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  • step (c) comprises a substance selected from the group consisting of magnesium oxide and magnesium hydroxide.

Abstract

By burning fuel in the presence of manganese and magnesium, and by then additionally adding to the products of combustion at a relatively low temperature zone an additional amount of magnesium, noxious and undesirable emissions are greatly reduced and internal boiler conditions are greatly improved.

Description

Unlted States Patent 11 1 1111 3,837,820 Kukin Se t. 24, 1974 [541 COMBUSTION CONTROL BY ADDITIVES 3.41 1,864 11/1968 Pallinger 423/215 INTRODUCED IN BOTH HOT AND COLD FOREIGN PATENTS OR APPLICATIONS ZONES 1,189,356 4/1970 Great Britain 44/68 v [75] Inventor: Ira Kukin, West Orange, NJ. 634,000 1 1962 Canada 44/DIG. 3
6 [73] Assignee: Apollo Chemical Corporation, 7400 2 11/1955 GreatBmam 44mm 3 n Primary Examiner-Daniel E. Wyman [22] Filed: Sept. 1, 1971 Assistant ExaminerMrS. Y. H. Smith [21] Appl. No.: 176,979
[57] ABSTRACT 52 US. c1 44/5, 44/51 44/DIG. 3 Y burning fuel in the Presence of manganese and 51 1111.01 c1019/00 magnesium and by additionally adding the [58 Field of Search 44/51 DIG. 3 5 Products of combustion at a relatively 10W temperature zone an additional amount of magnesium, nox- [56] References Cited ious and undesirable emissions are greatly reduced UNITED STATES PATENTS and internal boiler conditions are greatly improved. 2,781,005 2/1957 Taylor 44 1310. 3 24 Claims, 2 Drawing Figures i [11 M1 ri can 1! END FA'ED j 2/ v Q 1 7 Z 1 24% 24 E'D 2 m l 5 1 i? V L, Q
PATEmmsiPzmn SHEET 1m 2 ATTQRMEY PAIENTEBSEPZ mm. 820
' sum 2 or 2 COMBUSTION CONTROL BY ADDITIVES INTRODUCED IN BOTH HOT AND COLD ZONES The present invention relates to a method for improving fuel combustion in furnaces, thereby to greatly improve stack emission problems and to minimize boiler fouling.
There are two general areas where fuel combustion presents problems. One general area involves the na-,
ture and amount of chemicals which are discharged into the environment. The substances emitted are often corrosive or otherwise damaging to any surfaces on which they fall. In many instances they are harmful to human or plant life, and in many instances they contribute to the formation of smog. These problems are today very generally recognized as quite serious, and strenuous efforts are being made to reduce the environmental pollution attendant upon combustion. The other general area, boiler fouling as a result of the formation of various substances in the boiler which coat the walls or the tubes of the boiler, constitutes a direct economic problem, since it reduces the efficiency of heat transfer and, when the build-up of materials becomes too great within the boiler, necessitates that the boiler be shut down from time to time for cleaning purposes, an obviously uneconomical procedure.
In general, different fuels present different problems. With sulphur-containing fuels, one of the major problems is the concentration of sulphur dioxide and sulphur trioxide in the stack gases. These compounds are extremely deleterious from a pollution point of view. When fuels contain vanadium in addition to sulphur, the production of undesired sulphur oxides is accentuated; the vanadium, probably in combination with the exposed iron on the tubes in the boiler, is able to catalyze the formation of undesirable sulphur oxides. Since both sulphur and vanadium are present in many of the commonly available industrial fuels, these problems are very pressing from a pollution control standpoint.
One standard approach to minimizing pollution problems is to add various substances to the fuel with a vew to having those substances enter into chemical combination with the undesired products of combustion in order to render them less undesirable or more readily removable from the stack emissions. Many different substances have been proposed to this end, including manganese and magnesium, usually introduced into the fuel in the form of compounds such as oxides and hydroxides. It is the manganese and magnesium which are the active ingredients, the oxides ane hydroxides being chosen as the addition media because they are more readily available and handleable than the active metals themselves.
With these additives, as with other additives, problems often arise. in some instances the additives, while entering into the expected reactions, also enter into side reactions the products of which present their own individual problems, which sometimes outweigh the problems which are intended to be cured. Also, in some instances particular additives, especially when used in large quantities, cause such fouling of the interior of the boilers as to make them undesirable from an economic point of view. Moreover, all additives are costly, and if especially large amounts of a particular additive are required in order to produce a given improvement the cost may be prohibitive from a commercial point of view.
It is the prime object of the present invention to improve the effects of fuel combustion, particularly with regard to emitting sulphur trioxide in the stack gases and improving the condition of the boilers where the combustion is carried out.
It is a further prime object of the present invention to achieve that improvement through the use of a minimal amount of additive, thereby reducing the expense of the fuel combustion improvement process.
It is another object of the present invention to provide a fuel combustion improvement process which is particularly adaptable for use in conjunction with commercially available fuels, and which can be carried out in existing combustion installations with a minimum of difficulty.
It is a further object of the present invention to provide a process for improving the effects of fuel combustion which inhibits the formation of slag in the boiler and which minimizes the emission of many acid substances in addition to sulphur trioxide.
The process of the present invention, involving as it does the presence of manganese or magnesium at the time of combustion, not only inhibits the formation of hard slag within the boiler, thereby to reduce boiler fouling, but also, by combining with vanadium in the fuel to form a relatively soft coating on the iron tubes within the boiler, reduces the production of sulphur trioxide by minimizing the availability of iron and vanadium to catalyze the formation of S0 This is done by burning the fuel in the presence of magnesium or manganese additives in minimal amounts. This alone is known in the prior art; it produces a reduction of by about 2540 percent. It is important to note, however, that this prior art approach only incompletely reduces the 50;, content of the stackemission, and still leaves that emission with a very substantial S0 content. Adding additional quantities of manganese or magnesium to the fuel have been ineffective in 30;, reduction, have caused fouling problems within the boiler and have involved excessive cost. 2
I have discovered that if, in addition to the employment of manganese or magnesium in the hot zone of the furnace where the fuel is burned, one also adds magnesium to the combustion products at a zone in the furnace which has low temperature relative to the temperature of the combustion zone, several highly advantageous results are achieved: the ash is made less acidic (its pH is raised), the hygroscopic nature of the flue gas particulates is reduced, acid smut is effectively eliminated, boiler fouling is reduced because lesser amounts of additive need to be applied at the combustion station, and, most importantly, the 80;, content of the fuel gas is very radically reduced by as much as 80 percent.
The method in question can be used with many different types of fuel and many different types of furnaces. It may be used in oil-fired boilers such as those employed by utility companies, refineries and large industrial plants, with the additive feed to the relatively low temperature zone (hereinafter sometimes called cold-end feed) occurring at the economizer outlet, for example. The combustion of both residual fuel and crude oil is greatly improved in that manner. The process may also be used with coal-fired and waste gasfired boilers with a cold end feed occurring at the uptakes, for example. The process is also applicable for use in steel mills burning waste gases, either alone or with Bunker C fuels, by refineries burning waste gas in boilers, and in refinery process heaters burning waste gas or waste gas in combination with Bunker C fuel. This list of examples is not intended to be all-inclusive.
When the magnesium-containing substance is added to the combustion products at a relatively low temperature station, it reacts directly and catalytically with the S in the flue gas. It dramatically reduces acid particulates, acid condensation and dew point of the flue gas.
The cold zone supplemental treatment has been found to be more effective in controlling acid conditions than the standard oil treatment methods. One reason for this greater reactivity is that the cold zone additive does not have to first pass through the flame zone before combining with S0 in the colder zones of the boiler. In the flame, oil dispersed additives, such as MgO or MgozAl O do not react with S0 at the high temperatures involved. At high boiler temperatures the sulfate complexes decompose, actually releasing S0 The dryer and less hygroscopic ash resulting from the cold-end feed reduces cold end corrosion and at the same time will often eliminate acid smut emission problems. Moreover, an improvement in the stack plume appearance will often result from cold-end feed, with the consequent elimination of nuisance and legal complaints, particularly when the plant is in a residential area.
The most practical and least costly way of carrying out the method here disclosed is by initial treatment of the fuel oil with a manganeseor magnesiumcontaining substance in order to minimize the amount of S0,; in the stack gases and thus to minimize the amount of magnesium containing substance to be added at the cold zone. When this is done, the amount of additive can be reduced considerably, by or 50 percent or more, over what was normally thought to be required with a particular fuel, yet the overall reduction in S0 content in the exit gases is very greatly improved over what had previously been possible through the use of relatively large amounts of additive in the fuel oil.
In some boilers a portion of the combustion gases, after they leave the combustion station and their temperature drops, is recirculated back to the combustion station. In boilers of this type the method of the present invention can be practiced by adding a magnesiumcontaining substance to the combustion products in advance of the point where recirculation takes place. This not only constitutes the cold-end feed," but also, by reason of the recirculation of a portion of the combustion products back to the combustion zone, serves in effect to add the magnesium-containing substance to the fuel oil in the combustion chamber.
By combining the operative use of a magnesiumor manganese-containing additive at the combustion station with a magnesium-containing substance at a station having a relatively low temperature, 80;, is very substantially removed from the flue gas, the $0 formerly in the gas forming a dry and non-corrosive powder. Those materials entrained in the flue gas are generally rendered non-acidic, thus preventing damage to paint surfaces, equipment and other objects in areas surrounding the combustion plant. The visible plume from the stacks is often reduced, and the acridity of the odor from the stacks is minimized. The effectiveness of soot blowers and stack collectors, when employed. is enhanced, the overall fallout from stack gases is localized and the possibility of plume hang-up" in the effect of an atmospheric inversion is minimized.
With many fuels it is preferred that the combustion chamber additive be a manganese-containing substance. Such a substance reduces the amount of carbon in the fly ash because manganese is known to be a carhon-destroying catalyst. This in itself is an advantage, since wet carbon leaving the boiler tends to absorb S0 Moreover, the presence of manganese tends to cause the formation of S0 rather than S0 The addition of the magnesium-containing substance thereafter in the low temperature zone is effective to remove virtually all of the $0 which does form in the boiler.
To the accomplishment of the above, and to such other objects as may hereinafter appear, the present in vention relates to a method of improving the effects of fuel combustion, as defined in the appended claims and as described in this specification, taken together with the accompanying drawings, in which FIG. 1 is a schematic representation of an exemplary fuel-burning boiler installation of the non-recirculating type; and
FIG. 2 is a schematic representation of an exemplary fuel-burning boiler installation in which a portion of the products of combustion are recirculated back to the combustion chamber.
The illustrations are provided simply for purposes of facilitating explanation of the process of the present invention. The illustrated boiler arrangements per se form no part of the present invention, are not novel in and of themselves, and are merely exemplary of many different types of constructions and arrangements with which the process of the present invention can be practiced. Since the process of the present invention involves introducing additives at different stations in the boiler, and particularly at a high temperature station such as the combustion chamber and at a low temperature station downstream of the combustion chamber, some appreciation of the general arrangement of boiler systems is of assistance in understanding the process of the present invention and the results achieved thereby. and it is for that reason that FIGS. 1 and 2 are here presented.
FIG. 1 represents a particular boiler installation where no recirculation of the products of combustion takes place. An appropriate fuel, such as fuel oil, coal or combustible gas, is introduced into the furnace 1 in any appropriate manner as through burner guns 24 in the case of fuel oil. Air, preferably heated, is supplied to the furnace in any appropriate manner to combine with the fuel. Combustion of the fuel takes place in the furnace 1, the portion of the heat energy produced by that combustion being transmitted to the tubes (not shown) covering the furnace walls, thus converting the water in those tubes to steam. Combustion of the hot gas may be completed by means of the addition thereto of secondary heated air from the heated air duct 21, air being supplied to that duct by air inlet 16, blower 17, air duct 18, air preheater l9 and air ducts 20 and 21. The products of combustion then pass through the platen superheater 2 and reheater 3, pendant superheater 4, and the horizontal superheater 5. When the combustion products leave the horizontal superheater 5 their temperature, which in the furnace 1 was about 2,400-2,800 F, has been reduced to 800-900 F.
The products of combustion then flow through the economizer 6 which preheats the water entering the steam-producing tubes inside the furnace l. The products of combustion then flow into the gas duct 7 at a temperature of 650-700 F. They then flow through duct 8 and air heater 9, the air heater 9 tending to transfer the heat from the exiting gases to the air preheater 19. At this point the temperature of the products of combustion is approximately 300 F. The products of combustion then flow through duct 10 and precipitators 11 where ash is removed from the stream of gas. The thus cleaned gas flows through duct 12 and induced draft fan 13 into breeching and then out through the stack 15.
One of the most important problems in connection with reducing air pollution caused by products of combustion is the presence of acidic $0 in the combustion products. That compound is itself deleterious, and in addition it tends to be taken up in the particulate matter which escapes from the stack to produce an acid smut often referred to as green rain.
The conventional approach to minimize this situation is to introduce into the furnace a suitable quantity of a magnesium compound, such as magnesium oxide. This is done by mixing it with the fuel or by applying it to the coil before the latter is burned or by adding the substance to the furnace while combustion takes place. Such an additive has several effects. It reacts with the vanadium in the fuel to prevent high temperature corrosion and the formation of hard slag inside the furnace. It acts itself to coat the superheater tubes and thus insulate the products of combustion from the iron surfaces of those tubes. Since iron catalyzes the formation of S0 from $0 this results in a reduction in the formation of S0 In addition, the magnesium compound reacts with vanadium, thus reducing the amount of vanadium oxide which is formed, that vanadium oxide also tending to catalyze the formation of 50 For these purposes, the magnesium oxide can be added to the fuel in any suitable form, such for example as a premix with the fuel, as a liquid slurry added to the fuel, or as a powder injected into the furnace proper.
However, there is a limit to the amount of magnesium compound which can be provided at the high temperature combustion zone in the furnace. If too much such material is provided large amounts of ash will result; this ash will build up in and eventually block the furnace, requiring that it be shut down and cleaned. Moreover, the greater the amount of ash, the greater the amount of inorganic particulate matter emitted through the stack. In addition, the mechanism by which magnesium reduces the amount of S0,, in the products of combustion involves the formation of magnesium sulphate. Magnesium sulphate decomposes at temperatures above l,500 F, and since the temperatures in the furnace are well above that value the decomposition of magnesium sulphate undoes what the added magnesium initially accomplishes. Indeed, the nature of the reactions involving S0 are such that the introduction of massive amounts of magnesium oxide into the hot end of the furnace may actually increase the production of S0 rather than decrease it.
It has been proposed in the past that certain substances be added to the products of combustion at a relatively low temperature station. However, insofar as magnesium-containing oxides and any effect they may have in reducing S0 are concerned, this approach is ineffective, because the magnesium compounds by themselves are too inert to produce the desired result. They are in solid form and must react with gaseous products. Reaction rates in such conditions are generally very low. To use a magnesium compound such as magnesium oxide only in conjunction with cold end feed would require so much magnesium oxide that particulate matter would escape from the stack in tremendous volume, and a pollution problem would be created rather than eliminated.
I have found that by combining a magnesiumcontaining substance added at the cold end with a magnesium-containing or manganese-containing substance added at the hot end, greatly improved results are obtained insofar as SO reduction is concerned. A normal amount of magnesium oxide when added to the combustion zone, in accordance with known practice, results in an SO reduction of 15-25 percent, and that reduction cannot be increased to much more than 40 percent no matter how much magnesium oxide is added to the furnace and no matter what the deleterious effects of adding that magnesium oxide to the furnace may be. The same amount of magnesium oxide added only to the cold end of the furnace (for example, at the outlet of the economizer 6 in FIG. 1, a preferred place for effecting the cold-end feed in accordance with the presentinvention) will reduce the S0 content by 35-40 percent. However, if the same total amount of magnesium oxide is used, but with 25 percent thereof added to the combustion zone and percent added to the cold end (e.g. the outlet of the economizer 6 of FIG. 1) 50-80 percent of the S0 is removed.
If the substance added to the combustion zone is a manganese-containing substance such as manganese oxide, and if it is added solely to the furnace, the total S0 removed is 40 percent or better, under exceptional circumstances sometimes going as high as 75 percent. If, in conjunction with the addition of such manganese oxide to the combustion zone, a magnesium-containing compound such as magnesium oxide is added at the cold end, the total S0 emitted is easily reduced by I -95 percent. Thus it is seen that the combination of hot-end feed and cold-end feed as here disclosed results in greatly improved SO reduction, to a degree not achievable through the use of hot-end addition alone or cold-end addition alone, and through the use of moderate and economically feasible amounts of the additive materials.
The active components of the additive materials here under discussion are manganese and/or magnesium. However, the handling of those metals is not particularly convenient, nor are they commercially available in quantity at reasonable prices. Accordingly, the preferred additives are compounds of magnesium and/or manganese, usually the oxides or hydroxides thereof because of their ready and economic availability and ease of handling.
1 set forth below a number of specific examples illustrating the manner in which my new method of improving the effects of fuel combustion can be carried out and showing the advantages thereof over that which had formerly been thought to be achievable. It will be understood that these examples are in no way limiting, and that the method in its broader application can be practiced in specifically different ways and in different environments.
Bunker C fuel containing an average of 225 parts per million vanadium, a sulfur content of an average of 2.05 percent and an ash content of 0.07 to 0.10 percent was burned in a front fired boiler with a 375 megawatt output and a superheat steam temperature of 1,050 F.
At 2 percent excess oxygen, the S content without any treatment was 60 parts per million. Example I A slurry of magnesium oxide was injected directly into the fuel oil being burned at a treatment rate of 3.1 lbs, MgO/8,000 lbs. of fuel oil. The temperature in the flame zone was in excess of 2,300 F.
The reduction of the S0 in the flue gas was from 60 to 50 parts per million. Example 2 The MgO was aspirated into the economizer outlet of the boiler at a temperature of 700 F. rather than being injected into the fuel oil. On a dry powder basis, 3.1 lbs. of magnesium oxide was injected for each 8,000 lbs. of fuel oil burned in the above boiler.
The $0 was reduced from 60 to 45 parts per million.
Example 3 A slurry of the magnesium oxide was introduced into the boiler to provide 1.5 lbs. of magnesium oxide for each 8.000 lbs. of fuel burned. At the same time the dry, powdered, MgO was concurrently aspirated into the economizer outlet, to provide 1.6 lbs. MgO for each 8,000 lbs. of fuel in the same boiler. In other words, although the same amount of MgO was used in Example 3 as in either Example I or 2 above, the quantity was split up so that half of the MgO was added to the boiler proper and the other half was added to the outlet section of the boiler in the economizer region at temperatures of 500 to 600 F.
Under these conditions, the S0 was reduced from 60 to 30 parts per million.
Example 4 In this case, the slurry of MgO was added exactly as in Example I so as to provide 3.1 lbs. MgO for 8,000 lbs. of fuel oil. In addition, 1.6 lbs. MgO as a dry powder was aspirated into the economizer outlet.
The 50 was reduced from 60 to 27 parts per million. In other words, increasing the amount of MgO added to the fuel oil did not significantly reduce the S0 content of the flue gas. Stated in another way, there was a limiting factor in how far one could reduce the 80;, when injecting the magnesium oxide through the furnace by direct addition to the fuel oil.
Example 5 The addition of 1.5 lbs. of MgO as a slurry to the fuel oil was supplemented by the direct injection of dry powdered magnesium oxide into the economizer outlet, to provide a total of 3 lbs. of MgO aspirated directly into the flue gas through the economizer outlet.
The 80;, was reduced from 60 to 21 parts per million. This further shows that once a minimum amount of MgO is added to the fuel oil to provide a coating within the boilers, then the further addition of MgO as a dry powder into the flue gas has a much greater effect in reducing S0 than adding that equivalent amount or adding that same amount of MgO to the fuel oil through the burner. This could indicate that cold-end injection (at temperatures of 200 to 1,000 F.) is more effective than the addition of the MgO through the furnace where temperatures reach 2,000 to 3.300 F. or thereabouts. Example 6 In this example. and in subsequent ones, the magne sium oxide was added to the fuel oil to provide 1.5 lbs/8,000 lbs. of fuel oil resulting in a reduction of the from 60 to 55 parts per million. In addition the fuel was further treated with a slurry of a manganese oxide to provide 16.5 parts per million of manganese to the fuel oil.
The 50 in the flue gas was reduced from 60 to 47 parts per million. This shows that the manganese is even more effective than the magnesium for reducing 30;, when added to the fuel, but the reduction of the $0 in the flue gas is still insufiicient to prevent low temperature corrosion.
Example 7 The fuel was treated with both the magnesium and manganese as in Example 6 above and magnesium oxide, as a cold dry powder, was aspirated into the economizer outlet at 700 F. to provide an additional 1 .6 lbs. of MgO for each 8,000 pounds of fuel oil. The 50;, was reduced from 60 to 26 parts per million.
Example 8 The fuel was treated with a slurry of manganese oxide to provide 40 parts per million manganese to the fuel. The $0 in the flue gas was reduced from 60 to 48 parts per million.
Example 9 The fuel was treated with the manganese oxide slurry to provide 40 parts per million manganese to the fuel oil. At the same time, magnesium oxide was aspirated as a dry powder into the economizer outlet so that the flue gas was being treated with '1 .6 lbs. of MgO for each 8,000 lbs. of fuel burned. The S0 was reduced from 60 to 23 parts per million. This shows that the combination of manganese addition to the fuel oil with magnesium oxide powder added to the flue gas is effective for substantially reducing the S0 and even more effective than the combination of magnesium oxide addition to the fuel supplemented with magnesium oxide addition to the flue gas.
Example 10 In this example, a slurry of manganese oxide was added to the fuel oil as in Example 8. This then was supplemented by the injection of a magnesium oxide powder into the economizer outlet. However instead of adding the magnesium oxide on a continuous basis. the total daily amount of magnesium oxide was split into two portions and half of this quantity was injected at 12 hour intervals one hour each time. A coating of the magnesium oxide was thus formed on the air preheater section of the boiler.
The total amount of additive was equivalent to 0.32 lbs. of MnO added to the fuel oil and 1.6 lbs. of MgO aspirated into the economizer (per each 8,000 lbs. of fuel burned). The sulphur trioxide in the flue gas when the MgO powder was not being fed remained at 48 parts per million but during the period when the MgO powder was being fed the S0 reduced to 30 ppm.
Although the intermittent use of MgO was not suffi cient to prevent the S0 completely, the use of the MgO in this fashion did almost completely protect preheaters against corrosion. This is quite significant because it shows how to prevent low temperature corrosion of the exit sections of the boiler, where there are no other problems such as acid smut emissions and for Example 11 This is similar to Example 10 above except that the additive is added directly to the fuel oil was a magnesium oxide slurry. Again the intermittent use of the magnesium oxide powder protected the air heaters from corrosion to a greater extent than use of magne- TABLE 1 COLD END FEED vs ADDITION TO FUEL OlL FURNACE CHAMBER Fuel Bunker C of 225 ppm V, 2.05% S and 0.085% Ash Addition of: Injection Sulfur Acidity Condition Appearance Total Lbs. of Mg:V Ex- Agent of: Point Trioxide of Ash of of Stack Lbs. of Additive Weight ample in Flue Deposits Air Additive Ton of Ratio Gas on Air Heater (on dry Sulfur (parts Heater basis) per Outlet per million) 8,000 lbs.
of fuel Equal to Lbs. Addifive/1.000 Gals. Fuel None None 60 1.9 Heavily Distinct Corroded Blue Plume 1 Magnesium Fuel Oil 50 2.4 Corroded Distinct 3.1(as 37.8 1:1 Oxide Blue Plume MgO) Slurry 2 MgO Economizer 45 30 Fair, Blue Plume, 3.1 37.8 1 1 Powder Outlet only slightly trace of reduced in Corrosion intensity 3(5) Magnesium Fuel Oil 5 1 Oxide Slurry 30 4.0 Negligible Slight Plus Corrosion Blue Plume 37.8 Y (b) Mgo Economi- 19.5) 0.5:1
Powder zer Out- 1.6 let 4(a) Mgo Fuel Oil 3 1 37.8 1 l Slurry Plus 27 4.0 Negligible White-grey. 57.3 i (h) Mgo Economi- Dense Plume 1.6 19.5) 0.511
Powder zer Outlet 5(a) Mgo Fuel Oil 1.5 18.3) 0.5:1
Slurry White- Plus 21 4.5 Good -slightly 54.9 (b) MgO Ec0nomigrey cast 3.0 36.6)
Powder zer Outlet 6(a) Mgo Fuel Oil 1.5 18.3 0.5:]
Slurry Plus 47 2.9 Slight Slight 19.9 (b) Mangasese Corrosion Blue Plume 0.132 lbs 1.6)
Oxide MnO Slurry 7(a) Slurry of Fuel Oil 1.5 18.3) 0.511
Mgo Plus (b) Slurry of Fuel Oil 26 4.2 Good.only Almost 0.132 lbs 1.6) 39.4
Manganese trace of clear Oxide Plus Corrosion (v) Mgo Economi- 1 6 19.5) 0.511
Powder zer Outlet 8 Slurry of Fuel Oil 48 2.7 Slightly Slight 40 ppm Mn Manganese Corroded Blue Plume (0.32 lbs. 3.9 Oxide MnO) 9(a) Slurry of Fuel Oil 40 ppm Mn Manganese (0.32 lbs 3.9) Oxide 23 4.6 Negligible Almost MnO) 23.4 Plus Clear (b) MgO Economig 1.6 0.5:]
Powder zer Out- 19.5)
let
TAEEE I T CQntinued COLD END FEED vs ADDITION TO FUEL OIL FURNACE CHAMBER Fuel Bunker C of 225 ppm V. 2.05% S and 0.085% Ash Addition of: lnjection Sulfur Acidity Condition Appearance Total Lbs. of Mgzv" Ex- Agent of: Point Trioxide of Ash of of Stack Lbs. of Additive Weight ample in Flue Deposits Air Additive Ton of Ratio Gas on Air Heater (on dry Sulfur (parts Heater basis) per Outlet per million) 8,000 lbs.
of fuel Equal to Lbs. AdditivclLOOO Gals. Fuel (0) Slurry of Fuel Oil 40 ppm Mn 3.9)
Manganese (0.32 lbs 23.4 Oxide MnO) 1 Plus 48 3.8 Negligible Slight (b) Mgo lntcr (except Blue Plume 1.6 0.5:1 Powder mittently during 19.5
into econo- MgO mizer outlet feed (at 12 hr cycle, intervals) when it dropped to P1 11(a) Magnesium Fuel Oil 1.5 18.3 0.5:]
Oxide 1 Slurry 15.] Plus 55 3.8 Satis- Slight (b) Mgo Inter- (except factory Blue Plume 1.6 19.5) 0.5:1
Powder mittently during into econothe Mgo mizer outlet feed (as in cycle, 13b) when it dropped to 30 PP slum oxide slurry added only to the fuel (hi.
Example 12 A novel feature of the present invention is the adding of a magnesium oxide powder into a furnace in such a way that we get complete control and arresting of corrosion of the air heaters, complete elimination of acid smut emissions, the capabilities of reducing the exit gas temperature by to 100 F. (which is a fuel savings of 2.5 percent for each 100 drop in exit temperature), as well as a means of keeping the furnace clean. As previously shown, using an equal weight of magnesium oxide added to the fuel oil itself, or injected with the primary air going to the furnace, or direct addition of MgO powder or an MgO containing slurry to the hot furnace box, does not give this benefit of keeping the superheater tubes clean in the furnace, because 1 any MgSO, that forms decomposes in the hot furnace zones, and (2) the MgO, as it goes through the flame, is exposed to temperatures of 3,000 F. This causes the MgO to melt and accordingly it becomes fluxed and is not available as a dry powder on the surface tubes in the superheaters.
The method described in this Example is a unique through burner guns 19'. Heated air from heated air duct 18' combines with the fuel and helps to atomize it, that heated air being sucked in from the atmosphere at air inlet 14', blown through duct 16' by fan 15', passing through air heater l7 and then flowing through duct 18' into the furnace l'. Combustion of the fuel takes place in the furnace at a high temperature, and the heat produced thereby is transmitted to the tubes (not shown} covering the walls of the furnace, coverting the water in those tubes to steam. The products of combustion pass through a secondary superheater 2', a reheater 3, a primary superheater 4', a duct 5, an economizer 6 and a duct 7' into heater 8 which transmits some of the heat from the exhaust products to the heater 17'. The exhaust products then flow through duct 10' to a point where duct 11' and induced draft fan 12 are located. There some of the products of combustion are forced through the duct 11' back into the furnace 1' (this being the recirculated portion of the products of combustion) while the bulk of those products of combustion pass through duct 13 to a collection device and thence to the stack.
With a furnace of the type shown in FIG. 2, the magnesium-containing additive, such as magnesium oxide or magnesium hydroxide may be added completely at a relatively low temperature zone, such as the outlet of the economizer 6. The bulk of the material thus added remains with low temperature combustion products, but that portion of the additive entrained with the recirculated combustion products passing through duct 11 are returned to the furnace or combustion zone 1', where they are subjected to the high temperatures of combustion. Thus, although the magnesium additive is introduced into the system only at a single location, in fact some of that additive finds its way to the combustion station, while another portion of the additive remains in contact with the low temperature combustion products, and hence in effect some of the additive is introduced at a high temperature zone and another portion of the additive is subjected only to low temperature conditions.
The following Table 2 discloses the results obtained in connection with a furnace of the type disclosed in FIG. 2 in which fuel oil was burned, the fuel oil containing 0.97 percent sulphur and having a vanadium content of 100 parts per million and an ash content of 0.035 percent.
TABLE 2 MgO MgO lbs/8000 Condition of Addition lbs. of Fuel Superheater Tubes 1) Added as a 1.75 Furnace walls heavily slagged 50/50 slurry and superheater tubes directly to the completely bridged over with fuel oil. a heavy coating but porous and removable with manual lancing.
2) Added as a 1 Some fouling of furnace box,
50/50 slurry but not a continuous sheet. directly to the Hard deposits on superheater fuel oil. tubes. Impossible to remove by manual cleaning.
3) MgO added as 2 Furnace walls have only a a powder into minimum of deposit buildup. economizer Superheater tubes show soft outlet and white deposits that are easily recirculated removed by manual or air back into lancing. Completely cleaned furnace. to bare metal by air lancing.
4) MgO added as 1 No deposits on furnace walls.
a powder into Superheater tubes show a economizer lightly crusted slag, outlet and removable by air lancing. recirculated back into furnaces.
Example 13 This example, like Example 12, involves cold-end feed of magnesium oxide and recirculation of a portion of the additive back to the furnace through the gas recirculation duct 11'.
A coal to oil converted boiler with a mechanical cyclone collector, a 20 megawatt design unit, was experiencing difficulties following conversion when fired with Bunker C fuel. The stack emissions had a low pH of 1.5 and when the particles descended onto the cars in the employees parking lot, as well as on adjoining homes near the utility generating plant, greenish-black, wet, corrosive, deposits penetrated the paint surfaces of the cars and homes. The surface of the cars were covered with black-greenish dots or splotches.
The superheat temperature within the furnace was 900 F. and particularly when burning fuel oils having a sulfur content of 2 to 2.5 percent and vanadium contents of 100 to 400 ppm, there was a further problem of hard deposits formed on the superheater tubes, which were difficult to clean off.
As a first attempt to solve this problem, the plant tried the use of oil slurried additives consisting of 50:50 weight ratio of MgO in the fuel oil. Using quantities as high as 1 gallon of this 50:50 ratio for each 500 gallons of fuel oil, the persistent acid emissions were not materially reduced. Moreover, at these high rates, the plant experienced serious operating difficulties because of blockage by the magnesium-containing deposits that had built up between the tubes.
Reverting to a blend of oil additive containing various ratios of aluminum oxide with the magnesium oxide of 1:10, 1:6, 1:3 and 1:1 and continuing with rates as high as l gallon/500 gallons of fuel did not alleviate the acid emission problem but resulted in even harder and more tenacious deposits on the superheater tubes.
Using combinations of manganese oxide slurries added to the fuel oil, as well as mixtures of manganese oxide with magnesium oxide of various weight ratios from 1:5 to 1:10 of MnzMg likewise did not reduce the emissions problem or the blockage problem within the boiler.
Since the boilers were equipped with gas recirculation, a blend of the additive of this invention was added to the economizer outlet with approximately 50.percent of the powder being recirculated through the boiler into the superheat cavity. The additive blend consisted of 70 percent magnesium oxide, percent calcium oxide, 5 percent manganous oxide and 5 percent urea. The addition rate was 14 lbs/hour at a steam level of 300,000 lbs/hour. Utilizing this cold-end feed, the pH of the deposits collected in the mechanical hoppers as well as on the surrounding plant was 4.2 and the deposits were light and fluffy with a whitish appearance. They did not adhere to the paint surface of the cars or homes.
Quite unexpectedly, the boiler tubes remained ex- I pared to 3 months prior to the use of the additive either when the fuel was untreated or treated with any of the magnesium oxide, aluminum oxide or manganese containing oxide slurries described above.
Repeating this test, but using MgO, resulted in a considerably improved emitted deposit with a pH of 3.8, and the boilers showed considerably cleaner boiler tubes, without any hard deposits on the tubes.
Further, it has been found that even in furnaces that do not have a serious acid emissions problem, this com bination of aspiration of MgO with gas (and powder) recirculation back to the furnace is a considerably improved way to prevent hard, tenacious and corrosive vanadium deposits from fouling the superheater tubes and passages. The same amount of MgO added to the fuel does not produce these dramatic results, and instead will often require a more frequent shutdown of the furnace for clean-down.
Example 14 This example illustrates the use of the method of the present invention in connection with a furnace which had been converted from coal firing to oil firing, utilizing Bunker C fuel oil with an 80 megawatt rating.
It was experiencing great difficulty in utilizing the electrostatic precipitators when burning the liquid fuel. Fouling of the air heater elements occurred and sticky adherent deposits were present, which resulted in frequent shutdowns. Further, the pH of the deposits collected on the precipitators, as well as the deposits collected 100 feet from the stack, showed a value of 1.5 to 1.9.
An intimate mixture consisting of 60 percent magnesium oxide, 15 percent sodium bicarbonate, l percent calcium oxide and 15 percent manganous oxide was injected into the economizer outlet of the furnace before the electrostatic precipitators.
The particle size of the powder mixture averaged 25 to 40 microns. The addition rate of the powder was 7.5 lbs/8,000 lbs. of fuel burned, the fuel having a sulphur content of 2.7 percent, a vanadium content of 375 parts per million and an ash of 0.14 percent.
With this dry powder addition, the pH of the deposits collected 100 feet from the stack was found to be 4.]. There was negligible sticky deposits on the electrostatic precipitators which functioned, virtually uninterruptedly, as long as the powder blend was fed continuously into the economizer outlet at temperatures of 400 to 850 F., the normal temperature of the flue gas at the economizer outlet.
The addition of this powder, or the same amount of MgO of 7.5 lbs/8,000 lbs. of fuel, directly to the fuel or to the furnace did not raise the pH of the stack deposits above 2.5 to 3.0, an ineffective result.
Where, as is optimally the case, the cold-end additive is used to minimize the presence of SO in the flue gas, at least enough additive should be used to accomplish the maximum neutralization of 80;. This will, of course, depend upon the amount of sulphur in the fuel to begin with, the percent of conversion of that sulphur (as S0 to S0 in the course of combustion (generally ranging from 1 to percent depending upon the particular combustion conditions and hot-end additives used) and also the amount of excess air present. This if a fuel oil contains 0.25 percent sulphur, for optimum minimum use of a 1:1 equivalent neutralizing mole ratio of additive to S0 then 0.2 lbs. of cold-end additive in the form of MgO per 8,000 lbs. of fuel oil would be required if the conversion of S0 to 80;, amounted to 1 percent, and 2.0 lbs. of that additive would be required if the conversion figure were 10 percent. Stated in terms of ratio of additive per tons of sulphur in the fuel oil, 1.7 lbs. of MgO additive per ton of sulphur would be required where the conversion figure is 1 percent and 17 lbs. of that additive would be required where the conversion figure was 17 percent, If the fuel oil contained a greater proportion of sulphur, then the amounts of additive would increase but the ratio of additive would remain the same.
If it is desired to remove S0 from the flue gases, then additional amounts of cold-end additives will be required, with a lower limit of perhaps 2.5 lbs. of MgO additive per 100 lbs. of fuel for each 1 percent of sulphur content in the fuel.
Of course, there is nothing to prevent the use of lesser amounts of cold-end additive than those set forth above in order to obtain some benefit from the method of the present invention, even though that benefit is not maximally obtained. Comparably, additional amounts of cold-end additive may be used than those here set forth, although it is not believed that any additional benefit can be obtained thereby, except perhaps by way of a safety factor to compensate for variations in the sulphur content of the fuel, for inaccuracies in determining the magnitude of that sulphur content, or for changes which may occur in the combustion conditions which in turn may give rise to variations in the percentage conversion to S0 In other words, there is nothing critical in the amounts of magnesium-containing material employed for cold-end feed, and in a given installation the determination of the optimal amount of additive to be used may well be arrived at empirically. by varying the amount of additive, analyzing the content of the stack gases, and selecting that amount of additive which gives the best results.
The cold-end feed additive may be introduced into the system continuously or intermittently. depending upon economic and environmental needs and operating conditions to which the plant in question is subject, but in general it is preferred that the cold-end addition occur continuously, since only in that way will the undesirable SO emissions from the plant be fully minimized.
The additives used in accordance with the present invention may contain substances other than the manganeseand magnesium-containing substances here specified, those other substances sometimes adding combustion control effects of their own and sometimes enhancing the effect of the manganese and/or magne sium here involved.
The additives may be introduced into the cold end in any convenient form e.g., as a dry powder, as a liquid slurry, either aqueous or non-aqueous. or as a solution.
While only a limited number of embodiments of the present invention have been here specifically described, it will be apparent that many variations may be made therein. all without departing from the spirit of the invention as defined in the following claims.
I claim:
1. The method of improving the effects of fuel combustion which comprises:
a. Burning the fuel in the presence of a first effective amount of an additive comprising a substance from the group consisting of manganese, magnesium. compounds thereof, and combinations thereof;
b. Conveying the combustion products to a relatively low temperature station;
c. Adding to said combustion product at said station a second amount of additive comprising a substance from the group consisting of magnesium, magnesium compounds and combinations thereof; and
d. Conveying the resultant products to an exhaust station.
2. The method of claim 1, in which said fuel is burned in a boiler and then conveyed through superheater means, said low temperature station being located after said superheater means.
3. The method of claim I, in which the temperature at said relatively low temperature station is about 200 to l,000 F.
4. The method of claim 1, in which said fuel is burned at the combustion station and means are provided for recirculating a substantial portion of said combustion products from said relatively low temperature station to said combustion station, and in which a member from a substance from the group consisting of magnesium, magnesium compounds and combinations thereof is physically added to said combustion products at said low temperature station and in an amount at least equal to the sum of said first and second amounts, said recirculation accomplishing the step (a) addition of said substance.
5. The method of ciaim l, in which said additive step (a) comprises a manganese compound.
6. The method of claim I, in which said additive of step comprises a substance selected from the group consisting of magnesium oxide and magnesium hydroxide.
7. The method of claim 1, in which said second amount is at least about 1.7 pounds of magnesium oxide or the equivalent thereof in the case of other substances, per ton of sulphur in the fuel.
8. The method of claim 1, in which said second amount is from about 1.7 to 5.2 pounds of magnesium oxide, or the equivalent thereof in the case of other substances, per ton of sulphur in the fuel.
9. The method of claim 1, in which said second amount is from about 1.7 to 17 pounds of magnesium oxide, or the equivalent thereof in the case of other substances, per ton of sulphur in the fuel.
10. The method of claim 5, in which said additive of step (c) comprises a substance selected from the group consisting of magnesium oxide and magnesium hydroxide.
11. The method of claim 10, in which said second amount is at least about 1.7 pounds of magnesium or magnesium compound, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
12. The method of claim 10, in which said second amount is from about 1.7 to 5.2 pounds of magnesium substance, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
13. The method of claim 3, in which said additive step (a) comprises a manganese compound.
14. The method of claim 13, in which said additive of step (0) comprises a substance selected from the group consisting of magnesium oxide and magnesium hydroxide.
15. The method of claim 14, in which said second amount is at least about 1.7 pounds of magnesium or magnesium compound, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
16. The method of claim 14, in which said second amount is from about 1.7 to 5.2 pounds of magnesium substance, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
17. The method of claim 3, in which said additive of step (c) comprises a substance selected from the group consisting of magnesium oxide and magnesium hydroxide.
18. The method of claim 17, in which said second amount is at least about l.7 pounds of magnesium or magnesium compound, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
19. The method of claim 17, in which said second amount is from about 1.7 to 5.2 pounds of magnesium substance, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
20. The method of claim 4, in which said additive of step (c) comprises a substance selected from the group consisting of magnesium oxide and magnesium hydroxide.
21. The method of claim 20, in which said second amount is at least about 1.7 pounds of magnesium or magnesium compound, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
22. The method of claim 20, in which said second amount is from about 1.7 to 5.2 pounds of magnesium substance, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
23. The method of claim 6, in which said second amount is at least about 1.7 pounds of magnesium or magnesium compound, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
24. The method of claim 6, in which said second amount is from about 1.7 to 5.2 pounds of magnesium substance, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
Disclaimer and Dedication 3,837,820.-Ira Kukin, West Orange, NJ. COMBUSTION CONTROL BY AD- DITIVES INTRODUCED IN BOTH HOT AND COLD ZONES. Patent dated Sept. 24, 1974. Disclaimer and Dedication filed, Mar. 10, 1983, by the assignee, Economics Laboratory, Inc. Hereby disclaims and dedicates to the Public the entire remaining term of said patent.
[Official Gazette September 27, 1983.]

Claims (23)

  1. 2. The method of claim 1, in which said fuel is burned in a boiler and then conveyed through superheater means, said low temperature station being located after said superheater means.
  2. 3. The method of claim 1, in which the temperature at said relatively low temperature station is about 200* to 1,000* F.
  3. 4. The method of claim 1, in which said fuel is burned at the combustion station and means are provided for recirculating a substantial portion of said combustion products from said relatively low temperature station to said combustion station, and in which a member from a substance from the group consisting of magnesium, magnesium compounds and combinations thereof is physically added to said combustion products at said low temperature station and in an amount at least equal to the sum of said first and second amounts, said recirculation accomplishing the step (a) addition of said substance.
  4. 5. The method of claim 1, in which said additive step (a) comprises a manganese compound.
  5. 6. The method of claim 1, in which said additive of step (c) comprises a substance selected from the group consisting of magnesium oxide and magnesium hydroxide.
  6. 7. The method of claim 1, in which said second amount is at least about 1.7 pounds of magnesium oxide or the equivalent thereof in the case of other substances, per ton of sulphur in the fuel.
  7. 8. The method of claim 1, in which said second amount is from about 1.7 to 5.2 pounds of magnesium oxide, or the equivalent thereof in the case of other substances, per ton of sulphur in the fuel.
  8. 9. The method of claim 1, in which said second amount is from about 1.7 to 17 pounds of magnesium oxide, or the equivalent thereof in the case of other substances, per ton of sulphur in the fuel.
  9. 10. The method of claim 5, in which said additive of step (c) comprises a substance selecTed from the group consisting of magnesium oxide and magnesium hydroxide.
  10. 11. The method of claim 10, in which said second amount is at least about 1.7 pounds of magnesium or magnesium compound, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  11. 12. The method of claim 10, in which said second amount is from about 1.7 to 5.2 pounds of magnesium substance, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  12. 13. The method of claim 3, in which said additive step (a) comprises a manganese compound.
  13. 14. The method of claim 13, in which said additive of step (c) comprises a substance selected from the group consisting of magnesium oxide and magnesium hydroxide.
  14. 15. The method of claim 14, in which said second amount is at least about 1.7 pounds of magnesium or magnesium compound, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  15. 16. The method of claim 14, in which said second amount is from about 1.7 to 5.2 pounds of magnesium substance, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  16. 17. The method of claim 3, in which said additive of step (c) comprises a substance selected from the group consisting of magnesium oxide and magnesium hydroxide.
  17. 18. The method of claim 17, in which said second amount is at least about 1.7 pounds of magnesium or magnesium compound, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  18. 19. The method of claim 17, in which said second amount is from about 1.7 to 5.2 pounds of magnesium substance, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  19. 20. The method of claim 4, in which said additive of step (c) comprises a substance selected from the group consisting of magnesium oxide and magnesium hydroxide.
  20. 21. The method of claim 20, in which said second amount is at least about 1.7 pounds of magnesium or magnesium compound, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  21. 22. The method of claim 20, in which said second amount is from about 1.7 to 5.2 pounds of magnesium substance, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  22. 23. The method of claim 6, in which said second amount is at least about 1.7 pounds of magnesium or magnesium compound, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
  23. 24. The method of claim 6, in which said second amount is from about 1.7 to 5.2 pounds of magnesium substance, based on magnesium oxide as said substance, per ton of sulphur in the fuel.
US00176979A 1971-09-01 1971-09-01 Combustion control by additives introduced in both hot and cold zones Expired - Lifetime US3837820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00176979A US3837820A (en) 1971-09-01 1971-09-01 Combustion control by additives introduced in both hot and cold zones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00176979A US3837820A (en) 1971-09-01 1971-09-01 Combustion control by additives introduced in both hot and cold zones

Publications (1)

Publication Number Publication Date
US3837820A true US3837820A (en) 1974-09-24

Family

ID=22646683

Family Applications (1)

Application Number Title Priority Date Filing Date
US00176979A Expired - Lifetime US3837820A (en) 1971-09-01 1971-09-01 Combustion control by additives introduced in both hot and cold zones

Country Status (1)

Country Link
US (1) US3837820A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047875A (en) * 1975-11-24 1977-09-13 Petrolite Corporation Inhibition of corrosion in fuels with Mg/Si/Mn combinations
US4159683A (en) * 1978-03-13 1979-07-03 American Colloid Company Method for reducing the formation of slag and soot formed from the combustion of carbonaceous waste material
US4202671A (en) * 1978-07-21 1980-05-13 Calgon Corporation Fuel conditioner
US4256703A (en) * 1978-11-17 1981-03-17 Chemed Corporation Fly ash collection
US4272496A (en) * 1979-12-26 1981-06-09 Stauffer Chemical Company Processing elemental phosphorus (P4) containing gas streams
US4298497A (en) * 1980-01-21 1981-11-03 Nalco Chemical Company Composition for preventing cold end corrosion in boilers
US4461224A (en) * 1981-02-21 1984-07-24 L. & C. Steinmuller Gmbh Method of minimizing the emission of contaminants from flame combustion
US4469033A (en) * 1981-02-21 1984-09-04 L. & C. Steinmuller Gmbh Method of minimizing the emission of contaminants from combustion plants
US4514256A (en) * 1983-04-18 1985-04-30 Kober Alfred E Method of minimizing slagging in the burning of black liquid
US4577566A (en) * 1982-04-01 1986-03-25 Betz Laboratories, Inc. Method of conditioning fireside fouling deposits using large particle size amorphous silica
US4793268A (en) * 1987-11-27 1988-12-27 Apollo Technologies Int'l Method for controlling additive feed in a boiler system
US4796548A (en) * 1984-05-08 1989-01-10 Betz Laboratories, Inc. Method of conditioning fireside fouling deposits using super large particle size magnesium oxide
US4801304A (en) * 1986-06-17 1989-01-31 Intevep, S.A. Process for the production and burning of a natural-emulsified liquid fuel
US4804388A (en) * 1987-10-02 1989-02-14 Ira Kukin Combustion control by addition of manganese and magnesium in specific amounts
US4824439A (en) * 1986-06-17 1989-04-25 Intevep, S.A. Inflame desulfurization and denoxification of high sulfur containing fuels
US4834775A (en) * 1986-06-17 1989-05-30 Intevep, S.A. Process for controlling sulfur-oxide formation and emissions when burning a combustible fuel formed as a hydrocarbon in water emulsion
US4842617A (en) * 1987-08-10 1989-06-27 Ira Kukin Combustion control by addition of magnesium compounds of particular particle sizes
US4848995A (en) * 1988-02-05 1989-07-18 Shell Oil Company Removal of sulfur oxides from flue gas
US4976745A (en) * 1986-06-17 1990-12-11 Domingo Rodriguez Process for stabilizing a hydrocarbon in water emulsion and resulting emulsion product
WO1991004310A1 (en) * 1989-09-20 1991-04-04 Petroferm Inc. Method for reducing sox emissions during the combustion of sulfur-containing combustible compositions
EP0948991A1 (en) * 1998-04-08 1999-10-13 Mitsubishi Heavy Industries, Ltd. Method for decreasing sulfuric acid and sulfuric anhydride present in combustion exhaust gas, and combustion exhaust gas flow system
US6200358B1 (en) * 1998-04-24 2001-03-13 Daimlerchrysler Ag Additive for a fuel to neutralize sulfur dioxide and/or sulfur trioxide in the exhaust gases
US20040118032A1 (en) * 2002-12-18 2004-06-24 Aradi Allen A. Manganese compounds to inhibit both low-and high-temperature corrosion in utility and industrial furnace systems
EP1498470A1 (en) * 2003-07-18 2005-01-19 Ethyl Petroleum Additives, Inc. Lowering the amount of carbon in fly ash from burning coal by a manganese additive to the coal
EP1500692A1 (en) * 2003-07-21 2005-01-26 Ethyl Petroleum Additives, Inc. Simultaneous reduction of NOx and carbon in ash from burning coal by using manganese
US20050108923A1 (en) * 2003-11-25 2005-05-26 Factor Stephen A. Mixed metal catalyst additive and method for use in hydrocarbonaceous fuel combustion system
US20060034743A1 (en) * 2004-08-16 2006-02-16 Premier Chemicals, Llc Reduction of coal-fired combustion emissions
US20060257799A1 (en) * 2005-05-10 2006-11-16 Enviromental Energy Services, Inc. Processes for operating a utility boiler and methods therefor
US20060280666A1 (en) * 2004-12-02 2006-12-14 Battelle Energy Alliance, Llc Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same
US20080282889A1 (en) * 2007-05-17 2008-11-20 Battelle Energy Alliance, Llc Oil shale based method and apparatus for emission reduction in gas streams
US20090031929A1 (en) * 2004-12-02 2009-02-05 Boardman Richard D APPARATUS FOR OIL SHALE POLLUTANT SORPTION/NOx REBURNING MULTI-POLLUTANT CONTROL
US20090071067A1 (en) * 2007-09-17 2009-03-19 Ian Macpherson Environmentally-Friendly Additives And Additive Compositions For Solid Fuels
WO2010088205A1 (en) * 2009-02-02 2010-08-05 Capid Inc. Llc System and method for removing undesirables from a gas
US20140026827A1 (en) * 2009-12-11 2014-01-30 Power & Control Solutions, Inc. System and method for removing slag inside a utility furnace
US8758710B2 (en) 2010-06-15 2014-06-24 E.T. Energy Corp. Process for treating a flue gas
US20150107498A1 (en) * 2013-10-18 2015-04-23 Fuel Tech, Inc. Controlling Injection of Magnesium Oxide for Controlling SO3 with Enhanced Bioler Efficiency
US9303870B2 (en) 2009-12-11 2016-04-05 Power & Control Solutions, Inc. System and method for injecting compound into utility furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB740062A (en) * 1953-04-16 1955-11-09 Sulzer Ag Reducing harmful effects of combustion products in gas turbine plants
US2781005A (en) * 1950-06-28 1957-02-12 Power Jets Res & Dev Ltd Method of reducing vanadium corrosion in gas turbines
CA634000A (en) * 1962-01-02 R. Anderson Donald Corrosion prevention
US3411864A (en) * 1963-07-10 1968-11-19 Waagner Biro Ag Method of removing suspended acidic or alkaline pulverulent particles from gases
GB1189356A (en) * 1967-07-13 1970-04-22 Apollo Chem Improvements in or relating to Fuel Compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA634000A (en) * 1962-01-02 R. Anderson Donald Corrosion prevention
US2781005A (en) * 1950-06-28 1957-02-12 Power Jets Res & Dev Ltd Method of reducing vanadium corrosion in gas turbines
GB740062A (en) * 1953-04-16 1955-11-09 Sulzer Ag Reducing harmful effects of combustion products in gas turbine plants
US3411864A (en) * 1963-07-10 1968-11-19 Waagner Biro Ag Method of removing suspended acidic or alkaline pulverulent particles from gases
GB1189356A (en) * 1967-07-13 1970-04-22 Apollo Chem Improvements in or relating to Fuel Compositions

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047875A (en) * 1975-11-24 1977-09-13 Petrolite Corporation Inhibition of corrosion in fuels with Mg/Si/Mn combinations
US4159683A (en) * 1978-03-13 1979-07-03 American Colloid Company Method for reducing the formation of slag and soot formed from the combustion of carbonaceous waste material
US4202671A (en) * 1978-07-21 1980-05-13 Calgon Corporation Fuel conditioner
US4256703A (en) * 1978-11-17 1981-03-17 Chemed Corporation Fly ash collection
US4272496A (en) * 1979-12-26 1981-06-09 Stauffer Chemical Company Processing elemental phosphorus (P4) containing gas streams
US4298497A (en) * 1980-01-21 1981-11-03 Nalco Chemical Company Composition for preventing cold end corrosion in boilers
US4461224A (en) * 1981-02-21 1984-07-24 L. & C. Steinmuller Gmbh Method of minimizing the emission of contaminants from flame combustion
US4469033A (en) * 1981-02-21 1984-09-04 L. & C. Steinmuller Gmbh Method of minimizing the emission of contaminants from combustion plants
US4577566A (en) * 1982-04-01 1986-03-25 Betz Laboratories, Inc. Method of conditioning fireside fouling deposits using large particle size amorphous silica
US4514256A (en) * 1983-04-18 1985-04-30 Kober Alfred E Method of minimizing slagging in the burning of black liquid
US4796548A (en) * 1984-05-08 1989-01-10 Betz Laboratories, Inc. Method of conditioning fireside fouling deposits using super large particle size magnesium oxide
US4824439A (en) * 1986-06-17 1989-04-25 Intevep, S.A. Inflame desulfurization and denoxification of high sulfur containing fuels
US4801304A (en) * 1986-06-17 1989-01-31 Intevep, S.A. Process for the production and burning of a natural-emulsified liquid fuel
US4834775A (en) * 1986-06-17 1989-05-30 Intevep, S.A. Process for controlling sulfur-oxide formation and emissions when burning a combustible fuel formed as a hydrocarbon in water emulsion
US4976745A (en) * 1986-06-17 1990-12-11 Domingo Rodriguez Process for stabilizing a hydrocarbon in water emulsion and resulting emulsion product
US4842617A (en) * 1987-08-10 1989-06-27 Ira Kukin Combustion control by addition of magnesium compounds of particular particle sizes
US4804388A (en) * 1987-10-02 1989-02-14 Ira Kukin Combustion control by addition of manganese and magnesium in specific amounts
US4793268A (en) * 1987-11-27 1988-12-27 Apollo Technologies Int'l Method for controlling additive feed in a boiler system
US4848995A (en) * 1988-02-05 1989-07-18 Shell Oil Company Removal of sulfur oxides from flue gas
WO1991004310A1 (en) * 1989-09-20 1991-04-04 Petroferm Inc. Method for reducing sox emissions during the combustion of sulfur-containing combustible compositions
EP0948991A1 (en) * 1998-04-08 1999-10-13 Mitsubishi Heavy Industries, Ltd. Method for decreasing sulfuric acid and sulfuric anhydride present in combustion exhaust gas, and combustion exhaust gas flow system
US6245308B1 (en) 1998-04-08 2001-06-12 Mitsubishi Heavy Industries, Ltd. Method for decreasing sulfuric acid and sulfuric anhydride present in combustion exhaust gas
US6200358B1 (en) * 1998-04-24 2001-03-13 Daimlerchrysler Ag Additive for a fuel to neutralize sulfur dioxide and/or sulfur trioxide in the exhaust gases
US20040118032A1 (en) * 2002-12-18 2004-06-24 Aradi Allen A. Manganese compounds to inhibit both low-and high-temperature corrosion in utility and industrial furnace systems
EP2199374A3 (en) * 2002-12-18 2011-08-17 Afton Chemical Intangibles LLC Use of manganese compounds to increase the efficiency of an electrostatic precipitator of a combustion unit
US8257450B2 (en) 2002-12-18 2012-09-04 Afton Chemical Intangibles Llc Manganese compounds to inhibit both low-and high-temperature corrosion in utility and industrial furnace systems
EP1498470A1 (en) * 2003-07-18 2005-01-19 Ethyl Petroleum Additives, Inc. Lowering the amount of carbon in fly ash from burning coal by a manganese additive to the coal
US20050011413A1 (en) * 2003-07-18 2005-01-20 Roos Joseph W. Lowering the amount of carbon in fly ash from burning coal by a manganese additive to the coal
EP1500692A1 (en) * 2003-07-21 2005-01-26 Ethyl Petroleum Additives, Inc. Simultaneous reduction of NOx and carbon in ash from burning coal by using manganese
US20050016057A1 (en) * 2003-07-21 2005-01-27 Factor Stephen A. Simultaneous reduction in NOx and carbon in ash from using manganese in coal burners
EP1535984A3 (en) * 2003-11-25 2005-12-14 Afton Chemical Corporation Mixed metal catalyst additive and method for use in hydrocarbonaceous fuel combustion system
US7276094B2 (en) 2003-11-25 2007-10-02 Ethyl Petroleum Additives, Inc. Mixed metal catalyst additive and method for use in hydrocarbonaceous fuel combustion system
EP1535984A2 (en) * 2003-11-25 2005-06-01 Afton Chemical Corporation Mixed metal catalyst additive and method for use in hydrocarbonaceous fuel combustion system
US20050108923A1 (en) * 2003-11-25 2005-05-26 Factor Stephen A. Mixed metal catalyst additive and method for use in hydrocarbonaceous fuel combustion system
US20060034743A1 (en) * 2004-08-16 2006-02-16 Premier Chemicals, Llc Reduction of coal-fired combustion emissions
US7276217B2 (en) 2004-08-16 2007-10-02 Premier Chemicals, Llc Reduction of coal-fired combustion emissions
US7708964B2 (en) 2004-12-02 2010-05-04 Battelle Energy Alliance, Llc Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same
US20060280666A1 (en) * 2004-12-02 2006-12-14 Battelle Energy Alliance, Llc Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same
US20080193351A9 (en) * 2004-12-02 2008-08-14 Battelle Energy Alliance, Llc Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same
US20090031929A1 (en) * 2004-12-02 2009-02-05 Boardman Richard D APPARATUS FOR OIL SHALE POLLUTANT SORPTION/NOx REBURNING MULTI-POLLUTANT CONTROL
AU2005326721B2 (en) * 2004-12-02 2010-01-21 Battelle Energy Alliance, Llc Method and apparatus for oil shale pollutant sorption/nox reburning multi-pollutant control
US8079845B2 (en) * 2005-05-10 2011-12-20 Environmental Energy Services, Inc. Processes for operating a utility boiler and methods therefor
US20060257799A1 (en) * 2005-05-10 2006-11-16 Enviromental Energy Services, Inc. Processes for operating a utility boiler and methods therefor
US20080282889A1 (en) * 2007-05-17 2008-11-20 Battelle Energy Alliance, Llc Oil shale based method and apparatus for emission reduction in gas streams
US20090071067A1 (en) * 2007-09-17 2009-03-19 Ian Macpherson Environmentally-Friendly Additives And Additive Compositions For Solid Fuels
WO2010088205A1 (en) * 2009-02-02 2010-08-05 Capid Inc. Llc System and method for removing undesirables from a gas
US20140026827A1 (en) * 2009-12-11 2014-01-30 Power & Control Solutions, Inc. System and method for removing slag inside a utility furnace
US9303870B2 (en) 2009-12-11 2016-04-05 Power & Control Solutions, Inc. System and method for injecting compound into utility furnace
US9476582B2 (en) * 2009-12-11 2016-10-25 Power & Control Solutions, Inc. System and method for removing slag inside a utility furnace
US8758710B2 (en) 2010-06-15 2014-06-24 E.T. Energy Corp. Process for treating a flue gas
US20150107498A1 (en) * 2013-10-18 2015-04-23 Fuel Tech, Inc. Controlling Injection of Magnesium Oxide for Controlling SO3 with Enhanced Bioler Efficiency
US10124288B2 (en) * 2013-10-18 2018-11-13 Fuel Tech, Inc. Controlling injection of magnesium oxide for controlling SO3 with enhanced boiler efficiency

Similar Documents

Publication Publication Date Title
US3837820A (en) Combustion control by additives introduced in both hot and cold zones
US4842617A (en) Combustion control by addition of magnesium compounds of particular particle sizes
US7332143B2 (en) Targeted duct injection for SO3 control
US4616574A (en) Process for treating combustion systems with pressure-hydrated dolomitic lime
US3320906A (en) Fuel burning process and apparatus
EP0256529B1 (en) Method of preventing deactivation of denitrating catalyst
US4804388A (en) Combustion control by addition of manganese and magnesium in specific amounts
CN100503013C (en) Method and system for combinedly removing SO2, NOx and Hg in coal smoke gas by using recombustion of biomass
NL8202855A (en) METHOD OF ADDING AN ADDITIVE TO A FLOW OF COMBUSTION GASES
SU1679969A3 (en) Method for removing sulfurous anhydride from flue gases
JPS6348392A (en) Method of controlling clinker ash of coal exhaust gas dust
US4235585A (en) Process and composition for neutralization of acidic combustion products and for boiler cleaning
FI81375B (en) Finely divided additive for use when combusting solid substances
EP0058086B1 (en) Method for the prevention of deposits on or the removal of deposits from heating and ancillary surfaces
CN218475116U (en) Comprehensive treatment system for biomass boiler flue gas
US20110155028A1 (en) Combustion Catalyst
JPS5834025A (en) Removal of nitrogen oxides in exhaust gas
JP2002273159A (en) Method for neutralizing combustion exhaust gas of fossil fuel containing sulfur
JPH04136602A (en) Method of reducing nox
Kukin Additives can clean up oil-fired furnaces
Rees Improving Availability and Economy of Oil Fired Boilers by Reducing Deposition and Corrosion Caused by Flue Gases—Part II
JPS62106852A (en) Method for collecting dust in coal combustion gas
WO1993023147A1 (en) Reducing proceeding and/or a system to intermix and means for the same
JPS6349233A (en) Method for suppressing deterioration of denitration catalyst for coal
JPS6245691A (en) Method of modifying combustion dust of low quality fuel derived from petroleum

Legal Events

Date Code Title Description
AS Assignment

Owner name: ECONOMICS LABORATORY, INC.

Free format text: MERGER;ASSIGNOR:APPOLLO TECHNOLOGIES, INC.;REEL/FRAME:003992/0624

Effective date: 19811223

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

DD Disclaimer and dedication filed

Free format text: 830310