US3840466A - Stain removal - Google Patents

Stain removal Download PDF

Info

Publication number
US3840466A
US3840466A US00164463A US16446371A US3840466A US 3840466 A US3840466 A US 3840466A US 00164463 A US00164463 A US 00164463A US 16446371 A US16446371 A US 16446371A US 3840466 A US3840466 A US 3840466A
Authority
US
United States
Prior art keywords
activator
composition
perborate
sodium
peroxygen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00164463A
Inventor
F Gray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US726571A priority Critical patent/US3637339A/en
Priority to DE19691908905 priority patent/DE1908905A1/de
Priority to CA044,053A priority patent/CA943891A/en
Priority to FR6905074A priority patent/FR2003378A1/fr
Priority to CH299069A priority patent/CH506617A/en
Priority to GB1226493D priority patent/GB1226493A/en
Priority to BE729544D priority patent/BE729544A/xx
Priority to NL6903616A priority patent/NL6903616A/xx
Priority to US00829104A priority patent/US3714050A/en
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Priority to US00164463A priority patent/US3840466A/en
Priority to NL7309965A priority patent/NL7309965A/xx
Priority to NL7309966A priority patent/NL7309966A/xx
Application granted granted Critical
Publication of US3840466A publication Critical patent/US3840466A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38609Protease or amylase in solid compositions only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds

Definitions

  • This invention relates to stain removal and detergency.
  • proteolytic enzymes as assistants in the laundering of clothes with detergent compositions has long been known in the art. While combinations con taining both enzymes and sodium perborate, a well known bleaching agent used in detergent products, have been suggested, the art has taught that the presence of the perborate has an inhibitory effect on the enzyme action, which inhibitory action passes away, in part, after some time (eg on soaking overnight in the presence of the detergent composition).
  • bleaches of greater activity than sodium perborate such as chlorine bleaches (supplied for instance by the use of a chloroisocyanurate material which yields hypochlorous ions in the wash water) has a marked inhibiting effect on the stain-removing activity of detergen porducts containing enzymes.
  • a novel and highly effective composition for use in the washing of clothes comprising a mixture of a proteolytic enzyme, sodium perborate and an activator for the perborate.
  • an activator for the perborate for the perborate.
  • proteolytic enzymes which are employed in the instant invention are active upon protein matter and catalyze digestion or degradation of such matter when present as in linen or fabric stain in a hydrolysis reaction.
  • the enzymes are eifective at a pH range of about 4-12, such as usually prevails in detergent cleaning procedure. Moreover, they may be effective even at moderately high temperatures so long as the temperature does not degrade them.
  • Some proteolytic enzymes are effective at up to about 80 C. and higher. They are also effective at ambient temperature and lower to about C.
  • proteolytic enzymes which may be used in the instant invention include pepsin, trypsin, chymotrypsin, papain, bromelin, collaginase, keratinase, carboxylase, amino peptidase, elastase, subtilisia and aspergillopeptidase A and B. They are available also under names such as Alcalase (Novo Industri, Copenhagen,
  • Proteolytic enzymes such as Alcalase, Maxatase, Protease AP, Protease ATP 40, Protease ATP 120, Protease L-252 and Protease L-423 are derived from strains of spore foaming Bacillus, suchc as Bacillus subtillis.
  • stain removing enzymes are Alcalase, Maxatase, Protease AP, Protease ATP 40, and Rapidase.
  • Metalloproteases which contain divalent ions such as calcium, magnesium or zinc bound to their protein chains are of particular interest.
  • the perborate activators are a well known class of materials, described for example in a series of articles by Gilbert in Detergent Age, June 1967 pages 18-20, July 1967 pages 30-33, and August 1967 pages 26, 27 and 67.
  • the perborate activators of greatest importance in the practice of this invention are compounds which are percarboxylic acid precuresors. As explained by Gilbert, such compounds include esters and anhydro and acyl amides. Examples of suitable activators are given by Gilbert who also describes a test for suitability. Among the activators which may be used are the following:
  • activator compounds of the imide type both cyclic and aliphatic, have the following structural formula:
  • R represents alkyl and preferably lower alkyl of l to 4 carbon atoms or aryl such as phenyl and R represents an N-bonded imide radical.
  • N-methoxycarbonyl saccharide N-methoxycarbonyl phthalimide N-ethoxycarbonyl phthalimide N-methoxycarbonyl-S,S-dimethyl hydantoin N-methoxycarbonyl succinimide N-phenoxycarbonyl succinimide N,'N-di-(methoxycarbonyl) acetamide N-methoxycarbonyl glutarimide 1,3-di-(N-methoxycarbonyl)-hydantoin 1,3-di-(N-methoxycarbonyl)-5,5-dimethyl hydantoin
  • Other suitable activator compounds are represented according to the following structural formula;
  • X represents halogen e.g. chloro and Z represents the atoms necessary to complete a heterocyclic nucleus selected from the group consisting of hydantoin and succinimide.
  • Another group of activator compounds comprises N-sulfonated cyclic imides including those of the following structural formula:
  • R represents lower alkyl of from 1 to 4 carbon atoms and aryl and Z represents the atoms necessary to complete a heterocyclic ring selected from the group consisting of succinimide and phthalimide.
  • Specific examples of compounds of this type include, without necessary limitation, the following:
  • a further class of activator compounds comprises alkyl and aryl chloroformate derivatives, including for example:
  • methylchloroformate ethylchloroformate phenylchloroformate The proportions of per-compound, activator, and enzyme will be influenced by the physical and chemical properties of these ingredients, the time and temperature of the bleaching or laundering operation, and the degree of bleaching desired.
  • a preferred range of proportions of the perborate is one which provides a concentration of per compound in the wash water equivalent to about 1 to 40 p.p.m. more preferably about 4 to 25 p.p.m., e.g. 8 to 20 p.p.m., of available oxygen; about 20 p.p.m. has thus far given best results.
  • sodium perborate tetrahydrate (NaBO -4H O) the available oxygen content (or peroxy oxygen content) is about i.e. one atom of available oxygen per molecule of the perborate.
  • the proportions of perborate for use in the detergent formulation can therefore readily be calculated if one knows how much of the total formulation is to be added to the wash water.
  • a preferred detergent formulation containing sodium perborate tetrahydrate designed for use at the 0.15% concentration in the wash water will therefore contain approximately 5 to of that compound, corresponding roughly to the 8 to p.p.m. of available oxygen.
  • activators vary in structure and molecular weight as well as performance, it is convenient to relate the quantity of activator to be employed to the desired available oxygen present in the particular per-compound being used.
  • reactive aromatic mono-acyl compounds such as metachlorobenzoyldimethylhydantoin and meta-chlorobenzoylsuccinimide
  • strong bleaching is obtained when approximately equimolecular quantities of activator and peroxygen are present.
  • Bleaching is enhanced with increase in the concentration of activator and maintenance of about a 1:1 mol ratio of activator and the peroxygen present in the per-compound.
  • By increase of the mol ratio of available oxygen to activator milder bleaching is obtained particularly when the ratio is greater than 2: I.
  • the mole ratio of available oxygen to activator is preferably 2:1, although higher (e.g. 6:1) or lower (e.g. about 1:1 or less) mol ratios may be employed.
  • the enzyme concentration can be varied widely. Typically the enzyme is present in amount in the range of about 0.001%4% by weight of the total detergent formulation, preferably in the range of about 0.05-1% and most preferably in the range of about 0.1 to 0.5%.
  • the optimum proportion of enzyme to be used in a detergent composition containing per-compound and activator will of course depend upon the effective enzyme content of the enzyme preparation. As with per-compound content, the quantity of enzyme to be used for stains susceptible to enzyme action will be dependent upon a number of factors, particularly time, temperature, and proportions of per-compound and activator.
  • preferred range of proportions is one which gives about 1 to 40 p.p.m., more preferably about 2-8 p.p.m., of the Alcalase in the wash water.
  • This 28 p.p.m. concentration corresponds to about 0.0030.012 Anson units per liter of wash water or, in a detergent formulation designed for use at a concentration of 1.5 gram per liter of wash water, about 0.0020.008 Anson units per gram of detergent formulation.
  • the enzyme, perborate and activator may be used together, as in the water used for a pre-rinse of the soiled clothes, without any surface-active detergent being present. It is preferable, however, to mix these ingredients into a surface-active detergent composition, such as a heavy-duty built granular detergent composition.
  • the surface active agent which may be employed may be any commonly used compound having surface active or detergent properties. Most preferred are those watersoluble surface active compounds having anionic or nonionic properties.
  • Anionic surface active agents include those surface active or detergent compounds which contain an organic hydrophobic group and an anionic solubilizing group. Typical examples of anionic solubilizing groups are sulfonate, sulfate, carboxylate, and phosphate.
  • Suitable anionic detergents which fall within the scope of the invention include the soaps, such as the water-soluble salts of higher fatty acids or rosin acids, such as may be derived from fats, oils and waxes of animal, vegetable or marine origin, e.g., the sodium soaps of tallow, grease, cocoanut oil, tall oil and mixtures thereof; and the sulfated and sulfonated synthetic detergents, particularly those having about 8 to 26, and preferably about 12 to 22, carbon atoms to the molecule.
  • the soaps such as the water-soluble salts of higher fatty acids or rosin acids, such as may be derived from fats, oils and waxes of animal, vegetable or marine origin, e.g., the sodium soaps of tallow, grease, cocoanut oil, tall oil and mixtures thereof
  • the sulfated and sulfonated synthetic detergents particularly those having about 8 to 26, and preferably about 12 to 22, carbon atoms to the molecule.
  • suitable synthetic anionic detergents there may be cited the higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 10 to 16 carbon atoms in the alkyl group in a straight or branched chain, e.g., the sodium salts of decyl, undecyl, dodecyl (lauryl), tridecyl, tetradecyl, pentadecyl, or hexadecyl benzene sulfonate and the higher alkyl toluene, xylene and phenol sulfonates; alkyl naphthalene sulfonate, ammonium diamyl naphthalene sulfonate, and sodium dimonyl naphthalene sulfonate; sulfated aliphatic alcohols such as sodium lauryl and hexadecyl sulfon
  • anionic surface active agents which may be employed in the practice of this invention include olefin sulfonates, typically containing 8-25 carbon atoms.
  • sulfuric acid esters of polyhydric alcohols incompletely esterified with higher fatty acids e.g. coconut oil monoglyceride monosulfate, tallow diglyceride monosulfate; and the hydroxy sulfonated higher fatty acid esters such as the higher fatty acid esters of low molecular Weight alkylol sulfonic acids, e.g., oleic acid ester of isethionic acid.
  • Nonionic surface active agents are those surface active or detergent compounds which contain an organic hydrophobic group and a hydrophilic group which is a reaction product of a solubilizing group such as carboxylate, hydroxyl, amido or amino with ethylene oxide or with the polyhydration product thereof, polyethylene glycol.
  • nonionic surface active agents there may be noted the condensation products of alkyl phenols with ethylene oxide, e.g., the reaction product of isooctyl phenol with about 6 to 30 ethylene oxide units; condensation products of alkyl thiophenols with 10 to ethylene oxide units; condensation products of higher fatty alcohols such as tridecyl alcohol with ethylene oxide; ethylene oxide addends of monoesters of hexahydric alcohols and inner ethers thereof such as sorbitan monolaurate, sorbitol mono-oleate and mannitan monopalmitate and the condensation products of polypropylene glycol with ethylene oxide.
  • Cationic surface active agents may also be employed. Such agents are those surface active detergent compounds which contain an organic hydrophobic group and a cationic solubilizing group. Typical cationic solubilizing groups are amine and quaternary groups.
  • suitable synthetic cationic detergents there may be noted the diamines such as those of the type RNHC H NH wherein R is an alkyl group of about 12 to 22 carbon atoms, such as N-arninoethyl stearyl amine and N-aminoethyl myristyl amine; amidelinked amines such as those of the type R'CONHC H NH wherein R is an alkyl group of about 12 to 18 carbon atoms, such as N-amino ethyl-stearyl amide and N-amino ethyl myristyl amide; quaternary ammonium compounds wherein typically one of the groups linked to the nitrogen atom is an alkyl group of about 12 to 18 carbon atoms and three of the groups linked to the nitrogen atom are alkyl groups which contain 1 to 3 carbon atoms, including such 1 to 3 carbon alkyl groups bearing inert substituents, such as phenyl groups, and there is present an anion such
  • Typical quaternary ammonium detergents are ethyldimethyl-stearyl ammonium chloride, benzyl-dimethylstearyl ammonium chloride, benzyl-dimethyl-stearyl ammonium chloride, trimethyl-stearyl ammonium chloride, trimethylcetyl ammonium bromide, methylethyl-dilauryl ammonium chloride, dimethyl-propylmyristyl ammonium chloride, and the corresponding methosulfates and acetates.
  • the surface active compounds which are used in the most preferred aspects of this invention are those having anionic or nonionic properties.
  • the most highly preferred water soluble anionic detergent compounds are the ammonium and substituted ammonium (such as mono-, diand triethanolamine), albali metal (such as sodium and potassium) and alkaline earth metal (such as calcium and magnesium) salts of the higher alkyl benzene sulfonates, the higher alkyl sulfates, and the higher fatty acid monoglyceride sulfates.
  • the particular salt will be suitably selected depending upon the particular formulation and the proportions therein.
  • the surface active agent is typically present in amount of about 5-95 by Weight of the detergent composition, preferably 1025% by weight.
  • the enzyme may be presentin powdered form admixed into the detergent formulation.
  • the detergent composition of the inveniton may include a builder for the detergent.
  • the builder may be any of the water-soluble inorganic builder salts commonly known in the art, or it may be a water-soluble organic sequestering agent such as sodium nitrilotriacetate, or mixtures thereof.
  • the water-soluble inorganic builder salts may be suitable alkali metal, alkaline earth metal, or heavy metal salt or combinations thereof. Ammonium or an ethanolammonium salt in a suitable amount may be added also, but generally the sodium and potassium salts are preferred. Examples are the water-soluble sodium and potassium phosphates, silicates, carbonates, bicarbonates, borates, sulfates and chlorides. Particularly preferred builder salts are the alkaline builder salts such as polyphosphates, silicates, borates, etc.
  • water-soluble inorganic builder salt mixtures used in the detergent compositions it is often preferred to have present a mixture of sodium tripolyphosphate and sodium or potassium bicarbonate, such as a combination or mixture of salts wherein the bicarbonate to tripolyphosphate ratio is selected from the range of about 1:1 to about 3:1.
  • Phase I and Phase II sodium tripolyphosphate and mixtures thereof may be successfully used in the compositions.
  • the usual commercial tripolyphosphate consists mainly of the Phase II material.
  • the commercial tripolyphosphate material is usually essentially tripolyphosphate, e.g. 87-95%, with small amounts, e.g. 4 13% of other phosphates, e.g. pyrophosphate and orthophosphate.
  • Sodium tripolyphosphate in its hydrated form may be used also.
  • Trisodium orthophosphate may be used in the amounts indicated.
  • the sodium or potassium bicarbonate is an effective pH buffer.
  • the bicarbonate may be incorporated directly as anhydrous bicarbonate or in the form of sesquicarbonate, a hydrate containing both bicarbonate and carbonate.
  • Suitable builder salts which may be present include the water-soluble sodium and potassium silicates, carbonates, borates, chlorides and sulfates.
  • the builder salt when present is employed in amount in the range of about 20-90%, preferably at least 25%, (e.g. 35 to of the detergent composition.
  • the composition may also contain polymeric additives such as sodium carboxymethylcellulose or polyvinyl alcohol (e.g. in amount of about 0.1-5 or other polymeric additives to inhibit redeposition of soil.
  • Minor amounts of optical brighteners may be present, as in proportions in the range of about 0.01 to 0.15%; examples of such brighteners are the stilbene brighteners such as sodium-2-sulfo-4-(2-naphtho-1,2 triazole) stilbene; disodium 4,4'-bis (4-anilino-6-morpholino-s-triazin- 2-yl amino) stilbene disulfonate or disodium 4,4'-bis(4,6- dianilino-s-triazin-Zyl-amino) stilbenedisulfonate; and the oxazole brighteners, having for example a l-phenyl-2- benzoxazole ethylene structure. Perfumes, coloring agents and preservatives may also be included.
  • the activator, enzyme and perborate may be added in powdered form to the detergent composition and mixed therewith, as a dry blending.
  • one or more of these ingredients may be protected from the atmosphere or from contact with the others.
  • the perborate or the activator or the enzyme or each of them may be encapsulated or agglomerated by means of a coating of a protective material such as polyvinyl alcohol, a long chain fatty acid (e.g. lauric or stearic) or an amide thereof, a paraffin or a water-soluble or water-dispersible polyethylene glycol (e.g. a solid Car'bowax). It is also within the broader scope of the invention to supply separate packets (e.g. in moisture proof wrappings) of these ingredients for addition to the wash water.
  • a detergent composition contains the following ingredients: 10% nonionic detergent consisting of a primary alkanol of an average of 14 to 15 carbon atoms ethoxylated with an average of 11 mols of ethylene oxide per mol of alkanol (Shell Neodol 45-11); anhydrous pentasodium tripolyphosphate (designated TPP below); 5% trisodium nitrilotriacetate monohydrate (designated NTA below); 0.5% sodium carboxymethyl cellulose (designated CMC below); 0.8% of the commercial proteolytic enzyme preparation known as Alcalase; 16% of sodium perborate (NaBO -4H O); 24% of meta-chlorobenzoyldimethylhydantoin (an activator for the perborate); the balance sodium sulfate.
  • the mol ratio of perborate to activator is about 1:1 (specifically it is 1.121).
  • the composition is used for the washing of standard cocoa-stained fabrics and standard coffee/tea-stained fabrics at 120 F. for a period of 10 minutes, using 1 gram of the composition per liter of water in a Terg-O- Tometer.
  • the effectiveness of the composition is determined by reflectance readings (R on the fabrics before and after washing, using a Gardner Color Difference Meter for the measurement. The difference in reflectance before and after the washing is reported as AR Cocoa is a proteinaceous substance and cocoastained fabric is a commonly used material for testing the effectiveness of detergents for removing protein stains.
  • compositions (B) containing no enzyme, perborate or activator; (C) containing enzyme, but no perborate or activator; and (D) containing the enzyme plus a commercial bleach yielding hypochlorous ion (specifically a mixture of V5 potassium dichloroisocyanurate (KDCC) and /5 trichloroisocyanu ric acid (TCCA).
  • KDCC V5 potassium dichloroisocyanurate
  • TCCA trichloroisocyanu ric acid
  • composition percent:
  • EXAMPLE 3 Examples 2 A and B are repeated except that the spraydried detergent has a diiferent composition and is made in the following manner: In a crutcher there are mixed in the order given 139 parts of water, 213 parts of an aqueous slurry containing about 44% sodium linear tridccylbenzenesulfonate, 109.3 parts of anhydrous sodium sulfate, 4.4 parts of borax, 0.13 par-t of phenolic antioxidant (Iphol 033), 71.4 parts of aqueous sodium silicate of 43.5% concentration (in which the Na O:SiO mol ratio is 122.35), and 157 parts of anhydrous pentasodium tripolyphosphate.
  • the aqueous mixture is spray-dried to give a granular composition of the foregoing ingredients having a total moisture content of about 8 /2 (including water of hydration).
  • EXAMPLE 4 In this Example there are used compositions as described in Example 1A, except that the activator is (A) 11.9% of tetraacetylethylenediamine or (b) 10.4% tetraacetylhydrazine, or (C) 13.3% triacetylcyanurate. For comparison there are also used compositions (D) containing no activator and (E) containing no activator or perborate.
  • compositions are used for the soaking of standard cocoa-stained and standard coffee/tea-stained fabrics, using 1 gram of the composition per liter of water.
  • the water is initially at F. and cools to room temperature (about 76 F.) during the soaking period, which is continued for 18 hours.
  • the test fabrics are removed and dried and the A R values are obtained.
  • the addition of the activator improves the stain removal not only for the cofiee/ tea stain but also for the protein stain.
  • a composition prepared as in Example 4A is storagetested by subjecting it for 3 days to a temperature of 120 F. in a sealed container. During this period there is little, if any, undesirable odor developed. Soaking tests with standard cocoa-stained and coifee/tea-stained fabrics give substantially identical results for the composition before the 3 day aging at 120 F. and after such aging.
  • EXAMPLE 6 81.8 parts of a spray-dired built detergent formulation are mixed with 0.8 part of Alcalase, 7.4 parts of tetraacetyl ethylenediamine and parts of sodium perborate.
  • the spray-dried formulation contains 10.5% sodium linear tridecylbenzenesulfonate, 51% pentasodium tripolyphosphate, 6% sodium silicate (N a O:S-iO mol ratio 1:2.35), 8.5% sodium chloride, 13% sodium sulfate, 10% moisture (including water of hydration) and about 1% fluorescent brighteners.
  • methylhydantoin present in amount of 13.9% (a 1:1 perborate; activator mol-ratio) AR values of .4 (for 10 cocoa-stained fabric) and +6.9 (for colfee/tea-stained fabric) are obtained.
  • the Alcalase used in the foregoing Examples is characterized as having its maximum proteolytic activity at a pH of 8-9. This activity as measured on the commercial enzyme available from Novo Industri A/ S, Copenhagen, Denmark is about 1.5 Anson Units per gram of the enzyme.
  • the commercial enzyme is a raw extract of Bacillus subtillis culture and contains about 6% of pure crystallized proteolytic material.
  • the Monzyme used in Example 2 and 3 is a mixture of neutral and alkaline proteases (the neutral protease being present in largest amount) containing amylase also; its supplier, Monsanto Chemical Co., states that its proteolytic activity is about one million units per gram.
  • sodium perborate tetrahydrate is used; other forms of sodium perborate, such as the monohydrate, may be substituted in each case.
  • the pH of the wash liquor in the foregoing Examples is usually within the range of about 8 to about 9.
  • percarboxylic i.e. peroxycarboxylic
  • percarboxylic acids particularly those having chloro or nitro substituents (e.g. m-chloroperoxybenzoic acid, as illustrated in Example 6 above, or 2,4-dichloroperoxybenzoic acid).
  • These acids may be protected against deterioration on storage by pelletizing them, preferably with a coating or agglomerating agent such as a low-melting paraffin Wax.
  • compositions of the invention containing proteolytic enzymes have given outstanding results.
  • a proteolytic enzyme mixed with an amylase may also be employed. It is within the broader scope of the invention to use other enzymes in place of, or together with, the proteolytic enzymes.
  • stain-attacking enzymes as the amylases (such as the microbial amylases) or other carbohydrases (e.g.
  • the Alcalase may be replaced entirely (or partly) Weight-for-Weight by either (a) Novo bacterial amylase concentrate having a strength of 397,000 Novo amylase units per gram or (b) Pfizers Lipase P, a pancreatic lipase having a strength of 250 lipase units per gram.
  • a compound acting as a stabilizer against an undesirable type of decomposition of the perborate is the sodium salts of diethylenetriamine pentaacetic acid, ethylene diamine tetraacetic acid, hydroxyethylethylenediamine triacetic acid or nitrilotriacetic acid.
  • Magnesium silicate may also be present to aid in the stabilizing effect. Minor amounts of these agents, e.g. 5%, 1% or less are effective.
  • a composition consisting essentially of effective amounts of an inorganic peroxygen compound, an activator for the peroxygen compound and about 0.001% to 4% of a protcolytic enzyme, said activator having a carboxylic acyl group, said peroxygen compound being one which reacts with said activator to form the corresponding percarboxylic acid on addition of said composition to wash water, said activator being present in amount effective to so convert said peroxygen compound and thereby increase the bleaching effect of said peroxygen compound on coffee/tea stains, said composition being adapted to be added to aqueous wash water in an amount sufiicient to provide about 1 to 40 p.p.m. of available oxygen to the wash water.
  • a composition as in Claim 1 containing an organic surface-active detergent containing an organic surface-active detergent.
  • a composition as in Claim 1 containing a builder salt containing a builder salt.
  • a composition as in Claim 1 containing pentasodium tripolyphosphate and sodium nitrilotriacetate.

Abstract

1. A COMPOSITON CONSISTING ESSENTIALLY OF EFFECTIVE AOUNTS OF AN INORGAIC PEROXYGEN COMPOUND, AN ACTIVATOR FOR THE PEROXYGEN COMPOUND AND ABOUT 0.001% TO 4% OF A PROTEOLYTIC ENZYME, SAID ACTIVATOR HAVING A CARBOXYLIC ACRYL GROUP, SAID PEROXYGEN COMPOUND BEING ONE WHICH REACTS WITH SAID ACTIVATOR TO FORM THE CORRESPONDING PERCARBOXYLIC ACID ON ADDITION OF SAID COMPOSITION TO WASH WATER, SAID ACTIVATOR BEING PRESENT IN AMOUNT EFFECTIVE TO SO CONVERT SAID PEROXYGEN COMPOUND AND THEREBY INCREASE THE BLEACHING EFFECT TO SAID PEROXYGEN COMPOUND ON COFFEE/TEA STAINS, SAID COMPOSITION BEING ADAPTED TO BE ADDED TO AQUEOUS WASH WATER IN AN AMOUNT SUFFICIENT TO PROVIDE ABOUT 1 TO 40 P.P.M. OF AVAILABLE OXYGEN TO THE WASH WATER.

Description

3,840,466 STAIN REMOVAL Frederick William Gray, Summit, NJ. assignor to Colgate-Palmolive Company, New York, N.Y.
No Drawing. Application May 3, 1968, Ser. No. 726,571, now Patent No. 3,637,339, dated Jan. 25, 1972, which is a continuation-in-part of abandoned application Ser. No. 711,203, Mar. 7, 1968. Divided and this application July 20, 1971, Ser. No. 164,463 The portion of the term of the patent subsequent to Jan. 25, 1989, has been disclaimed Int. Cl. Clld 7/54 US. Cl. 252-99 11 Claims ABSTRACT OF THE DISCLOSURE Composition for removing stains from fabrics, including an enzyme, a per-compound, and an activator for the perborate.
This application is a division of application Ser. No. 726,571, filed May 3, 1968, now US. Pat. No. 3,637,339, issued J an. 25, 1972, which patent was a continuation-inpart of my copending application Ser. No. 711,203, filed Mar. 7, 1968 and now abandoned.
This invention relates to stain removal and detergency.
The use of proteolytic enzymes as assistants in the laundering of clothes with detergent compositions has long been known in the art. While combinations con taining both enzymes and sodium perborate, a well known bleaching agent used in detergent products, have been suggested, the art has taught that the presence of the perborate has an inhibitory effect on the enzyme action, which inhibitory action passes away, in part, after some time (eg on soaking overnight in the presence of the detergent composition). The use of bleaches of greater activity than sodium perborate, such as chlorine bleaches (supplied for instance by the use of a chloroisocyanurate material which yields hypochlorous ions in the wash water) has a marked inhibiting effect on the stain-removing activity of detergen porducts containing enzymes.
In accordance with one aspect of this inveniton there is provided a novel and highly effective composition for use in the washing of clothes comprising a mixture of a proteolytic enzyme, sodium perborate and an activator for the perborate. Surprisingly, in the presence of the activator one can obtain, in a short washing cycle, and at a moderate washing temperature, not only improved bleaching of those stains (e.g. coffee and tea stains) as are usually affected by bleaching compositions but also the removal of proteinaceous stains to an extent equal to or better than is obtained when the perborate and activator are omitted.
The proteolytic enzymes which are employed in the instant invention are active upon protein matter and catalyze digestion or degradation of such matter when present as in linen or fabric stain in a hydrolysis reaction. The enzymes are eifective at a pH range of about 4-12, such as usually prevails in detergent cleaning procedure. Moreover, they may be effective even at moderately high temperatures so long as the temperature does not degrade them. Some proteolytic enzymes are effective at up to about 80 C. and higher. They are also effective at ambient temperature and lower to about C. Particular examples of proteolytic enzymes which may be used in the instant invention include pepsin, trypsin, chymotrypsin, papain, bromelin, collaginase, keratinase, carboxylase, amino peptidase, elastase, subtilisia and aspergillopeptidase A and B. They are available also under names such as Alcalase (Novo Industri, Copenhagen,
nited States Patent 6 Denmark), Monzyme (Monsanto Chemical Co.), Maxatase (Royal Netherlands Fermentation, Delft, Netherlands), Protease AP (Sandoz-Ferment, Basel, Switzerland), Protease B400 (Sandoz-Ferment), Protease ATP 40 (Sandoz-Ferment), Pancreatin NF (Pfizer), Pancreatin 6xNF (Armour), Fungal Protease (Miles), DSE Numbers 4-9 (Rohm and Haas), Exzyme DPX (Premier Malt), Protease L252 Digester (Premier Malt), Protease L-25 3 Digester (Premier Malt), Protease Is-423 (Premier Malt), Protease L-5l6 (Premier Malt), Protease L-5 17 (Premier Malt), Texzyme PX-1 (Premier Malt), Protease P-G (Pfizer), Compound 378 (Miles), Serizyme (Wallerstein), Papain (Wallerstein), Opimo Papain (Penick), Ficin (Miles), Bromelain (Miles), HT Proteolytic Concentrate (Miles), Protease ATP 40 (Rapidase), Protease ATP (Rapidase), Rhozyme P 11 (Rohm and Haas) and Rhozyme PF (Rohm and Haas).
Proteolytic enzymes such as Alcalase, Maxatase, Protease AP, Protease ATP 40, Protease ATP 120, Protease L-252 and Protease L-423 are derived from strains of spore foaming Bacillus, suchc as Bacillus subtillis.
Different proteolytic enzymes have different degrees of etfectiveness in aiding in the removal of stains from textiles and linen. Particularly preferred as stain removing enzymes are Alcalase, Maxatase, Protease AP, Protease ATP 40, and Rapidase.
Metalloproteases which contain divalent ions such as calcium, magnesium or zinc bound to their protein chains are of particular interest.
The perborate activators are a well known class of materials, described for example in a series of articles by Gilbert in Detergent Age, June 1967 pages 18-20, July 1967 pages 30-33, and August 1967 pages 26, 27 and 67. The perborate activators of greatest importance in the practice of this invention are compounds which are percarboxylic acid precuresors. As explained by Gilbert, such compounds include esters and anhydro and acyl amides. Examples of suitable activators are given by Gilbert who also describes a test for suitability. Among the activators which may be used are the following:
N-acetyl phthalimide N-acetyl succinimide trisacetyl cyanurate N-benzoyl succinimide Phenyl acetate Acetylsalicylic acid N-p-anisoyl succinimide N-alpha-naphthoyl succinimide N-beta-napthoyl succinimide N-benzoyl glutarimide N-p-chlorobenzoyl succinimide N-benzoyl succinimide N-p-chlorobenzoyl-5,5-dimethyl hydantoin Nm-chlorobenzoyl succinimide N-p-chlorobenzoyl phthalimide etc.
Further examples of suitable activator compounds of the imide type, both cyclic and aliphatic, have the following structural formula:
0 R1-OR wherein R represents alkyl and preferably lower alkyl of l to 4 carbon atoms or aryl such as phenyl and R represents an N-bonded imide radical. Thus, included within the foregoing structural formula are the following:
N-methoxycarbonyl saccharide N-methoxycarbonyl phthalimide N-ethoxycarbonyl phthalimide N-methoxycarbonyl-S,S-dimethyl hydantoin N-methoxycarbonyl succinimide N-phenoxycarbonyl succinimide N,'N-di-(methoxycarbonyl) acetamide N-methoxycarbonyl glutarimide 1,3-di-(N-methoxycarbonyl)-hydantoin 1,3-di-(N-methoxycarbonyl)-5,5-dimethyl hydantoin Other suitable activator compounds are represented according to the following structural formula;
wherein X represents halogen e.g. chloro and Z represents the atoms necessary to complete a heterocyclic nucleus selected from the group consisting of hydantoin and succinimide.
Specific representatives of compounds of this type include, without necessary limitation, the following:
N-m-chlorobenzoyl-5,5-dimethyl hydantoin N-m-chlorobenzoylsuccinimide etc.
Another group of activator compounds comprises N-sulfonated cyclic imides including those of the following structural formula:
wherein R represents lower alkyl of from 1 to 4 carbon atoms and aryl and Z represents the atoms necessary to complete a heterocyclic ring selected from the group consisting of succinimide and phthalimide. Specific examples of compounds of this type include, without necessary limitation, the following:
N-benzenesulfonyl phthalimide N-benzenesulfonyl succinimide N-methanesulfonyl phthalimide N-methanesulfonyl succinimide A further class of activator compounds comprises alkyl and aryl chloroformate derivatives, including for example:
methylchloroformate ethylchloroformate phenylchloroformate The proportions of per-compound, activator, and enzyme will be influenced by the physical and chemical properties of these ingredients, the time and temperature of the bleaching or laundering operation, and the degree of bleaching desired.
A preferred range of proportions of the perborate is one which provides a concentration of per compound in the wash water equivalent to about 1 to 40 p.p.m. more preferably about 4 to 25 p.p.m., e.g. 8 to 20 p.p.m., of available oxygen; about 20 p.p.m. has thus far given best results. In sodium perborate tetrahydrate (NaBO -4H O) the available oxygen content (or peroxy oxygen content) is about i.e. one atom of available oxygen per molecule of the perborate. The proportions of perborate for use in the detergent formulation can therefore readily be calculated if one knows how much of the total formulation is to be added to the wash water. Commercial detergent formulations are often designed for use in proportions in the range of about 0.10.2% in the wash water (e.g. at 0.15% concentration), a preferred detergent formulation containing sodium perborate tetrahydrate designed for use at the 0.15% concentration in the wash water will therefore contain approximately 5 to of that compound, corresponding roughly to the 8 to p.p.m. of available oxygen.
Since individual activators vary in structure and molecular weight as well as performance, it is convenient to relate the quantity of activator to be employed to the desired available oxygen present in the particular per-compound being used. For reactive aromatic mono-acyl compounds such as metachlorobenzoyldimethylhydantoin and meta-chlorobenzoylsuccinimide, strong bleaching is obtained when approximately equimolecular quantities of activator and peroxygen are present. Bleaching is enhanced with increase in the concentration of activator and maintenance of about a 1:1 mol ratio of activator and the peroxygen present in the per-compound. By increase of the mol ratio of available oxygen to activator, milder bleaching is obtained particularly when the ratio is greater than 2: I. For reactive aliphatic poly-acylated compounds such as tetra-acetylethylenediamine, tetra acetylhydrazine, triacetyl cyanurate, the mole ratio of available oxygen to activator is preferably 2:1, although higher (e.g. 6:1) or lower (e.g. about 1:1 or less) mol ratios may be employed.
The enzyme concentration can be varied widely. Typically the enzyme is present in amount in the range of about 0.001%4% by weight of the total detergent formulation, preferably in the range of about 0.05-1% and most preferably in the range of about 0.1 to 0.5%. The optimum proportion of enzyme to be used in a detergent composition containing per-compound and activator will of course depend upon the effective enzyme content of the enzyme preparation. As with per-compound content, the quantity of enzyme to be used for stains susceptible to enzyme action will be dependent upon a number of factors, particularly time, temperature, and proportions of per-compound and activator. For the enzyme sold as Alcalase (having an activity of about 1.5 Anson units per gram) :1 preferred range of proportions is one which gives about 1 to 40 p.p.m., more preferably about 2-8 p.p.m., of the Alcalase in the wash water. This 28 p.p.m. concentration corresponds to about 0.0030.012 Anson units per liter of wash water or, in a detergent formulation designed for use at a concentration of 1.5 gram per liter of wash water, about 0.0020.008 Anson units per gram of detergent formulation.
The enzyme, perborate and activator may be used together, as in the water used for a pre-rinse of the soiled clothes, without any surface-active detergent being present. It is preferable, however, to mix these ingredients into a surface-active detergent composition, such as a heavy-duty built granular detergent composition.
The surface active agent which may be employed may be any commonly used compound having surface active or detergent properties. Most preferred are those watersoluble surface active compounds having anionic or nonionic properties. Anionic surface active agents include those surface active or detergent compounds which contain an organic hydrophobic group and an anionic solubilizing group. Typical examples of anionic solubilizing groups are sulfonate, sulfate, carboxylate, and phosphate. Examples of suitable anionic detergents which fall within the scope of the invention include the soaps, such as the water-soluble salts of higher fatty acids or rosin acids, such as may be derived from fats, oils and waxes of animal, vegetable or marine origin, e.g., the sodium soaps of tallow, grease, cocoanut oil, tall oil and mixtures thereof; and the sulfated and sulfonated synthetic detergents, particularly those having about 8 to 26, and preferably about 12 to 22, carbon atoms to the molecule.
As examples of suitable synthetic anionic detergents there may be cited the higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 10 to 16 carbon atoms in the alkyl group in a straight or branched chain, e.g., the sodium salts of decyl, undecyl, dodecyl (lauryl), tridecyl, tetradecyl, pentadecyl, or hexadecyl benzene sulfonate and the higher alkyl toluene, xylene and phenol sulfonates; alkyl naphthalene sulfonate, ammonium diamyl naphthalene sulfonate, and sodium dimonyl naphthalene sulfonate; sulfated aliphatic alcohols such as sodium lauryl and hexadecyl sulfate, triethanolamine lauryl sulfate, and sodium oleyl sulfate; sulfated alcohol ethers, such as lauryl, tridecyl, or tetradecyl sulfates including 2-4 ethylene oxide moieties; sulfated and sulfonated fatty oils, acids or esters such as the sodium salts of sulfonated castor oil and sulfated red oil; sulfated hydroxyamides such as sulfated hydroxylethyl lauramide; sodium salt of lauryl sulfoacetate; sodium salt of dioctyl sulfosuccinate; and the sodium salt of oleyl methyl tauride.
Other anionic surface active agents which may be employed in the practice of this invention include olefin sulfonates, typically containing 8-25 carbon atoms.
Also included within the ambit of the invention are the sulfuric acid esters of polyhydric alcohols incompletely esterified with higher fatty acids, e.g. coconut oil monoglyceride monosulfate, tallow diglyceride monosulfate; and the hydroxy sulfonated higher fatty acid esters such as the higher fatty acid esters of low molecular Weight alkylol sulfonic acids, e.g., oleic acid ester of isethionic acid.
Nonionic surface active agents are those surface active or detergent compounds which contain an organic hydrophobic group and a hydrophilic group which is a reaction product of a solubilizing group such as carboxylate, hydroxyl, amido or amino with ethylene oxide or with the polyhydration product thereof, polyethylene glycol.
As examples of nonionic surface active agents there may be noted the condensation products of alkyl phenols with ethylene oxide, e.g., the reaction product of isooctyl phenol with about 6 to 30 ethylene oxide units; condensation products of alkyl thiophenols with 10 to ethylene oxide units; condensation products of higher fatty alcohols such as tridecyl alcohol with ethylene oxide; ethylene oxide addends of monoesters of hexahydric alcohols and inner ethers thereof such as sorbitan monolaurate, sorbitol mono-oleate and mannitan monopalmitate and the condensation products of polypropylene glycol with ethylene oxide.
Cationic surface active agents may also be employed. Such agents are those surface active detergent compounds which contain an organic hydrophobic group and a cationic solubilizing group. Typical cationic solubilizing groups are amine and quaternary groups.
As examples of suitable synthetic cationic detergents there may be noted the diamines such as those of the type RNHC H NH wherein R is an alkyl group of about 12 to 22 carbon atoms, such as N-arninoethyl stearyl amine and N-aminoethyl myristyl amine; amidelinked amines such as those of the type R'CONHC H NH wherein R is an alkyl group of about 12 to 18 carbon atoms, such as N-amino ethyl-stearyl amide and N-amino ethyl myristyl amide; quaternary ammonium compounds wherein typically one of the groups linked to the nitrogen atom is an alkyl group of about 12 to 18 carbon atoms and three of the groups linked to the nitrogen atom are alkyl groups which contain 1 to 3 carbon atoms, including such 1 to 3 carbon alkyl groups bearing inert substituents, such as phenyl groups, and there is present an anion such as halogen, acetate, methosulfate, etc. Typical quaternary ammonium detergents are ethyldimethyl-stearyl ammonium chloride, benzyl-dimethylstearyl ammonium chloride, benzyl-dimethyl-stearyl ammonium chloride, trimethyl-stearyl ammonium chloride, trimethylcetyl ammonium bromide, methylethyl-dilauryl ammonium chloride, dimethyl-propylmyristyl ammonium chloride, and the corresponding methosulfates and acetates.
The surface active compounds which are used in the most preferred aspects of this invention are those having anionic or nonionic properties. The most highly preferred water soluble anionic detergent compounds are the ammonium and substituted ammonium (such as mono-, diand triethanolamine), albali metal (such as sodium and potassium) and alkaline earth metal (such as calcium and magnesium) salts of the higher alkyl benzene sulfonates, the higher alkyl sulfates, and the higher fatty acid monoglyceride sulfates. The particular salt will be suitably selected depending upon the particular formulation and the proportions therein.
The surface active agent is typically present in amount of about 5-95 by Weight of the detergent composition, preferably 1025% by weight.
The enzyme may be presentin powdered form admixed into the detergent formulation.
In addition to the materials described above, the detergent composition of the inveniton may include a builder for the detergent. The builder may be any of the water-soluble inorganic builder salts commonly known in the art, or it may be a water-soluble organic sequestering agent such as sodium nitrilotriacetate, or mixtures thereof.
The water-soluble inorganic builder salts may be suitable alkali metal, alkaline earth metal, or heavy metal salt or combinations thereof. Ammonium or an ethanolammonium salt in a suitable amount may be added also, but generally the sodium and potassium salts are preferred. Examples are the water-soluble sodium and potassium phosphates, silicates, carbonates, bicarbonates, borates, sulfates and chlorides. Particularly preferred builder salts are the alkaline builder salts such as polyphosphates, silicates, borates, etc.
In the water-soluble inorganic builder salt mixtures used in the detergent compositions, it is often preferred to have present a mixture of sodium tripolyphosphate and sodium or potassium bicarbonate, such as a combination or mixture of salts wherein the bicarbonate to tripolyphosphate ratio is selected from the range of about 1:1 to about 3:1.
Both Phase I and Phase II sodium tripolyphosphate and mixtures thereof may be successfully used in the compositions. The usual commercial tripolyphosphate consists mainly of the Phase II material. The commercial tripolyphosphate material is usually essentially tripolyphosphate, e.g. 87-95%, with small amounts, e.g. 4 13% of other phosphates, e.g. pyrophosphate and orthophosphate. Sodium tripolyphosphate in its hydrated form may be used also. Trisodium orthophosphate may be used in the amounts indicated.
The sodium or potassium bicarbonate is an effective pH buffer. The bicarbonate may be incorporated directly as anhydrous bicarbonate or in the form of sesquicarbonate, a hydrate containing both bicarbonate and carbonate.
Other suitable builder salts which may be present include the water-soluble sodium and potassium silicates, carbonates, borates, chlorides and sulfates.
Generally, when present the builder salt is employed in amount in the range of about 20-90%, preferably at least 25%, (e.g. 35 to of the detergent composition.
The composition may also contain polymeric additives such as sodium carboxymethylcellulose or polyvinyl alcohol (e.g. in amount of about 0.1-5 or other polymeric additives to inhibit redeposition of soil. Minor amounts of optical brighteners may be present, as in proportions in the range of about 0.01 to 0.15%; examples of such brighteners are the stilbene brighteners such as sodium-2-sulfo-4-(2-naphtho-1,2 triazole) stilbene; disodium 4,4'-bis (4-anilino-6-morpholino-s-triazin- 2-yl amino) stilbene disulfonate or disodium 4,4'-bis(4,6- dianilino-s-triazin-Zyl-amino) stilbenedisulfonate; and the oxazole brighteners, having for example a l-phenyl-2- benzoxazole ethylene structure. Perfumes, coloring agents and preservatives may also be included.
The activator, enzyme and perborate may be added in powdered form to the detergent composition and mixed therewith, as a dry blending. To improve the stability of the compositions, one or more of these ingredients may be protected from the atmosphere or from contact with the others. For instance, the perborate or the activator or the enzyme or each of them may be encapsulated or agglomerated by means of a coating of a protective material such as polyvinyl alcohol, a long chain fatty acid (e.g. lauric or stearic) or an amide thereof, a paraffin or a water-soluble or water-dispersible polyethylene glycol (e.g. a solid Car'bowax). It is also within the broader scope of the invention to supply separate packets (e.g. in moisture proof wrappings) of these ingredients for addition to the wash water.
The compositions of this invention may be used for washing for short periods, e.g. to 45 minutes, in cool water, e.g. at 80100 F., or in warm or hot water, e.g. at 110, 120, 140, or 160 F., or even at or near the boil. They may also, if desired, be used for long period soaking at room temperature or in hot water, e.g. for soaking several hours or overnight.
The following examples are given to illustrate this invention further. In these examples, as in the rest of the application, all proportions are by weight unless otherwise indicated.
EXAMPLE 1 (A) A detergent composition contains the following ingredients: 10% nonionic detergent consisting of a primary alkanol of an average of 14 to 15 carbon atoms ethoxylated with an average of 11 mols of ethylene oxide per mol of alkanol (Shell Neodol 45-11); anhydrous pentasodium tripolyphosphate (designated TPP below); 5% trisodium nitrilotriacetate monohydrate (designated NTA below); 0.5% sodium carboxymethyl cellulose (designated CMC below); 0.8% of the commercial proteolytic enzyme preparation known as Alcalase; 16% of sodium perborate (NaBO -4H O); 24% of meta-chlorobenzoyldimethylhydantoin (an activator for the perborate); the balance sodium sulfate. In this composition the mol ratio of perborate to activator is about 1:1 (specifically it is 1.121).
The composition is used for the washing of standard cocoa-stained fabrics and standard coffee/tea-stained fabrics at 120 F. for a period of 10 minutes, using 1 gram of the composition per liter of water in a Terg-O- Tometer. The effectiveness of the composition is determined by reflectance readings (R on the fabrics before and after washing, using a Gardner Color Difference Meter for the measurement. The difference in reflectance before and after the washing is reported as AR Cocoa is a proteinaceous substance and cocoastained fabric is a commonly used material for testing the effectiveness of detergents for removing protein stains.
For comparison the same washing tests are made on otherwise identical compositions, (B) containing no enzyme, perborate or activator; (C) containing enzyme, but no perborate or activator; and (D) containing the enzyme plus a commercial bleach yielding hypochlorous ion (specifically a mixture of V5 potassium dichloroisocyanurate (KDCC) and /5 trichloroisocyanu ric acid (TCCA). The results are tabulated below:
Composition, percent:
get
Perborate Activaton...-
The foregoing results show that on addition of the perborate plus activator to the enzyme-containing composition, there is a marked improvement in detergency for the protein stain even in the short washing period of 10 minutes, at a moderate washing temperature. In contrast when another strong oxidizing agent (the chlorine bleach, KDCC-TCCA) is used with the enzyme the protein stain removal effectiveness drops to below even the level obtained for the enzyme-free composition. The activatorperborate-enzyme composition is also highly effective for removal of coffee/tea stain.
EXAMPLE 2 Composition A B Spray dried detergent formulation 1. 5 1. 5
alase 0. 008 Monzyme 0. 002 Sodium perborate 0. 0. 16 Activator of Example 1 0. 248 0. 248
EXAMPLE 3 Examples 2 A and B are repeated except that the spraydried detergent has a diiferent composition and is made in the following manner: In a crutcher there are mixed in the order given 139 parts of water, 213 parts of an aqueous slurry containing about 44% sodium linear tridccylbenzenesulfonate, 109.3 parts of anhydrous sodium sulfate, 4.4 parts of borax, 0.13 par-t of phenolic antioxidant (Iphol 033), 71.4 parts of aqueous sodium silicate of 43.5% concentration (in which the Na O:SiO mol ratio is 122.35), and 157 parts of anhydrous pentasodium tripolyphosphate. The aqueous mixture is spray-dried to give a granular composition of the foregoing ingredients having a total moisture content of about 8 /2 (including water of hydration).
EXAMPLE 4 In this Example there are used compositions as described in Example 1A, except that the activator is (A) 11.9% of tetraacetylethylenediamine or (b) 10.4% tetraacetylhydrazine, or (C) 13.3% triacetylcyanurate. For comparison there are also used compositions (D) containing no activator and (E) containing no activator or perborate.
The compositions are used for the soaking of standard cocoa-stained and standard coffee/tea-stained fabrics, using 1 gram of the composition per liter of water. The water is initially at F. and cools to room temperature (about 76 F.) during the soaking period, which is continued for 18 hours. The test fabrics are removed and dried and the A R values are obtained.
The results are tabulated below:
1 No activator.
These results indicate that the addition of the perborate to an enzyme-containing composition in a soaking test gives poorer results, both for the protein-containing stain and the coifee/ tea stain, than when perborate is absent.
The addition of the activator improves the stain removal not only for the cofiee/ tea stain but also for the protein stain.
A composition prepared as in Example 4A is storagetested by subjecting it for 3 days to a temperature of 120 F. in a sealed container. During this period there is little, if any, undesirable odor developed. Soaking tests with standard cocoa-stained and coifee/tea-stained fabrics give substantially identical results for the composition before the 3 day aging at 120 F. and after such aging.
EXAMPLE Three separate compositions are prepared as in Example 1A, using tetra-acetylethylenediamine (i.e. -N,N,N', N'-tetraacetylethylenediamine) as the activator in each case, with the following other changes:
A. The amount of activator is changed to 11.9% and the amount of TPP is changed to 54.5%
B. The amount of activator is changed to 8.9% and the amount of perborate is changed to 12.0%.
C. The amount of activator is changed to 7.4% and the amount of perborate is changed to 10.0%
EXAMPLE 6 81.8 parts of a spray-dired built detergent formulation are mixed with 0.8 part of Alcalase, 7.4 parts of tetraacetyl ethylenediamine and parts of sodium perborate. The spray-dried formulation contains 10.5% sodium linear tridecylbenzenesulfonate, 51% pentasodium tripolyphosphate, 6% sodium silicate (N a O:S-iO mol ratio 1:2.35), 8.5% sodium chloride, 13% sodium sulfate, 10% moisture (including water of hydration) and about 1% fluorescent brighteners.
The resulting composition is tested, using the washing tests described in Example 1. The results, in terms of AR,,, for the cocoa-stained and colfee-tea-stained fabrics are found to be substantially better than those for the same tests using the same composition except that no perborate or activator is present (these being replaced by an equal weight of sodium sulfate); the latter results are in turn substantially better (in terms of removal of cocoa stain) than when the same composition is used without any enzyme, perborate or activator (these being replaced by an equal weight of sodium sulfate).
The composition is also given a soaking test, as described in Example 4. The results, in terms of AR,,, for the cocoa-stained and coifee/tea-stained fabrics are to be substantially better than those for the same tests using the same composition except that no perborate or activator is present (these being replaced by an equal weight of sodium sulfate); the latter results are in turn substantially better than when the same composition is used without any enzyme, perborate or activator (these being replaced by an equal weight of sodium sulfate). In the same type of soaking test, made after the compositions have been aged for 3 days at 120 F. in sealed containers, at similar superiority for the enzyme-containing composition with perborate plus activator is observed.
5 EXAMPLE 7 Example 1A is repeated, except that the composition contains 100 parts of the detergent of Example 1, 300 parts of the TPP, 50 parts of the NTA, 5 parts of the CMC, 240 parts of the sodium perborate and 371 parts of m-chlorobenzoylsuccinimide as the activator.
methylhydantoin, present in amount of 13.9% (a 1:1 perborate; activator mol-ratio) AR values of .4 (for 10 cocoa-stained fabric) and +6.9 (for colfee/tea-stained fabric) are obtained.
The Alcalase used in the foregoing Examples is characterized as having its maximum proteolytic activity at a pH of 8-9. This activity as measured on the commercial enzyme available from Novo Industri A/ S, Copenhagen, Denmark is about 1.5 Anson Units per gram of the enzyme. The commercial enzyme is a raw extract of Bacillus subtillis culture and contains about 6% of pure crystallized proteolytic material.
The Monzyme used in Example 2 and 3 is a mixture of neutral and alkaline proteases (the neutral protease being present in largest amount) containing amylase also; its supplier, Monsanto Chemical Co., states that its proteolytic activity is about one million units per gram.
In each of the above Examples sodium perborate tetrahydrate is used; other forms of sodium perborate, such as the monohydrate, may be substituted in each case.
The pH of the wash liquor in the foregoing Examples, measured in each case after completion of the washing test, is usually within the range of about 8 to about 9.
While the invention finds its greatest utility when sodium perborate is employed, other perborates (such as LiBO -2H O, LiBOgHzO, KBO /zH O or barium or calcium perborates) may be used in place of all or part of the sodium perborate. Also other agents which convert the normally stable activator into a percarboxylic acid( or salt thereof) in the wash Water may be used in place of the perborate, e.g. percarbonates or perphosphates.
It is within the broader scope of the invention to use a percarboxylic (i.e. peroxycarboxylic) acid, particularly a solid percarboxylic acid, instead of the combination of perborate and activator. Among such percarboxylic acids are the peroxybenzoic acids, particularly those having chloro or nitro substituents (e.g. m-chloroperoxybenzoic acid, as illustrated in Example 6 above, or 2,4-dichloroperoxybenzoic acid). These acids may be protected against deterioration on storage by pelletizing them, preferably with a coating or agglomerating agent such as a low-melting paraffin Wax.
As indicated above, the compositions of the invention containing proteolytic enzymes have given outstanding results. Also, as shown in Examples 2 and 3, a proteolytic enzyme mixed with an amylase (Monzyme) may also be employed. It is within the broader scope of the invention to use other enzymes in place of, or together with, the proteolytic enzymes. Thus, such stain-attacking enzymes as the amylases (such as the microbial amylases) or other carbohydrases (e.g. maltase, saccharase, pectinase, lysozyme, or glycosidases) or the lipsaes such as microbial lipases, pancreatic lipase, plant lipases or gastric lipase may be used. Specifically, in the composition of Example 1A, the Alcalase may be replaced entirely (or partly) Weight-for-Weight by either (a) Novo bacterial amylase concentrate having a strength of 397,000 Novo amylase units per gram or (b) Pfizers Lipase P, a pancreatic lipase having a strength of 250 lipase units per gram.
Especially for use in areas where the water has a relatively high heavy metal content, it may often be desirable to have present a compound acting as a stabilizer against an undesirable type of decomposition of the perborate. Among such compounds are the sodium salts of diethylenetriamine pentaacetic acid, ethylene diamine tetraacetic acid, hydroxyethylethylenediamine triacetic acid or nitrilotriacetic acid. Magnesium silicate may also be present to aid in the stabilizing effect. Minor amounts of these agents, e.g. 5%, 1% or less are effective.
It is to be understood that the foregoing detailed description is merely given by way of illustration and that many variations may be made therein without departing from the spirit of the invention.
What is claimed is:
1. A composition consisting essentially of effective amounts of an inorganic peroxygen compound, an activator for the peroxygen compound and about 0.001% to 4% of a protcolytic enzyme, said activator having a carboxylic acyl group, said peroxygen compound being one which reacts with said activator to form the corresponding percarboxylic acid on addition of said composition to wash water, said activator being present in amount effective to so convert said peroxygen compound and thereby increase the bleaching effect of said peroxygen compound on coffee/tea stains, said composition being adapted to be added to aqueous wash water in an amount sufiicient to provide about 1 to 40 p.p.m. of available oxygen to the wash water.
2. A composition as in Claim 1 in which the inorganic peroxygen compound is sodium perborate and the activator is selected from the group consisting of a carboxylic ester activator, a carboxylic anhydride activator and a carboxylic acyl amide activator.
3. A composition as in Claim 2 in which the activator is a benzoyl compound.
4. A composition as in Claim 3 in which the activator is meta-chlorobenzoyl dimethylhydantoin.
5. A composition as in Claim 2 in which the activator is a polyacyl amide.
6. A composition as in Claim 5 in which the activator is a polyacyl amide having a pair of carboxylic acyl groups on a single nitrogen atom.
7. A composition as in Claim 6 in which the acyl groups are acetyl.
8. A composition as in Claim 7 in which the activator is N,N,N,N-tetra-acetylethylenediamine.
9. A composition as in Claim 1 containing an organic surface-active detergent.
10. A composition as in Claim 1 containing a builder salt.
11. A composition as in Claim 1 containing pentasodium tripolyphosphate and sodium nitrilotriacetate.
References Cited UNITED STATES PATENTS 2,152,520 3/1939 Lind 25299 2,287,064 6/1942 Reichert et a1. 252186 2,898,181 8/1959 Dithmar et a1 25299 X 3,061,550 10/ 1962 Baeusky 8111 X 3,163,606 12/1964 Viveen 25299 3,183,266 5/1965 Matzncr 25297 X 3,425,786 2/1969 Dithmar 81 11 3,637,339 1/1972 Gray 8111 MAYER WEINBLATT, Primary Examiner US. Cl. X.R.

Claims (1)

1. A COMPOSITON CONSISTING ESSENTIALLY OF EFFECTIVE AOUNTS OF AN INORGAIC PEROXYGEN COMPOUND, AN ACTIVATOR FOR THE PEROXYGEN COMPOUND AND ABOUT 0.001% TO 4% OF A PROTEOLYTIC ENZYME, SAID ACTIVATOR HAVING A CARBOXYLIC ACRYL GROUP, SAID PEROXYGEN COMPOUND BEING ONE WHICH REACTS WITH SAID ACTIVATOR TO FORM THE CORRESPONDING PERCARBOXYLIC ACID ON ADDITION OF SAID COMPOSITION TO WASH WATER, SAID ACTIVATOR BEING PRESENT IN AMOUNT EFFECTIVE TO SO CONVERT SAID PEROXYGEN COMPOUND AND THEREBY INCREASE THE BLEACHING EFFECT TO SAID PEROXYGEN COMPOUND ON COFFEE/TEA STAINS, SAID COMPOSITION BEING ADAPTED TO BE ADDED TO AQUEOUS WASH WATER IN AN AMOUNT SUFFICIENT TO PROVIDE ABOUT 1 TO 40 P.P.M. OF AVAILABLE OXYGEN TO THE WASH WATER.
US00164463A 1968-03-07 1971-07-20 Stain removal Expired - Lifetime US3840466A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US726571A US3637339A (en) 1968-03-07 1968-05-03 Stain removal
DE19691908905 DE1908905A1 (en) 1968-03-07 1969-02-22
CA044,053A CA943891A (en) 1968-03-07 1969-02-26 Stain removal
CH299069A CH506617A (en) 1968-03-07 1969-02-27 Stain removers and detergents
FR6905074A FR2003378A1 (en) 1968-03-07 1969-02-27
GB1226493D GB1226493A (en) 1968-03-07 1969-03-03
BE729544D BE729544A (en) 1968-03-07 1969-03-07
NL6903616A NL6903616A (en) 1968-03-07 1969-03-07
US00829104A US3714050A (en) 1968-03-07 1969-05-29 Stain removal
US00164463A US3840466A (en) 1968-03-07 1971-07-20 Stain removal
NL7309965A NL7309965A (en) 1968-03-07 1973-07-17
NL7309966A NL7309966A (en) 1968-03-07 1973-07-17

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US71120368A 1968-03-07 1968-03-07
US72657168A 1968-05-03 1968-05-03
US82910469A 1969-05-29 1969-05-29
US00164463A US3840466A (en) 1968-03-07 1971-07-20 Stain removal

Publications (1)

Publication Number Publication Date
US3840466A true US3840466A (en) 1974-10-08

Family

ID=27496600

Family Applications (3)

Application Number Title Priority Date Filing Date
US726571A Expired - Lifetime US3637339A (en) 1968-03-07 1968-05-03 Stain removal
US00829104A Expired - Lifetime US3714050A (en) 1968-03-07 1969-05-29 Stain removal
US00164463A Expired - Lifetime US3840466A (en) 1968-03-07 1971-07-20 Stain removal

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US726571A Expired - Lifetime US3637339A (en) 1968-03-07 1968-05-03 Stain removal
US00829104A Expired - Lifetime US3714050A (en) 1968-03-07 1969-05-29 Stain removal

Country Status (8)

Country Link
US (3) US3637339A (en)
BE (1) BE729544A (en)
CA (1) CA943891A (en)
CH (1) CH506617A (en)
DE (1) DE1908905A1 (en)
FR (1) FR2003378A1 (en)
GB (1) GB1226493A (en)
NL (3) NL6903616A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901819A (en) * 1972-09-14 1975-08-26 Kao Corp Compositions for activating an inorganic peroxide bleaching agent
US3986974A (en) * 1975-11-25 1976-10-19 American Cyanamid Company Aroyl-n-hydroxyformimidoyl halides as bleach activators
US4016090A (en) * 1974-03-06 1977-04-05 Kao Soap Co., Ltd. Stable bleaching composition
US4115060A (en) * 1977-10-03 1978-09-19 Fmc Corporation N-sulfonylimidazoles as peroxygen activators
US4115058A (en) * 1977-10-03 1978-09-19 Fmc Corporation Aromatic sulfonic anhydrides as peroxygen activators
US4120809A (en) * 1973-07-24 1978-10-17 Colgate-Palmolive Company Washing and bleaching with composition containing bleach activator and a nitrilotricarboxylic acid compound
EP0094656A3 (en) * 1982-05-19 1984-04-04 Hoechst Aktiengesellschaft Process for simultaneously desizing and bleaching textile materials made of cellulosic fibres
FR2535749A1 (en) * 1982-10-04 1984-05-11 Colgate Palmolive Co WHITENING AND WASHING COMPOSITION BASED ON PEROXYACID
US4525292A (en) * 1983-03-07 1985-06-25 Cushman Mark E Bleaching detergent compositions comprising sulfosuccinate bleach promoters
US4863626A (en) * 1985-08-21 1989-09-05 The Clorox Company Encapsulated enzyme in dry bleach composition
US4906399A (en) * 1988-08-19 1990-03-06 Dow Corning Corporation Organosilicon oxygen bleach activator compositions
US4957647A (en) * 1986-11-06 1990-09-18 The Clorox Company Acyloxynitrogen peracid precursors
US4966723A (en) * 1988-02-11 1990-10-30 Bp Chemicals Limited Bleach activators in detergent compositions
US4973418A (en) * 1988-02-11 1990-11-27 Bp Chemicals Limited Nitrogen-containing anhydrides as bleach activators in detergent compositions
US5089167A (en) * 1985-08-21 1992-02-18 The Clorox Company Stable peracid bleaching compositions: organic peracid, magnesium sulfate and controlled amounts of water
US5093021A (en) * 1985-08-21 1992-03-03 The Clorox Company Encapsulated enzyme in dry bleach composition
US5130045A (en) * 1987-10-30 1992-07-14 The Clorox Company Delayed onset active oxygen bleach composition
US5167854A (en) * 1985-08-21 1992-12-01 The Clorox Company Encapsulated enzyme in dry bleach composition
US5234616A (en) * 1987-10-30 1993-08-10 The Clorox Company Method of laundering clothes using a delayed onset active oxygen bleach composition
US5254287A (en) * 1985-08-21 1993-10-19 The Clorox Company Encapsulated enzyme in dry bleach composition
US5328634A (en) * 1986-11-06 1994-07-12 The Clorox Company Acyloxynitrogen peracid precursors
US5364554A (en) * 1986-06-09 1994-11-15 The Clorox Company Proteolytic perhydrolysis system and method of use for bleaching
WO1995029225A1 (en) * 1994-04-22 1995-11-02 The Procter & Gamble Company Bleach compositions comprising protease enzyme
US5654269A (en) * 1994-08-25 1997-08-05 Degussa Aktiengesellschaft Activators for inorganic peroxo compounds and agents containing them
US20030165674A1 (en) * 1996-12-04 2003-09-04 Novozymes North America, Inc. Alkaline enzyme scouring of cotton textiles
US20060035367A1 (en) * 1997-12-30 2006-02-16 Estell David A Proteases from gram positive organisms
FR2880623A1 (en) * 2005-01-11 2006-07-14 Ceetal Sa Sa Lab SOLID, DIVIDED, STABLE COMPOSITION COMPRISING PHMBG AND OXYGEN RELEASE FOR TREATING WATER

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982891A (en) * 1967-10-24 1976-09-28 Colgate-Palmolive Company Bleaching and detergent compositions having imide activator and peroxygen bleach
DK128287A (en) * 1967-10-24
US4003700A (en) * 1970-05-01 1977-01-18 Colgate-Palmolive Company Cleaning fabrics
GB1355795A (en) * 1970-05-01 1974-06-05 Colgate Palmolive Co Process and composition for cleaning fabrics
DE2060762A1 (en) * 1970-12-10 1972-06-22 Henkel & Cie Gmbh Preparations for the production of cold bleach liquors, in particular washing liquors with a cold bleaching effect
US4009113A (en) * 1971-04-30 1977-02-22 Lever Brothers Company Protection of materials
US3894960A (en) * 1972-05-22 1975-07-15 Colgate Palmolive Co Activated peroxygen detergent
AT326611B (en) * 1972-07-31 1975-12-29 Henkel & Cie Gmbh BLEACHING AID SUITABLE AS A COMPONENT OF POWDERED DETERGENTS AND BLEACHING AGENTS
US3974082A (en) * 1972-08-21 1976-08-10 Colgate-Palmolive Company Bleaching compositions
BE789286A (en) * 1972-09-14 1973-01-15 Tukovy Prumysl Oborone Reditel DETERGENT PRODUCT CONTAINING A TENSIO-ACTIVE AGENT WITH ACTIVATION FACULTIES.
DE2422691A1 (en) * 1973-05-14 1974-12-05 Procter & Gamble STABLE BLEACHING AGENTS
US4300897A (en) * 1973-08-24 1981-11-17 Colgate-Palmolive Company Method for bleaching with peroxymonosulfate-based compositions
DE2413561A1 (en) * 1974-03-21 1975-10-02 Henkel & Cie Gmbh STORAGE-RESISTANT, EASILY-RELEASE DETERGENT ADDITIVE AND METHOD FOR MANUFACTURING IT
US4169805A (en) * 1977-10-03 1979-10-02 Fmc Corporation Sulfonic anhydrides as peroxygen activators
FR2454477A1 (en) * 1979-04-20 1980-11-14 Unilever Nv BLEACHING PRODUCTS CONTAINING PERCOMPOSE AND THEIR USE FOR BLEACHING TISSUES
GR75249B (en) * 1980-05-10 1984-07-13 Procter & Gamble
US4405482A (en) * 1980-09-01 1983-09-20 Richardson-Vicks Pty. Limited Sanitizing formulation
FI67092C (en) 1980-12-09 1985-01-10 Unilever Nv BLEKNINGSAKTIVATOR-KORN AVSEDDA FOER TVAETT- OCH / ELLER BLEKNINGSBLANDNINGAR
US4489574A (en) * 1981-11-10 1984-12-25 The Procter & Gamble Company Apparatus for highly efficient laundering of textiles
DE3264685D1 (en) * 1981-11-13 1985-08-14 Unilever Nv Enzymatic liquid cleaning composition
US4443352A (en) * 1982-03-04 1984-04-17 Colgate-Palmolive Company Silicate-free bleaching and laundering composition
US4430244A (en) 1982-03-04 1984-02-07 Colgate-Palmolive Company Silicate-free bleaching and laundering composition
FR2535341B1 (en) * 1982-10-29 1986-08-14 Ugine Kuhlmann LAUNDRY COMPOSITION FOR LOW TEMPERATURE LAUNDRY AND CLEANING OF PROTEIN FOULS
GB8321923D0 (en) * 1983-08-15 1983-09-14 Unilever Plc Machine-dishwashing compositions
GB8321924D0 (en) * 1983-08-15 1983-09-14 Unilever Plc Enzymatic machine-dishwashing compositions
US4483778A (en) * 1983-12-22 1984-11-20 The Procter & Gamble Company Peroxygen bleach activators and bleaching compositions
US4486327A (en) * 1983-12-22 1984-12-04 The Procter & Gamble Company Bodies containing stabilized bleach activators
US4539130A (en) * 1983-12-22 1985-09-03 The Procter & Gamble Company Peroxygen bleach activators and bleaching compositions
US4678594A (en) * 1985-07-19 1987-07-07 Colgate-Palmolive Company Method of encapsulating a bleach and activator therefor in a binder
USRE32672E (en) * 1985-09-09 1988-05-24 Allergan, Inc. Method for simultaneously cleaning and disinfecting contact lenses using a mixture of peroxide and proteolytic enzyme
AU603101B2 (en) * 1986-06-09 1990-11-08 Clorox Company, The Enzymatic perhydrolysis system and method of use for bleaching
US5296161A (en) * 1986-06-09 1994-03-22 The Clorox Company Enzymatic perhydrolysis system and method of use for bleaching
US5049305A (en) * 1986-11-06 1991-09-17 Zielske Alfred G Phenoxyacetate peracid precursors and perhydrolysis systems therewith
US4859800A (en) * 1986-11-06 1989-08-22 The Clorox Company Phenoxyacetate peracid precursors
US4956117A (en) * 1986-11-06 1990-09-11 The Clorox Company Phenoxyacetate peracid precursors and perhydrolysis systems therewith
GB8900525D0 (en) * 1989-01-10 1989-03-08 Procter & Gamble Liquid detergent composition containing enzyme and enzyme stabilization system
US5232620A (en) * 1991-02-28 1993-08-03 Fmc Corporation Sodium tripolyphosphate composition and method of producing it
EP0596185A1 (en) * 1992-11-06 1994-05-11 The Procter & Gamble Company Stable liquid detergent compositions inhibiting dye transfer
US5783548A (en) * 1992-11-06 1998-07-21 The Procter & Gamble Company Stable liquid detergent compositions inhibiting dye transfer
US5302375A (en) * 1992-11-19 1994-04-12 Colgate-Palmolive Company Oral composition having improved tooth whitening effect
CA2161214C (en) * 1993-05-20 2000-06-27 Alan David Willey Bleaching compounds comprising substituted benzoyl caprolactam bleach activators
US5753138A (en) * 1993-06-24 1998-05-19 The Procter & Gamble Company Bleaching detergent compositions comprising bleach activators effective at low perhydroxyl concentrations
US5635104A (en) 1993-06-24 1997-06-03 The Procter & Gamble Company Bleaching solutions and method utilizing selected bleach activators effective at low perhydroxyl concentrations
CN1138346A (en) 1993-12-21 1996-12-18 普罗格特-甘布尔公司 Detergent compositions containing percarbonate and amylase
US5804543A (en) * 1994-10-11 1998-09-08 The Procter & Gamble Company Detergent compositions with optimized surfactant systems to provide dye transfer inhibition benefits
US5635103A (en) 1995-01-20 1997-06-03 The Procter & Gamble Company Bleaching compositions and additives comprising bleach activators having alpha-modified lactam leaving-groups
US5629278A (en) * 1995-09-18 1997-05-13 The Proctor & Gamble Company Detergent compositions
US5879409A (en) * 1996-02-23 1999-03-09 The Procter & Gamble Company Bleach additive and bleaching compositions having glycine anhydride activators
WO1998045395A1 (en) * 1997-04-04 1998-10-15 The Procter & Gamble Company Low sudsing granular detergent composition containing optimally selected levels of a foam control agent and enzymes
US6448062B1 (en) 1998-10-30 2002-09-10 Metrex Research Corporation Simultaneous cleaning and decontaminating compositions and methods
US6331515B1 (en) * 2001-08-06 2001-12-18 Colgate-Palmolive Co. Color changing liquid cleaning composition comprising red dyes
DE102004030900A1 (en) * 2004-06-25 2006-01-26 Henkel Kgaa Preparation of particulate peroxycarboxylic acid compositions
EP2383329A1 (en) * 2010-04-23 2011-11-02 The Procter & Gamble Company Particle
AP2013007092A0 (en) 2011-02-01 2013-09-30 Maharshi Dayanand University Polyvinyl chloride surface co-immobilized with enzymes and uses thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT259902A (en) * 1927-05-19
GB443731A (en) * 1934-08-22 1936-03-02 Henkel & Cie Gmbh Improvements in or relating to bleaching, washing, and cleansing agents, particularly for use in water containing iron
US2287064A (en) * 1940-05-01 1942-06-23 Du Pont Stable dry compositions useful as bleaching and oxidizing agents
CH231047A (en) * 1942-12-02 1944-02-29 Beard Pierre Product for laundering and method of preparing this product.
DE1010048B (en) * 1953-05-20 1957-06-13 Degussa Process for washing fibrous materials or textile goods
NL220338A (en) * 1956-09-03
US3061550A (en) * 1959-05-11 1962-10-30 Du Pont Textile bleaching composition
NL97449C (en) * 1959-06-19
US3183266A (en) * 1962-07-18 1965-05-11 Monsanto Co Sulfonamide compouunds
CA783079A (en) * 1965-06-09 1968-04-16 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Agent for the bleaching and washing of textiles
FR1544393A (en) * 1966-11-14 1968-10-31 Unilever Nv Detergent compositions
GB1204123A (en) * 1966-11-29 1970-09-03 Unilever Ltd Detergent composition
NL137346C (en) * 1966-12-19
DK130474A (en) * 1967-12-30

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901819A (en) * 1972-09-14 1975-08-26 Kao Corp Compositions for activating an inorganic peroxide bleaching agent
US4120809A (en) * 1973-07-24 1978-10-17 Colgate-Palmolive Company Washing and bleaching with composition containing bleach activator and a nitrilotricarboxylic acid compound
US4016090A (en) * 1974-03-06 1977-04-05 Kao Soap Co., Ltd. Stable bleaching composition
US3986974A (en) * 1975-11-25 1976-10-19 American Cyanamid Company Aroyl-n-hydroxyformimidoyl halides as bleach activators
US4115060A (en) * 1977-10-03 1978-09-19 Fmc Corporation N-sulfonylimidazoles as peroxygen activators
US4115058A (en) * 1977-10-03 1978-09-19 Fmc Corporation Aromatic sulfonic anhydrides as peroxygen activators
FR2404698A1 (en) * 1977-10-03 1979-04-27 Fmc Corp PEROXYGEN BLEACHING AGENTS CONTAINING N-SULFONYLIMIDAZOLE
EP0094656A3 (en) * 1982-05-19 1984-04-04 Hoechst Aktiengesellschaft Process for simultaneously desizing and bleaching textile materials made of cellulosic fibres
US4539007A (en) * 1982-05-19 1985-09-03 Hoechst Aktiengesellschaft Process for the simultaneous desizing and bleaching of textile material made from cellulose fibers
FR2535749A1 (en) * 1982-10-04 1984-05-11 Colgate Palmolive Co WHITENING AND WASHING COMPOSITION BASED ON PEROXYACID
US4525292A (en) * 1983-03-07 1985-06-25 Cushman Mark E Bleaching detergent compositions comprising sulfosuccinate bleach promoters
US5089167A (en) * 1985-08-21 1992-02-18 The Clorox Company Stable peracid bleaching compositions: organic peracid, magnesium sulfate and controlled amounts of water
US5093021A (en) * 1985-08-21 1992-03-03 The Clorox Company Encapsulated enzyme in dry bleach composition
US5254287A (en) * 1985-08-21 1993-10-19 The Clorox Company Encapsulated enzyme in dry bleach composition
US5167854A (en) * 1985-08-21 1992-12-01 The Clorox Company Encapsulated enzyme in dry bleach composition
US4863626A (en) * 1985-08-21 1989-09-05 The Clorox Company Encapsulated enzyme in dry bleach composition
US5364554A (en) * 1986-06-09 1994-11-15 The Clorox Company Proteolytic perhydrolysis system and method of use for bleaching
US5328634A (en) * 1986-11-06 1994-07-12 The Clorox Company Acyloxynitrogen peracid precursors
US4957647A (en) * 1986-11-06 1990-09-18 The Clorox Company Acyloxynitrogen peracid precursors
US5380457A (en) * 1986-11-06 1995-01-10 The Clorox Company Acyloxynitrogen peracid precursors
US5234616A (en) * 1987-10-30 1993-08-10 The Clorox Company Method of laundering clothes using a delayed onset active oxygen bleach composition
US5130045A (en) * 1987-10-30 1992-07-14 The Clorox Company Delayed onset active oxygen bleach composition
US4966723A (en) * 1988-02-11 1990-10-30 Bp Chemicals Limited Bleach activators in detergent compositions
US4973418A (en) * 1988-02-11 1990-11-27 Bp Chemicals Limited Nitrogen-containing anhydrides as bleach activators in detergent compositions
US4906399A (en) * 1988-08-19 1990-03-06 Dow Corning Corporation Organosilicon oxygen bleach activator compositions
WO1995029225A1 (en) * 1994-04-22 1995-11-02 The Procter & Gamble Company Bleach compositions comprising protease enzyme
US5654269A (en) * 1994-08-25 1997-08-05 Degussa Aktiengesellschaft Activators for inorganic peroxo compounds and agents containing them
US20030165674A1 (en) * 1996-12-04 2003-09-04 Novozymes North America, Inc. Alkaline enzyme scouring of cotton textiles
US20060035367A1 (en) * 1997-12-30 2006-02-16 Estell David A Proteases from gram positive organisms
US7033817B2 (en) 1997-12-30 2006-04-25 Genencor International, Inc. Proteases from gram positive organisms
FR2880623A1 (en) * 2005-01-11 2006-07-14 Ceetal Sa Sa Lab SOLID, DIVIDED, STABLE COMPOSITION COMPRISING PHMBG AND OXYGEN RELEASE FOR TREATING WATER
WO2006075091A1 (en) * 2005-01-11 2006-07-20 Laboratoires Ceetal S.A. Solid dispersed stable composition comprising phmbg and an oxygenating agent for the treatment of water

Also Published As

Publication number Publication date
NL6903616A (en) 1969-09-09
NL7309966A (en) 1973-09-25
US3637339A (en) 1972-01-25
NL7309965A (en) 1973-09-25
BE729544A (en) 1969-08-18
CH506617A (en) 1971-04-30
DE1908905A1 (en) 1969-11-27
CA943891A (en) 1974-03-19
US3714050A (en) 1973-01-30
GB1226493A (en) 1971-03-31
FR2003378A1 (en) 1969-11-07

Similar Documents

Publication Publication Date Title
US3840466A (en) Stain removal
EP0135227B1 (en) Machine-dishwashing compositions
EP0135226B1 (en) Enzymatic machine-dishwashing compositions
CA1231653A (en) Bleaching and cleaning composition
US3962149A (en) Non-phosphate spray dried detergents containing dicarboxylic acid salts
US3769224A (en) Effervescent granules
US3969257A (en) Washing and bleaching composition containing bleach, activator and a nitrilotricarboxylic acid compound
US3650962A (en) Washing bleaching and cleansing agents containing poly-(n-acetic acid)-ethyleneimines
GB2139260A (en) Bleaching and cleaning composition
US3650967A (en) Enzymatic granules
US3751222A (en) A process of cleaning cloth
US3753915A (en) Biological cleaning preparation
EP2931864B1 (en) Cleaning composition
US3725289A (en) Stain removing composition
US5858952A (en) Enzyme-containing granulated product method of preparation and compositions containing the granulated product
KR970001229B1 (en) Water insoluble encapsulated enzymes protected against deactivation by halogen bleaches
US3931034A (en) Detergent materials containing enzymes
US3640874A (en) Bleaching and detergent compositions
US3789001A (en) Detergent containing enzyme and coarse perborate particles
US3732170A (en) Bio-soaking performances
US5755993A (en) Peroxygen bleach composition activated by piperidone derivatives
US3781228A (en) Laundry product containing enzyme
US20020147123A1 (en) Catalase as an oxidative stabilizer in solid particles and granules
US4167487A (en) Aromatic activator
US3627683A (en) Detergent composition