US3851861A - Ultrasonic cleaning device with temperature responsive cut-off - Google Patents

Ultrasonic cleaning device with temperature responsive cut-off Download PDF

Info

Publication number
US3851861A
US3851861A US00398437A US39843773A US3851861A US 3851861 A US3851861 A US 3851861A US 00398437 A US00398437 A US 00398437A US 39843773 A US39843773 A US 39843773A US 3851861 A US3851861 A US 3851861A
Authority
US
United States
Prior art keywords
receptacle
heat
temperature
switch
ultrasonic cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00398437A
Inventor
M Cummins
R Best
T Hankins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THURMAN Manufacturing Co
Original Assignee
THURMAN Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THURMAN Manufacturing Co filed Critical THURMAN Manufacturing Co
Priority to US00398437A priority Critical patent/US3851861A/en
Application granted granted Critical
Publication of US3851861A publication Critical patent/US3851861A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L12/00Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor
    • A61L12/02Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor using physical phenomena, e.g. electricity, ultrasonics or ultrafiltration
    • A61L12/026Ultrasounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S134/00Cleaning and liquid contact with solids
    • Y10S134/901Contact lens

Definitions

  • a receptacle for the articles to be cleaned is provided with a heat conducting collar having two outwardly directed wings.
  • a transistor is secured to one wing and a temperature responsive switch is secured to the other.
  • a piezoelectric crystal is secured to the bottom of the receptacle between the wings.
  • a receptacle for the articles to be cleaned is provided with a heat conducting collar having two outwardly directed wings.
  • a transistor is secured to one wing and a temperature responsive switch is secured to the other.
  • a piezoelectric crystal is secured to the bottom of the receptacle between the wings.
  • the predetermined cut-off temperature preferably lies in the range of 70 to 80C, the currently favored cutoff temperature is 75C.
  • the typical new pair of soft contact lenses cleansed in accordance with the present invention up to a cut-off temperature in that range are with an electrical insulator and-providing the floor 16' -vate pushbutton 32 which energizes relay coil 70 and through resister 68, diode 67, and normally closed contacts of the temperature responsive switch relay contacts 68 close which maintain current to relay coil 70 even after pushbutton 32 is released; after heating to a preselected temperature, contacts 30 of temperature responsive switch open deenergizing relay 70 which open relay contacts 69 thus removing power from the entire unit.
  • the switch 30 is one which will remain closed until itreceives a signal that heating to a preselected temperature has been reached.
  • a suitable switch is identified by manufacturer and model number as follows:
  • FIG. 1 is a longitudinal, vertical sectional view of the device
  • FIG. 2 is a transverse horizontal, fragmentary sectional view on the line 22 of FIG. 1;
  • FIG. 3 is a typical schematic diagram of the electronic components and circuiting of the device..
  • the ultrasonic cleaning. device 10 for small articles such as soft contact lenses includes a housing 12 shown including a first portion 14 made of aluminum coated.
  • the switch may be one which is pre-set to deactivate at sensation of a factory-decided temperature; more than one such pre-set switch may provided pre-set to deactivate at a corresponding variety of factorydecided temperatures, or a variable cut-off temperature model of switch may be used, if it is selected to provide for effective cleansing at its lowest cut-off temperature and for substantially nondestructive cleansing at its highest temperature, for the typical aritcles intended to be cleaned.
  • the device may be plugged into a normal residential electrical outlet; the input to the crystal 40 is typically 318 k.c., 130 v., 10 m.a.
  • An operating frequency of 250 to 350 khz. is preferred for the device illustrated.
  • the frequency at which the device operates most effectively is that frequency where mechanical resonance is achieved.
  • the mechanical resonance is that of the assembly comprising the beaker, the heat sink which is cemented to the beaker, the crystal which is cemented to the beaker, and the components which are attached to the heat sink as well as the fluid in the beaker, all of which comprise a mass which has a frequency of mechanical resonance.
  • the circuitry may be adapted to produce a comparable input where the distributed electric power is different or to provide an altered input where a crystal having
  • the cleansing receptacle 46 is preferably glass, and preferably made of laboratory glassware that can withstand heat shock and mechanical shock.
  • a Pyrex" beaker, ml. size, is very acceptable. The dimensions of such a beaker are about 28 mm. O.D.; about 40 mm. height and about 0.05 inch wall thickness.
  • the receptacle 46 is disposed in the opening 42 so that most of the receptacle lies within the housing.
  • the receptacle is secured near its mouth to the housing perimetrally of the opening 42 by means such as epoxy resin.
  • the piezoelectric crystal 40 is secured on the bottom of the receptacle 46 using means such as epoxy resin 50.
  • annular collar 48 of heat conducting material such as brass is secured by e.g. epoxy resin 50 the exterior of the side wall 52 of the receptacle 46 so that it closely circumferentially surrounds the receptacle.
  • the collar 48 is shown having two integral wings 54, 56. Although these are depicted being a pair of diametrically oppositely directed tabs, they need neither be so correspondingly sized nor oriented in order to provide the functions they are called to provide.
  • Electrically operated heat producing means such as a transistor 63 is mounted on the wing 54 of the collar 48.
  • the temperature sensing means 60 for the switch 30 is disposed on the other wing, 56, and communicated to the switch 30 at 62.
  • a cover 64 removably surmounts the upper end of the receptacle. It is shown having locater tabs which depend slightly into the receptacle in slight engagement with the inner peripheral surface of the sidewall of the receptacle.
  • the cover is of sufficient weight that it is kept in place by gravity during use of device, although the device could be operated successfully with the cover off. In the latter instance, some fluid loss might occur.
  • the lenses could be placed directly in the cleaning solution S within the receptacle, it is recommended that they be cleaned while disposed in an openwork, i.e.foraminous container, typically one C made of molded plastic.
  • a container is currently supplied with its soft contact lenses by one or more suppliers of soft contact lenses.
  • the container C has two hinged doors 66, one on each side, each removably closing a compartment in which one lens may be placed.
  • the compartments are marked clearly to make it difficult to place the wearers left lens in the compartment marked for receipt of his right lens, and vice versa.
  • the device 10 could be used to clean other heat sensitive articles, however, it is especially well suited to clean soft contact lenses.
  • the way the receptacle, heat sink and the housing are put together minimizes the prospect that the device will be used improperly, or idly tampered with.
  • the design allows the device 10 to be made so inexpensively and so durably that is has a good potential for being successfully mass marketed. All the user has to do is place his or her lenses in a familiar container, place cleansing solution in the receptacle, place the container in the receptacle, replace the cover and actuate the knob 32 to close the switch 30.
  • the crystal 40 produces ultrasonic vibrations in the cleansing solution, heat is produced by the transistor 63 and,
  • the switch 30 automatically opens. Because of the heat losses, in the typical example depicted, when the lenses have reached a desired cut-off temperature C. in the ultrasonically vibrating cleansing solution, the sensor 60 has sensed a cutoff temperature of 75,
  • a low-powered indicator light may be provided on the front of the device and wired into the circuitry 38 to be lit'so long as the switch 30 remains closed, as a visible indication that the device 10 is operating.
  • Accessory elements may be provided.
  • the circuit '38 may be provided witha timer cut-off the cleansing operation after a preselected time, i.e. as a safety featureto ensure that an unattended device 10 does not inadvertently run for too long a time.
  • An ultrasonic cleaning device comprising:
  • a heat sensor communicated to the collar means distally of the heat producing means so that heat conducted by the collar means during operation of the crystal to produce ultrasonic vibrations in the cleansing fluid eventually raises the temperature sensed by the heat sensor to a predetermined cutoff temperature;
  • the ultrasonic cleaning device of claim 1 wherein the heat producing means is constituted by a transistor. 3. The ultrasonic cleaning device of claim 1 wherein the switch is constructed to deactuate when the temperature sensed by the heat sensor correlates to a temperature of 70 to C. reached in the cleansing fluid in the receptacle.

Abstract

A receptacle for the articles to be cleaned is provided with a heat conducting collar having two outwardly directed wings. A transistor is secured to one wing and a temperature responsive switch is secured to the other. A piezoelectric crystal is secured to the bottom of the receptacle between the wings. As the articles are being cleaned, the temperature rises along the collar from heating of the transistor wing. when the temperature rise propagating to the sensor wing reaches a predetermined value, the switch means shuts-off the device.

Description

United States Patent 1 Cummins et al.
[451 Dec. 3, 1974 ULTRASONIC CLEANING DEVICE WITH TEMPERATURE RESPONSIVE CUT-OF F Inventors: Millard M. Cummins; Robert G.
Best; Thomas Hankins, all of Columbus, Ohio Assignee:
Columbus, Ohio' Filed: Sept. 18, 1973 Appl. No.: 398,437
US. Cl 259/72, 219/311, 219/328, 259/D1G. 44, 259/D1G. 18 Int. Cl. B01f 11/02, 1301f 15/06 Field of Search 259/72, DIG. 41, DIG. 44, I
259/D1G. l8; 134/1, 184; 219/311, 328
References Cited UNITED STATES PATENTS Jacke 259/D1G. 44
Thurman Manufacturing Company,
Cummins 134/184 X Waterloo 259/D1G. 18 X Primary Examiner-Harvey C. Hornsby Assistant ExaminerAlan Cantor Attorney, Agent, or FirmCushman, Darby & Cushman [5 7 ABSTRACT A receptacle for the articles to be cleaned is provided with a heat conducting collar having two outwardly directed wings. A transistor is secured to one wing and a temperature responsive switch is secured to the other. A piezoelectric crystal is secured to the bottom of the receptacle between the wings. As the'articles are being cleaned, the temperature rises along the collar from heating of the transistor wing. when the tem perature rise propagating to the sensor wing reaches a predetermined value, the switch means shuts-off the device.
3 Claims, 3 Drawing Figures ULTRASONIC CLEANING DEVICE WITH TEMPERATURE RESPONSIVE CUT-OFF BACKGROUND OF THE INVENTION The present invention is an outgrowth of the invention disclosed in Cummins, Hankins, Best and Biesecker, U.S. Pat. No. 3,720,402, issued Mar. l3, 1973. The prior'art considered and mentioned in that patent are among the background of the present invention.
When soft contact lenses were first developed and marketed, some could be damaged when heated to above 70C. Heating is believed to be a key to more efficacious aseptization of the lenses, so the lenses as currently formulated can be heated to about 70C. while being cleansed. This has enhanced the advantageousness of ultrasonic cleaning of such lenses; if the temperature of the cleansing solution is permitted to rise to 70 to 75, the typical cleansing time may be correspondingly shortened to to 30 minutes. For mobile people, what can be done most quickly is more likely to get done; Accordingly, the improvement repre 'sented in the present invention can foster better personal care by wearers of soft contact lenses.
SUMMARY OF THE PRESENT INVENTION A receptacle for the articles to be cleaned is provided with a heat conducting collar having two outwardly directed wings. A transistor is secured to one wing and a temperature responsive switch is secured to the other. A piezoelectric crystal is secured to the bottom of the receptacle between the wings. As the articles are being cleaned, the temperature rises along the collar from heating of the transistor wing. When the temperature rise propagating'to the sensor wing reaches a predetermined value, the switch means shuts-off the device.
When used as a cleaner-aseptizer for soft contact lenses, the predetermined cut-off temperature preferably lies in the range of 70 to 80C, the currently favored cutoff temperature is 75C. In equipment of the type and size illustrated, the typical new pair of soft contact lenses cleansed in accordance with the present invention, up to a cut-off temperature in that range are with an electrical insulator and-providing the floor 16' -vate pushbutton 32 which energizes relay coil 70 and through resister 68, diode 67, and normally closed contacts of the temperature responsive switch relay contacts 68 close which maintain current to relay coil 70 even after pushbutton 32 is released; after heating to a preselected temperature, contacts 30 of temperature responsive switch open deenergizing relay 70 which open relay contacts 69 thus removing power from the entire unit. The switch 30 is one which will remain closed until itreceives a signal that heating to a preselected temperature has been reached. A suitable switch is identified by manufacturer and model number as follows:
Switchcraft, type 951.
effectively cleansed to an again safe to wear condition BRIEF DESCRIPTION OF THE DRAWING IN THE DRAWING:
FIG. 1 is a longitudinal, vertical sectional view of the device; v
FIG. 2 is a transverse horizontal, fragmentary sectional view on the line 22 of FIG. 1; and
FIG. 3 is a typical schematic diagram of the electronic components and circuiting of the device..
DETAILED DISCUSSION OF THE "PRESENTLY PREFERRED EMBODIMENT OF THE INVENTION The ultrasonic cleaning. device 10 for small articles such as soft contact lenses includes a housing 12 shown including a first portion 14 made of aluminum coated.
The switch may be one which is pre-set to deactivate at sensation of a factory-decided temperature; more than one such pre-set switch may provided pre-set to deactivate at a corresponding variety of factorydecided temperatures, or a variable cut-off temperature model of switch may be used, if it is selected to provide for effective cleansing at its lowest cut-off temperature and for substantially nondestructive cleansing at its highest temperature, for the typical aritcles intended to be cleaned.
The switch 30, when closed, completes electrical circuitry 38 (FIG. 3) to a piezoelectric crystal 40.
As is apparent, the device may be plugged into a normal residential electrical outlet; the input to the crystal 40 is typically 318 k.c., 130 v., 10 m.a. An operating frequency of 250 to 350 khz. is preferred for the device illustrated. The frequency at which the device operates most effectively is that frequency where mechanical resonance is achieved. The mechanical resonance is that of the assembly comprising the beaker, the heat sink which is cemented to the beaker, the crystal which is cemented to the beaker, and the components which are attached to the heat sink as well as the fluid in the beaker, all of which comprise a mass which has a frequency of mechanical resonance. 'With the described design in the aforementioned patent of Cummins et al, this frequency was to khz. With different designs or different masses used in, say, the heat sink, the frequency of the mechanical resonance would be changed as will be understood by those skilled in the art. The circuitry may be adapted to produce a comparable input where the distributed electric power is different or to provide an altered input where a crystal having The cleansing receptacle 46 is preferably glass, and preferably made of laboratory glassware that can withstand heat shock and mechanical shock. A Pyrex" beaker, ml. size, is very acceptable. The dimensions of such a beaker are about 28 mm. O.D.; about 40 mm. height and about 0.05 inch wall thickness.
The receptacle 46 is disposed in the opening 42 so that most of the receptacle lies within the housing. The receptacle is secured near its mouth to the housing perimetrally of the opening 42 by means such as epoxy resin. The piezoelectric crystal 40 is secured on the bottom of the receptacle 46 using means such as epoxy resin 50.
Within the housing an annular collar 48 of heat conducting material such as brass is secured by e.g. epoxy resin 50 the exterior of the side wall 52 of the receptacle 46 so that it closely circumferentially surrounds the receptacle. I i
The collar 48 is shown having two integral wings 54, 56. Although these are depicted being a pair of diametrically oppositely directed tabs, they need neither be so correspondingly sized nor oriented in order to provide the functions they are called to provide.
Electrically operated heat producing means such as a transistor 63 is mounted on the wing 54 of the collar 48. The temperature sensing means 60 for the switch 30 is disposed on the other wing, 56, and communicated to the switch 30 at 62.
A cover 64 removably surmounts the upper end of the receptacle. It is shown having locater tabs which depend slightly into the receptacle in slight engagement with the inner peripheral surface of the sidewall of the receptacle. The cover is of sufficient weight that it is kept in place by gravity during use of device, although the device could be operated successfully with the cover off. In the latter instance, some fluid loss might occur. I
Although the lenses could be placed directly in the cleaning solution S within the receptacle, it is recommended that they be cleaned while disposed in an openwork, i.e.foraminous container, typically one C made of molded plastic. Such a container is currently supplied with its soft contact lenses by one or more suppliers of soft contact lenses. The container C has two hinged doors 66, one on each side, each removably closing a compartment in which one lens may be placed. The compartments are marked clearly to make it difficult to place the wearers left lens in the compartment marked for receipt of his right lens, and vice versa.
The device 10 could be used to clean other heat sensitive articles, however, it is especially well suited to clean soft contact lenses. The way the receptacle, heat sink and the housing are put together minimizes the prospect that the device will be used improperly, or idly tampered with. The design allows the device 10 to be made so inexpensively and so durably that is has a good potential for being successfully mass marketed. All the user has to do is place his or her lenses in a familiar container, place cleansing solution in the receptacle, place the container in the receptacle, replace the cover and actuate the knob 32 to close the switch 30. As the crystal 40 produces ultrasonic vibrations in the cleansing solution, heat is produced by the transistor 63 and,
to a lesser extent, by operation of the crystal 40 and with passage of time, is conducted with generally predictable losses out the wing 56. When the temperature rises to a preselected cut-off temperature, as sensed at 60, the switch 30 automatically opens. Because of the heat losses, in the typical example depicted, when the lenses have reached a desired cut-off temperature C. in the ultrasonically vibrating cleansing solution, the sensor 60 has sensed a cutoff temperature of 75,
whereupon the switch 30 automatically opens.
A low-powered indicator light may be provided on the front of the device and wired into the circuitry 38 to be lit'so long as the switch 30 remains closed, as a visible indication that the device 10 is operating.
Accessory elements may be provided. For instance, the circuit '38 may be provided witha timer cut-off the cleansing operation after a preselected time, i.e. as a safety featureto ensure that an unattended device 10 does not inadvertently run for too long a time.
It should now be apparentthat the ultrasoniccleaning device with temperature-responsive cut-off as described hereinabove possesses each of the attributes set forth in the specification under the heading Summary of the Invention hereinbefore. Because the ultrasonic cleaning device with temperature responsive cut-off of the invention can be modified tosome extent without departing from the principles of the invention as they have been outlined and explained in this specification, the present invention should be understood as encompassing all such modifications as are within the spirit and scope of the follwing claims.
What is claimed is: i V
1. An ultrasonic cleaning device, comprising:
a receptacle for cleansing fluid; v
a piezoelectric crystal secured on the receptacle for imparting vibrations thereto;
heat conducting collar means on said receptacle;
electrically operated heat producing means secured on the collar means for imparting additional heat to the receptacle via the collar means while the crystal vibrates;
a heat sensor communicated to the collar means distally of the heat producing means so that heat conducted by the collar means during operation of the crystal to produce ultrasonic vibrations in the cleansing fluid eventually raises the temperature sensed by the heat sensor to a predetermined cutoff temperature;
power source means for electrically operating the heat producing means and for electrically exciting the piezoelectric crystal, including a manually actuatable, automatically deactuatable switch, communicated to the heat sensor for automatically deactuating the switch when the predetermined cutoff temperature has been reached. 2. The ultrasonic cleaning device of claim 1 wherein the heat producing means is constituted by a transistor. 3. The ultrasonic cleaning device of claim 1 wherein the switch is constructed to deactuate when the temperature sensed by the heat sensor correlates to a temperature of 70 to C. reached in the cleansing fluid in the receptacle.

Claims (3)

1. An ultrasonic cleaning device, comprising: a receptacle for cleansing fluid; a piezoelectric crystal secured on the receptacle for imparting vibrations thereto; heat conducting collar means on said receptacle; electrically operated heat producing means secured on the collar means for imparting additional heat to the receptacle via the collar means while the crystal vibrates; a heat sensor communicated to the collar means distally of the heat producing means so that heat conducted by the collar means during operation of the crystal to produce ultrasonic vibrations in the cleansing fluid eventually raises the temperature sensed by the heat sensor to a predetermined cutoff temperature; power source means for electrically operating the heat producing means and for electrically exciting the piezoelectric crystal, including a manually actuatable, automatically deactuatable switch, communicated to the heat sensor for automatically deactuating the switch when the predetermined cut-off temperature has been reached.
2. The ultrasonic cleaning device of claim 1 wherein the heat producing means is constituted by a transistor.
3. The ultrasonic cleaning device of claim 1 wherein the switch is constructed to deactuate when the temperature sensed by the heat sensor correlates to a temperature of 70* to 80*C. reached in the cleansing fluid in the receptacle.
US00398437A 1973-09-18 1973-09-18 Ultrasonic cleaning device with temperature responsive cut-off Expired - Lifetime US3851861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00398437A US3851861A (en) 1973-09-18 1973-09-18 Ultrasonic cleaning device with temperature responsive cut-off

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00398437A US3851861A (en) 1973-09-18 1973-09-18 Ultrasonic cleaning device with temperature responsive cut-off

Publications (1)

Publication Number Publication Date
US3851861A true US3851861A (en) 1974-12-03

Family

ID=23575371

Family Applications (1)

Application Number Title Priority Date Filing Date
US00398437A Expired - Lifetime US3851861A (en) 1973-09-18 1973-09-18 Ultrasonic cleaning device with temperature responsive cut-off

Country Status (1)

Country Link
US (1) US3851861A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973760A (en) * 1974-07-19 1976-08-10 Robert E. McClure Ultrasonic cleaning and sterilizing apparatus
US4081660A (en) * 1976-07-06 1978-03-28 Baxter Travenol Laboratories, Inc. Heater shutdown circuit
US4158126A (en) * 1977-09-19 1979-06-12 Seitz Lamont J Heating unit for disinfecting soft lenses, or the like
US4178499A (en) * 1977-09-21 1979-12-11 Rincon Industries, Inc. Heating unit indicator for disinfecting soft lenses, or the like
US4278873A (en) * 1980-02-04 1981-07-14 General Electric Company Temperature-responsive control means
FR2661848A1 (en) * 1990-05-11 1991-11-15 Derusse Martial Device for ultrasonic cleaning of thermally deformable elements
US5117882A (en) * 1987-02-24 1992-06-02 Corwin R. Horton Microbubble-generating and dispensing devices and methods
US6100084A (en) * 1998-11-05 2000-08-08 The Regents Of The University Of California Micro-sonicator for spore lysis
US20030223305A1 (en) * 2002-06-03 2003-12-04 Halsall Richard W. Method for continuous internal agitation of fluid within hot water heaters or other fluid containing vessels
US20060121603A1 (en) * 2004-12-02 2006-06-08 Microfludic Systems, Inc. Apparatus to automatically lyse a sample
US20080178911A1 (en) * 2006-07-21 2008-07-31 Christopher Hahn Apparatus for ejecting fluid onto a substrate and system and method incorporating the same
US20080190447A1 (en) * 2007-02-08 2008-08-14 Rebecca Ann Simonette Method of cleaning contact lenses via sonication
US7518288B2 (en) 1996-09-30 2009-04-14 Akrion Technologies, Inc. System for megasonic processing of an article
US20090283118A1 (en) * 2008-01-02 2009-11-19 Devid Michael Zakutin Vibration-type cleaning device for contact lenses
US20100175711A1 (en) * 2007-02-08 2010-07-15 Rebecca Ann Simonette Method of cleaning contact lenses via sonication
US8353619B2 (en) * 2006-08-01 2013-01-15 Covaris, Inc. Methods and apparatus for treating samples with acoustic energy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2840730A (en) * 1955-09-28 1958-06-24 Detrex Chem Ind Liquid level and temperature apparatus
US3720402A (en) * 1971-07-09 1973-03-13 Soniclens Inc Ultrasonic cleaning device for fragile heat-sensitive articles
US3751014A (en) * 1970-09-21 1973-08-07 Graham Engin Corp Apparatus for extruding synthetic plastic resins at low temperatures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2840730A (en) * 1955-09-28 1958-06-24 Detrex Chem Ind Liquid level and temperature apparatus
US3751014A (en) * 1970-09-21 1973-08-07 Graham Engin Corp Apparatus for extruding synthetic plastic resins at low temperatures
US3720402A (en) * 1971-07-09 1973-03-13 Soniclens Inc Ultrasonic cleaning device for fragile heat-sensitive articles

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973760A (en) * 1974-07-19 1976-08-10 Robert E. McClure Ultrasonic cleaning and sterilizing apparatus
US4081660A (en) * 1976-07-06 1978-03-28 Baxter Travenol Laboratories, Inc. Heater shutdown circuit
US4158126A (en) * 1977-09-19 1979-06-12 Seitz Lamont J Heating unit for disinfecting soft lenses, or the like
US4178499A (en) * 1977-09-21 1979-12-11 Rincon Industries, Inc. Heating unit indicator for disinfecting soft lenses, or the like
US4278873A (en) * 1980-02-04 1981-07-14 General Electric Company Temperature-responsive control means
US5117882A (en) * 1987-02-24 1992-06-02 Corwin R. Horton Microbubble-generating and dispensing devices and methods
FR2661848A1 (en) * 1990-05-11 1991-11-15 Derusse Martial Device for ultrasonic cleaning of thermally deformable elements
US8771427B2 (en) 1996-09-30 2014-07-08 Akrion Systems, Llc Method of manufacturing integrated circuit devices
US7518288B2 (en) 1996-09-30 2009-04-14 Akrion Technologies, Inc. System for megasonic processing of an article
US8257505B2 (en) 1996-09-30 2012-09-04 Akrion Systems, Llc Method for megasonic processing of an article
US6100084A (en) * 1998-11-05 2000-08-08 The Regents Of The University Of California Micro-sonicator for spore lysis
US20030223305A1 (en) * 2002-06-03 2003-12-04 Halsall Richard W. Method for continuous internal agitation of fluid within hot water heaters or other fluid containing vessels
AU2003243371B2 (en) * 2002-06-03 2008-07-03 Halsall, Richard W Method for continuous internal agitation of fluid within hot water heaters or other fluid containing vessels
US6736535B2 (en) * 2002-06-03 2004-05-18 Richard W. Halsall Method for continuous internal agitation of fluid within hot water heaters or other fluid containing vessels
WO2003101598A1 (en) * 2002-06-03 2003-12-11 Halsall Richard W Method for continuous internal agitation of fluid within hot water heaters or other fluid containing vessels
US20060121603A1 (en) * 2004-12-02 2006-06-08 Microfludic Systems, Inc. Apparatus to automatically lyse a sample
US7785868B2 (en) * 2004-12-02 2010-08-31 Microfluidic Systems, Inc. Apparatus to automatically lyse a sample
US20110214700A1 (en) * 2006-07-21 2011-09-08 Christopher Hahn Apparatus for ejecting fluid onto a substrate and system and method of incorporating the same
US7938131B2 (en) 2006-07-21 2011-05-10 Akrion Systems, Llc Apparatus for ejecting fluid onto a substrate and system and method incorporating the same
US8343287B2 (en) 2006-07-21 2013-01-01 Akrion Systems Llc Apparatus for ejecting fluid onto a substrate and system and method incorporating the same
US20080178911A1 (en) * 2006-07-21 2008-07-31 Christopher Hahn Apparatus for ejecting fluid onto a substrate and system and method incorporating the same
US8353619B2 (en) * 2006-08-01 2013-01-15 Covaris, Inc. Methods and apparatus for treating samples with acoustic energy
US20100175711A1 (en) * 2007-02-08 2010-07-15 Rebecca Ann Simonette Method of cleaning contact lenses via sonication
US7494548B2 (en) 2007-02-08 2009-02-24 Rebecca Ann Simonette Method of cleaning contact lenses via sonication
US8211237B2 (en) 2007-02-08 2012-07-03 Simonette Rebecca A Cleaning contact lenses via sonication
US20080190447A1 (en) * 2007-02-08 2008-08-14 Rebecca Ann Simonette Method of cleaning contact lenses via sonication
US20090283118A1 (en) * 2008-01-02 2009-11-19 Devid Michael Zakutin Vibration-type cleaning device for contact lenses
US8015987B2 (en) * 2008-01-02 2011-09-13 David Michael Zakutin Vibration-type cleaning device for contact lenses

Similar Documents

Publication Publication Date Title
US3851861A (en) Ultrasonic cleaning device with temperature responsive cut-off
US3720402A (en) Ultrasonic cleaning device for fragile heat-sensitive articles
EP0178756B1 (en) Improvements in contact lens cleaning apparatus
US4431906A (en) Electric rice cooker
ES426569A1 (en) Yoghurt-making machine
DK200000159U3 (en) Apparatus for portion-wise heat treatment of milk
US5890503A (en) Self-contained fully automatic apparatus for cleaning eyeglasses
CN108121089B (en) Cleaning dryer
US3969610A (en) Liquid heating device
US2896649A (en) Apparatus for cleaning by ultrasonic vibrations
US1661354A (en) Antifreeze container
US3445092A (en) Ultrasonic cleaning device
CN211179772U (en) Constant-temperature oscillation box for food analysis
US3012125A (en) Apparatus for loosening solid content of cups
US3315064A (en) Electrically heated milk bottle chest
US4302664A (en) Contact lens aseptor
KR102432175B1 (en) Soap Recycling Device
US2132111A (en) Signaling mail box
EP0095063A3 (en) Control system for immersion heater
US4767395A (en) Centrifugal grease remover/absorber for foods
US1731545A (en) Dispensing container
US2207325A (en) Food container
CN219614488U (en) Ceramic incense box
JPS6240646Y2 (en)
CN109009653A (en) A kind of miniature hand warmer