US3854260A - Building system - Google Patents

Building system Download PDF

Info

Publication number
US3854260A
US3854260A US00250202A US25020272A US3854260A US 3854260 A US3854260 A US 3854260A US 00250202 A US00250202 A US 00250202A US 25020272 A US25020272 A US 25020272A US 3854260 A US3854260 A US 3854260A
Authority
US
United States
Prior art keywords
panels
skins
joined
flanges
central core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00250202A
Inventor
Hanlon E O
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANLON EO
Original Assignee
HANLON EO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANLON EO filed Critical HANLON EO
Priority to US00250202A priority Critical patent/US3854260A/en
Application granted granted Critical
Publication of US3854260A publication Critical patent/US3854260A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6803Joint covers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/61Connections for building structures in general of slab-shaped building elements with each other
    • E04B1/6108Connections for building structures in general of slab-shaped building elements with each other the frontal surfaces of the slabs connected together
    • E04B1/612Connections for building structures in general of slab-shaped building elements with each other the frontal surfaces of the slabs connected together by means between frontal surfaces
    • E04B1/6166Connections for building structures in general of slab-shaped building elements with each other the frontal surfaces of the slabs connected together by means between frontal surfaces with protrusions on both frontal surfaces
    • E04B1/6175Connections for building structures in general of slab-shaped building elements with each other the frontal surfaces of the slabs connected together by means between frontal surfaces with protrusions on both frontal surfaces with two or more protrusions on each frontal surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/292Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and sheet metal

Definitions

  • An improved building system of the type having modular sections comprised of a foam-type insulation between skins is made by extending the skins beyond the end of the insulation and forming flanges upon such extensions.
  • the flanged extensions of two wall sections to be joined are brought together and a resilient extrusion is installed around the flanges, thus forming a channel defined by the ends of the insulation, the flanged extension and the extrusion itself.
  • This channel is foamed-in with more insulating material to form a rigid structure.
  • prefabricated sections comprised of a pair of skins separated by a foam-type insulator is becoming increasingly popular, particularly where it is desired to construct a controlled environment structure, such as a walk-in cooler.
  • a controlled environment structure such as a walk-in cooler.
  • joints which are substantially as well insulated as the rest of the structure.
  • metal bolts or other conductive structures penetrate the joints of such a structure, its insulating qualities are impaired.
  • joints which use a minimum number of uniform parts and which are relatively easy to construct at the site of erection of the structure.
  • joints which have relatively smooth and easily cleanable exposed surfaces and which do not have pockets or crevices or holes which will tend to collect dirt or other foreign substances. This is particularly important in structures such as refrigerators which are intended to house food and which must constantly be cleaned.
  • the objects of this invention are carried out by the provision of a flanged member extending beyond the end surface of each section to be joined.
  • a joining member is installed around each pair of corresponding flanges of sections being joined.
  • a filler material is installed so as to be in pressing engagement with the end surfaces, the flanged members and each joining member.
  • FIG. 1 is an external perspective view of a structure employing the invention.
  • FIG. 2 is an enlarged sectional view taken along line 2-2 of FIG. 1, parts being broken away.
  • FIG. 3 shows a typical building section before assembly.
  • FIG. 4 shows two sections positioned for assembly.
  • FIG. 5 is an enlarged view of the ends of two sections with extrusions in place prior to the installation of filler material.
  • FIG. 6 is an enlarged view of the completed joint.
  • FIG. 1 shows two walls 9 which meet at corner 12. These walls are comprised of modular sections l4, 15, 16, 17 and 18 which may be of various sizes and shapes and which meet at joints 13.
  • FIG. 2 is a sectional view of FIG. 1 showing a portion thereof in an enlarged view.
  • Sections 15, 16 and 17 are each constructed with inner and outer coverings, 27 and 26 respectively. These coverings are usually made of relatively thin materials such as sheet aluminum and are commonly called skins.
  • Filler material 10 may be an insulator of any suitable type such as polyurethane. It is desirable to use a filler material which will adhere to skins 26 and 27. Note that filler material 10 terminates in end surfaces 32.
  • Each of the skins has an extension 22 which terminates in a flange 28.
  • the flange it is desirable for the flange to be formed so as to make an acute angle with extension 22.
  • the joints between the sections shown in FIG. 2 have pairs of corresponding flanges. In other words, a flange upon one section becomes joined with a flange upon the next section.
  • the connecting device in each instance is joining member 23.
  • This member is preferably an extrusion of a resilient substance such as silicone rubber. It has been found convenient to form such an extrusion in continuous strips which may be stored in rolls. Suitable lengths are cut therefrom as needed.
  • Holding material 11 is preferably of the same substance as filler material 10. In fact, when polyurethane is used for both, filler material 10 and holding material 11 become a continuous, homogeneous insulator passing from one wall section to the next without interruption. Holding material 11 may be installed at the site of erection of the structure. Specifically, it has been found very convenient to use a portable foaming unit to foam in polyurethane at the joints as sections are assembled.
  • the erection of adjoining sections of the structure being built proceeds in steps. First, two wall sections such as 15 and 16 are brought together end to end. Then, extrusion 23 is slid over each pair of flanges 28. Thus, there is formed a channel for the reception of holding material 11. This channel is bounded by the end surfaces ,32 of filler material 10, the extensions 22, the flanges 28, and the extrusions 23, partially covering the flanges. Holding material 11 is then foamed in to fill this channel. After the foam sets, the joint 13 becomes rigid and is well sealed.
  • the sections used need not be constructed of a foam-type insulator separated by aluminum sheets. Rather, such sections could be hollow so long as they had a structure forming an end surface 32 so that a suitable channel for the reception of holding material 11 is created when sections are brought together end to end.
  • holding material 11 need not be a foam-type substance but can be any substance which can be installed under pressure and which will either maintain that pressure or which would become suitably hardened so as to hold the various parts of the joint in rigid alignment.
  • FIGS. 3, 4 show section 15 prior to its being joined with section 16.
  • FIG. 4 shows parts of sections 15 and 16 placed together end to end.
  • FIG. 5 shows the structure of FIG. 4 with the joining member, extrusion 23, installed thereon.
  • FIG. S' also shows the details of extrusion 23.
  • the extrusion is generally comprised of a core 33 which passes between corresponding flanges and wings 30 surrounding coresponding flanges 28.
  • Extrusion 23 is seen to be only loosely in place prior to the installation of holding material.
  • the extrusion has a button 24 having a flat surface 25 for making a tight seal with the exterior of skin 26. There are also cam surfaces 29 which will force the entire extrusion 23 toward the interior as sections 15 and 16 are moved together. Wings 30 of the extrusion are preferably made flexible and have a flat surface 31.
  • FIG. 6 shows the structure with holding material 11 in place. It can be noted that flat surfaces 31 are now in tight engagement with flanges 28. This is because holding material 11 is installed so as to press against wings 30. It has been found that using polyurethane for holding material 11 is highly desirable and that the pressures generated by the foaming process during erection are more than adequate to cause tight seal to be made between flat surfaces 31 and flanges 28.
  • the structure resulting from the use of the joint above described is one of great strength. It is almost as strong as any other part of the walls shown. Furthermore, it has highly desirable insulating characteristics. There is no metallic or other thermally conductive material penetrating to any great depth in the wall and the joint has become a continuation of the insulation of the sections assembled. The only exposed portion of the joint is button 24. This presents a smooth, easily cleanable surface which does not have holes or crevices which will collect food particles or other foreign substances.
  • each said resilient joining member adapted to engage the adjoining skins on a respective one of the sides of the two panels to be joined, each said resilient joining member extending over the full length of the edges of said panels being joined,
  • each said resilient joining member comprising:
  • wing portions each also integrally formed with said central core portion at the other end thereof and each adapted to slide and fit behind a respective one of the flanges of the juxtaposed skins internally of the panels to be joined.

Abstract

An improved building system of the type having modular sections comprised of a foam-type insulation between skins is made by extending the skins beyond the end of the insulation and forming flanges upon such extensions. The flanged extensions of two wall sections to be joined are brought together and a resilient extrusion is installed around the flanges, thus forming a channel defined by the ends of the insulation, the flanged extension and the extrusion itself. This channel is ''''foamed-in'''' with more insulating material to form a rigid structure.

Description

United States Patent [191 OHanlon 1 Dec. 17, 1974 I BUILDING SYSTEM [76] Inventor: EdwardJ. OHanlon, Lake George,
221 Filed: May 4,1972
21 Appl. No.: 250,202
Related U.S. Application Data [63] Continuation of Ser. No. 854,585, Sept. 2, 1969,
abandoned.
[52] U.S. Cl 52/309, 52/259, 52/285, 52/468, 52/584 [51] Int. Cl. E04c 1/00, E04b 2/08 [58] Field of Search 52/459-468, 52/584, 417, 285, 309, 285, 584
[56] References Cited UNITED STATES PATENTS 3,282,613 11/1966 Axelsonn 52/584 3,417,529 12/1968 Archinal et a1. 52/468 3,583,118 6/1971 Lowery 52/417 FOREIGN PATENTS OR APPLICATIONS 37,200 7/1930 France 52/461 Primary Examiner-I-Ienry C. Sutherland Assistant ExaminerJames L. Ridgill, Jr.
Attorney, Agent, or Firm-Pollock, Philpitt, & Vande Sande ABSTRACT An improved building system of the type having modular sections comprised of a foam-type insulation between skins is made by extending the skins beyond the end of the insulation and forming flanges upon such extensions. The flanged extensions of two wall sections to be joined are brought together and a resilient extrusion is installed around the flanges, thus forming a channel defined by the ends of the insulation, the flanged extension and the extrusion itself. This channel is foamed-in with more insulating material to form a rigid structure.
2 Claims, 6 Drawing Figures PATENTEU DEC] 7 I974 FIG.2,
BUILDING SYSTENI This is a Continuation, of application Ser. No. 854,585, filed Sept. 2, 1969 now abandoned.
BACKGROUND OF THE INVENTION.
This invention relates to modular building systems and more particularly relates to an improved joint for use in such systems.
The use of prefabricated sections in erecting structures of all types, including walk-in refrigerators, buildings, garages, trailers and the like is common practice today. Various methods have been used to join the sections of such structures, examples of which methods may be found in the following U.S. Pats: B. I. Blickman, et al, No. 3,252,258; P. S. OBrien No. 3,367,076; Tillinghast, No. 3,242,625; and N. B. Elliott, et al, No. 3,320,706.
The use of prefabricated sections comprised of a pair of skins separated by a foam-type insulator is becoming increasingly popular, particularly where it is desired to construct a controlled environment structure, such as a walk-in cooler. Naturally, in structures of this type it is highly desirable to have joints which are substantially as well insulated as the rest of the structure. Obviously, if metal bolts or other conductive structures penetrate the joints of such a structure, its insulating qualities are impaired. It is also desirable to have joints which use a minimum number of uniform parts and which are relatively easy to construct at the site of erection of the structure.
Finally, it is highly desirable to have joints which have relatively smooth and easily cleanable exposed surfaces and which do not have pockets or crevices or holes which will tend to collect dirt or other foreign substances. This is particularly important in structures such as refrigerators which are intended to house food and which must constantly be cleaned.
SUMMARY OF THE INVENTION.
It is an object of the present invention to provide a modular building system wherein the assembly of sections may be accomplished by foaming-in insulating material into the joints.
It is a further object of the invention to provide a modular building system wherein the sections may be assembled by a foaming process at the site of erection of the structure.
It is a further object of the invention to provide a joint which is hermetically sealed and which is suitable for use in modular buildings, trailers, refrigerators, walk-in coolers, and the like.
It is a further object of the invention to provide a modular building system having joints which are rigid and which have strength sufficient to withstand the forces normally incident upon such joints.
It is a further object of this invention to provide a sealed joint of the type mentioned wherein the penetration of thermally conductive materials through the wall at the joint is held to a minimum.
It is a further object of this invention to provide a joint of the type mentioned which will utilize the pressures created by the expansion of foam-type fillers to hold the various sections together in tight engagement with each other.
It is a further object of this invention to provide a joint of the type mentioned having exterior surface structures which are easy to clean and which offer no pockets or crevices or holes for the reception and collection of dirt and other foreign substances.
It is a further object of this invention to provide a joint of the type mentioned which will be economical to manufacture and relatively easy to construct.
The objects of this invention are carried out by the provision of a flanged member extending beyond the end surface of each section to be joined. A joining member is installed around each pair of corresponding flanges of sections being joined. A filler material is installed so as to be in pressing engagement with the end surfaces, the flanged members and each joining member.
FIG. 1 is an external perspective view of a structure employing the invention.
FIG. 2 is an enlarged sectional view taken along line 2-2 of FIG. 1, parts being broken away.
FIG. 3 shows a typical building section before assembly.
FIG. 4 shows two sections positioned for assembly.
FIG. 5 is an enlarged view of the ends of two sections with extrusions in place prior to the installation of filler material.
FIG. 6 is an enlarged view of the completed joint.
FIG. 1 shows two walls 9 which meet at corner 12. These walls are comprised of modular sections l4, 15, 16, 17 and 18 which may be of various sizes and shapes and which meet at joints 13.
FIG. 2 is a sectional view of FIG. 1 showing a portion thereof in an enlarged view. Sections 15, 16 and 17 are each constructed with inner and outer coverings, 27 and 26 respectively. These coverings are usually made of relatively thin materials such as sheet aluminum and are commonly called skins. Filler material 10 may be an insulator of any suitable type such as polyurethane. It is desirable to use a filler material which will adhere to skins 26 and 27. Note that filler material 10 terminates in end surfaces 32.
Each of the skins has an extension 22 which terminates in a flange 28. For reasons which will become clear later, it is desirable for the flange to be formed so as to make an acute angle with extension 22. The joints between the sections shown in FIG. 2 have pairs of corresponding flanges. In other words, a flange upon one section becomes joined with a flange upon the next section. The connecting device in each instance is joining member 23. This member is preferably an extrusion of a resilient substance such as silicone rubber. It has been found convenient to form such an extrusion in continuous strips which may be stored in rolls. Suitable lengths are cut therefrom as needed.
Holding material 11 is preferably of the same substance as filler material 10. In fact, when polyurethane is used for both, filler material 10 and holding material 11 become a continuous, homogeneous insulator passing from one wall section to the next without interruption. Holding material 11 may be installed at the site of erection of the structure. Specifically, it has been found very convenient to use a portable foaming unit to foam in polyurethane at the joints as sections are assembled.
In practical application, the erection of adjoining sections of the structure being built proceeds in steps. First, two wall sections such as 15 and 16 are brought together end to end. Then, extrusion 23 is slid over each pair of flanges 28. Thus, there is formed a channel for the reception of holding material 11. This channel is bounded by the end surfaces ,32 of filler material 10, the extensions 22, the flanges 28, and the extrusions 23, partially covering the flanges. Holding material 11 is then foamed in to fill this channel. After the foam sets, the joint 13 becomes rigid and is well sealed.
It should be apparent that the invention can be employed with several variations. For example, the sections used need not be constructed of a foam-type insulator separated by aluminum sheets. Rather, such sections could be hollow so long as they had a structure forming an end surface 32 so that a suitable channel for the reception of holding material 11 is created when sections are brought together end to end. Furthrmore, holding material 11 need not be a foam-type substance but can be any substance which can be installed under pressure and which will either maintain that pressure or which would become suitably hardened so as to hold the various parts of the joint in rigid alignment.
To more fully appreciate the nature and operation of the preferred embodiment of this invention, reference may be made to FIGS. 3, 4 and wherein typical structures are shown at various stages of construction. FIGS. 3, for example, shows section 15 prior to its being joined with section 16. As can be observed, there are pockets at each end formed by the end surfaces 32 of the filler material 10, by skin extensions 22 and by flanges 28.
FIG. 4 shows parts of sections 15 and 16 placed together end to end. FIG. 5 shows the structure of FIG. 4 with the joining member, extrusion 23, installed thereon. FIG. S'also shows the details of extrusion 23. As can be seen, the extrusion is generally comprised of a core 33 which passes between corresponding flanges and wings 30 surrounding coresponding flanges 28. Extrusion 23 is seen to be only loosely in place prior to the installation of holding material.
The extrusion has a button 24 having a flat surface 25 for making a tight seal with the exterior of skin 26. There are also cam surfaces 29 which will force the entire extrusion 23 toward the interior as sections 15 and 16 are moved together. Wings 30 of the extrusion are preferably made flexible and have a flat surface 31.
FIG. 6 shows the structure with holding material 11 in place. It can be noted that flat surfaces 31 are now in tight engagement with flanges 28. This is because holding material 11 is installed so as to press against wings 30. It has been found that using polyurethane for holding material 11 is highly desirable and that the pressures generated by the foaming process during erection are more than adequate to cause tight seal to be made between flat surfaces 31 and flanges 28.
The structure resulting from the use of the joint above described is one of great strength. It is almost as strong as any other part of the walls shown. Furthermore, it has highly desirable insulating characteristics. There is no metallic or other thermally conductive material penetrating to any great depth in the wall and the joint has become a continuation of the insulation of the sections assembled. The only exposed portion of the joint is button 24. This presents a smooth, easily cleanable surface which does not have holes or crevices which will collect food particles or other foreign substances.
What has been described is the preferred embodiment of a structure and a method which can be used for joining modular sections of building structures. It will be appreciated that various modifications of this invention can be made without departing from the spirit thereof. It is intended by the appended claims to encompass such variations within their scope.
What is claimed is:
1. In a building construction formed at least in part of thermally insulating panels each formed of a pair of parallel skins and an intervening layer of insulating material, means for joining two such panels in edge-toedge relationship comprising in combination,
a flange at each edge of said skin interiorly of the panel and formed by the folding of said edge back upon the skin at an acute angle relative thereto,
a pair of separate resilient joining members each adapted to engage the adjoining skins on a respective one of the sides of the two panels to be joined, each said resilient joining member extending over the full length of the edges of said panels being joined,
each said resilient joining member comprising:
a. a central core portion of outwardly diverging cross section lying between and abutting over at least a portion of its opposed surfaces the opposed flanges of the skins on the respective panels to be joined, said central core portion being provided on its outwardly diverging sides with at least one protruding cam element for forcing said joining member inwardly of said joined panels when the panels to be joined are urged toward each other,
b. a first end portion integrally formed with said central core portion at one end thereof and adapted to flushly fit against the juxtaposed skins on the outside of the panels being joined,
0. and a pair of wing portions each also integrally formed with said central core portion at the other end thereof and each adapted to slide and fit behind a respective one of the flanges of the juxtaposed skins internally of the panels to be joined.
2. The combination of claim 1 wherein the space between said skins at the region of the joint between two adjoining panels is filled with polyurethane foam which exerts a force against said wing portions to bring them into intimate contact with the respective flanges of said

Claims (2)

1. In a building construction formed at least in part of thermally insulating panels each formed of a pair of parallel skins and an intervening layer of insulating material, means for joining two such panels in edge-to-edge relationship comprising in combination, a flange at each edge of said skin interiorly of the panel and formed by the folding of said edge back upon the skin at an acute angle relative thereto, a pair of separate resilient joining members each adapted to engage the Adjoining skins on a respective one of the sides of the two panels to be joined, each said resilient joining member extending over the full length of the edges of said panels being joined, each said resilient joining member comprising: a. a central core portion of outwardly diverging cross section lying between and abutting over at least a portion of its opposed surfaces the opposed flanges of the skins on the respective panels to be joined, said central core portion being provided on its outwardly diverging sides with at least one protruding cam element for forcing said joining member inwardly of said joined panels when the panels to be joined are urged toward each other, b. a first end portion integrally formed with said central core portion at one end thereof and adapted to flushly fit against the juxtaposed skins on the outside of the panels being joined, c. and a pair of wing portions each also integrally formed with said central core portion at the other end thereof and each adapted to slide and fit behind a respective one of the flanges of the juxtaposed skins internally of the panels to be joined.
2. The combination of claim 1 wherein the space between said skins at the region of the joint between two adjoining panels is filled with polyurethane foam which exerts a force against said wing portions to bring them into intimate contact with the respective flanges of said skins.
US00250202A 1969-09-02 1972-05-04 Building system Expired - Lifetime US3854260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00250202A US3854260A (en) 1969-09-02 1972-05-04 Building system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85458569A 1969-09-02 1969-09-02
US00250202A US3854260A (en) 1969-09-02 1972-05-04 Building system

Publications (1)

Publication Number Publication Date
US3854260A true US3854260A (en) 1974-12-17

Family

ID=26940680

Family Applications (1)

Application Number Title Priority Date Filing Date
US00250202A Expired - Lifetime US3854260A (en) 1969-09-02 1972-05-04 Building system

Country Status (1)

Country Link
US (1) US3854260A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157638A (en) * 1977-10-03 1979-06-12 Thermo-Core Building Systems, Inc. Building panel and utilization thereof
US4167084A (en) * 1976-10-27 1979-09-11 Brunton Ernest W Swimming pool wall system
US4274242A (en) * 1977-01-14 1981-06-23 Pauling And Company Limited Building systems
FR2474615A1 (en) * 1980-01-25 1981-07-31 Lamberet Paul Vertical joint for insulated wall panels - uses edge mounted sections to locate seal and form tongue-secured sliding clip in joint void
US4310992A (en) * 1979-09-20 1982-01-19 Construction Murox, Inc. Structural panel
US4320604A (en) * 1978-12-20 1982-03-23 Hanlon Edward J O Heavily insulated shelter structure
US4335548A (en) * 1980-04-30 1982-06-22 Millcraft Housing Corp. Insulating skirt
US4346541A (en) * 1978-08-31 1982-08-31 G & S Company Building panel construction and panel assemblies utilizing same
US4486994A (en) * 1981-03-09 1984-12-11 Industrial Sheet Metal & Mechanical Corp. Panel wall construction having airtight joint and method of forming same
US5086599A (en) * 1990-02-15 1992-02-11 Structural Panels, Inc. Building panel and method
EP0487762A1 (en) * 1990-11-27 1992-06-03 Ritterwand Gmbh Metall-Systembau Dismountable connection between parts of partition walls
US5216861A (en) * 1990-02-15 1993-06-08 Structural Panels, Inc. Building panel and method
US5293728A (en) * 1992-09-17 1994-03-15 Texas Aluminum Industries, Inc. Insulated panel
US5673524A (en) * 1996-04-12 1997-10-07 Alumet Building Products, Inc. Reversible composite building panel
US5974748A (en) * 1995-02-09 1999-11-02 Fit-Z-All Corner Plugs Corner insert for vinyl siding
US6314701B1 (en) 1998-02-09 2001-11-13 Steven C. Meyerson Construction panel and method
WO2002040876A1 (en) * 2000-11-14 2002-05-23 Basf Aktiengesellschaft Method for binding compound elements
US6718721B2 (en) * 2001-09-13 2004-04-13 C-Thru Industries, Inc. Insulated building panels
WO2006058907A1 (en) * 2004-12-02 2006-06-08 Solvay (Societe Anonyme) Insulating angle panel
US9181692B1 (en) * 2014-07-02 2015-11-10 Overly Manufacturing Co. Covering system for a building substrate
US20190055728A1 (en) * 2016-04-09 2019-02-21 Mmigg - Novos Negocios E Representacoes Ltda - Me Construction modular system based on sheet molding compound (smc) panels
US20220010548A1 (en) * 2020-06-26 2022-01-13 Schluter Systems L.P. Expansion Joint Profile System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR37200E (en) * 1929-03-07 1930-10-25 Metallic construction
US3282613A (en) * 1964-02-28 1966-11-01 Airspace Inc Panel connector
US3417529A (en) * 1966-10-19 1968-12-24 Panelfab Products Inc Drive cleat connector
US3583118A (en) * 1969-09-15 1971-06-08 Control Building Systems Inc Insulated panel structures and connections

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR37200E (en) * 1929-03-07 1930-10-25 Metallic construction
US3282613A (en) * 1964-02-28 1966-11-01 Airspace Inc Panel connector
US3417529A (en) * 1966-10-19 1968-12-24 Panelfab Products Inc Drive cleat connector
US3583118A (en) * 1969-09-15 1971-06-08 Control Building Systems Inc Insulated panel structures and connections

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167084A (en) * 1976-10-27 1979-09-11 Brunton Ernest W Swimming pool wall system
US4274242A (en) * 1977-01-14 1981-06-23 Pauling And Company Limited Building systems
US4157638A (en) * 1977-10-03 1979-06-12 Thermo-Core Building Systems, Inc. Building panel and utilization thereof
US4346541A (en) * 1978-08-31 1982-08-31 G & S Company Building panel construction and panel assemblies utilizing same
US4320604A (en) * 1978-12-20 1982-03-23 Hanlon Edward J O Heavily insulated shelter structure
US4310992A (en) * 1979-09-20 1982-01-19 Construction Murox, Inc. Structural panel
FR2474615A1 (en) * 1980-01-25 1981-07-31 Lamberet Paul Vertical joint for insulated wall panels - uses edge mounted sections to locate seal and form tongue-secured sliding clip in joint void
US4335548A (en) * 1980-04-30 1982-06-22 Millcraft Housing Corp. Insulating skirt
US4486994A (en) * 1981-03-09 1984-12-11 Industrial Sheet Metal & Mechanical Corp. Panel wall construction having airtight joint and method of forming same
US5086599A (en) * 1990-02-15 1992-02-11 Structural Panels, Inc. Building panel and method
US5216861A (en) * 1990-02-15 1993-06-08 Structural Panels, Inc. Building panel and method
EP0487762A1 (en) * 1990-11-27 1992-06-03 Ritterwand Gmbh Metall-Systembau Dismountable connection between parts of partition walls
US5293728A (en) * 1992-09-17 1994-03-15 Texas Aluminum Industries, Inc. Insulated panel
US5974748A (en) * 1995-02-09 1999-11-02 Fit-Z-All Corner Plugs Corner insert for vinyl siding
US5673524A (en) * 1996-04-12 1997-10-07 Alumet Building Products, Inc. Reversible composite building panel
US6314701B1 (en) 1998-02-09 2001-11-13 Steven C. Meyerson Construction panel and method
WO2002040876A1 (en) * 2000-11-14 2002-05-23 Basf Aktiengesellschaft Method for binding compound elements
US6718721B2 (en) * 2001-09-13 2004-04-13 C-Thru Industries, Inc. Insulated building panels
WO2006058907A1 (en) * 2004-12-02 2006-06-08 Solvay (Societe Anonyme) Insulating angle panel
FR2878874A1 (en) * 2004-12-02 2006-06-09 Solvay INSULATING ANGLE PANEL
US9181692B1 (en) * 2014-07-02 2015-11-10 Overly Manufacturing Co. Covering system for a building substrate
US20190055728A1 (en) * 2016-04-09 2019-02-21 Mmigg - Novos Negocios E Representacoes Ltda - Me Construction modular system based on sheet molding compound (smc) panels
US10697171B2 (en) * 2016-04-09 2020-06-30 Mmigg-Novos Negocios E Representacoes Ltda-Me Construction modular system based on sheet molding compound (SMC) panels
US20220010548A1 (en) * 2020-06-26 2022-01-13 Schluter Systems L.P. Expansion Joint Profile System

Similar Documents

Publication Publication Date Title
US3854260A (en) Building system
US4486994A (en) Panel wall construction having airtight joint and method of forming same
US3386218A (en) Building panel with ribbed sealing element between overlapping edges
US3363383A (en) Joint structures
US3823525A (en) Foam-tightened edge joint for structural panels
US3357146A (en) Building panel splicing
US5062250A (en) Insulating panel system, panels and connectors therefor
US7669372B2 (en) Structural insulated panel and panel joint
US5533312A (en) Composite panel having interlocked skins and a bonded foam core
US3313073A (en) Joint assemblies for insulation panels
US3583118A (en) Insulated panel structures and connections
US3570205A (en) Panel jointure
US4104840A (en) Metal building panel
US2808624A (en) Panels and connector therefor
US5216861A (en) Building panel and method
US3760548A (en) Building panel with adjustable telescoping interlocking joints
US4147004A (en) Composite wall panel assembly and method of production
US4304080A (en) Construction beam
US3336713A (en) Prefabricated sandwich panel for the construction of walls and partitions
US4014143A (en) Building structural system
US3885371A (en) Architectural frames
US3217455A (en) Building construction of modular panels
US3282613A (en) Panel connector
US4107891A (en) Modular building panel with heat nonconducting means
US3817011A (en) Prefabricated interlocking wall panel