US3856226A - Method and apparatus for coreless spool production - Google Patents

Method and apparatus for coreless spool production Download PDF

Info

Publication number
US3856226A
US3856226A US00424343A US42434373A US3856226A US 3856226 A US3856226 A US 3856226A US 00424343 A US00424343 A US 00424343A US 42434373 A US42434373 A US 42434373A US 3856226 A US3856226 A US 3856226A
Authority
US
United States
Prior art keywords
mandrel
spools
fluid
web
conveyance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00424343A
Inventor
D Dowd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CA REED Inc A CORP OF
Original Assignee
Westvaco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00216629A external-priority patent/US3802639A/en
Application filed by Westvaco Corp filed Critical Westvaco Corp
Priority to US00424343A priority Critical patent/US3856226A/en
Application granted granted Critical
Publication of US3856226A publication Critical patent/US3856226A/en
Assigned to C.A. REED, INC., A CORP OF DE reassignment C.A. REED, INC., A CORP OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: WESTVACO CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H19/00Changing the web roll
    • B65H19/22Changing the web roll in winding mechanisms or in connection with winding operations
    • B65H19/2276The web roll being driven by a winding mechanism of the coreless type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H19/00Changing the web roll
    • B65H19/22Changing the web roll in winding mechanisms or in connection with winding operations
    • B65H19/2207Changing the web roll in winding mechanisms or in connection with winding operations the web roll being driven by a winding mechanism of the centre or core drive type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/18Form of handled article or web
    • B65H2701/184Wound packages
    • B65H2701/1846Parts concerned

Definitions

  • ABSTRACT Coreless spools alternately wound on two spindle mounted mandrels from a continuous web supply of thin sheet material, are jet propulsively ejected from the mandrels by pressurized fluid conducted thereto. Loose end portions of the completed spools are rewrapped about the spool body by bridging a gap between two conveyors and two air curtains.
  • An objective of the present invention is to provide a method and apparatus for rapid and positive ejection of a completed spool from the winding mandrel.
  • Another object of the invention is to teach a material flow strategy to a plurality of winding mandrels.
  • Another object of the invention is to teach a method and apparatus for rewrapping loose ends of ejected spools.
  • the leading edge of the web is drawn into a converging nip between the receiving mandrel and surface friction drive belts therefor.
  • a vacuum bias applied to the surface of the mandrel serves to adhere the web leading edge thereto until the first full wrap is complete and assists with tight, smooth layering for wraps applied thereafter.
  • the web When the desired length of web designated to form a spool has passed, the web is transversely severed above the deflector which indexes to the next chute position for directing the new leading edge into the next winding apparatus.
  • the spool wrapped mandrel disengages from the surface drive belts for acceleration to a greater rotational velocity.
  • the mandrel surface vacuum is then replaced with a pressurized fluid flow which expands the spool from the mandrel surface in such a manner as to either impulsively or reactively propel the spool over the mandrel end and onto a receiving conveyor.
  • This receiving conveyor delivers the spool across an air curtain which presses any free end portions against the conveyor surface plane to be carried into a gap between the delivery end of the receiving conveyor and the receiving end of a delivery conveyor.
  • the gap dimensions are insufficient to accommodate the main spool body which bridges the gap in transfer from said receiving to said delivery conveyor. The transition causes the free end portion to be drawn from the gap and under the spool main portion.
  • a subsequent air curtain may be used to blow any remaining free end portion of the spool up and over said main body portion.
  • FIG. 1 is a schematic representation of the present invention showing the spool winding operation on one of two mandrels.
  • FIG. 2 is a schematic representation of the present invention showing the spool winding operation on the other of the two mandrels with the cutting mechanism engaged.
  • FIG. 3a is a side elevation of the deflector apparatus.
  • FIG. 3b is an end elevational of the deflector apparatus.
  • FIG. 4 is an elevational detail of the mandrel, mandrel drive, ejected spool braking mechanism, and the receiving conveyor station shown in partial section.
  • FIG. 5a is a detail of the mandrel and drive mechanism during the spool winding process.
  • FIG. 5b shows the next sequential step from FIG. 5a in preparation of a wound spool for ejection.
  • FIG. shows the pressurized expansion of a spool immediately antecedent to ejection.
  • FIG. 5d shows the initial ejective movement of a spool from the mandrel.
  • FIG. 6a schematically shows the spool receiving and delivery conveyors for rewinding loose end portions thereof.
  • FIGS. 6b and 6c sequentially show a spool bridging the gap between the two conveyor sections to illustrate a critical portion of the rewrapping process.
  • a continuous web W of paper, foil or other thin sheet material of indefinite length is drawn from the active supply roll 20 and turned over one of bars 22 into the nip of the web pulling section.
  • This pulling section comprises pulling drums 23 which are driven cylinders having a traction belt 25 wrapped partially thereabout.
  • pulling drums 23 which are driven cylinders having a traction belt 25 wrapped partially thereabout.
  • the portion of the belts 25 in actual contact with the web W is increased by turning the belts over idler rolls 24.
  • supply rolls 20 and 21 may be positioned on either side thereof. Accordingly when the web material from one roll is exhausted, supply from a reserve roll 21 may be started immediately with minimum time loss.
  • web W Upon emerging from the pulling section nip, web W is passed between cooperative cutting elements and 82 held at the open position and deflected by the left face 31 of deflector 30 into the nip between winding mandrel 40 and winding belts 51.
  • Deflector 30, as further shown in FIGS. 3a and 3b is an elongated, hollow triangular body that is offset positioned from the axis of journals 33.
  • Position control of the deflector is provided by means of an eccentric 34 driven connecting rod 35.
  • Such position control comprises a small angle oscillatory movement of the deflector apex 39 from the position shown in FIG. 1 on the right side of the web path to the position shown in FIG. 2 on the left side of the web path.
  • the web W product comprises extremely thin material such as crepe or tissue" paper
  • means are provided by the deflector 30 to prevent undesirable wrinkling and folding of the web as it turns from the straight line path out of the pulling section.
  • Such means provided by the present invention comprises a plurality of low velocity air jets 37 emanating from the deflector body at a shallow angle from the plane of the deflector face 31.
  • the axes 37a and jets 37 are respectively disposed in a radial array of planes emanating from axis 38 which is transverse of the web path W and remote from the deflector apex ridge 39.
  • This radial or fan-like array of axes 37a provides a subtle but effective transverse and longitudinal smoothing of the web plane as it enters the nips between mandrel 40 and winding belts 51.
  • Air supply to deflector 30 hollow interior is conventionally provided through a flexible conduit 36 from a suitable pressurized source.
  • the jets 37 are provided on both faces 31 and 32 of the deflector 30.
  • mandrel 40 is internally evacuated causing an atmospheric draft radially inward through perforations 47 (FIG. 4) in the outer mandrel wall as will be described in greater detail relative to FIGS. 4 and 5.
  • Rotational force is provided to the mandrel 40 by surface friction drive from the belts 51 which, in turn, are driven by one of the turning rolls 50 and 52.
  • the length of web W wound upon the mandrel may be determined by any of several well known techniques including a gear mechanism or a timer. Although the details of a suitable drive mechanism for the web cutting mechanism shown are not illustrated, it should be understood that many such mechanisms are known to the prior art.
  • the rotational position of drum 81 may or may not be positively coordinated with the rotational position of cam 85. If the web W cut length may fluctuate within a tolerance defined by the circumferential arc of knife edge 80, the continuously rotating drum 81 may be free of any coordinating mechanism with cam 85.
  • cam 85 When the desired length of web W has passed cam 85 is rotated so that one of the detents 87 thereon aligns with the bell crank 83 follower 84.
  • Spring 86 provides the bias to urge the follower 84 into continuing contact with the surface of cam 85.
  • the bell crank 83 rotates the few degrees necessary to bring the anvil 82 into cutting position.
  • the rotating drum 81 mounted knife edge 80 traveling at a greater surface speed than the web W, reaches complimentary alignment with the anvil 82, the web W is sheared therebetween.
  • drum 81 is sheathed with a resilient foam material 88, the circumferential surface thereof radially projecting slightly beyond the edge of knife 80. At the moment of cut, the portion of the foam immediately behind the blade presses the web leading edge against the upper surface of anvil 82 for a frictional grip on said leading edge to pull it off the anvil 82.
  • sheath 88 sustain touching contact with the web W as it passes thereby lending a positive control assist to the web path.
  • cam also provides a convenient timing reference for coordinating the cyclic activity of the deflector 30, mandrels 40 and 60, the several drive mechanisms and solenoid actuated fluid control valves as to be subsequently described. Accordingly, a multiple lobe cam shaft 65 is driven by a timing Chain 66 from the drive shaft for cam 85 to selectively make and break electrical contacts 67 for each electrically actuated control mechanism appropriate for the functions hereinafter described.
  • winding belts 51 and roller 52 are rotated about the axis of roller 50 to disengage the belts 51 from the wound spool of web W about mandrel 40.
  • the machine may be designed so that mandrel 40 is displaced in an opposite direction away from the winding belts 51 for complete disengagement therebetween.
  • the coreless spool of web W wrapped about mandrel 40 is ejected therefrom in a manner to be subsequently described in detail.
  • deflector 30 has been rotated by eccentric 34 mounted connecting rod 35 from the position shown in FIG. 1 to that of FIG. 2 to chute the new leading edge of web W into the nip between winding mandrel 60 and belts 71.
  • the following events pursuant to winding another coreless spool of web material are the same as previously described relative to mandrel 40.
  • the tails T of the spools C Upon emerging from the braking section (FIG. 6a), the tails T of the spools C are uncontrolled and are likely to be lifted free and partially unwound from the spool body.
  • the receiving and delivery conveyor sections 100 and 105 are provided with air curtains from upperv and lower manifolds 103 and 104 extending transversely across respective conveyor sections. If the tail has come free from the spool body underside as shown by T in FIG. 6a, the tail T is blown by the air curtain from upper manifold 103 into the crevice 102 between the downstream end of receiving conveyor 100 and the upstream end of delivery conveyor 105.
  • the spool body C does not follow the tail T into the crevice but is merely passed tangentially between the drums 106 and 107 across the crevice as illustrated by FIGS. 6b and 60. Consequently, the free tail T is wrapped under the spool body C
  • the air curtain from lower manifold 104 blows same upand around to the top side of the spool C as shown in FIG. 6a relative to spool C and tail T Accordingly, after passing the aforedescribed tail control section, the tails of such spools lay entirely in juxtaposition with the body and in immediate condition for final packaging.
  • FIG. 4 where the mandrel 40 is shown as a closed, hollow cylinder rotationally mounted on a hollow spindle 41.
  • One end of the spindle 41 is rigidly secured to a swing arm 42 journaled about a bearing shaft 53.
  • Conduit 45 is connected, alternatively, to positive and negative (vacuum) fluid pressure sources. Fluid communication between conduit 45 and apertures 47 through the shell of mandrel 40 is allowed via apertures 46 through the shell of spindle 41.
  • a cam follower portion 43 Integral with the wing arm 42 but opposite of the shaft 53 axis from the spindle 41 is a cam follower portion 43.
  • the cam 44 in cooperation with the follower portion 43, is functionally effective to swing the mandrel 40 from the winding position of FIG. 1 to the ejection position of FIG. 2.
  • drum 50 enjoys a fixed axis about shaft 53 but idler drum 51 oscillates between winding and ejection positions.
  • Winding unit 70, 71 and 72 enjoys fixed axes for both drums 70 and 72.
  • drums 50 and 70 should be mounted on fixed axes and driven through a suitable, variable speed transmission 56.
  • power is delivered from the input gear 55, through the transmission 56 and to the drum 50 via belt 57.
  • variable speed transmission 56 extremely useful due to subtle distinctions in winding characteristics between different web materials. Even color differences between two, otherwise identical, webs of paper will require different winding speeds.
  • mandrel 40 is also independently driven from a suitable, selectively engageable source, not shown, which delivers power to a transfer reduction sheave 54, also mounted on shaft 53, via an input 54b and and output 54a.
  • the shell of mandrel 40 is perforated by a multiplicity of apertures 47 drilled therethrough at an angle of approximately with and in radial planes of the mandrel axis.
  • the exact number, angle, and distribution pattern of apertures 47 optimum for a given core diameter and weight of particular wound web material are all variable parameters that are dependent upon the pressure and delivery characteristics of a working fluid source and upon the mechanical characteristics of the particular web material.
  • conduit 45 is connected to the vacuum source for the mandrel to receive the leading edge of the web W.
  • This vacuum connection is continued throughout the winding process, FIG. 5a, and immediately after the wrapped mandrel has disengaged from the winding belts 51.
  • power is delivered to the mandrel independent drive train 54 to rotationally accelerate the mandrel and wound spool C, the effect of which is to complete the tail wrap and draw the trailing edge T thereof next to the spool surface C as illustrated by FIG. 5b. Since the web is permeable, in the case ofcrepe or tissue" paper, the slight pressure differential attraction remaining through a multiplicity of wraps is sufficient to adhere the tail T against the cylindrical surface.
  • conduit 45 is switched from the vacuum source to a pressure source causing an air blast from mandrel apertures 47 to expand and distort the cylindrical configuraton of spool C to that exageratedly shown in FIG. 50.
  • supply means for dispensing an indefinite length of thin web material having substantially uniform width along a material flow path having a substantially fixed portion thereof;
  • cyclically positionable deflector means for directing said web along one of at least two distribution flow paths
  • substantially cylindrical, axially rotatable mandrel means proximately disposed at the terminal end of each distribution flow path for receiving said uniform lengths of web directed thereto by said deflector means, each of said web lengths being wound about said mandrel with a plurality of wraps to form a spool;
  • fluid ejection means for removing said spool from the proximity of said mandrel comprising pressurized fluid supply means and a plurality of fluid discharge apertures disposed about the wrapping surface of said mandrel, said apertures being in communication with said fluid supply means and disposed at an angle to the mandrel axis whereby the discharge of pressurized fluid from said apertures expands said spool from substantial surface contact therewith and propels said spool over one axial end of said mandrel.
  • said deflector means comprises:
  • axes of apertures respective to a deflection surface form said acute angle therewith and emanate from a common point so that the fluid discharge direction therefrom is substantially parallel with the direction of said web flow path at the center thereof and substantially transverse of said web flow path at the lateral edges thereof.
  • mandrel apertures are also selectively communicated with vacuum source means to start and continue the winding of said web lengths about said mandrel.
  • An apparatus for producing coreless spools of thin sheet material from a substantially continuous supply thereof, -said apparatus comprising:
  • supply means for dispensing an indefinite length of thin sheet material having substantially uniform width
  • reaction propulsion stripping means including pressurized fluid supply means for axially ejecting said coreless spools from the proximity of said mandrel means;
  • first planar conveyance means for receiving said ejected coreless spools and translating same away from a receiving station thereof;
  • second planar conveyance means disposed at the delivery end of said first conveyance means for receiving said spools and continuing said translation in substantially the same plane; gap means between said first and second conveyance means of such width as to receive at least one ply of said sheet material but to be bridged by said spools in transition from said first to said second conveyance means;
  • first fluid curtain means directing fluid flow against said translation plane from one side thereof into said gap means to fluid dynamically urge free end portions of said spools into said gap means;
  • second fluid curtain means directing fluid flow against said translation plane from the other side thereof on the second conveyance means side of said gap to fluid dynamically urge remaining free end portions of said spools away from said plane and around said spools.
  • said second conveyance means comprises a plurality of transversely spaced conveyance belts and the fluid flow of said second fluid curtain means is directed through the spaces between said conveyance belts against said translation plane.
  • first and second fluid curtain means comprises elongated fluid manifold means transversely disposed across respective conveyance means, said manifold means having fluid outlet means disposed along the length thereof.
  • Apparatus as described by claim 9 further comprising velocity retarding means disposed between said mandrel means and said first conveyance means for receiving said ejected spools from said mandrel means, reducing the velocity thereof and depositing same with said first conveyance means.

Abstract

Coreless spools, alternately wound on two spindle mounted mandrels from a continuous web supply of thin sheet material, are jet propulsively ejected from the mandrels by pressurized fluid conducted thereto. Loose end portions of the completed spools are rewrapped about the spool body by bridging a gap between two conveyors and two air curtains.

Description

United States Patent [191 Dowd, Jr.
[ Dec. 24, 1974 METHOD AND APPARATUS FOR CORELESS SPOOL PRODUCTION [75] Inventor: Daniel J. Dowd, Jr., Clifton Forge,
[73] Assignee: Westvaco Corporation, New York,
[22] Filed: Dec. 10, 1973 [21] Appl. No.: 424,343
Related US. Application Data [62] Division of Ser. No. 216,629, Jan. 10, 1972, Pat. No.
[52] US. Cl 242/56 R [51] Int. Cl B65h 17/02 [58] Field of Search 242/56 R, 67.1 R, 67.2, 242/67.3 R
[56] References Cited UNITED STATES PATENTS 2,449,234 9/1948 Knoble 242/56 R 2,575,631 11/1951 Link 2,952,417 9/1960 ONeil 242/56 R 3,746,271 7/1973 Frankel 242/56 R FOREIGN PATENTS OR APPLICATIONS 638,353 6/1937 Germany 242/68.3
Primary ExaminerEdward J. McCarthy Attorney, Agent, or FirmR. L. Schmalz; W. A. Marcontell [5 7] ABSTRACT Coreless spools, alternately wound on two spindle mounted mandrels from a continuous web supply of thin sheet material, are jet propulsively ejected from the mandrels by pressurized fluid conducted thereto. Loose end portions of the completed spools are rewrapped about the spool body by bridging a gap between two conveyors and two air curtains.
13 Claims, 12 Drawing Figures METHOD AND APPARATUS FOR CORELESS SPOOL PRODUCTION BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to the art of sheet material handling and more particularly to spool winding for the paper converting industry.
2. Description of the Prior Art The use of spindle mounted winding mandrels for the production of coreless spools from thin sheet material such as crepe or tissue paper is a well established practice in the art.
To assist the starting wrap and spool removal, alternate communication of the mandrel surface with vacuum and pressure fluid sources has been taught by E. A. Link in U.S. Pat. No. 2,575,631.
Although such fluid assistance for starting and finishing a spool winding cycle as taught by Link is of value, manual removal of the finished spool is still necessary. Accordingly, if greater production rates from such spool winding devices are to be realized, such manual functions in the operation must be eliminated.
SUMMARY OF THE INVENTION An objective of the present invention, therefore, is to provide a method and apparatus for rapid and positive ejection of a completed spool from the winding mandrel.
Another object of the invention is to teach a material flow strategy to a plurality of winding mandrels.
Another object of the invention is to teach a method and apparatus for rewrapping loose ends of ejected spools.
These and other objects of the invention may be accomplished by driving the web flow path into an oscillating deflector for chuting the web to one of a plurality of winding mandrels.
The leading edge of the web is drawn into a converging nip between the receiving mandrel and surface friction drive belts therefor. A vacuum bias applied to the surface of the mandrel serves to adhere the web leading edge thereto until the first full wrap is complete and assists with tight, smooth layering for wraps applied thereafter.
When the desired length of web designated to form a spool has passed, the web is transversely severed above the deflector which indexes to the next chute position for directing the new leading edge into the next winding apparatus.
Meanwhile, tail winding of the previous spool is completed.
Sequentially thereafter, the spool wrapped mandrel disengages from the surface drive belts for acceleration to a greater rotational velocity. The mandrel surface vacuum is then replaced with a pressurized fluid flow which expands the spool from the mandrel surface in such a manner as to either impulsively or reactively propel the spool over the mandrel end and onto a receiving conveyor. This receiving conveyor delivers the spool across an air curtain which presses any free end portions against the conveyor surface plane to be carried into a gap between the delivery end of the receiving conveyor and the receiving end of a delivery conveyor. The gap dimensions, however, are insufficient to accommodate the main spool body which bridges the gap in transfer from said receiving to said delivery conveyor. The transition causes the free end portion to be drawn from the gap and under the spool main portion.
A subsequent air curtain may be used to blow any remaining free end portion of the spool up and over said main body portion.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic representation of the present invention showing the spool winding operation on one of two mandrels.
FIG. 2 is a schematic representation of the present invention showing the spool winding operation on the other of the two mandrels with the cutting mechanism engaged.
FIG. 3a is a side elevation of the deflector apparatus.
FIG. 3b is an end elevational of the deflector apparatus.
FIG. 4 is an elevational detail of the mandrel, mandrel drive, ejected spool braking mechanism, and the receiving conveyor station shown in partial section.
FIG. 5a is a detail of the mandrel and drive mechanism during the spool winding process.
FIG. 5b shows the next sequential step from FIG. 5a in preparation of a wound spool for ejection.
FIG. shows the pressurized expansion of a spool immediately antecedent to ejection.
FIG. 5d shows the initial ejective movement of a spool from the mandrel.
FIG. 6a schematically shows the spool receiving and delivery conveyors for rewinding loose end portions thereof.
FIGS. 6b and 6c sequentially show a spool bridging the gap between the two conveyor sections to illustrate a critical portion of the rewrapping process.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring initially to the schematic of FIG. 1, a continuous web W of paper, foil or other thin sheet material of indefinite length is drawn from the active supply roll 20 and turned over one of bars 22 into the nip of the web pulling section.
This pulling section comprises pulling drums 23 which are driven cylinders having a traction belt 25 wrapped partially thereabout. For greater area distribution of the pulling section nip pressure, the portion of the belts 25 in actual contact with the web W is increased by turning the belts over idler rolls 24.
Since the web W path through the pulling section is vertical, supply rolls 20 and 21 may be positioned on either side thereof. Accordingly when the web material from one roll is exhausted, supply from a reserve roll 21 may be started immediately with minimum time loss.
Upon emerging from the pulling section nip, web W is passed between cooperative cutting elements and 82 held at the open position and deflected by the left face 31 of deflector 30 into the nip between winding mandrel 40 and winding belts 51.
Deflector 30, as further shown in FIGS. 3a and 3b is an elongated, hollow triangular body that is offset positioned from the axis of journals 33. Position control of the deflector is provided by means of an eccentric 34 driven connecting rod 35. Such position control comprises a small angle oscillatory movement of the deflector apex 39 from the position shown in FIG. 1 on the right side of the web path to the position shown in FIG. 2 on the left side of the web path.
Since, in many cases, the web W product comprises extremely thin material such as crepe or tissue" paper, means are provided by the deflector 30 to prevent undesirable wrinkling and folding of the web as it turns from the straight line path out of the pulling section. Such means provided by the present invention comprises a plurality of low velocity air jets 37 emanating from the deflector body at a shallow angle from the plane of the deflector face 31. Moreover the axes 37a and jets 37 are respectively disposed in a radial array of planes emanating from axis 38 which is transverse of the web path W and remote from the deflector apex ridge 39. This radial or fan-like array of axes 37a provides a subtle but effective transverse and longitudinal smoothing of the web plane as it enters the nips between mandrel 40 and winding belts 51.
Air supply to deflector 30 hollow interior is conventionally provided through a flexible conduit 36 from a suitable pressurized source. Of course, the jets 37 are provided on both faces 31 and 32 of the deflector 30.
At this point in the machine cycle, mandrel 40 is internally evacuated causing an atmospheric draft radially inward through perforations 47 (FIG. 4) in the outer mandrel wall as will be described in greater detail relative to FIGS. 4 and 5.
As the nips between mendrel 40 and belts 51 press or wipe the web W into intimate contact with the mandrel 40 outer surface, the atmospheric pressure differential across the web thickness adheres the leading edge thereof to the mandrel surface for completion of the first full wrap after emerging from the nip between the mandrel and the belts 51. Thereafter, successive wraps of a continuous web length are wound thereon to complete a coreless spool.
Rotational force is provided to the mandrel 40 by surface friction drive from the belts 51 which, in turn, are driven by one of the turning rolls 50 and 52.
The length of web W wound upon the mandrel may be determined by any of several well known techniques including a gear mechanism or a timer. Although the details of a suitable drive mechanism for the web cutting mechanism shown are not illustrated, it should be understood that many such mechanisms are known to the prior art. Depending on the degree of precision desired for the cut length of web W, the rotational position of drum 81 may or may not be positively coordinated with the rotational position of cam 85. If the web W cut length may fluctuate within a tolerance defined by the circumferential arc of knife edge 80, the continuously rotating drum 81 may be free of any coordinating mechanism with cam 85. The particular technique selected for description herewith, however, is to cyclically coordinate, by means of chain drives, for example, the angular position of rotating knife drum 81 with that of cam detents 87. By making the speed of traction belts 25 independently variable of the cutting unit rotational speed, the desired length of web W to form a spool may be determined by the web W velocity.
When the desired length of web W has passed cam 85 is rotated so that one of the detents 87 thereon aligns with the bell crank 83 follower 84. Spring 86 provides the bias to urge the follower 84 into continuing contact with the surface of cam 85.
When the follower 84 drops into a detent 87, the bell crank 83 rotates the few degrees necessary to bring the anvil 82 into cutting position. When the rotating drum 81 mounted knife edge 80, traveling at a greater surface speed than the web W, reaches complimentary alignment with the anvil 82, the web W is sheared therebetween.
To prevent the leading edge of web W following a cut from momentarily adhering to the anvil 82, drum 81 is sheathed with a resilient foam material 88, the circumferential surface thereof radially projecting slightly beyond the edge of knife 80. At the moment of cut, the portion of the foam immediately behind the blade presses the web leading edge against the upper surface of anvil 82 for a frictional grip on said leading edge to pull it off the anvil 82.
The remaining rotating surface elements of sheath 88 sustain touching contact with the web W as it passes thereby lending a positive control assist to the web path.
The rotational speed of cam also provides a convenient timing reference for coordinating the cyclic activity of the deflector 30, mandrels 40 and 60, the several drive mechanisms and solenoid actuated fluid control valves as to be subsequently described. Accordingly, a multiple lobe cam shaft 65 is driven by a timing Chain 66 from the drive shaft for cam 85 to selectively make and break electrical contacts 67 for each electrically actuated control mechanism appropriate for the functions hereinafter described.
After completely winding the tail of a cut length of web W, winding belts 51 and roller 52 are rotated about the axis of roller 50 to disengage the belts 51 from the wound spool of web W about mandrel 40. If desired, the machine may be designed so that mandrel 40 is displaced in an opposite direction away from the winding belts 51 for complete disengagement therebetween. At this point, the coreless spool of web W wrapped about mandrel 40 is ejected therefrom in a manner to be subsequently described in detail.
Meanwhile, deflector 30 has been rotated by eccentric 34 mounted connecting rod 35 from the position shown in FIG. 1 to that of FIG. 2 to chute the new leading edge of web W into the nip between winding mandrel 60 and belts 71. The following events pursuant to winding another coreless spool of web material are the same as previously described relative to mandrel 40.
When the web spool C (FIG. 6a) ejects from the end of mandrel 40, the speed thereof is first retarded by a breaking section comprising converging belts 90 driven by drums 91 over idlers 98 (FIG. 4). Here the spool is flattened to an oval and controllably placed on a receiving conveyor section 100 comprising a multiplicity of spaced belts 101.
Upon emerging from the braking section (FIG. 6a), the tails T of the spools C are uncontrolled and are likely to be lifted free and partially unwound from the spool body. To neatly rewrap the tails T onto the spool bodyC, the receiving and delivery conveyor sections 100 and 105, respectively, are provided with air curtains from upperv and lower manifolds 103 and 104 extending transversely across respective conveyor sections. If the tail has come free from the spool body underside as shown by T in FIG. 6a, the tail T is blown by the air curtain from upper manifold 103 into the crevice 102 between the downstream end of receiving conveyor 100 and the upstream end of delivery conveyor 105. Since the radii of turning drums 106 and 107 are critically sized, as is the width of crevice 102, the spool body C does not follow the tail T into the crevice but is merely passed tangentially between the drums 106 and 107 across the crevice as illustrated by FIGS. 6b and 60. Consequently, the free tail T is wrapped under the spool body C In the extreme case, where a free tail T yet remains behind a spool C after bridging the crevice 102, the air curtain from lower manifold 104 blows same upand around to the top side of the spool C as shown in FIG. 6a relative to spool C and tail T Accordingly, after passing the aforedescribed tail control section, the tails of such spools lay entirely in juxtaposition with the body and in immediate condition for final packaging.
Turning next to the internal details of the winding mandrels and the mechanics of coreless spool ejection, reference if first made to FIG. 4 where the mandrel 40 is shown as a closed, hollow cylinder rotationally mounted on a hollow spindle 41.
One end of the spindle 41 is rigidly secured to a swing arm 42 journaled about a bearing shaft 53. Conduit 45 is connected, alternatively, to positive and negative (vacuum) fluid pressure sources. Fluid communication between conduit 45 and apertures 47 through the shell of mandrel 40 is allowed via apertures 46 through the shell of spindle 41.
Integral with the wing arm 42 but opposite of the shaft 53 axis from the spindle 41 is a cam follower portion 43. The cam 44, in cooperation with the follower portion 43, is functionally effective to swing the mandrel 40 from the winding position of FIG. 1 to the ejection position of FIG. 2.
In the case of winding belt unit 50, 51 and 52, drum 50 enjoys a fixed axis about shaft 53 but idler drum 51 oscillates between winding and ejection positions. Winding unit 70, 71 and 72, on the other hand enjoys fixed axes for both drums 70 and 72. This distinction, however, is a mere designers choice and is not critical to the invention. Nevertheless, for power transmission convenience, drums 50 and 70 should be mounted on fixed axes and driven through a suitable, variable speed transmission 56. In the FIG. 4 embodiment, power is delivered from the input gear 55, through the transmission 56 and to the drum 50 via belt 57.
Experience with the present invention has found the variable speed transmission 56 extremely useful due to subtle distinctions in winding characteristics between different web materials. Even color differences between two, otherwise identical, webs of paper will require different winding speeds.
Although the web W winding drive is delivered by belts 52, mandrel 40 is also independently driven from a suitable, selectively engageable source, not shown, which delivers power to a transfer reduction sheave 54, also mounted on shaft 53, via an input 54b and and output 54a.
As indicated above, the shell of mandrel 40 is perforated by a multiplicity of apertures 47 drilled therethrough at an angle of approximately with and in radial planes of the mandrel axis.
The exact number, angle, and distribution pattern of apertures 47 optimum for a given core diameter and weight of particular wound web material are all variable parameters that are dependent upon the pressure and delivery characteristics of a working fluid source and upon the mechanical characteristics of the particular web material.
In a particular example, however, with a 2.75 inch OD and 20 /2 inch long mandrel provided with 36, 3/32 inch diameter apertures 47, drilled at a 20 degree angle with the mandrel axis in radial planes, and uniformly distributed around the mandrel circumference in eight symetrically offset rows, spools wound from 20 inch wide and inch long webs of 0.002 caliper crepe paper were quickly and neatly ejected without axial or telescopic expansion with an 18 psi source of air pressure.
As described above relative to the winding operation, conduit 45 is connected to the vacuum source for the mandrel to receive the leading edge of the web W. This vacuum connection is continued throughout the winding process, FIG. 5a, and immediately after the wrapped mandrel has disengaged from the winding belts 51. When such disengagement is complete, power is delivered to the mandrel independent drive train 54 to rotationally accelerate the mandrel and wound spool C, the effect of which is to complete the tail wrap and draw the trailing edge T thereof next to the spool surface C as illustrated by FIG. 5b. Since the web is permeable, in the case ofcrepe or tissue" paper, the slight pressure differential attraction remaining through a multiplicity of wraps is sufficient to adhere the tail T against the cylindrical surface.
With the independent mandrel drive still engaged, conduit 45 is switched from the vacuum source to a pressure source causing an air blast from mandrel apertures 47 to expand and distort the cylindrical configuraton of spool C to that exageratedly shown in FIG. 50.
High speed photographs have shown that under the aforedescribed conditions, the wound spool assumes a bulb shape at the discharge end of the mandrel as evidence that the leading axial end L of the spool C is retaining a close circumferential proximity to the mandrel surface and the air discharged from the apertures 47 is forming a pressure chamber within the region B. This circumstance dictates a fluid flow bias in the reverse direction F (relative to the air discharge direction from apertures 47 and the consequent movement of spool C). Consequently, spool C is, at least partially, reactively propelled from the mandrel 40 by the fluid mass discharge in the direction F as shown by FIG. 5d just as any jet powered vehicle.
Although detailed theoretical and laboratory analysis may reveal that the cylinder C is also propelled impulsively to some degree, for the purpose of this disclosure and the claims appended hereto, the phenomena, whether impulsive, reactive or a combination of the two, will be characterized as reactive propulsion.
It is to be understood that the foregoingdescription is of a preferred embodiment and that the invention is not to be limited by descriptions of incidentally disclosed machine elements and power transmission arrangement. Therefore, changes may be made in the described preferred embodiment without departing from the scope of the invention defined in the following claims.
I claim: 1. An apparatus for winding coreless spools of thin web material from a substantially continuous supply thereof, said apparatus comprising:
supply means for dispensing an indefinite length of thin web material having substantially uniform width along a material flow path having a substantially fixed portion thereof;
cyclically positionable deflector means for directing said web along one of at least two distribution flow paths;
cutting means disposed between said supply means and said deflector means for severing said web across the width thereof at substantially uniform length intervals;
substantially cylindrical, axially rotatable mandrel means proximately disposed at the terminal end of each distribution flow path for receiving said uniform lengths of web directed thereto by said deflector means, each of said web lengths being wound about said mandrel with a plurality of wraps to form a spool; and,
fluid ejection means for removing said spool from the proximity of said mandrel comprising pressurized fluid supply means and a plurality of fluid discharge apertures disposed about the wrapping surface of said mandrel, said apertures being in communication with said fluid supply means and disposed at an angle to the mandrel axis whereby the discharge of pressurized fluid from said apertures expands said spool from substantial surface contact therewith and propels said spool over one axial end of said mandrel.
2. Apparatus as defined by claim 1 wherein said deflector means comprises:
fluid distribution manifold means;
substantially smooth web deflection surfaces respective to each distribution flow path; and,
apertures in said deflection surfaces and in fluid communication with said manifold means for discharging a fluid at an acute flow angle with said deflector surfaces between said surfaces and said web.
3. Apparatus as defined by claim 2 wherein axes of apertures respective to a deflection surface form said acute angle therewith and emanate from a common point so that the fluid discharge direction therefrom is substantially parallel with the direction of said web flow path at the center thereof and substantially transverse of said web flow path at the lateral edges thereof.
4. Apparatus as described by claim 1 wherein said mandrel means is rotationally driven by surface friction drive means.
5. Apparatus as described in claim 1 wherein said mandrel apertures are also selectively communicated with vacuum source means to start and continue the winding of said web lengths about said mandrel.
6. Apparatus as described in claim 5 wherein said mandrel is rotationally driven by surface friction applied first drive means.
7. Apparatus as described by claim 6 wherein said mandrel is also rotationally driven by second drive means, said mandrel being driven by said first drive means at a first rotational speed for winding said spool and driven by said second drive means at a second, greater rotational speed for ejecting said spool.
8. Apparatus as described by claim 7 wherein said communication of said mandrel apertures with said vacuum source is coordinated with engagement of said first drive means and communication of said mandrel apertures with said pressurized fluid supply means is coordinated with disengagement of said first drive means and engagement of said second drive means.
9. An apparatus for producing coreless spools of thin sheet material from a substantially continuous supply thereof, -said apparatus comprising:
supply means for dispensing an indefinite length of thin sheet material having substantially uniform width;
axially rotatable mandrel means for receiving said material and winding same thereabout to form coreless spools of said material;
cutting means disposed between said supply means and said mandrel means for severing said web across the width thereof at substantially uniform length intervals;
reaction propulsion stripping means including pressurized fluid supply means for axially ejecting said coreless spools from the proximity of said mandrel means;
first planar conveyance means for receiving said ejected coreless spools and translating same away from a receiving station thereof;
second planar conveyance means disposed at the delivery end of said first conveyance means for receiving said spools and continuing said translation in substantially the same plane; gap means between said first and second conveyance means of such width as to receive at least one ply of said sheet material but to be bridged by said spools in transition from said first to said second conveyance means;
first fluid curtain means directing fluid flow against said translation plane from one side thereof into said gap means to fluid dynamically urge free end portions of said spools into said gap means; and,
second fluid curtain means directing fluid flow against said translation plane from the other side thereof on the second conveyance means side of said gap to fluid dynamically urge remaining free end portions of said spools away from said plane and around said spools.
10. Apparatus as described by claim 9 wherein said second conveyance means comprises a plurality of transversely spaced conveyance belts and the fluid flow of said second fluid curtain means is directed through the spaces between said conveyance belts against said translation plane.
11. Apparatus as described by claim 10 wherein said first and second fluid curtain means comprises elongated fluid manifold means transversely disposed across respective conveyance means, said manifold means having fluid outlet means disposed along the length thereof.
12. Apparatus as described by claim 9 further comprising velocity retarding means disposed between said mandrel means and said first conveyance means for receiving said ejected spools from said mandrel means, reducing the velocity thereof and depositing same with said first conveyance means.
13. A process for producing coreless spools of thin sheet material from a substantially continuous supply thereof, said process comprising the steps of:
supplying a substantially continuous web of thin sheet material to axially rotatable mandrel means for winding same thereabout to form coreless means; $130015 f Said material; directinga first fluid flow stream against the conveyclmfng Sald Commuous of material the ance plane of said first conveyance means from one width thereof at substantially uniform length mterside thereof to fluid dynamically urge free end pop Y I tions of said spools into said gap; and, smppmg Sald cQreless spoois from Sald mandrel directing a second fluid flow stream against the conmeans by reactively propelling same over one end of Said mandrel, veyance plane of said second conveyance means depositing said spools on first planar conveyance from the Q thereof mm] dyllamlcauy means; urge remaining free end portions of said spools transfering said spools across a gap from said first away from said plane and around said spools.
conveyance means to second planar conveyance

Claims (13)

1. An apparatus for winding coreless spools of thin web material from a substantially continuous supply thereof, said apparatus comprising: supply means for dispensing an indefinite length of thin web material having substantially uniform width along a material flow path having a substantially fixed portion thereof; cyclically positionable deflector means for directing said web along one of at least two distribution flow paths; cutting means disposed between said supply means and said deflector means for severing said web across the width thereof at substantially uniform length intervals; substantially cylindrical, axially rotatable mandrel means proximately disposed at the terminal end of each distribution flow path for receiving said uniform lengths of web directed thereto by said deflector means, each of said web lengths being wound about said mandrel with a plurality of wraps to form a spool; and, fluid ejection means for removing said spool from the proximity of said mandrel comprising pressurized fluid supply means and a plurality of fluid discharge apertures disposed about the wrapping surface of said mandrel, said apertures being in communication with said fluid supply means and disposed at an angle to the mandrel axis whereby the discharge of pressurized fluid from said apertures expands said spool from substantial surface contact therewith and propels said spool over one axial end of said mandrel.
2. Apparatus as defined by claim 1 wherein said deflector means comprises: fluid distribution manifold means; substantially smooth web deflection surfaces respective to each distribution flow path; and, apertures in said deflection surfaces and in fluid communication with said manifold means for discharging a fluid at an acute flow angle with said deflector surfaces between said surfaces and said web.
3. Apparatus as defined by claim 2 wherein axes of apertures respective to a deflection surface form said acute angle therewith and emanate from a common point so that the fluid discharge direction therefrom is substantially parallel with the direction of said web flow path at the center thereof and substantially transverse of said web flow path at the lateral edges thereof.
4. Apparatus as described by claim 1 wherein said mandrel means is rotationally driven by surface friction drive means.
5. Apparatus as described in claim 1 wherein said mandrel apertures are also selectively communicated with vacuum source means to start and continue the winding of said web lengths about said mandrel.
6. Apparatus as described in claim 5 wherein said mandrel is rotationally driven by surface friction applied first drive means.
7. Apparatus as described by claim 6 wherein said mandrel is also rotationally driven by second drive means, said mandrel being driven by said first drive means at a first rotational speed for winding said spool and driven by said second drive means at a second, greater rotational speed for ejecting said spool.
8. Apparatus as described by claim 7 wherein said communication of said mandrel apertures with said vacuum source is coordinated witH engagement of said first drive means and communication of said mandrel apertures with said pressurized fluid supply means is coordinated with disengagement of said first drive means and engagement of said second drive means.
9. An apparatus for producing coreless spools of thin sheet material from a substantially continuous supply thereof, said apparatus comprising: supply means for dispensing an indefinite length of thin sheet material having substantially uniform width; axially rotatable mandrel means for receiving said material and winding same thereabout to form coreless spools of said material; cutting means disposed between said supply means and said mandrel means for severing said web across the width thereof at substantially uniform length intervals; reaction propulsion stripping means including pressurized fluid supply means for axially ejecting said coreless spools from the proximity of said mandrel means; first planar conveyance means for receiving said ejected coreless spools and translating same away from a receiving station thereof; second planar conveyance means disposed at the delivery end of said first conveyance means for receiving said spools and continuing said translation in substantially the same plane; gap means between said first and second conveyance means of such width as to receive at least one ply of said sheet material but to be bridged by said spools in transition from said first to said second conveyance means; first fluid curtain means directing fluid flow against said translation plane from one side thereof into said gap means to fluid dynamically urge free end portions of said spools into said gap means; and, second fluid curtain means directing fluid flow against said translation plane from the other side thereof on the second conveyance means side of said gap to fluid dynamically urge remaining free end portions of said spools away from said plane and around said spools.
10. Apparatus as described by claim 9 wherein said second conveyance means comprises a plurality of transversely spaced conveyance belts and the fluid flow of said second fluid curtain means is directed through the spaces between said conveyance belts against said translation plane.
11. Apparatus as described by claim 10 wherein said first and second fluid curtain means comprises elongated fluid manifold means transversely disposed across respective conveyance means, said manifold means having fluid outlet means disposed along the length thereof.
12. Apparatus as described by claim 9 further comprising velocity retarding means disposed between said mandrel means and said first conveyance means for receiving said ejected spools from said mandrel means, reducing the velocity thereof and depositing same with said first conveyance means.
13. A process for producing coreless spools of thin sheet material from a substantially continuous supply thereof, said process comprising the steps of: supplying a substantially continuous web of thin sheet material to axially rotatable mandrel means for winding same thereabout to form coreless spools of said material; cutting said continuous web of material across the width thereof at substantially uniform length intervals; stripping said coreless spools from said mandrel means by reactively propelling same over one end of said mandrel; depositing said spools on first planar conveyance means; transfering said spools across a gap from said first conveyance means to second planar conveyance means; directing a first fluid flow stream against the conveyance plane of said first conveyance means from one side thereof to fluid dynamically urge free end portions of said spools into said gap; and, directing a second fluid flow stream against the conveyance plane of said second conveyance means from the other side thereof to fluid dynamically urge remaining free end portions of said spools away from said plane and around said spools.
US00424343A 1972-01-10 1973-12-10 Method and apparatus for coreless spool production Expired - Lifetime US3856226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00424343A US3856226A (en) 1972-01-10 1973-12-10 Method and apparatus for coreless spool production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00216629A US3802639A (en) 1972-01-10 1972-01-10 Method and apparatus for coreless spool production
US00424343A US3856226A (en) 1972-01-10 1973-12-10 Method and apparatus for coreless spool production

Publications (1)

Publication Number Publication Date
US3856226A true US3856226A (en) 1974-12-24

Family

ID=26911186

Family Applications (1)

Application Number Title Priority Date Filing Date
US00424343A Expired - Lifetime US3856226A (en) 1972-01-10 1973-12-10 Method and apparatus for coreless spool production

Country Status (1)

Country Link
US (1) US3856226A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228579A (en) * 1978-03-04 1980-10-21 Agfa-Gevaert, A.G. Method and apparatus for winding a strip of film and for inserting it in a cassette
EP0560392A1 (en) * 1992-03-13 1993-09-15 Bridgestone Corporation Apparatus for forming and taking up a belt-shaped member
US5271575A (en) * 1992-08-27 1993-12-21 James River Paper Company, Inc. Coreless paper roll manufacturing system
US5281386A (en) * 1992-08-27 1994-01-25 James River Paper Company, Inc. Method for shaping the center hole of a coreless paper roll
ES2051630A2 (en) * 1992-03-06 1994-06-16 Transmet Sa Arrangement for forming a rolled sheet
US5344091A (en) * 1993-08-20 1994-09-06 Elsner Engineering Works, Inc. Apparatus for winding stiffened coreless rolls and method
US5387284A (en) * 1994-03-07 1995-02-07 James River Paper Company, Inc. Apparatus and method for forming coreless paper roll products
US5453070A (en) * 1994-07-12 1995-09-26 James River Paper Company, Inc. System for manufacturing coreless roll paper products
US5497959A (en) * 1993-03-26 1996-03-12 Paper Converting Machine Company Coreless winding method and apparatus
US5772149A (en) * 1996-09-18 1998-06-30 C. G. Bretting Manufacturing Company, Inc. Winding control finger surface rewinder
US5797559A (en) * 1996-09-18 1998-08-25 Ncr Corporation Winding arbor having a plurality of air valves for making coreless paper rolls and method for using
US5820064A (en) * 1997-03-11 1998-10-13 C.G. Bretting Manufacturing Company, Inc. Winding control finger surface rewinder with core insert finger
US5875985A (en) * 1995-03-10 1999-03-02 Kimberly-Clark Worldwide, Inc. Indented coreless rolls and method of making the same
US5964430A (en) * 1998-05-28 1999-10-12 Ncr Corporation Winding arbor
US6000657A (en) * 1996-09-18 1999-12-14 C.G. Bretting Manufacturing Company, Inc. Winding control finger surface rewinder with core insert finger
US6070821A (en) * 1995-03-10 2000-06-06 Kimberly-Clark Worldwide Indented coreless rolls and methods of making and using
US6082664A (en) * 1997-11-20 2000-07-04 Kimberly-Clark Worldwide, Inc. Coreless roll product and adapter
USD428286S (en) * 1998-05-29 2000-07-18 Kimberly-Clark Worldwide Dispenser adapter for coreless rolls of products
US6092759A (en) * 1997-09-08 2000-07-25 Kimberly-Clark Worldwide, Inc. System for dispensing coreless rolls of product
US6092758A (en) * 1997-09-08 2000-07-25 Kimberly-Clark Worldwide, Inc. Adapter and dispenser for coreless rolls of products
US6138939A (en) * 1998-08-17 2000-10-31 Kimberly Clark Worldwide, Inc. Coreless adapter for dispensers of cored rolls of material
US6360985B1 (en) 1998-05-29 2002-03-26 Kimberly-Clark Worldwide, Inc. Dispenser adapter for coreless rolls of products
US6439502B1 (en) 1995-02-28 2002-08-27 Kimberly-Clark Worldwide, Inc. Dispenser for coreless rolls of products
US20030113458A1 (en) * 2001-12-18 2003-06-19 Kimberly Clark Worldwide, Inc. Method for increasing absorption rate of aqueous solution into a basesheet
US6649262B2 (en) 2001-07-06 2003-11-18 Kimberly-Clark Worldwide, Inc. Wet roll having uniform composition distribution
US6651924B2 (en) 2001-07-06 2003-11-25 Kimberly-Clark Worldwide, Inc. Method and apparatus for making a rolled wet product
US20040061021A1 (en) * 2002-09-27 2004-04-01 Butterworth Tad T. Rewinder apparatus and method
US20040096483A1 (en) * 2002-11-14 2004-05-20 Wilks David J. Method for increasing tail adhesion of wet rolls
US6866220B2 (en) 2001-12-21 2005-03-15 Kimberly-Clark Worldwide, Inc. Continuous motion coreless roll winder
US7175127B2 (en) 2002-09-27 2007-02-13 C.G. Bretting Manufacturing Company, Inc. Rewinder apparatus and method
ITMI20090865A1 (en) * 2009-05-18 2010-11-19 No El Srl METHOD, SPINDLE AND EQUIPMENT FOR THE WINDING AND REMOVAL OF REELS WITH A SOUL OF A PLASTIC FILM.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE638353C (en) * 1934-05-12 1937-06-18 Christian Majer Device for winding paper tubes, in particular conical tubes
US2449234A (en) * 1947-05-20 1948-09-14 Roofing Machinery Mfg Company Winder apparatus
US2575631A (en) * 1947-10-21 1951-11-20 Mcgraw Electric Co Vacuum mandrel
US2952417A (en) * 1954-05-11 1960-09-13 Continental Elastic Corp Hank winding machine
US3746271A (en) * 1971-10-07 1973-07-17 S Frankel Winding process and device for one or more strips of flexible material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE638353C (en) * 1934-05-12 1937-06-18 Christian Majer Device for winding paper tubes, in particular conical tubes
US2449234A (en) * 1947-05-20 1948-09-14 Roofing Machinery Mfg Company Winder apparatus
US2575631A (en) * 1947-10-21 1951-11-20 Mcgraw Electric Co Vacuum mandrel
US2952417A (en) * 1954-05-11 1960-09-13 Continental Elastic Corp Hank winding machine
US3746271A (en) * 1971-10-07 1973-07-17 S Frankel Winding process and device for one or more strips of flexible material

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228579A (en) * 1978-03-04 1980-10-21 Agfa-Gevaert, A.G. Method and apparatus for winding a strip of film and for inserting it in a cassette
ES2051630A2 (en) * 1992-03-06 1994-06-16 Transmet Sa Arrangement for forming a rolled sheet
EP0560392A1 (en) * 1992-03-13 1993-09-15 Bridgestone Corporation Apparatus for forming and taking up a belt-shaped member
US5271575A (en) * 1992-08-27 1993-12-21 James River Paper Company, Inc. Coreless paper roll manufacturing system
US5281386A (en) * 1992-08-27 1994-01-25 James River Paper Company, Inc. Method for shaping the center hole of a coreless paper roll
US5497959A (en) * 1993-03-26 1996-03-12 Paper Converting Machine Company Coreless winding method and apparatus
US5344091A (en) * 1993-08-20 1994-09-06 Elsner Engineering Works, Inc. Apparatus for winding stiffened coreless rolls and method
US5387284A (en) * 1994-03-07 1995-02-07 James River Paper Company, Inc. Apparatus and method for forming coreless paper roll products
US5467936A (en) * 1994-03-07 1995-11-21 James River Paper Company, Inc. Apparatus and method for forming coreless paper roll products
US5453070A (en) * 1994-07-12 1995-09-26 James River Paper Company, Inc. System for manufacturing coreless roll paper products
US6439502B1 (en) 1995-02-28 2002-08-27 Kimberly-Clark Worldwide, Inc. Dispenser for coreless rolls of products
US5875985A (en) * 1995-03-10 1999-03-02 Kimberly-Clark Worldwide, Inc. Indented coreless rolls and method of making the same
US6070821A (en) * 1995-03-10 2000-06-06 Kimberly-Clark Worldwide Indented coreless rolls and methods of making and using
US5772149A (en) * 1996-09-18 1998-06-30 C. G. Bretting Manufacturing Company, Inc. Winding control finger surface rewinder
US6000657A (en) * 1996-09-18 1999-12-14 C.G. Bretting Manufacturing Company, Inc. Winding control finger surface rewinder with core insert finger
US5797559A (en) * 1996-09-18 1998-08-25 Ncr Corporation Winding arbor having a plurality of air valves for making coreless paper rolls and method for using
US5820064A (en) * 1997-03-11 1998-10-13 C.G. Bretting Manufacturing Company, Inc. Winding control finger surface rewinder with core insert finger
US6092759A (en) * 1997-09-08 2000-07-25 Kimberly-Clark Worldwide, Inc. System for dispensing coreless rolls of product
US6092758A (en) * 1997-09-08 2000-07-25 Kimberly-Clark Worldwide, Inc. Adapter and dispenser for coreless rolls of products
US6082664A (en) * 1997-11-20 2000-07-04 Kimberly-Clark Worldwide, Inc. Coreless roll product and adapter
US5964430A (en) * 1998-05-28 1999-10-12 Ncr Corporation Winding arbor
USD428286S (en) * 1998-05-29 2000-07-18 Kimberly-Clark Worldwide Dispenser adapter for coreless rolls of products
US6360985B1 (en) 1998-05-29 2002-03-26 Kimberly-Clark Worldwide, Inc. Dispenser adapter for coreless rolls of products
US6138939A (en) * 1998-08-17 2000-10-31 Kimberly Clark Worldwide, Inc. Coreless adapter for dispensers of cored rolls of material
US6649262B2 (en) 2001-07-06 2003-11-18 Kimberly-Clark Worldwide, Inc. Wet roll having uniform composition distribution
US6651924B2 (en) 2001-07-06 2003-11-25 Kimberly-Clark Worldwide, Inc. Method and apparatus for making a rolled wet product
US7179502B2 (en) 2001-07-06 2007-02-20 Kimberly-Clark Worldwide, Inc. Wet roll having uniform composition distribution
US7101587B2 (en) 2001-07-06 2006-09-05 Kimberly-Clark Worldwide, Inc. Method for wetting and winding a substrate
US20030113458A1 (en) * 2001-12-18 2003-06-19 Kimberly Clark Worldwide, Inc. Method for increasing absorption rate of aqueous solution into a basesheet
US6866220B2 (en) 2001-12-21 2005-03-15 Kimberly-Clark Worldwide, Inc. Continuous motion coreless roll winder
US6877689B2 (en) 2002-09-27 2005-04-12 C.G. Bretting Mfg. Co., Inc. Rewinder apparatus and method
US7175127B2 (en) 2002-09-27 2007-02-13 C.G. Bretting Manufacturing Company, Inc. Rewinder apparatus and method
US20040061021A1 (en) * 2002-09-27 2004-04-01 Butterworth Tad T. Rewinder apparatus and method
US20040096483A1 (en) * 2002-11-14 2004-05-20 Wilks David J. Method for increasing tail adhesion of wet rolls
US7238236B2 (en) 2002-11-14 2007-07-03 Kimberly-Clark Worldwide, Inc. Apparatus for increasing tail adhesion of wet rolls
ITMI20090865A1 (en) * 2009-05-18 2010-11-19 No El Srl METHOD, SPINDLE AND EQUIPMENT FOR THE WINDING AND REMOVAL OF REELS WITH A SOUL OF A PLASTIC FILM.
WO2010133495A1 (en) * 2009-05-18 2010-11-25 No.El. S.R.L. Method, mandrel and apparatus for winding up and removing coreless rolls of stretch film
US8286904B2 (en) 2009-05-18 2012-10-16 No. El. S.R.L. Method, mandrel and apparatus for winding up and removing coreless rolls of stretch film

Similar Documents

Publication Publication Date Title
US3856226A (en) Method and apparatus for coreless spool production
US3802639A (en) Method and apparatus for coreless spool production
US3830143A (en) Method and apparatus for rewinding loose end portions of loosely wound spools
US8652283B2 (en) Method and device for closing the tail end of a log of web material and log obtained
US4583698A (en) Web-winding machine for winding paper webs onto cardboard cores or the like
JP6249011B2 (en) Winder and method for producing rolls of web material
US7942363B2 (en) Combined peripheral and central rewinding machine
US4856725A (en) Web winding machine and method
US6729572B2 (en) Mandrelless center/surface rewinder and winder
US4962897A (en) Web winding machine and method
US4723724A (en) Web winding machine and method
US6488226B2 (en) Web rewinder chop-off and transfer assembly
US7887003B2 (en) Machine and method for the production of rolls of weblike material together with a winding core and roll thus obtained
WO1994021545A1 (en) Rewinding machine and method for the formation of logs of web material with means for severing the web material
ITTO960151A1 (en) DEVICE FOR CONTINUOUS WINDING OF MATERIALS TO BE WINDED IN THE FORM OF A RIBBON.
JP3429168B2 (en) Equipment for manufacturing packets from thin packaging materials
JPH0536332B2 (en)
SU115698A1 (en) Paper Tube Making Machine for Paper Bag Production
JPS6155067A (en) Folding device for rolled paper rotary press
JPS62146857A (en) Web roll manufacturing device and web roll manufacturing method
JP2530855B2 (en) Continuous operation type web roll manufacturing equipment
IT202100022814A1 (en) CORE EXCHANGE GROUP IN WINDING MACHINES
JPH1087125A (en) Continuous manufacture of web roll and continuous driving type web roll manufacturing machine
JPH0539150A (en) Machine and method for take-up of web
JP2001072288A (en) Winding shaft loading method using web wound body continuous manufacturing machine and winding shaft loading device in web wound body continuous manufacturing machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: C.A. REED, INC. WILLIAMSPORT, PA A CORP OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WESTVACO CORPORATION;REEL/FRAME:004248/0412

Effective date: 19840323