US3856873A - Xylene isomerization - Google Patents

Xylene isomerization Download PDF

Info

Publication number
US3856873A
US3856873A US00397194A US39719473A US3856873A US 3856873 A US3856873 A US 3856873A US 00397194 A US00397194 A US 00397194A US 39719473 A US39719473 A US 39719473A US 3856873 A US3856873 A US 3856873A
Authority
US
United States
Prior art keywords
xylene
ethyl benzene
catalyst
xylenes
benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00397194A
Inventor
G Burress
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Priority to US00397194A priority Critical patent/US3856873A/en
Priority to CA202,760A priority patent/CA1024170A/en
Priority to JP7654774A priority patent/JPS5341658B2/ja
Priority to ES428303A priority patent/ES428303A1/en
Priority to GB3166274A priority patent/GB1444481A/en
Priority to FR7427090A priority patent/FR2243920B1/fr
Priority to RO7479760A priority patent/RO71614A/en
Priority to DE2442241A priority patent/DE2442241C3/en
Priority to PL1974174025A priority patent/PL97858B1/en
Priority to NLAANVRAGE7412092,A priority patent/NL167948C/en
Priority to DD181037A priority patent/DD112971A5/xx
Priority to IT27244/74A priority patent/IT1021338B/en
Priority to CS7400006284A priority patent/CS180026B2/en
Application granted granted Critical
Publication of US3856873A publication Critical patent/US3856873A/en
Priority to US05/861,814 priority patent/USRE30157E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2729Changing the branching point of an open chain or the point of substitution on a ring
    • C07C5/2732Catalytic processes
    • C07C5/2737Catalytic processes with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2775Catalytic processes with crystalline alumino-silicates, e.g. molecular sieves

Definitions

  • p-xylene is derived from mixtures of C aromatics separated from such raw materials as petroleum naphthas, particularly reformates, usually by selective solvent extraction.
  • the C aromatics in such mixtures and their properties are:
  • Principal sources at present are catalytically reformed naphthas and pyrolysis distillates.
  • the C aromatic fractions from these sources vary quite widely in composition but will usually be in the range 10 to 32 wt. percent ethyl benzene with the balance, xylenes, being divided approximately 50 wt. percent meta, and wt. percent each of para and ortho.
  • thermodynamic equilibra for the C aromatic isomers at Octafming conditions are:
  • Octafining process operates in conjunction with the product xylene or xylenes separation processes.
  • a virgin C aromatics mixture is fed to such a processing combination in which the residual isomers emerging from the product separation steps are then charged to the isomerizer unit and the effluent isomerizate C aromatics are recycled to the product separation steps.
  • the composition of isomerizer feed is then a function of the virgin C aromatic feed, the product separation unit performance, and the isomerizer performance.
  • the isomerizer unit itself is most simply described as a single reactor catalytic reformer. As in reforming, the catalyst contains a small amount of platinum and the reaction is carried out in a hydrogen atmosphere.
  • Octafiner unit designs recommended by licensors of Octafining usually lie within these specification ranges:
  • Octafining can accept a charge stream which contains that component. Normally, a portion of the ethyl benzene is removed by fractional distillation before the charge is processed. If no attempt is made to reduce ethyl benzene below a few percent by weight, this can be accomplished inexpensively and the ethyl benzene recovered is in usable form as a relatively pure chemical, e.g., for dehydrogenation to styrene.
  • the Octafiner is in a loop which includes means for separation of desired xylenes; p-xylene by crystallization and, possible, o-xylene by distillation.
  • the C,, stream stripped of desired xylenes returns to the Octafiner where more of the desired xylenes are generated, for example by isomerization of m-xylene. It will be apparent that ethyl benzene will tend to build up in the loop as other components are removed.
  • the Octafining catalyst has capability for converting ethyl benzene,- thus counteracting that tendency.
  • the Octafining catalyst has the disadvantage that it is a hydrocracking catalyst due'to the acid function of its silica/alumina base and its content of hydrogenation/dehydrogenation metal of the platinum group. In addition to converting ethyl benzene, this catalyst also causes net loss of xylenes.
  • Octafining catalyst and the zeolite catalysts referred to above behave in about the same manner. except for their aging characteristics; decline of activity with time on stream.
  • a typical charge to the isomerizing reactor (effluent of crystallizer for separation of p-xylene) may contain 17 wt. percent ethyl benzene, 65 wt. percent m-xylene, l 1 wt.% p-xylene and 7 wt. percent o-xylene.
  • the thermodynamic equilibrium varies slightly with temperature in a system in which o-xylene is separated in the loop by fractional distillation prior to the crystallizer.
  • the objective in the isomerization reactor is to bring the charge as near to theoretical equilibrium concentrations as may be feasible consistent with reaction times which do not give extensive cracking and disproportionation.
  • Ethyl benzene reacts through ethyl cyclohexane to dimethyl cyclohexanes which in turn equilibrate to xylenes. Competing reactions are disproportionation of ethyl benzene to benzene and diethyl benzene, hydrocracking of ethyl benzene to ethylene and benzene and hydrocracking of the alkyl cyclohexanes.
  • the rate of ethyl'benzene approach to equilibrium concentration in a C aromatic mixture is related to effective contact time. Hydrogen partial pressure has a very significant effect on eth'yl benzene approach to equilibrium. Temperature change within the range of Octafining conditions (830 to 900F). has but a very small effect on ethyl benzene approach to equilibrium.
  • Concurrent loss of ethyl benzene to other molecular weight products relates to percent approach to equilibrium.
  • Products formed from ethyl benzene include C naphthenes, benzene from cracking, benzene and C aromatics from disproportionation, and total loss to other than C, molecular weight.
  • C and lighter hydrocarbon by-products are also formed.
  • Loss of xylenes to other molecules weight products varies with contact time.
  • By-products include naphthenes, toluene, C aromatics and C and lighter hydrocracking products.
  • Ethyl benzene has been found responsible for a relatively rapid decline in catalyst activity of Octafining catalyst and this effect is proportional to its concentration in a C aromatic feed mixture. It has been possible then to relate catalyst stability (or loss in activity) to feed composition (ethyl benzene content and hydrogen recycle ratio) so that for any C aromatic feed, desired xylene products can be made with a selected suitably longcatalyst use cycle.
  • LTl has one disadvantage. It leaves ethyl benzene unchanged.
  • catalysts which are the acid forms ofzeolite ZSM-5 type, zeolite ZSM-l2 or zeolite ZSM-2l provide C aromatic isomerization catalysts which not only are very active and selective for shifting methyl groups on xylenes, but also convert ethyl benzene in a manner not previously observed for feeds of this type, if the process is conducted in the absence of substantial added hydrogen.
  • lt is,'accordingly, a primary object of this invention to isomerize the xylene content of C, aromatic fractions, but also to convert the ethyl benzene content thereof in a novel and unexpected fashion.
  • FIGURE of drawings is a diagrammatic representation of apparatus suited to practice of the invention.
  • a mixture of C, aromatics is supplied to the system by line 1, as from solvent extraction of a narrow cut taken by distillation of product of reforming a petroleum naphtha over platinum on alumina catalyst in the presence of hydrogen.
  • the feed passes to distillation in ethyl benzene tower 2, from which a portion of the ethyl benzene content is taken overhead by line 3. It is impracticably expensive to attempt removal of substantially all of the ethyl benzene by tower 2.
  • the amount removed as essentially pure ethyl benzene, suitable for charge to such operations as dehydrogenation to styrene, will depend on exact nature of the charge and demand for different products.
  • Bottoms from tower 2 are constituted by-the xylenes present in thecharge and a reduced content of ethyl benzene.
  • This mixture passes by line 4 and is blended with recycle xylenes, derived in a manner presently to be described, from line 5..
  • the blended stream is admitted to splitter tower 6 from which a heavy end is withdrawn by line 7.
  • that heavy end is constituted by (3 aromatics derived from the minor side reaction of transalkylation in the isomerizer.
  • splitter tower 6 may be operated to include o-xylene in the bottoms whichare then passed to distillation for separation of o-xylene from C aromatics (not shown).
  • the overhead of splitter tower 6 passes by line 8 to means for separation of p-xylene.
  • p-xylene is separated by fractional crystallization in crystallizer 9, involving chilling and filtration of p-xylene crystals from the liquid phase, for example, in the manner described by Machell et al. US. Pat. No. 3,662,013, dated May 9, 1.972.
  • other systems for p-xylene separation may be used in a plant for practice of this invention, e.g., selective sorption as described in .Cattanach' patent No. 3,699,182, dated Oct. 17, 1972.
  • high purity p-xylene is withdrawn as product by line 10.
  • the stream of C aromatics of reduced p -xylene content is withdrawn from crystallizer 9 by line-ll, passed through heater l2 and admitted to catalytic isomerizer 13 where it is contacted at reaction conditions with the acid form of ZSM-5 type zeolite or zeolite ZSM-l2 or zeolite ZSM-2l.
  • the principal reaction in isomerizer 13 is shifting of methyl groups in xylene molecules toward the equilibrium concentrations of the three xylenes. ln addition-to xylene isomerization, secondary reactions of transalkylation occur to produce benzene, toluene, polyethyl benzenes and polymcthyl benzencs.
  • the isomerizate produced in isomerizer 13 is transferred by line 114 through heat exchanger 15 to stripper 16.
  • the light ends of the isomerizate (benzene, toluene and normally gaseous hydrocarbons) are taken overhead by line 17 from stripper l6 and the balance passes by line 5 to be blended withfresh feed and recycled in the process.
  • the catalyst is prepared by converting the zeolite to acid form by calcination which converts tetraalkylammonium cations characteristic of these zeolites to protons by decomposition of the substituted ammonium cations. Additional protons and various metal cations may be substituted for the sodium-cations present in the zeolites as formed by base exchange in con ventional manner. It is essential to success in the present process that the zeolite catalyst be at least partially in the acid form, that is, that at least a portion of the cation positions be occupied by protons. Metal cations of various types may occupy the other sites if desired.
  • the zeolite crystals are preferably embedded in a bonding material to provide pellets of desired size and resistance to attrition.
  • a suitable binder is alumina. In order to provide a preponderance of the active zeolite, the binder is a minor constituent of the composite.
  • a particularly preferred catalyst is constituted by pellets of 35 wt. percent alumina and 65 wt. percent of the acid form of type ZSM-5 zeolite, zeolite ZSM-lZ or zeolite ZSlVl-Zl.
  • the isomerization process of this invention is operated in the vapor phase at temperatures of 500F. to 1,000F. under pressure below that which will liquefy the charge.
  • pressure does not seem to be a critical parameter and will be dictated in the usual case by economic and engineering considerations.
  • Pressures may range upwards from atmospheric pressure (0 pounds per square inch, gauge) but will normally be sent somewhat higher to accomodate the process to relatively small reaction vessels. Excessively high pressures, aboveabout l,00,0 p.s.i.g. will be generally undesirable, though fully operative, because of the great strength of reaction vessel walls required at high pressures, making the equipment unnecessarily expensive and requiring expensive compression stages.
  • Space velocities will vary in the range of 0.5 to 250 unit weights of charge per unit weight of zeolite per hour (weight hourly space velocity, WHSV). 1n gen-' eral. temperature and WHSV will be coordinated to provide a desired severity which will provide an adequate degree of xylene isomerization and ethyl benzene conversion without excessive losses to by-products. Thus. temperatures in the lower part of the temperature range will normally call for low space velocities.
  • EXAMPLE 1 The catalyst employed was 65 wt. percent HZSM-S (the acid form of ZSM-5 prepared by ammonium exchange and calcining) in 35 wt. percent alumina. The run was conducted at 950F., atmospheric pressure and 21 WHSV based on zeolite content only of the catalyst. The nature of the conversion will be apparent from a tabulation of feed and product compositions:
  • This example illustrates effectiveness of zeolites according to the invention which have been treated to incorporate both protons and metal cations.
  • Zeolite ZSM-5 was base exchanged with ammonium and nickel salts, incorporated in alumina to form a composite catalyst containing 65 wt. percent NiHZSM-S and 35 wt. percent alumina.
  • the composite catalyst analyzed 0.68 wt. percent nickel and 0.05 wt. percent sodium.
  • the composite was formed into one-sixteenth inch extrudate and admixed with tabular alumina (inert) to facilitate operation at high space velocity.
  • the admixture contained 12.5 vol. percent of NiHZSM- 5/alumina composite and 87.5 vol. percent of tabular alumina.
  • Aromatics 1 claim:

Abstract

Mixtures of C8 aromatic hydrocarbons are contacted in vapor phase with acid zeolite ZSM-5. The xylene content is thereby isomerized and the ethyl benzene content of the charge is converted in a manner which results in net increase of aromatic rings.

Description

Recycle Xylenes m i llmte States Patent [191 [111 3,856,873 illness Dec. M, 11974- {541 XYLENE ISOMERIZATION 3,691,247 1 9/1972 Billings 260/668 A l 3,751,504 8/1973 Keown et al. 260/672 T [75] Inventor- George Bum, somemne 3,756,942 9/1973 Cattanach 208/138 73] Assignee; Mobil Oil Corporation, New York, 3,761,389 9/1973 Rollmann 208/64 NY 3,790,471 2/1974 Arqzuer et a]. 260/672 T [22] Filed: Sept 1973 Primary ExaminerC. Davis [21] Appl. No.: 397,194 Attorney, Agent, or Firm-A. L. Gaboriault [52] 11.8. CI 260/668 A, 260/672 T [57] ABSTRAQT [5 lilt- CI. Mixtures of C 8 aromatic hydrocarbons are contacted of Search A in vapor phase with acid Zeolite The y content is thereby isomerized and the ethyl benzene [56] References and content of the charge is converted in a manner which UNITED STATES PATENTS results in net increase of aromatic rings. 2,795,630 6/1957 Lien et al 260/668 R 3,646,236 .2 1972 Keith etal 26 672 T 1 Clalm 1 Drawmg Flgllre p-xylene BACKGROUND OF THE INVENTION Xylenes are found in fractions from coal tar distillate, petroleum reformates and pyrolysis liquids in admixture with other compounds of like boiling point. The aromatic components are readily separated from nonaromatics by solvent extraction. Distillation provides a fraction consisting essentially of C,, aromatics. As will appear below, o-xylene is separable from other C,, aromatics by fractional distillation, and p-xylene is separable by fractional crystallization. Present demand is largely for p-xylene and it has become desirable to convert m-xylene, the principal xylene present in the feed stream, to the more desired p-xylene.
Since the announcement of the first commercial installation of Octafining in Japan in June, 195 8, this process has been widely installed for the supply of pxylene. See Advances in Petroleum Chemistry and Refining volume 4, page 433 (lnterscience Publishers, New York 1961). That demand for p-xylene has increased at remarkable rates, particularly because of the demand for terephthalic acid to be used in the manufacture of polyesters. I
Typically, p-xylene is derived from mixtures of C aromatics separated from such raw materials as petroleum naphthas, particularly reformates, usually by selective solvent extraction. The C aromatics in such mixtures and their properties are:
' Density Freezing Boiling Lbs./U.S. Point F. Point F. Gal.
Ethyl benzene l39.0 277.1 7.26 P-xylene 55.9 281.0 7.2] M-xylene 54.2 282.4 7.23 O-xylene l3.3 292.0 7.37
Principal sources at present are catalytically reformed naphthas and pyrolysis distillates. The C aromatic fractions from these sources vary quite widely in composition but will usually be in the range 10 to 32 wt. percent ethyl benzene with the balance, xylenes, being divided approximately 50 wt. percent meta, and wt. percent each of para and ortho.
In turn, calculated thermodynamic equilibra for the C aromatic isomers at Octafming conditions are:
Temperature 850F.
Wtf/r Ethyl benzene 8.5 Wt./( para xylene 22.0 WL'71 meta xylene 48.0 Wtf/v ortho xylene 21.5 TOTAL I000 rated from the mixed isomers by fractional crystallization.
As commercial use of para andortho xylene has increased there has been interest in isomerizing the other C aromatics toward an equilibrium mix and thus increasing yield of the desired xylenes.
Octafining process operates in conjunction with the product xylene or xylenes separation processes. A virgin C aromatics mixture is fed to such a processing combination in which the residual isomers emerging from the product separation steps are then charged to the isomerizer unit and the effluent isomerizate C aromatics are recycled to the product separation steps. The composition of isomerizer feed is then a function of the virgin C aromatic feed, the product separation unit performance, and the isomerizer performance.
The isomerizer unit itself is most simply described as a single reactor catalytic reformer. As in reforming, the catalyst contains a small amount of platinum and the reaction is carried out in a hydrogen atmosphere.
Octafiner unit designs recommended by licensors of Octafining usually lie within these specification ranges:
Process Conditions 830-900F. Nil
0.6 to L6 Vol/Vol/Hr.
lltol5 It will be apparent that under recommended design conditions, a considerable volume of hydrogen is introduced with the C aromatics. In order to increase throughput, there is great incentive to reduce hydrogen circulation with consequent increase in aging rate ofv the catalyst. Aging of the catalyst occurs through deposition of carbonaceous materials on the catalyst with need to regenerate by burning off the coke when the activity of the catalyst has decreased to an undesirable level. Typically the recommended design operation will be started up at about 850F. with reaction temperature being increased as needed to maintain desired level of isomerization until reaction temperature reaches about 900F. At that point the isomerizer is taken off stream and regenerated by burning of the coke deposit.
Because of its capability to convert ethyl benzene, Octafining can accept a charge stream which contains that component. Normally, a portion of the ethyl benzene is removed by fractional distillation before the charge is processed. If no attempt is made to reduce ethyl benzene below a few percent by weight, this can be accomplished inexpensively and the ethyl benzene recovered is in usable form as a relatively pure chemical, e.g., for dehydrogenation to styrene.
' The Octafiner is in a loop which includes means for separation of desired xylenes; p-xylene by crystallization and, possible, o-xylene by distillation. The C,, stream stripped of desired xylenes returns to the Octafiner where more of the desired xylenes are generated, for example by isomerization of m-xylene. It will be apparent that ethyl benzene will tend to build up in the loop as other components are removed. The Octafining catalyst has capability for converting ethyl benzene,- thus counteracting that tendency. It, the Octafining catalyst, has the disadvantage that it is a hydrocracking catalyst due'to the acid function of its silica/alumina base and its content of hydrogenation/dehydrogenation metal of the platinum group. In addition to converting ethyl benzene, this catalyst also causes net loss of xylenes.
Other catalysts have recently been identified as behaving in the same fashion as Octafining catalyst for isomerization of xylenes in C aromatic fractions accompanied by conversion of ethyl benzene. These new catalysts include zeolites of the ZSM-5 type, zeolite ZSM-l 2 and zeolite ZSM-Z l. ZSM-5 type includes zeolite ZSM-S as described in Argauer and Landolt Pat. No. 3,702,886, dated Nov. 14, 1972 and zeolite ZSMJ] as described in Chu Pat. No. 3,709,979, dated Jan. 7, 1973 and variants thereon. Zeolite ZSM-l2 is described in German Offenlegungsschrift No. 2,213,109. The activity of these catalysts for the stated purpose and of ZSM-2l is described and claimed in copending application of R. A. Morrison, Ser. No. 397,039, filed Sept. 13, 1973, the disclosure of which is hereby incorporated by reference.
In general, Octafining catalyst and the zeolite catalysts referred to above behave in about the same manner. except for their aging characteristics; decline of activity with time on stream.
A typical charge to the isomerizing reactor (effluent of crystallizer for separation of p-xylene) may contain 17 wt. percent ethyl benzene, 65 wt. percent m-xylene, l 1 wt.% p-xylene and 7 wt. percent o-xylene. The thermodynamic equilibrium varies slightly with temperature in a system in which o-xylene is separated in the loop by fractional distillation prior to the crystallizer. The objective in the isomerization reactor is to bring the charge as near to theoretical equilibrium concentrations as may be feasible consistent with reaction times which do not give extensive cracking and disproportionation.
Ethyl benzene reacts through ethyl cyclohexane to dimethyl cyclohexanes which in turn equilibrate to xylenes. Competing reactions are disproportionation of ethyl benzene to benzene and diethyl benzene, hydrocracking of ethyl benzene to ethylene and benzene and hydrocracking of the alkyl cyclohexanes.
The rate of ethyl'benzene approach to equilibrium concentration in a C aromatic mixture is related to effective contact time. Hydrogen partial pressure has a very significant effect on eth'yl benzene approach to equilibrium. Temperature change within the range of Octafining conditions (830 to 900F). has but a very small effect on ethyl benzene approach to equilibrium.
Concurrent loss of ethyl benzene to other molecular weight products relates to percent approach to equilibrium. Products formed from ethyl benzene include C naphthenes, benzene from cracking, benzene and C aromatics from disproportionation, and total loss to other than C, molecular weight. C and lighter hydrocarbon by-products are also formed.
The three xylenes isomerize much more selectively than does ethyl benzene, but they do exhibit different rates of isomerization and hence, with different feed composition situations the rates of approach to equilibrium vary considerably.
Loss of xylenes to other molecules weight products varies with contact time. By-products include naphthenes, toluene, C aromatics and C and lighter hydrocracking products.
Ethyl benzene has been found responsible for a relatively rapid decline in catalyst activity of Octafining catalyst and this effect is proportional to its concentration in a C aromatic feed mixture. It has been possible then to relate catalyst stability (or loss in activity) to feed composition (ethyl benzene content and hydrogen recycle ratio) so that for any C aromatic feed, desired xylene products can be made with a selected suitably longcatalyst use cycle.
A more recent development than Octafining is Low Temperature lsomerization (LTl) as described in Wise Pat. No. 3,377,400, dated Apr. 9, 1968. That process is particularly effective when the zeolite catalyst employed is ZSM-4 as described in Bowes, et. al. US. Pat. No. 3,578,723, dated May ll, 1971.
The advantages of LTl rest in its capability to isomerize xylenes in liquid phase at relatively low temperatures and the lack of necessity for hydrogen pressure in the reactor.- The zeolite catalyst, particularly ZSM-4, ages very slowly even with hydrogen or a hydrogenation/dehydrogenation metal component of the catalyst. However, LTl has one disadvantage. It leaves ethyl benzene unchanged.
Because the ethyl benzene content of C aromatic fractions is unchanged in LTl operations as practiced heretofore, such operations incur severe costs in capital investment and in operating expense to dispose of the ethyl benzene in order that it shall not build up in the system. Because of the minor difference in boiling point between ethyl benzene and certain of the xylenes, complete removal of ethyl benzene from the charge is prohibitive in cost. The practical way to handle this component is to provide an additional distillation column in the loop to remove ethyl benzene at substantial cost.
THE INVENTION It has now been found that catalysts which are the acid forms ofzeolite ZSM-5 type, zeolite ZSM-l2 or zeolite ZSM-2l provide C aromatic isomerization catalysts which not only are very active and selective for shifting methyl groups on xylenes, but also convert ethyl benzene in a manner not previously observed for feeds of this type, if the process is conducted in the absence of substantial added hydrogen.
lt is,'accordingly, a primary object of this invention to isomerize the xylene content of C, aromatic fractions, but also to convert the ethyl benzene content thereof in a novel and unexpected fashion.
As will be readily understood, the type of ethyl benzene conversion typical of Octafining (and also observed with metal ZSM-S in the presence of hydrogen) cannot occur when hydrogen is not supplied to the reactor. lt will be recalled that the conversion of ethyl benzene in Octafining proceeds by hydrogenation to ethyl cyclohexane which undergoes rearrangement to dimethyl cyclohexane. Dehydrogenation of that compound yields xylenes.
Despite the fact that the classical (Octafining) type of ethyl benzene conversion is impossible under the conditions characteristic of this invention, the conversion of that compound in the process of the invention does result in-en'hanced yeild of desired aromatic compounds. While not wishing to be limited by theoretical considerations, it is postulated that the alkyl side chain of ethyl benzene is cracked off the ring by the present catalysts at the conditions employed. This yeilds benzene, a valuable by-product, and ethylene. The increase in number of aromatic rings is believed tooccur by way of the reaction described in U.S. Pat. application Ser. No. 153,855, filed June 16, 1971, the disclosure of which is hereby incorporated by this reference. By whatever mechanism the reaction proceeds, the ethylene will react over HZSM-5 and other zeolites recited above to form benzene and alkyl benzenes, thus generating additional aromatic molecules from the conversion of the ethyl benzene in addition to the benzene resultant from stripping off the alkyl group. It is perhaps surprising that this reaction will proceed in a system so heavily predominating in aromatic ring compounds which couldbe thought inhibitory of the reaction.
The above objects are attained in a process illustrated in the single FIGURE of drawings which is a diagrammatic representation of apparatus suited to practice of the invention.
A mixture of C, aromatics is supplied to the system by line 1, as from solvent extraction of a narrow cut taken by distillation of product of reforming a petroleum naphtha over platinum on alumina catalyst in the presence of hydrogen. The feed passes to distillation in ethyl benzene tower 2, from which a portion of the ethyl benzene content is taken overhead by line 3. It is impracticably expensive to attempt removal of substantially all of the ethyl benzene by tower 2. The amount removed as essentially pure ethyl benzene, suitable for charge to such operations as dehydrogenation to styrene, will depend on exact nature of the charge and demand for different products.
Bottoms from tower 2 are constituted by-the xylenes present in thecharge and a reduced content of ethyl benzene. This mixture passes by line 4 and is blended with recycle xylenes, derived in a manner presently to be described, from line 5..The blended stream is admitted to splitter tower 6 from which a heavy end is withdrawn by line 7. In the embodiment shown, that heavy end is constituted by (3 aromatics derived from the minor side reaction of transalkylation in the isomerizer. Alternatively, when it is desired to recover o-xylene as a separate product, splitter tower 6 may be operated to include o-xylene in the bottoms whichare then passed to distillation for separation of o-xylene from C aromatics (not shown).
The overhead of splitter tower 6 passes by line 8 to means for separation of p-xylene. In the embodiment illustrated, p-xylene is separated by fractional crystallization in crystallizer 9, involving chilling and filtration of p-xylene crystals from the liquid phase, for example, in the manner described by Machell et al. US. Pat. No. 3,662,013, dated May 9, 1.972. It will be understood that other systems for p-xylene separation may be used in a plant for practice of this invention, e.g., selective sorption as described in .Cattanach' patent No. 3,699,182, dated Oct. 17, 1972. By whatever means separated, high purity p-xylene is withdrawn as product by line 10.
The stream of C aromatics of reduced p -xylene content is withdrawn from crystallizer 9 by line-ll, passed through heater l2 and admitted to catalytic isomerizer 13 where it is contacted at reaction conditions with the acid form of ZSM-5 type zeolite or zeolite ZSM-l2 or zeolite ZSM-2l. The principal reaction in isomerizer 13 is shifting of methyl groups in xylene molecules toward the equilibrium concentrations of the three xylenes. ln addition-to xylene isomerization, secondary reactions of transalkylation occur to produce benzene, toluene, polyethyl benzenes and polymcthyl benzencs. Important for the purposes ofthis invention is cracking of the side chain of ethyl benzene to yield benzene and ethylene. At the elevated temperatures contemplated by this invention, ethylene will react in the manner above described to produce aromatic compounds, primarily benzene.
The isomerizate produced in isomerizer 13 is transferred by line 114 through heat exchanger 15 to stripper 16. The light ends of the isomerizate (benzene, toluene and normally gaseous hydrocarbons) are taken overhead by line 17 from stripper l6 and the balance passes by line 5 to be blended withfresh feed and recycled in the process.
The catalyst is prepared by converting the zeolite to acid form by calcination which converts tetraalkylammonium cations characteristic of these zeolites to protons by decomposition of the substituted ammonium cations. Additional protons and various metal cations may be substituted for the sodium-cations present in the zeolites as formed by base exchange in con ventional manner. It is essential to success in the present process that the zeolite catalyst be at least partially in the acid form, that is, that at least a portion of the cation positions be occupied by protons. Metal cations of various types may occupy the other sites if desired.
Since the process is conducted in the absence of added hydrogen, there is no need for metals ofthe transition groups such as nickel, platinum, palladium, etc. These metals may be present, but as now understood, the process appears to be unaffected by such cations.
The zeolite crystals are preferably embedded in a bonding material to provide pellets of desired size and resistance to attrition. A suitable binder is alumina. In order to provide a preponderance of the active zeolite, the binder is a minor constituent of the composite. A particularly preferred catalyst is constituted by pellets of 35 wt. percent alumina and 65 wt. percent of the acid form of type ZSM-5 zeolite, zeolite ZSM-lZ or zeolite ZSlVl-Zl.
The isomerization process of this invention is operated in the vapor phase at temperatures of 500F. to 1,000F. under pressure below that which will liquefy the charge. Aside from the need to maintain vapor phase conditions, pressure does not seem to be a critical parameter and will be dictated in the usual case by economic and engineering considerations. Pressures may range upwards from atmospheric pressure (0 pounds per square inch, gauge) but will normally be sent somewhat higher to accomodate the process to relatively small reaction vessels. Excessively high pressures, aboveabout l,00,0 p.s.i.g. will be generally undesirable, though fully operative, because of the great strength of reaction vessel walls required at high pressures, making the equipment unnecessarily expensive and requiring expensive compression stages.
Space velocities will vary in the range of 0.5 to 250 unit weights of charge per unit weight of zeolite per hour (weight hourly space velocity, WHSV). 1n gen-' eral. temperature and WHSV will be coordinated to provide a desired severity which will provide an adequate degree of xylene isomerization and ethyl benzene conversion without excessive losses to by-products. Thus. temperatures in the lower part of the temperature range will normally call for low space velocities.
EXAMPLE 1 The catalyst employed was 65 wt. percent HZSM-S (the acid form of ZSM-5 prepared by ammonium exchange and calcining) in 35 wt. percent alumina. The run was conducted at 950F., atmospheric pressure and 21 WHSV based on zeolite content only of the catalyst. The nature of the conversion will be apparent from a tabulation of feed and product compositions:
TABLE 1 Feed. wtf/z Product. wtf/l Light Ends 4 0.1 Ethyl benzene 25.8 6.2 Benzene 0.0 11.8 Toluene 1.0 4.9 p-xylene 10.2 17.6 m-xylene 53.1 39.3v o-xylene 9.9 18.9 Cu+ 0.0 1.2 TOTAL XYLENES 73.2 75.8
It will be seen that under the relatively high severity of this run. major conversion of-ethyl benzene is accomplished. The very extensive reaction of ethyl benzene on this acid catalyst. accompanied by isomerization of the xylenes is highly advantageous for commercial operations.
EXAMPLE 2 Using the same catalyst as that described in Example 1 a run was made at 540F., pressure of 150 p.s.i.g. and WHSV of 4. The results shown in Table 11 report conversion after more than hours on stream.
This example illustrates effectiveness of zeolites according to the invention which have been treated to incorporate both protons and metal cations. Zeolite ZSM-5 was base exchanged with ammonium and nickel salts, incorporated in alumina to form a composite catalyst containing 65 wt. percent NiHZSM-S and 35 wt. percent alumina. The composite catalyst analyzed 0.68 wt. percent nickel and 0.05 wt. percent sodium. The composite was formed into one-sixteenth inch extrudate and admixed with tabular alumina (inert) to facilitate operation at high space velocity. The admixture contained 12.5 vol. percent of NiHZSM- 5/alumina composite and 87.5 vol. percent of tabular alumina.
The conditions and product yield are set out in Table 111.
TABLE [11 C Aromatics lsomerization NiHZSM-S Catalyst Charge. wt./r: 17.2 EB. 10.7 p-xyl. 65.6 m-xyl. 6.5 o-xyl Product Distribution 11.7!
C; (alkyl) Toluene C, (alkyl) C, aromatics on total and on C aromatics Total EB m-xylene p-xylene o-xylene C,, Aromatics Wt.'71 Conversion to Non-Aromatics WLV! loss C Aromatics 1 claim:
1. In a process for conversion of a mixture of aromatic compounds having eight carbon atoms. said mixture containing ethyl benzene and xylenes, to isomerize xylenes contained in said mixture and convert at least part of ethyl benzene so contained to xylene or to compounds readily separable by distillation from eight carbon atom aromatics; the improvement which comprises contacting such mixture of eight carbon atom aromatic compounds with acatalyst which comprises acid zeolite of the ZSM-5 type, acid zeolite ZSM-l 2 or acid zeolite ZSM-2l in vapor phase and in the absence of added hydrogen at a temperature of about 500F. to about 1,000F.

Claims (1)

1. IN A PROCESS FOR CONVERSION OF A MIXTURE OF AROMATIC COMPOUNDS HAVING EIGHT CARBON ATOMS SAID MIXTURE CONTAINING ETHYL BENZENE AND XYLENES, TO ISOMERIZE XYLENES CONTAINED IN SAID MIXTURE AND CONVERT AT LEAST PART OF ETHYL BENZENE SO CONTAINED TO XYLENE OR TO COMPOUNDS READILY SEPARABLY BY DISTILLATION FROM EIGHT CARBON ATOMS AROMATICS; THE IMPROVEMENT WHICH COMPRISES CONTACTING SUCH MIXTURE OF EIGHT CARBON ATOM AROMATIC COMPOUNDS WITH A CATALYST WHICH COMPRISES ACID ZEOLITE OF THE ZSM-5 TYPE, ACID ZEOLITE ZSM-12 OR ACID ZEOLITE ZSM2-21 IN VAPOR PHASE AND IN THE ABSENCE OF ADDED HYDROGEN AT A TEMPERATURE OF ABOUT 500*F. TO ABOUT 1,000*F.
US00397194A 1973-09-13 1973-09-13 Xylene isomerization Expired - Lifetime US3856873A (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US00397194A US3856873A (en) 1973-09-13 1973-09-13 Xylene isomerization
CA202,760A CA1024170A (en) 1973-09-13 1974-06-18 Xylene isomerization
JP7654774A JPS5341658B2 (en) 1973-09-13 1974-07-05
ES428303A ES428303A1 (en) 1973-09-13 1974-07-16 Xylene isomerization
GB3166274A GB1444481A (en) 1973-09-13 1974-07-17 Xylene isomerization
FR7427090A FR2243920B1 (en) 1973-09-13 1974-08-05
RO7479760A RO71614A (en) 1973-09-13 1974-08-13 PROCEDURE FOR XYLENE DISTRIBUTION
DE2442241A DE2442241C3 (en) 1973-09-13 1974-09-04 Use of certain zeolites for xylene isomerization
PL1974174025A PL97858B1 (en) 1973-09-13 1974-09-11 METHOD OF ISOMERIZATION OF 8 AROMATIC HYDROCARBONES WITH 8 CARBON ATOMS
NLAANVRAGE7412092,A NL167948C (en) 1973-09-13 1974-09-11 METHOD FOR ISOMERIZING AN ETHYLBENZENE CONTAINING MIXTURE OF XYLENE ISOMERS.
DD181037A DD112971A5 (en) 1973-09-13 1974-09-11
IT27244/74A IT1021338B (en) 1973-09-13 1974-09-12 PROCEDURE FOR CONVERSION OF A MIXTURE OF CI C AROMATIC COMPOUNDS 8
CS7400006284A CS180026B2 (en) 1973-09-13 1974-09-12 Method of xylenes izomerizing
US05/861,814 USRE30157E (en) 1973-09-13 1977-12-19 Xylene isomerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00397194A US3856873A (en) 1973-09-13 1973-09-13 Xylene isomerization

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/861,814 Reissue USRE30157E (en) 1973-09-13 1977-12-19 Xylene isomerization

Publications (1)

Publication Number Publication Date
US3856873A true US3856873A (en) 1974-12-24

Family

ID=23570200

Family Applications (1)

Application Number Title Priority Date Filing Date
US00397194A Expired - Lifetime US3856873A (en) 1973-09-13 1973-09-13 Xylene isomerization

Country Status (2)

Country Link
US (1) US3856873A (en)
CA (1) CA1024170A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928174A (en) * 1975-01-02 1975-12-23 Mobil Oil Corp Combination process for producing LPG and aromatic rich material from naphtha
US3966586A (en) * 1974-07-31 1976-06-29 Mobil Oil Corporation Method for upgrading heavy petroleum type stocks
US3969426A (en) * 1974-10-17 1976-07-13 Mobil Oil Corporation Conversion of methanol to products comprising gasoline boiling components
US4011275A (en) * 1974-08-23 1977-03-08 Mobil Oil Corporation Conversion of modified synthesis gas to oxygenated organic chemicals
US4012455A (en) * 1974-07-31 1977-03-15 Mobil Oil Corporation Upgrading refinery light olefins with hydrogen contributor
US4046825A (en) * 1974-05-15 1977-09-06 Mobil Oil Corporation Conversion of oxygenated compounds to gasoline
US4076761A (en) * 1973-08-09 1978-02-28 Mobil Oil Corporation Process for the manufacture of gasoline
US4086287A (en) * 1976-07-19 1978-04-25 Mobil Oil Corporation Selective ethylation of mono alkyl benzenes
US4101596A (en) * 1977-01-10 1978-07-18 Mobil Oil Company Low pressure xylene isomerization
US4120908A (en) * 1976-06-04 1978-10-17 Toa Nenryo Kogyo Kabushiki Kaisha Process for the conversion of C8 aromatic hydrocarbons
US4138440A (en) * 1974-08-14 1979-02-06 Mobil Oil Corporation Conversion of liquid alcohols and ethers with a fluid mass of ZSM-5 type catalyst
US4152363A (en) * 1977-05-09 1979-05-01 Mobil Oil Corporation Vapor phase isomerization of methyl-substituted aromatic hydrocarbons improved by using highly diluted zeolite catalyst
US4158676A (en) * 1977-07-08 1979-06-19 Mobil Oil Corporation Isomerization process
US4159283A (en) * 1978-04-07 1979-06-26 Mobil Oil Corporation Isomerization process
US4163028A (en) * 1977-07-22 1979-07-31 Mobil Oil Corporation Xylene isomerization
EP0006700A1 (en) * 1978-06-09 1980-01-09 Mobil Oil Corporation Isomerization of a mixture of ethyl benzene and xylene
US4188282A (en) * 1978-06-12 1980-02-12 Mobile Oil Corporation Manufacture of benzene, toluene and xylene
US4218573A (en) * 1978-06-12 1980-08-19 Mobil Oil Corporation Xylene isomerization
US4224141A (en) * 1979-05-21 1980-09-23 Mobil Oil Corporation Manufacture of aromatic compounds
US4236996A (en) * 1979-05-25 1980-12-02 Mobil Oil Corporation Xylene isomerization
US4371721A (en) * 1978-12-14 1983-02-01 Mobil Oil Corporation Selective cracking of disubstituted benzenes having polar substituents
US4435608A (en) 1980-12-12 1984-03-06 Exxon Research & Engineering Co. Xylene isomerization
US4450312A (en) * 1980-12-17 1984-05-22 Imperial Chemical Industries Plc Hydrocarbon conversion
US4467129A (en) * 1982-11-24 1984-08-21 Toray Industries, Inc. Conversion of xylenes containing ethylbenzene
US4482774A (en) * 1980-12-12 1984-11-13 Exxon Research & Engineering Co. Hydrocarbon conversion process with a composite zeolite
USRE31782E (en) * 1978-06-09 1984-12-25 Mobil Oil Corporation Xylene isomerization
US4560820A (en) * 1981-04-13 1985-12-24 Chevron Research Company Alkylaromatic dealkylation
US5847256A (en) * 1995-03-06 1998-12-08 Toray Industries, Inc. Process for producing xylene
FR2768724A1 (en) * 1997-09-23 1999-03-26 Inst Francais Du Petrole A new process for the production of para-xylene
US6207871B1 (en) 1997-12-19 2001-03-27 Mobil Oil Corporation High-purity meta-xylene production process
US6342649B1 (en) * 1995-05-10 2002-01-29 Denim Engineering, Inc Method for removing ethylbenzene from a para-xylene feed stream
US6600083B2 (en) 2000-07-10 2003-07-29 Bp Corporation North America Inc. Para-xylene production process integrating pressure swing adsorption and crystallization
CN103755514A (en) * 2013-10-18 2014-04-30 华电煤业集团有限公司 System and process for preparing benzene and p-xylene through alcohol ether conversion
CN103864565A (en) * 2014-03-20 2014-06-18 华电煤业集团有限公司 System and method of preparing paraxylene by alcohol/ether conversion
CN105214719A (en) * 2014-07-03 2016-01-06 中国石油化工股份有限公司 Element modified ZSM-12 molecular sieve catalyst and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2795630A (en) * 1954-08-26 1957-06-11 Standard Oil Co Preparation of trialkylbenzenes
US3646236A (en) * 1970-03-27 1972-02-29 Engelhard Min & Chem Disproportionation of toluene with a platinum-rhenium-solid oxide catalyst
US3691247A (en) * 1970-09-28 1972-09-12 Phillips Petroleum Co Selectively removing monoalkylbenzenes from mixtures thereof with dialkylbenzenes
US3751504A (en) * 1972-05-12 1973-08-07 Mobil Oil Corp Vapor-phase alkylation in presence of crystalline aluminosilicate catalyst with separate transalkylation
US3756942A (en) * 1972-05-17 1973-09-04 Mobil Oil Corp Process for the production of aromatic compounds
US3761389A (en) * 1972-08-28 1973-09-25 Mobil Oil Corp Process of converting aliphatics to aromatics
US3790471A (en) * 1969-10-10 1974-02-05 Mobil Oil Corp Conversion with zsm-5 family of crystalline aluminosilicate zeolites

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2795630A (en) * 1954-08-26 1957-06-11 Standard Oil Co Preparation of trialkylbenzenes
US3790471A (en) * 1969-10-10 1974-02-05 Mobil Oil Corp Conversion with zsm-5 family of crystalline aluminosilicate zeolites
US3646236A (en) * 1970-03-27 1972-02-29 Engelhard Min & Chem Disproportionation of toluene with a platinum-rhenium-solid oxide catalyst
US3691247A (en) * 1970-09-28 1972-09-12 Phillips Petroleum Co Selectively removing monoalkylbenzenes from mixtures thereof with dialkylbenzenes
US3751504A (en) * 1972-05-12 1973-08-07 Mobil Oil Corp Vapor-phase alkylation in presence of crystalline aluminosilicate catalyst with separate transalkylation
US3756942A (en) * 1972-05-17 1973-09-04 Mobil Oil Corp Process for the production of aromatic compounds
US3761389A (en) * 1972-08-28 1973-09-25 Mobil Oil Corp Process of converting aliphatics to aromatics

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076761A (en) * 1973-08-09 1978-02-28 Mobil Oil Corporation Process for the manufacture of gasoline
US4046825A (en) * 1974-05-15 1977-09-06 Mobil Oil Corporation Conversion of oxygenated compounds to gasoline
US3966586A (en) * 1974-07-31 1976-06-29 Mobil Oil Corporation Method for upgrading heavy petroleum type stocks
US4012455A (en) * 1974-07-31 1977-03-15 Mobil Oil Corporation Upgrading refinery light olefins with hydrogen contributor
US4138440A (en) * 1974-08-14 1979-02-06 Mobil Oil Corporation Conversion of liquid alcohols and ethers with a fluid mass of ZSM-5 type catalyst
US4011275A (en) * 1974-08-23 1977-03-08 Mobil Oil Corporation Conversion of modified synthesis gas to oxygenated organic chemicals
US3969426A (en) * 1974-10-17 1976-07-13 Mobil Oil Corporation Conversion of methanol to products comprising gasoline boiling components
US3928174A (en) * 1975-01-02 1975-12-23 Mobil Oil Corp Combination process for producing LPG and aromatic rich material from naphtha
US4120908A (en) * 1976-06-04 1978-10-17 Toa Nenryo Kogyo Kabushiki Kaisha Process for the conversion of C8 aromatic hydrocarbons
US4086287A (en) * 1976-07-19 1978-04-25 Mobil Oil Corporation Selective ethylation of mono alkyl benzenes
US4101596A (en) * 1977-01-10 1978-07-18 Mobil Oil Company Low pressure xylene isomerization
FR2376835A1 (en) * 1977-01-10 1978-08-04 Mobil Oil LOW PRESSURE XYLENE ISOMERIZATION
US4152363A (en) * 1977-05-09 1979-05-01 Mobil Oil Corporation Vapor phase isomerization of methyl-substituted aromatic hydrocarbons improved by using highly diluted zeolite catalyst
US4158676A (en) * 1977-07-08 1979-06-19 Mobil Oil Corporation Isomerization process
US4163028A (en) * 1977-07-22 1979-07-31 Mobil Oil Corporation Xylene isomerization
US4159283A (en) * 1978-04-07 1979-06-26 Mobil Oil Corporation Isomerization process
EP0006700A1 (en) * 1978-06-09 1980-01-09 Mobil Oil Corporation Isomerization of a mixture of ethyl benzene and xylene
USRE31782E (en) * 1978-06-09 1984-12-25 Mobil Oil Corporation Xylene isomerization
US4218573A (en) * 1978-06-12 1980-08-19 Mobil Oil Corporation Xylene isomerization
US4188282A (en) * 1978-06-12 1980-02-12 Mobile Oil Corporation Manufacture of benzene, toluene and xylene
US4371721A (en) * 1978-12-14 1983-02-01 Mobil Oil Corporation Selective cracking of disubstituted benzenes having polar substituents
US4224141A (en) * 1979-05-21 1980-09-23 Mobil Oil Corporation Manufacture of aromatic compounds
US4236996A (en) * 1979-05-25 1980-12-02 Mobil Oil Corporation Xylene isomerization
US4435608A (en) 1980-12-12 1984-03-06 Exxon Research & Engineering Co. Xylene isomerization
US4482774A (en) * 1980-12-12 1984-11-13 Exxon Research & Engineering Co. Hydrocarbon conversion process with a composite zeolite
US4450312A (en) * 1980-12-17 1984-05-22 Imperial Chemical Industries Plc Hydrocarbon conversion
US4560820A (en) * 1981-04-13 1985-12-24 Chevron Research Company Alkylaromatic dealkylation
US4467129A (en) * 1982-11-24 1984-08-21 Toray Industries, Inc. Conversion of xylenes containing ethylbenzene
US5847256A (en) * 1995-03-06 1998-12-08 Toray Industries, Inc. Process for producing xylene
US6342649B1 (en) * 1995-05-10 2002-01-29 Denim Engineering, Inc Method for removing ethylbenzene from a para-xylene feed stream
FR2768724A1 (en) * 1997-09-23 1999-03-26 Inst Francais Du Petrole A new process for the production of para-xylene
US6207871B1 (en) 1997-12-19 2001-03-27 Mobil Oil Corporation High-purity meta-xylene production process
US6600083B2 (en) 2000-07-10 2003-07-29 Bp Corporation North America Inc. Para-xylene production process integrating pressure swing adsorption and crystallization
CN103755514A (en) * 2013-10-18 2014-04-30 华电煤业集团有限公司 System and process for preparing benzene and p-xylene through alcohol ether conversion
CN103864565A (en) * 2014-03-20 2014-06-18 华电煤业集团有限公司 System and method of preparing paraxylene by alcohol/ether conversion
CN105214719A (en) * 2014-07-03 2016-01-06 中国石油化工股份有限公司 Element modified ZSM-12 molecular sieve catalyst and preparation method thereof
CN105214719B (en) * 2014-07-03 2017-12-15 中国石油化工股份有限公司 Element modified molecular sieve catalysts of ZSM 12 and preparation method thereof

Also Published As

Publication number Publication date
CA1024170A (en) 1978-01-10

Similar Documents

Publication Publication Date Title
US3856873A (en) Xylene isomerization
US3856871A (en) Xylene isomerization
CA1147353A (en) Process for isomerising xylenes
US4188282A (en) Manufacture of benzene, toluene and xylene
US3948758A (en) Production of alkyl aromatic hydrocarbons
US3957621A (en) Production of alkyl aromatic hydrocarbons
EP0021604B1 (en) Xylene isomerization
US3856872A (en) Xylene isomerization
US4159282A (en) Xylene isomerization
US4101597A (en) Recovery of p-xylene and benzene from eight carbon atom aromatic fractions
US4078990A (en) Manufacture of lower aromatic compounds
US3945913A (en) Manufacture of lower aromatic compounds
EP0000812B1 (en) A process for isomerizing xylenes
EP0234684B1 (en) Xylene isomerization process
US3856874A (en) Xylene isomerization
US4341622A (en) Manufacture of benzene, toluene and xylene
USRE31782E (en) Xylene isomerization
US3843740A (en) Production of aromatics
US5004854A (en) Pseudocumene and mesitylene production and coproduction thereof with xylene
US4218573A (en) Xylene isomerization
US4162214A (en) Method of preparing benzene and xylenes
US4101596A (en) Low pressure xylene isomerization
US4351979A (en) Manufacture of aromatic compounds
US4283584A (en) Manufacture of aromatic compounds
EP0036704B2 (en) Improved aromatics processing