US3861164A - Air conditioning process - Google Patents

Air conditioning process Download PDF

Info

Publication number
US3861164A
US3861164A US418528A US41852873A US3861164A US 3861164 A US3861164 A US 3861164A US 418528 A US418528 A US 418528A US 41852873 A US41852873 A US 41852873A US 3861164 A US3861164 A US 3861164A
Authority
US
United States
Prior art keywords
air
cooling
temperature
fresh
moisture content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US418528A
Inventor
Ted R Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00359368A external-priority patent/US3812685A/en
Application filed by Individual filed Critical Individual
Priority to US418528A priority Critical patent/US3861164A/en
Application granted granted Critical
Publication of US3861164A publication Critical patent/US3861164A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
    • F24F2006/146Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles using pressurised water for spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Definitions

  • the present invention relates to the production of low temperature gases such as air for beneficial use in air conditioning.
  • the present invention relates to conditioning fresh air by sequentially (1) pre-cooling dry air out of the presence of moisture, (2) adiabatically cooling the air, and (3) refrigerating the adiabatic cooling liquid to assure that the temperature of the cooling liquid is low enough to produce cold air. Surprising efficiency and cooling results from this process using a total fresh air system and treatment of the air in quantities between 400 and 600 cubic feet per minute per ton of net sensible in'space cooling.
  • FIGURE is a schematic flow diagram illustrating a fluid circuit and apparatus for reducing air temperature according to the present invention.
  • the present invention includes treating dry warm air out of the presence of moisture to reduce its wet bulb temperature.
  • Air most efficiently used with the illustrated embodiment has a dew point of not more than 57 which is low compared to the dry bulb temperature of the warm air.
  • This treatment can be performed by pre-cooling in a conventional heat exchanger.
  • the temperature of the pre-cooled gas is then adiabatically reduced so that the gas is cold.
  • Adiabatic processes are defined as those processes carried out in such a manner that heat is not exchanged between the system and its surroundings.
  • the adiabatic cooling step does not require an energy input to reduce the temperature.
  • a stream of gas is intimately mixed with a quantity of recirculating liquid at a given temperature in an adiabatic system
  • the temperature of the gas will drop and its humidity will increase.
  • the temperature of the recirculating liquid will approach the wet bulb temperature of the gas.
  • the low temperature liquid which is used for adiabatic cooling is subjected to refrigeration which further cools the liquid and therefore the air which contacts it and coincidentally produces further sensible cooling of the air.
  • refrigeration is detined to include cooling with mechanically or chemically refrigerated fluids.
  • air quantities treated according to the preferred embodiment of the invention must necessarily be limited to a rather narrow range in order to efficiently produce desired cooling to within a range of 53F to 60F without imposing larger than necessary pre-cooling and refrigeration loads on the air cooling process.
  • warm dry air is first obtained from a fresh air source, e.g., ambient.
  • a fresh air source e.g., ambient.
  • the dew point of the air should be at least as low as 57F when air having a dry bulb temperature of not less than 90F is used.
  • the warm air is first pre-cooled in a heat exchanger 62.
  • the heat exchanger 62 may be any one of a variety of heat exchangers which will not add moisture to the air, one suitable type being the fin-coil heat exchanger often called an extended surface heat exchanger. This type of heat exchanger is very inexpensive to acquire and operate and is very efficient at high temperatures.
  • the pre-cooled dry air emerging from the heat exchanger 62 is conducted to an air washer 64 which scrubs the air with water or, if desired, other cooling liquid.
  • the water used to scrub the pre-cooled dry air is recirculated through an external circuit 66 continuously.
  • the recirculated water in the circuit 66 is treated with a conventional refrigeration circuit generally designated 70.
  • the refrigeration circuit conventionally comprises a condenser 72 and a compressor 74 with an evaporating coil 76 interposed therebetween.
  • a conventional expansion valve 78 admits refrigerant fluid into the evaporating coil 76. Accordingly, the temperature of the recirculation water is reduced sufficiently by evaporator 76 so that both adiabatic and sensible cooling of the air results.
  • the refrigeration system 70 is specfically limited to avoid exclusive refrigerated cooling in the air washer 64 to insure that effluent air is within the range of 53F to 60F.
  • the system of the FIGURE is designed to transport and condition about 400 to 600 CFM/ton net sensible cooling.
  • temperatures as low as 53 to 60F may be economically and efficiently achieved.
  • the effluent conditioned air has a surprisingly low temperature and controlled humidity without requiring expensive dehumidifying (warming) and recooling steps.
  • cold air in the range of 53F to 60F for air conditioning or any other desired beneficial use can be obtained with surprising efficiency using a 100% fresh air system at maximum outdoor temperatures.
  • the need for recirculating the same air in order to reduce the costs of cooling is unnecessary.
  • cold air can be obtained without using large and expensive refrigeration systems.
  • the refrigeration system required for this combination of cooling steps has been found to be approximately one-third the size required conventional conventinal recirculating air refrigeration systems are employed. Accordingly, the advantages of a complete fresh air system can be substituted for the lower quality, more expensive recirculating air systems.
  • a process for controlling the temperature and moisture content of air having a dew point of not more than 57F corresponding to at least F dry bulb temperature sequentially preparing an air flow path accommodating 400-600 CFM/ton net sensible cooling; drawing fresh dry air exclusively from a fresh air source and through the flow path in the amounts of 400 to 600 CFM/ton net sensible cooling; pre-cooling the fresh air with a heat exchanger without altering its moisture content;
  • a process for conditioning air comprising (a) precooling fresh air having a dew point of not more than 57F corresponding to at least 90F dry bulb temperature without altering its moisture content; (b) adiabatically cooling the air by scrubbing the air with recirculating water; (c) cooling the recirculating water with refrigeration to control the moisture content of the effluent air and to the extent that the effluent air has a temperature between 53F and 60F.

Abstract

A process for efficiently conditioning air for beneficial use by sequentially cooling dry air in three distinct steps, e.g., precooling the air out of the presence of moisture, adiabatically cooling the air with recirculating cooling liquid, and refrigerating the recirculating cooling liquid to assure that the temperature of the cooling liquid is low enough to make the air cold.

Description

Unlted States Patent 1191 1111 3,861,164
Brown Jan. 21, 1975 AIR CONDITIONING PROCESS 1,749,763 3/1930 Fleisher 62/92 1,863,576 6/1932 Morse (12/271 [76] Inventor. Ted R. Brown, 1212 Princeton 1,884,534 10/1932 Betz 62l3l4 AW, Salt Lake Y Utah 84105 2,811,223 10/1957 Newton 62/92 2 Filed: Nov. 23 1973 3,747,362 7/l973 Mercer 62/311 [21] Appl' N05 418,528 Primary ExaminerWilliam J. Wye
Related [1.8, Applic tion D t Attorney, Agent, or FirmH. Ross Workman; J. [60] Division ofSer. N0. 359,368, May 11, 1973, Pat. N0. Wmslow Young 3,812,685, which is a continuation-in-part of Ser. No. 172,968, Aug. 19, 197i, abandoned. 52 us. c1 62/91, 62/311, 62/314, A Process for efficiently conditioning air for beneficial 2/93 use by sequentially cooling dry air in three distinct [51] Int. Cl. F25d 17/06 stepsi PFC-Cooling the air out of the Pmsehcc 0f [58] Field of Search 62/311, 314, 91, 93 moisturei adiahatically Cooling the air with recirculat' ing cooling liquid, and refrigerating the recirculating 5 References Cited cooling liquid to assure that the temperature of the UNITED STATES PATENTS cooling liquid is low enough to make the air cold.
1,718,815 6/1929 Fleisher 62/314 2 Claims, 1 Drawing Figure WARM AIR (dry) WATER VERY COLD HEAT r66 EXCHANGER 64\ AIR 74 WASHER r76 70 COMPRESSOR COOL 9 78 CONDENSER 72 EVAPORATING COIL AIR CONDITIONING PROCESS This invention is a division of my copending application Ser No. 359,368, filed May 11, 1973, now U.S. Pat. No. 3,812,685 which is in turn a continuation-inpart of my copending application Ser No. 172,968, filed Aug. 19, 1971 (now abandoned).
BACKGROUND 1. Field of the Invention The present invention relates to the production of low temperature gases such as air for beneficial use in air conditioning.
2. The Prior Art It is well-known that the efficiency of air conditioning systems is highly dependent upon the temperature of ambient air. In summer months, where the ambient air temperature is high, usually refrigerated air conditioning systems are employed to produce consistently cold air. This is particularly true where high temperatures are accompanied by relatively high humidity levels. So-called swamp cooler type air conditioning systems become of almost negligible value when both the temperature and humidity of ambient air are high.
Because of the great difficulty with which air is reduced to a very low temperature in hot summer months, most air conditioning systems have been engineered so as to recirculate and recool the conditioned air instead of continuously cooling fresh air. This procedure has been found necessary to keep the size and attendant costs of air conditioning systems from becoming prohibitive. Until this present invention, an economical and efficient way of substantially reducing the temperature of air or other gas for cooling purposes yearround without refrigeration has not been known.
It is also well-known to condition air by successive cooling, humidifying, drying and recooling steps which are inefficient, complicated and expensive. See, for example, U.S. Pat. No. 1,863,578.
BRIEF SUMMARY AND OBJECTS OF THE INVENTION The present invention relates to conditioning fresh air by sequentially (1) pre-cooling dry air out of the presence of moisture, (2) adiabatically cooling the air, and (3) refrigerating the adiabatic cooling liquid to assure that the temperature of the cooling liquid is low enough to produce cold air. Surprising efficiency and cooling results from this process using a total fresh air system and treatment of the air in quantities between 400 and 600 cubic feet per minute per ton of net sensible in'space cooling.
It is, therefore, a primary object to efficiently provide air having controlled temperature and humidity for air conditioning.
It is another important object to provide a process for effecting sensible cooling using a'total'fresh air system.
These and other objects of the present invention will become more fully apparent from the following description and appended claims taken in conjunction with the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING The FIGURE is a schematic flow diagram illustrating a fluid circuit and apparatus for reducing air temperature according to the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT General Heat exchange processes such as used in air conditioning systems have always been required to have increased capacity in order to adequately cool air when the temperature and/or the humidity of external air climbs as in summer months and on hot days.
While it is relatively easy and comparatively inexpensive to remove heat from gases when the temperature of the gas is high, the difficulty with which heat is removed increases at an astonishing rate when the temperture of the gas is already low. Thus, generally speaking, it is much easier and less expensive to make hot air cool than to make cool air cold using prior art techniques. Historically, the approach used to make cool air cold was to increase the size and capacity of cooling systems.
The present invention includes treating dry warm air out of the presence of moisture to reduce its wet bulb temperature. Air most efficiently used with the illustrated embodiment has a dew point of not more than 57 which is low compared to the dry bulb temperature of the warm air. This treatment can be performed by pre-cooling in a conventional heat exchanger.
According to the present invention, the temperature of the pre-cooled gas is then adiabatically reduced so that the gas is cold. Adiabatic processes are defined as those processes carried out in such a manner that heat is not exchanged between the system and its surroundings. Thus, the adiabatic cooling step does not require an energy input to reduce the temperature. When the gas is adiabatically cooled according to the present invention, heat is not actually removed from the cooling system but is reduced psychrometrically.
If a stream of gas is intimately mixed with a quantity of recirculating liquid at a given temperature in an adiabatic system, the temperature of the gas will drop and its humidity will increase. Furthermore, the temperature of the recirculating liquid will approach the wet bulb temperature of the gas. The low temperature liquid which is used for adiabatic cooling is subjected to refrigeration which further cools the liquid and therefore the air which contacts it and coincidentally produces further sensible cooling of the air. In this specification, refrigeration is detined to include cooling with mechanically or chemically refrigerated fluids.
When fresh (unrecirculated) air is used for cooling, air quantities treated according to the preferred embodiment of the invention must necessarily be limited to a rather narrow range in order to efficiently produce desired cooling to within a range of 53F to 60F without imposing larger than necessary pre-cooling and refrigeration loads on the air cooling process.
It has been found according to the present invention that approximately 400 to 600 cubic feet of fresh air per minute per ton (CFM/ton) of net sensible in-space cooling is an adequate amount to develop conditioned air at a desirable temperature of between 53F and 60F. The'surprising efficiency of this system can be recognized by observing that conventional fresh air swamp coolers require about 1,000 CFM/ton even with very dry fresh air. The efficiency of the system using this air volume range presumes 100% fresh (unrecirculated) air having a dew point of not more than 57F coincident with dry bulb temperatures of not less than 90F. Under these climatic conditions, the presently preferred embodiment of the invention produces 53F to 60F moisture conditioned air with surprising efficiency and without requiring intermediate drying steps.
Referring more particularly to the FIGURE, warm dry air is first obtained from a fresh air source, e.g., ambient. To maximize the efficiency of the system, the dew point of the air should be at least as low as 57F when air having a dry bulb temperature of not less than 90F is used.
The warm air is first pre-cooled in a heat exchanger 62. The heat exchanger 62 may be any one of a variety of heat exchangers which will not add moisture to the air, one suitable type being the fin-coil heat exchanger often called an extended surface heat exchanger. This type of heat exchanger is very inexpensive to acquire and operate and is very efficient at high temperatures.
Therefore, according to the illustrated embodiment of the invention, the pre-cooled dry air emerging from the heat exchanger 62 is conducted to an air washer 64 which scrubs the air with water or, if desired, other cooling liquid. The water used to scrub the pre-cooled dry air is recirculated through an external circuit 66 continuously.
The recirculated water in the circuit 66 is treated with a conventional refrigeration circuit generally designated 70. The refrigeration circuit conventionally comprises a condenser 72 and a compressor 74 with an evaporating coil 76 interposed therebetween. A conventional expansion valve 78 admits refrigerant fluid into the evaporating coil 76. Accordingly, the temperature of the recirculation water is reduced sufficiently by evaporator 76 so that both adiabatic and sensible cooling of the air results. The refrigeration system 70 is specfically limited to avoid exclusive refrigerated cooling in the air washer 64 to insure that effluent air is within the range of 53F to 60F.
It should be observed that if the temperature of the air were not adiabatically reduced in the air washer 64, a far larger and more expensive coil 76 and larger refrigeration system 70 would be necessary to obtain the same very cold air temperature developed according to the conventional methods.
The system of the FIGURE is designed to transport and condition about 400 to 600 CFM/ton net sensible cooling. Using the air having a 57 dew point, temperatures as low as 53 to 60F may be economically and efficiently achieved. Accordingly, the effluent conditioned air has a surprisingly low temperature and controlled humidity without requiring expensive dehumidifying (warming) and recooling steps.
Using the embodiment of the FIGURE cold air in the range of 53F to 60F for air conditioning or any other desired beneficial use can be obtained with surprising efficiency using a 100% fresh air system at maximum outdoor temperatures. Thus, the need for recirculating the same air in order to reduce the costs of cooling is unnecessary. Furthermore, cold air can be obtained without using large and expensive refrigeration systems. The refrigeration system required for this combination of cooling steps has been found to be approximately one-third the size required conventional conventinal recirculating air refrigeration systems are employed. Accordingly, the advantages of a complete fresh air system can be substituted for the lower quality, more expensive recirculating air systems.
The invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiment is to be considered in all respects only as illustrative and not restrictive and the scope of the invention is, therefore. indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
What is claimed and desired to be secured by United States Letters Patent is:
1. A process for controlling the temperature and moisture content of air having a dew point of not more than 57F corresponding to at least F dry bulb temperature, sequentially preparing an air flow path accommodating 400-600 CFM/ton net sensible cooling; drawing fresh dry air exclusively from a fresh air source and through the flow path in the amounts of 400 to 600 CFM/ton net sensible cooling; pre-cooling the fresh air with a heat exchanger without altering its moisture content;
scrubbing the air with recirculating water to adiabatically cool the air; and
refrigerating the recirculated water to further cool the air to within a range of 53F to 60F.
2. A process for conditioning air comprising (a) precooling fresh air having a dew point of not more than 57F corresponding to at least 90F dry bulb temperature without altering its moisture content; (b) adiabatically cooling the air by scrubbing the air with recirculating water; (c) cooling the recirculating water with refrigeration to control the moisture content of the effluent air and to the extent that the effluent air has a temperature between 53F and 60F.

Claims (2)

1. A process for controlling the temperature and moisture content of air having a dew point of not more than 57*F corresponding to at least 90*F dry bulb temperature, sequentially preparing an air flow path accommodating 400-600 CFM/ton net sensible cooling; drawing fresh dry air exclusively from a fresh air source and through the flow path in the amounts of 400 to 600 CFM/ton net sensible cooling; pre-cooling the fresh air with a heat exchanger without altering its moisture content; scrubbing the air with recirculating water to adiabatically cool the air; and refrigerating the recirculated water to further cool the air to within a range of 53*F to 60*F.
2. A process for conditioning air comprising (a) precooling 100% fresh air having a dew point of not more than 57*F corresponding to at least 90*F dry bulb temperature without altering its moisture content; (b) adiabatically cooling the air by scrubbing the air with recirculating water; (c) cooling the recirculating water with refrigeration to control the moisture content of the effluent air and to the extent that the effluent air has a temperature between 53*F and 60*F.
US418528A 1973-05-11 1973-11-23 Air conditioning process Expired - Lifetime US3861164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US418528A US3861164A (en) 1973-05-11 1973-11-23 Air conditioning process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00359368A US3812685A (en) 1971-08-19 1973-05-11 Air conditioning process
US418528A US3861164A (en) 1973-05-11 1973-11-23 Air conditioning process

Publications (1)

Publication Number Publication Date
US3861164A true US3861164A (en) 1975-01-21

Family

ID=27000452

Family Applications (1)

Application Number Title Priority Date Filing Date
US418528A Expired - Lifetime US3861164A (en) 1973-05-11 1973-11-23 Air conditioning process

Country Status (1)

Country Link
US (1) US3861164A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380910A (en) * 1981-08-13 1983-04-26 Aztech International, Ltd. Multi-stage indirect-direct evaporative cooling process and apparatus
DE3314890A1 (en) * 1983-04-25 1984-10-25 Aztec Sensible Cooling Inc., Albuquerque, N. Mex. Process and apparatus for multistage evaporative cooling
US4857090A (en) * 1988-02-23 1989-08-15 Pneumafil Corporation Energy conservation system for cooling and conditioning air
US6116033A (en) * 1997-12-10 2000-09-12 Nec Corporation Outside air conditioner
US6966364B1 (en) * 1999-02-12 2005-11-22 Asml Holding N.V. Systems and methods for controlling local environment
US20070068186A1 (en) * 2005-09-26 2007-03-29 Yanick Leblanc Refrigerated water pumping system
EP2368082A1 (en) * 2008-12-22 2011-09-28 Amazon Technologies, Inc. Multi-mode cooling system and method with evaporative cooling
US11313624B2 (en) * 2012-03-06 2022-04-26 Mestek Machinery, Inc. Evaporative cooling system and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1718815A (en) * 1926-12-22 1929-06-25 Auditorium Ventilating Corp Method and apparatus for cooling air
US1749763A (en) * 1928-08-08 1930-03-11 Cooling & Air Conditioning Cor Method and means for reducing temperature by dehydration
US1863576A (en) * 1929-11-22 1932-06-21 American Blower Corp Apparatus and method of air conditioning
US1884534A (en) * 1927-10-13 1932-10-25 Harry D Betz Portable air-conditioning device
US2811223A (en) * 1954-12-10 1957-10-29 Coleman Co Method of conditioning air
US3747362A (en) * 1972-03-29 1973-07-24 Leach G Space cooling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1718815A (en) * 1926-12-22 1929-06-25 Auditorium Ventilating Corp Method and apparatus for cooling air
US1884534A (en) * 1927-10-13 1932-10-25 Harry D Betz Portable air-conditioning device
US1749763A (en) * 1928-08-08 1930-03-11 Cooling & Air Conditioning Cor Method and means for reducing temperature by dehydration
US1863576A (en) * 1929-11-22 1932-06-21 American Blower Corp Apparatus and method of air conditioning
US2811223A (en) * 1954-12-10 1957-10-29 Coleman Co Method of conditioning air
US3747362A (en) * 1972-03-29 1973-07-24 Leach G Space cooling system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380910A (en) * 1981-08-13 1983-04-26 Aztech International, Ltd. Multi-stage indirect-direct evaporative cooling process and apparatus
DE3314890A1 (en) * 1983-04-25 1984-10-25 Aztec Sensible Cooling Inc., Albuquerque, N. Mex. Process and apparatus for multistage evaporative cooling
US4857090A (en) * 1988-02-23 1989-08-15 Pneumafil Corporation Energy conservation system for cooling and conditioning air
US6116033A (en) * 1997-12-10 2000-09-12 Nec Corporation Outside air conditioner
US7389813B2 (en) * 1999-02-12 2008-06-24 Asml Holding N.V. Systems and methods for controlling local environment
US6966364B1 (en) * 1999-02-12 2005-11-22 Asml Holding N.V. Systems and methods for controlling local environment
US20050279490A1 (en) * 1999-02-12 2005-12-22 Babikian Dikran S Systems and methods for controlling local environment
US20070068186A1 (en) * 2005-09-26 2007-03-29 Yanick Leblanc Refrigerated water pumping system
US7380406B2 (en) * 2005-09-26 2008-06-03 Yanick Leblanc Refrigerated water pumping system
EP2368082A1 (en) * 2008-12-22 2011-09-28 Amazon Technologies, Inc. Multi-mode cooling system and method with evaporative cooling
EP2368082A4 (en) * 2008-12-22 2014-01-01 Amazon Tech Inc Multi-mode cooling system and method with evaporative cooling
US9791903B2 (en) 2008-12-22 2017-10-17 Amazon Technologies, Inc. Multi-mode cooling system and method with evaporative cooling
EP3364134A1 (en) * 2008-12-22 2018-08-22 Amazon Technologies, Inc. Multi-mode cooling system and method with evaporative cooling
US10921868B2 (en) 2008-12-22 2021-02-16 Amazon Technologies, Inc. Multi-mode cooling system and method with evaporative cooling
US11313624B2 (en) * 2012-03-06 2022-04-26 Mestek Machinery, Inc. Evaporative cooling system and device

Similar Documents

Publication Publication Date Title
EP3379171A2 (en) Transcritical system with enhanced subcooling for high ambient temperature
US4380910A (en) Multi-stage indirect-direct evaporative cooling process and apparatus
US3305001A (en) Plural zone heating and cooling system
US1986529A (en) Conditioning liquids and air and other gases
US3890797A (en) Air conditioning process
US3861164A (en) Air conditioning process
GB1172206A (en) Improved Refrigeration System
US3812685A (en) Air conditioning process
US20220228757A1 (en) Variable refrigerant flow (vrf) dehumidification system
CN112254236B (en) Indirect evaporative cooling cold water system combining mechanical refrigeration and switching method
US3371504A (en) Heat exchanger for air conditioner
JPH04350468A (en) Liquid cooler
JP3220286B2 (en) Operating method of heat source system for environmental test room
US2213421A (en) Evaporative cooling system
CN104654713A (en) Middle-size and small-size frostless refrigeration house refrigeration device of solution dehumidifying combined air cooling machine
JP6856580B2 (en) Storage system and how to use the storage system
JP2002243350A (en) Refrigerating system
CN202083052U (en) Cooling dehumidifying type air handling unit
US2059874A (en) Cold storage humidification and dehumidification system
JPS6189429A (en) Cold shock testing device
CN115013889B (en) Environment-independent rotating wheel dehumidification regeneration system
JP2000320863A (en) Air conditioner
JPS61291871A (en) Heat pump device for dehumidifying and drying air
JPS6349668A (en) Heat pump device for dehumidifying and drying air
KR100241440B1 (en) System Load Reduction Device of Air Conditioning Equipment