Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3862630 A
Tipo de publicaciónConcesión
Fecha de publicación28 Ene 1975
Fecha de presentación10 Dic 1973
Fecha de prioridad27 Oct 1967
También publicado comoUS3636943, US3794040, US3898992
Número de publicaciónUS 3862630 A, US 3862630A, US-A-3862630, US3862630 A, US3862630A
InventoresLewis Balamuth
Cesionario originalUltrasonic Systems
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Ultrasonic surgical methods
US 3862630 A
Resumen
The method and apparatus of the invention use ultrasonic energy in the form of mechanical vibrations transmitted by a tool member to close off small severed blood vessels, such as in humans, by the formation of closures at the terminal portions thereof, and stop what is called "oozes", that requires constant mopping or cleaning techniques during an operation. This tool member may be in the form of a knife ultrasonically vibrated to simultaneously sever and close off respective terminal portions of the severed blood vessels while performing surgical procedures. The tool member, of a proper configuration, may also join together layers of tissue, including the walls of unsevered blood vessels, and with respect to the latter is foreseen as replacing the "tying off" of arteries and veins currently necessary in surgery.
Imágenes(5)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

Balamuth 1 Jan. 28, 1975 1 ULTRASONlC SURGICAL METHODS 3.636.943 1/1972 Balamuth 128/024 A 3 794 ()4() 2/l974 Balamuth 118/325 X [75] Inventor: Lewis Balamuth, Southampton.

Primary Examim-r-Channing L. Pace [73] Assignee: Ultrasonic Systems. Inc.,

Farmingdale. NY. [57] ABSTRACT [22] Filed: 1973 The method and apparatus ofthe invention use ultra- [21] Appl. No.: 423,061 sonic energy in the form of mechanical vibrations transmitted by a tool member to close off small sev- Apphcauon Dam ered blood vessels. such as in humans. by the formai l z g flgl oiz 8; l f 'ds pff g tion of closures at the terminal portions thereof. and w stop what is calledfoozes". that requires Constant mopping or cleaning techniques during an operation.

This tool member may be in the form of a knife ultrafi x 9 3: sonically vibrated to simultaneously sever and close h H A 1 off respective terminal portions of the severed blood 1 0 can vessels while performing surgical procedures. The tool I member, of a proper configuration, may also join together layers of tissue, including the walls of unsev- [56] References cued ered blood vessels, and with respect to the latter is UNITED STATES PATENTS foreseen as replacing the "tying off" of arteries and 3,058,470 l0/l962 Seeliger etal. l28/303.l7 X veins currently necessary in surgery. 3.528.4l0 9/l970 Banko 128/024 A 3.618.594 ll/l97l Banko 128/024 A 3 Clamw 29 Drawing Figures i 7; 53 59/. 55A 5511 ,4 /?A 3 304 76/1, m 65A 56A /4A if 613A r 424 68h 2/4 6 65/1 4 i LL55:

| our. 48h

PATEMEDJAW'QYS 3. 862.630

SHEET 1 [1F 5 PEAK TOOL VELOCITY SEQ 1 32 0F MECHANICAL VIBRATION ENERGY PRESSURE ABSORPTION APPLIED WITH T'SSUE TOOL I TISSUE- ZZZIZ'AWCZRKING CLOSURE OR Jommo CUTTING was FRICTIONAL RUBBING HEAT TOOL TEMPERATURE O MENT IN nssus OXYGEN FOR CLOTTING PATENTEUJAN23|975 3.862.630 sum 2 or 5 GENERATOR MEANS PAIENIEB 3.862.630

SHEET 3 OF 5 F/G.3B F/6.3A

1 ULTRASONIC SURGICAL METHODS CROSS-REFERENCE TO RELATED APPLICATION This is a division of application Ser. No. 179,459, filed Sept. 10, I971 now U.S. Pat. No. 3,794,040; which is a division of Ser. No. 678,649, Oct. 27, i967 U.S. Pat. No. 3,636,943.

BACKGROUND AND SUMMARY OF THE INVENTION The present invention relates generally to improvements in surgical procedures whereby ultrasonic energy is utilized and more particularly to methods and apparatus for clossing off the terminal portions of sev ered blood vessels to stop or prevent the flow of blood therefrom during the surgical procedure and the joining of layers of tissue in biological organisms such as humans.

The outstanding and unexpected results obtained by the practice of the method and apparatus of the present invention, are attained by a series of features, steps and elements, working together in inter-related combination, and may be applied to biological organisms in general and particularly humans, and hence will be so illustrated and described with respect to humans.

Applicant has already participated in earlier developments which led to U.S. Pat. No. 3,086,288 covering the use of an ultrasonically vibrating scalpel or knife. The aim of that invention was to increase the ease with which a surgical knife could be used to cut organic tissues.

We are concerned in the present invention with new discoveries by applicant which allow dramatic improvements in the operation of high frequency vibrated knives, and also extend the use of the side area or working surface of a knife to perform a useful function, especially in relation to preventing or stopping bleeding.

Before proceeding to the details of the invention, let us first review briefly generally known facts of bleeding. The blood or circulatory system of the body (for warm blooded animals and humans) is comprised of two great and complex systems of arteries and veins. The arteries carry blood from the heart and these arteries divide in a complex network of smaller arteries or arterials, which in their turn connect to an extraordinarily complex network of very fine blood carrying tubes called capillaries. These capillaries are in communication with all the cells of the body and they provide the nutrients needed to feed these cells and they also supply the white blood cells needed to dispose of wastes and, in general, to police the cells and their environment in respect to unwanted substances and agents. After doing their job, the blood cells find their way back to the heart by means of a similar network of capillaries which join up to veinules or small veins, which in turn connect to veins which ultimately bring the blood back to the heart. There is also a lymph system which participates in this process, wherein again small tubes containing lymph (a kind of blood plasma with white corpuscles and waste products) convey this lymph through various strainers called lymph nodes and then, ultimately by means of the thoracic duct the purified lymph flow back into a large vein in the neck.

Now when the body is cut into at any location, in general a number of the tubes or vessels carrying blood are severed in this region. This severance will include many capillaries, some small veins and arteries and in some cases even a regular artery or a vein or both. The capillaries comprise an area which is as much as 100,000 times the area of the arteries and veins, and thus it is seen that many more capillaries are involved per incision than any other vessels. The severing of capillaries produces an ooze of blood which must be mopped up or swabbed during an operation. while the larger blood vessels involved must be clamped or tied off to prevent bleeding during the surgery. The attending of these bleeding problems takes up about 67 percent of the time of most operations. It is a major aim of this invention to reduce this lost time considerably and at the same time to reduce the total loss of blood and to promote the healing of the wounds created. This is accomplished by the design of ultrasonic instruments so as to enhance those uses of ultrasonic energy needed to accelerate the desired objective, namely to stop bleeding.

Ordinarily, bleeding stops by virtue of the interaction between small bodies in the blood stream called platelets and the oxygen in the air, whereby the platelets disintegrate and form a network of fibers called fibrin which slow up and finally stop the blood flow by the formation of suitable clots. Heat may be used to accelerate this process, and in fact both electric cautery and hot wire cautery are used in controlling bleeding in some procedures. But these types of cautery produce, in addition to rapid clotting, an extensive destruction to all tissue, thereby requiring a long time in the healing. By means of ultrasonic energy it is possible to promote the clotting with far less damage, as will be disclosed herein, so that bleeding may be very quickly halted and at the same time, much quicker healing will take place.

Electric and hot-wire cautery as well as cryogenic techniques are not effective for the care of bleeding from veins and arteries and it is here that special tyingoff methods or hemistatic clamping techniques are used. It is a further aim of this invention to teach how tying-off and clamping techniques may be replaced by utilizing ultrasonic energy in the proper way.

In all the ways whereby ultrasonic energy is used in this invention, the tool member supplying the energy executes vibrations of high frequency and small amplitude. Sinqetllgdevelopment of the ult rasgrgcknife, in partby present afiplicafif, new alloys have become generallyavail able which p e'rifiit the maximum amplitude of vi'bration'lat' 'a given frequent "to" be increased substan'tially. For alan ne;ffiiiiifegiil'ii aseasaisi could be vibrated at 20 Kc/secwith astrokibf'fWiSitbt most four thousandths of an ,inch. A largerj strokei'wouid cause a rapid fatigue failure lofj' th e ultrasonic motor driving the scalpel. with anew alloy of titanium (titanyllwith 6A]; one;such) it is possible to go to strokes fi'fii'gh as eight or ifi thousandths of an inch. This means that the rubbing action of a single stroke may be greatly enhanced, because the peak velocity achieved during the stroke is more than double the peak velocities previously attainable on a practical ba- SIS.

This improvement led applicant into the development of procedures and tools whereby such large ultrasonic motions could be put to work to stop capillary bleeding while cutting the surrounding tissue. In order to understand this, let us consider the transfer of energy which occurs during cutting. Wherever the tissue comes into contact with the cutting tool or scalpel, the tool member is moving to and fro at high frequency parallel to the surface of the tissue being severed. To the extent that there is good acoustic coupling between tissue and tool, there will be a transfer of shear waves into the tissue. But, tissue is of an acoustic nature as to be practically incapable of supporting high frequency shear waves. Therefore, the shear waves damp out very rapidly and dissipate their energy in the superficial tis sue as heat. This promotes fibrin formation and clotting at the capillaries, while the damage to underlying tissue is minimal due to lack of penetration of this clotting energy. To the extent that the tool slips past the tissue during its to and fro motion, a rubbing action is set up, due to relative motion of tool and tissue and a frictional heat is generated at the tool tissue interface, again producing a heating and clotting action on the adjacent terminal portion of the opened capillaries and other blood vessels. Thus, entirely due to the ultrasonic to and fro motion of the tool, a cooperative dual effect is engendered whereby the ooze" during an operation is effectively stopped while cutting.

Applicant has further found that the peak rubbing speed, which equals rrfx the peak to and fro stroke (f frequency of tool) is relatively constant with respect to frequency. This is because the peak strain set up in the ultrasonic motor driving the cutting tool depends directly on the peak speed of the cutting tool and not on the peak frequency. Of course, this merely means that if one wishes to operate at a higher frequency, then one has to be content with a proportionately diminished to and fro stroke of the tool. In any case, due to the cooperative effect, above outlined, essentially all of the energy of the tool is used in local, superficial heating, except for that used to actually sever the tissue itself. This latter component of energy is only a small fraction of the total energy used.

In actual practice, applicant has discovered that, by texturing or roughening the side walls of the cutting tool, the transfer of superficial cauterizing energy is increased so as such for certain surgical procedures it is preferable to use scalpels whose working surfaces or side faces are roughened rather than very smooth. The same principle applies to spatulate tools wherein no cutting is contemplated, but the tool is designed primarily to cauterize an already opened bed of blood vessels such as capillaries in a wound. In the case of the spatulate tool the amount of energy transfer may be increased by pressing the spatula tool working surface, while vibrating, with increased pressure against the wound to apply a compressive force for the transmission of the shear waves or increasing the frictional rubbing. Applicant has also discovered, that although it is not essential, it is nevertheless desirable to supply the cutting edge ofa knife or scalpel with a set of small serrations. This further aids in clotting, and permits faster cutting, while at the same time halting capillary bleedmg.

Now, in addition to all of the above there are still additional aids arising from the use of ultrasonic energy during the cutting operation. This arises because the collagenous substances in the walls of the capillaries and also in those of veins and arteries, are capable of being joined or sealed together by the application of said high frequency energy. In fact, it is just this property which makes it possible to close offa vein or an artery by clamping it in a specially designed ultrasonic instrument, so that the walls of said blood vessel are briefly clamped while vibrating one or both of the tool jaws. Since this same principle applies to other soft body tissue such as the skin, this same type of tool may be used in place of the conventional suturing which is used in closing incisions in surgical procedures.

Thus, it may be seen that we are dealing with a highly complicated set of phenomena in practicing applicant's method of bloodless surgery. At this time, it is not known quantitatively just how large a role is played by each factor, such as shear wave absorption, frictional heat production and tissue sealing. The point is that by employing ultrasonic motors capable of producing generally higher strokes than previously available, the combination of effects permits for the first time, true bloodless surgical procedure by ultrasonic means. Where extremely fast procedures are essential, one may also resort to auxiliary heating of the vibrating tool member, but only to sub-cautery temperatures. This temperature is preferably above room temperature but below a temperature that would normally burn the tissue. This may be accomplished conventionally, or in accordance with the method disclosed in US. Pat No.

3,321,558 in which applicant is a co-inventor.

OBJECTIVES OF THE INVENTION An object of the present invention is to provide an improved method and apparatus for forming surgical procedures with ultrasonic energy.

Another object of the present invention is to provide an improved method and apparatus for securing together layers of tissue in biological organisms, such as humans.

Yet another object of the present invention is to provide an improved method and apparatus for forming closures at the severed terminal portions of blood vessels in vivo, which blood vessesl are in the general neighborhood of what are called capillaries, so as to prevent ooze," which requires contact mopping or cleansing during surgical operations.

A further object of the present invention is to provide improved method and apparatus for permanently or temporarily closing off blood vessels so as to replace the tying off" of arteries and veins currently necessary in surgery.

Still another object of the present invention is to provide a method and apparatus of bloodless surgery which combines the surgical cutting of tissue and a closing off of the severed blood vessels to prevent the ooze" normally associated with operations.

Yet still another object of the present invention is to provide a method and apparatus for simultaneously joining and trimming, as by cutting, a large blood vessel.

Yet still a further object of the present invention is to provide an improved method and apparatus for ultrasonically joining together layers of tissue.

Still a further object of the present invention is to provide an improved method and apparatus for increasing the flow of oxygen to the terminal portion of the severed blood vessel to expedite the clotting of the blood thereat.

Still yet a further object of the present invention is to provide an improved sealing apparatus for joining together layers of human tissue.

Still yet a further object of the present invention is to provide specially designed tools adapted to be ultrasonically vibrated and employed in surgical procedures.

Other objects and advantages of this invention will become apparent as the disclosure proceeds.

BRIEF DESCRIPTION OF THE DRAWINGS Although the characteristic features of this invention will be particularly pointed out in the claims, the invention itself, and the manner in which it may be made and used, may be better understood by referring to the following description taken in connection with the accompanying drawings forming a part hereof, wherein like reference numerals refer to like parts throughout the several views and in which:

FIG. 1 is a chart indicating the relationship of the principal factors affecting the practicing of the present invention for surgical procedures;

FIG. 2 is an assembled somewhat schematic view of an ultrasonic motor generator system of the type in which the motor is capable of being hand held and manipulated, for driving a tool member adapted to engage the biological organism for performing a surgical procedure, and which in the present instance the tool member is illustrated as a knife for severing blood vessels, the latter shown on a greatly enlarged scale for discussion purposes;

FIG. 3 is a side view of an ultrasonic tool member having a textured working surface in accordance with the present invention;

FIGS. 3A and 3B are end views of the tool member in FIG. 3 and illustrates two preferred ways of obtaining the textured working surface;

FIG. 4 is a greatly enlarged schematic representation of a portion of a tool member with its working surface in engagement with the terminal portion of a blood vessel for forming a closure thereat to prevent the flow of blood from said terminal portion;

FIG. 4A is an enlarged section view taken along line 4A-4A of FIG. 4 to illustrate the interfacial contact between the tool working surface and blood vessel for the transmission of frictional energy and shear waves for localized heating of the terminal portion;

FIG. 4B is a greatly enlarged schematic representation illustrating an ultrasonically vibrating tool member engaging a severed portion of tissue for simultaneously forming a plurality of closures at the terminal portions thereof;

FIG. 4C is a greatly enlarged schematic representation illustrating the angular relationship between the tool member and blood vessel which defines a terminal plane that may define an extreme angle with the axis of the blood vessel and still obtain the desired results of the present invention;

FIG. 4D is an end view of the tool member and blood vessel of FIG. 4C;

FIGS. 5, 5A, 5B and 5C are enlarged schematic representations in cross-section of the method of forming a closure at the terminal portion of a blood vessel in which the side walls thereof are joined together;

FIG. 5D is an extremely enlarged view of a blood specimen to illustrate some of the important components thereof;

FIGS. 6 and 6A are enlarged schematic representations in cross-section of the method of forming a closure at the terminal portion of a blood vessel in which the closure is formed by partially converging the side walls thereof and forming a blood clot in the reduced opening;

FIGS. 7 and 7A are enlarged schematic representations in cross-section of the method of forming a closure at the terminal portion of a blood vessel in which the closure is formed by primarily forming a blood clot at the terminal portion thereof;

FIGS. 8 and 8A are side and elevational views respectively, of a spatula tool member having a textured working surface for ultrasonic cautery;

FIG. 9 is an enlarged sectional view illustrating the forming of a plurality of closures on respective terminal portions in an open wound by the use of a spatula shaped tool;

FIG. 10 is a top longitudinal view, of one preferred form of ultrasonic system, of the type capable of being hand held and manipulated, for joining together layers of tissue, such as in humans;

FIG. 11 is a side longitudinal view, partly in crosssection, of the ultrasonic system of FIG. 10;

FIG. 12 is an enlarged schematic view, in crosssection, illustrating the application of the ultrasonic instrument illustrated in FIGS. 10 and II for securing together the walls of a blood vessel;

FIG. 12A is an enlarged schematic view, in crosssection, similar to FIG. 12 illustrating the actual joining of the overlapping wall portions;

FIG. 12B is a further enlarged schematic view, in cross-section, showing the actual bond obtained between the wall portions of the blood vessel;

FIG. 12C illustrates the ultrasonic system as used for simultaneously joining and cutting layers of tissue; and

FIG. 12D illustrates the ultrasonic system clamping means for intermittently joining overlapped layers of tissue.

DETAILED DISCUSSION OF THE DRAWINGS The high frequency transducer means may be either in the sonic or ultrasonic frequency range but for purposes of the present invention the word ultrasonic will be used to denote vibrations in the range of approximately 5,000 to 1,000,000 cycles per second. In addition the term blood vessel as used herein is intended to include any tubular member of the human body, but particularly capillaries, arterials, veinules, arteries and veins.

In performing the surgical procedures of the present invention there are several factors that have to be taken into consideration and analyzed in terms of a total or effective value to obtain the desired end results. The term total value may be defined as the proper combination of these factors to obtain the desired end result.

Referring now to the drawings, FIG. I is a chart illustrating the relationship of the seven principal factors which are involvedin whole or in part for determining the total value associated with forming closures at the terminal portions of severed blood vessels, or joining together overlapping segments of layers of human tissue. The related factors are peak tool velocity, frequency of vibration, pressure applied with tool, tool working surface, cutting edge, tool temperature and oxygen for clotting. These factors vary with respect to the procedure being performed.

In the embodiments of the invention discussed below the working surface of the tool member is placed in engagement with at least one of the layers of tissue at a surface thereof such that a small compressive force is applied in a plane substantially normal to the engaged surface. While this compressive force is maintained the working surface of the tool member is vibrated at an ultrasonic rate to apply an additional energy producing force at the engaged surface. The compressive and energy producing forces are continued until the layers of tissue are secured together by the combined action of these forces.

When these layers of tissue form the walls of a blood vessel the forces are applied to the terminal surface thereof for producing localized heating in forming a closure to prevent the blood from escaping therefrom. The energy producing force may be divided into mechanical vibration energy absorption in tissue and frictional rubbing heat development in tissue both of which result in a localized heating of the walls of the blood vessel to obtain the tissue closure. The performing of surgical procedures as related to this aspect of the invention is discussed with reference to FIGS. 2 through 9, inclusive.

In contrast to this we have the joining of layers of tissue in overlapping relation to each other and in which case the compressive and vibrational forces are applied to one of the overlapped surfaces in a plane substantially normal thereto and in which case we primarily rely on mechanical vibration energy absorption in tissue to obtain the tissue joining. The performing of surgical procedures as related to this aspect of the invention is discussed with reference to H65. 10 through 12D, inclusive.

Referring again to the drawings, and with respect to FIG. 2, it will be seen that an apparatus 10 for ultrasonically performing surgical procedures on a biological organism, such as a human, may include an ultrasonic transducer or motor 11 for effecting the necessary high frequency vibrations of the tool member 13, such as a knife, having a sharp output edge or surface 15 with a working surface 16. The ultrasonic motor 11, as illustrated may be in the form of a driving member adapted for being hand held as by an operator l2, and generally comprising a tubular housing or casing 14 into which an insert unit 17 supporting the tool member 13 may be partially telescoped. The ultrasonic motor 11 is energized by an oscillation generator 18, with a power cable 19, connecting the two together. The generator is an oscillator adapted to produce electrical energy having an ultrasonic frequency.

The ultrasonic motor 11 may be one of a variety of electromechanical types, such as electrodynamic, piesoelectric and magnetostrictive. The ultrasonic motor for effecting surgical procedures through hand directed tools of suitable configuration, which are readily replaceable or inter-changeable with other work performing tools in acoustically vibrated material treating devices, may be of the type disclosed in U.S. Pat. Nos. Re 25,033, 3,075,288, 3,076,904 and 3,213,537, and wherein each work tool member is rigidly joined, in end-to-end relationship to a connecting body or acoustic impedance transformer and to a transducer which may form an insert unit or assembly which is removably supported in a housing containing a coil in surrounding relationship to the transducer and receiving alternating current for producing an alternating electromagnetic field.

The transducer in the ultrasonic motor 11 is longitudinally dimensioned so as to have lengths which are whole multiples of half-wavelengths of the compressional waves established therein at the frequency of the biassed alternating current supplied so that longitudinal loops of motion as indicated by arrow 23, occur both at the end of the insert unit l7 to which the tool member 13 is rigidly connected and the knife edge. Thus. the optimum amplitude of longitudinal vibration and hyper-accelerations of tool member 13 is achieved, and such amplitude is determined by the relationship of the masses of the tool member 13 and insert unit 17 which may be made effective to either magnify or reduce the amplitude of the vibrations received from the transducer.

The tool member 13 may be in the form of relatively flat metal spatula member, as shown in FIGS. 8 and 8A, hereinafter discussed in detail, to provide relatively wide surface areas for contact with the tissue to which the vibrations are to be applied for effecting the closure of severed blood vessels.

The tool member 13 may be permanently attached to the end of insert unit 17, for example. by brazing, solder or the like, or the tool may be provided with a threaded stud 20 adapted to be screwed into a tapped hole in the end of insert unit 17 for effecting the rigid connection of the tool to the stern. A base portion 21 is provided from which the stud 20 extends, from one end thereof, and from the other end a body 28 which is firmly secured thereto for the transmission of the ultrasonic vibrations. The body 28 may be brazed or welded to the base Zl ofthe tool member 13. A tapered surface 22 may be provided which connects the cutting edge 15 with the working surface 16.

As seen somewhat schematically in H6. 2 the biological organism 25, such as a human, contains a layer of outer tissue or skin 26, an internal cellular structure 27 with a plurality of blood vessels 30 extending therethrough shown in an enlarged scale, as well as in the skin (not shown).

FIGS. 3, 3A and 3B illustrate various types of replaceable surgical implements, such as knives, that may be employed in accordance with the present invention. The knife 13a of FIG. 3 is similar to that illustrated in FIG. 2 and includes a base portion 21a, capable of supporting ultrasonic vibrations and adapted to be set into vibration in a given direction by the driving member. A threaded stud 20a extends from one end of the base 21a for engagement with the insert unit. The body portion 28a, in the form of a cutting blade, extends from the opposite end of the base 21a and includes a textured working surface 16a for enhancing the coupling action between the tool member 13a and the terminal portion of the severed blood vessels to be engaged. The cutting edge 15a may be serrated and have an outwardly tapered portion 22a between the cutting edge 15a and the substantially flat working surface 160. The textured surface 160 may begin in close proximity to or start at the working edge so that when cutting and sealing small capillaries the rubbing action and transmission of shear waves begins immediately. The textured surface finish of 16a may vary from a micro finish in the range of 10 micro-inch to 10,000 micro-inch, but preferably in the range of 40 micro-inch to 200 microinch.

As illustrated in FIG. 3A the tool member 13a includes a body portion 280 having a coated textured layer of friction inducing material 29a which forms the working surface 16a and which may be of diamond or steel powder particles bonded to the body portion in any conventional manner well known in the art, to obtain the desired micro finish. The layer of coated material may be applied to both surfaces of the tool member and each surface may be of the same or different micro finish to obtain a debriding and superficial cauterizing. The advantages are quicker healing as well as less damage to the tissue being treated.

FIG. 38 illustrates the obtainment of the working surface 16a by finishing the metallic body 28a in any conventional manner to obtain the desired surface roughness. By providing the textured surface it is possible to control the rate of frictional heating of the blood vessels. The surface roughness is generally selected in accordance with the ultrasonic rate of vibration and the compressive force to be applied. This will in many instances relate to the particular surgeon performing the operation.

THEORY OF PRESENT INVENTION Whereas a scientific explanation of the theory based on the phenomena involved in disclosed below, it is to be clearly understood that the invention is by no means limited by any such scientific explanation.

Applicant has now discovered that mechanical vibrations properly applied may produce closures at the terminal ends of blood vessels to prevent the flow of blood therefrom and also join together layers of human tissue. With respect to forming the terminal closure it is possible to simultaneously cut through layers of tissue and seal off the terminal ends.

For purposes of illustration, we have in FIGS. 4 and 4A a single blood vessel 3011 having a wall 31b with a terminal portion 33b terminating in an end surface 32b, the latter in engagement with the working surface 16b of the tool member 13b which is being ultrasonically vibrated in the direction 23b.

At the interface of the working surface 16b and terminal surface 32b we have a transmission of both rubbing forces and mechanical vibrational energy to the blood vessel 30b which results in a localized heating of the terminal portion 33b. FIG. 4A illustrates the contour of the surfaces in engagement with each other and the transmission of the shear waves over the distance D. The pressure applied with the tool member, partially determines the degree of shear waves and rubbing vibrations transmitted to the terminal portion 33b of the blood vessel for a given textured tool. At point P shear vibration is developed in the tissue 310, then at P; the shear vibration has dropped almost to zero whereby the shear vibration energy is converted into heat in the tissue ofthe blood vessel. The smallness or minimal depth of penetration of P P is what makes for quick healing and cauterizing action of the tool member.

The shear wave pattern 35b extends the distance D, which is the distance from P to P along the blood vessel 30b to obtain the localized heating of the terminal portion. The coupling action at the working surface 16b and blood vessel 30b is enhanced by the application of the smal compressive force, as indicated by arrow 36b, in a plane substantially normal to the plane defined by said terminal end surface 32b. At P, in addition, to the extent that shear vibration is not induced in the tissue, there will be a slippage and a frictional rubbing action which will also produce heat practically instantaneously at P,. It is a combination of these effects which create the closure at the terminal portion of the blood vessel.

It will be appreciated that the relative amounts of shear vibration and frictional rubbing action will be determined or selected by the magnitude of the tool vibration and the tool surface in relation to the tissue surface. Many combinations are possible whereby either the frictional or the shear components may be emphasized.

The extent that the rise in temperature occurs at the terminal portion 33b of the blood vessel 30b is related to the rubbing vibrations applied and this is related to the peak speed which is:

V peak 2 11' f A A peak amplitude f frequency V peak velocity So that if f is raised, A is lowered and we can retain the same peak speed at all frequencies. This is why the more rubs per second the higher the frequency for the same output peak speed. Accordingly the working surface 16b of the tool member 13b may be surface finished for sufficient roughness to allow increased friction against the tissue. This is quite different from a standard knife or scalpel which has polished sides.

The thickness of the tool member should also be held to a minimum so as to permit a more rapid local temperature rise which is attributable to the shear production and absorption in the adjacent tissue and the temperature rise due to rubbing of tissue surface, which involves slippage between tool member and tissue surfaces. We can say that during the to and fro motion, neglecting the energy of cutting itself, when a knife is used we have:

Ultrasonic energy per stroke Ultrasonic shear energy produced per stroke Frictional rubbing energy per stroke.

Since, in both cases the energy absorbed goes into superficial heating of tissue and cutting tool, we can estimate the effects by considering all the energy to be frictional for ease of making approximate calculations.

Assuming an average force of friction, F, we have the power dissipated superficially at a tool tissue interface equal to:

S stroke F average friction force P power Now V max. for a frequency of 20 Kc/sec and a stroke of 0.010 inch is approximately 50 FPS. Therefore P is approximately 15 watts, when F is between one half and one pound. Since this power is dissipated in a superficial region of the cutting, the heat capacity of the tissue and the tool are quite small. For example for a steel tool of dimension 1 inch X 0.125 inch x 0.010 inch the total heat capacity is only a few hundreths of a gram. In such a case it is possible to obtain local temperature rises of the order of hundreds of degrees centigrade under the condition outlined above. This is ample to stop ooze."

Accordingly the frequency and amplitude of vibration of said tool member is selected at a level wherein the transmitted shear waves are substantially maintained at the terminal portion 33b with only superficial penetration and heating of the remainder of the blood vessel 30b.

Accordingly, the frequency and amplitude of vibration is preferably selected at a level to provide a peak velocity of at least 10 feet per second along the working surface 16b of the tool member 13b and more generally the general range of approximately 40 feet per second to 100 feet per second.

FIG. 4B shows a portion of the biological organism 25b with an outer layer of skin 26b and a plurality of blood vessels 30b extending through the cellular structure 27b and terminating against the working surface 16b of the tool member 13b. The tool member 13b is being vibrated at an ultrasonic rate in the direction of arrow 23b, which is in a plane substantially parallel to the plane defined by the terminal end portions 33b. to induce shear waves 35b, which penetrate the blood vessels 30b and surrounding tissue structure 27b. The high frequency vibration and amplitude of the tool member is selected to obtain only a superficial penetration and resulting heating of the terminal portions 3317 so that there is a minimum of damage to the underlying tissue area 31b and all of the blood vessels are simultaneously closed off.

As illustrated in FlGS. 4C and 4D the terminal portion 33b has an and surface 30b that defines a plane 37b that may vary in angular relationship to the axis of the blood vessel 30b. In practice the angular engagement between the working surface 16b of the tool member 13b and the end surface 32b may not always be controlled during a surgical procedure since the blood vessels such as capillaries, veinules, veins, arterials and arteries extend in various directions throughout the body. The important consideration is that the ultrasonic longitudinal mechanical vibrations, as indicated by arrow 23b, are applied having a major compone nt of vibration parallel to the terminal plane 37b and a component of compressive force, as indicated by arrow 36b, in a plane substantially perpendicular to the terminal plane 37b.

FIGS. 5, A, 5B, 5C, 6, 6A, 7 and 7A illustrate the actual surgical procedure in vivo of obtaining a closure at the terminal portion ofa blood vessel using the ultrasonic instrument illustrated in FIG. 2, or a tool member illustrated in FIGS. 4, 4A and 4B. As explained with respect to the theory of the present invention in FIGS. 3, 3A, 3B, 3C and 3D the degree of shear waves and frictional rubbing may be controlled so that a predominant reliance on-one or the other is produced.

in FIGS. 5, 5A, 5B and 5C the terminal closure 40c is formed primarily by producing a plastic flow of the wall of the blood vessel and continuing the flow for a period of time sufficient to obtain a joining of the severed ends together. initially the cutting edge c of the tool member 13c is placed in engagement with the skin 26c of the body c and the tool member 130 is ultrasonically vibrated and a small compressive force in the direction of arrow 36c is applied to obtain a cutting of the skin 26c and progressively sever the tissue by a continued movement of the cutting edge 15c through the cellular mate rial 270 until the wall 31c of the blood vessel c is engaged. The wall 31c for purposes of discussion is considered as layers of tissue 42c and 430, respectively.

As seen in FIG. 5A after the cutting edge 15c severs the tissue layer 42 a certain amount of blood 44c flows from within the blood vessel 30c into the opening 45c that has been formed. As the movement of the ultrasonic instrument is continued downwardly we have the engagement of the working surface l6c with the terminal end portion 33c of the blood vessel to apply a compressive force to the end surface to obtain a localized heating of the terminal portion by the application of the ultrasonic mechanical vibration. The relative movement is continued so that the application of the mechanical vibrations are transmitted for a period of time sufficient for the localized heating to form the closure 40c at the terminal portion 33c. In this manner the terminal portion 33c is closed off by the formation of the closure 45c and the blood contained therein is prevented from escaping through the closure. The closure 45c is produced at least in part by the production of said shear waves and their conversion into heat coupled with the localized heating obtained by inducing frictional rubbing at the terminal portion 33c. The extent of each factor will vary with the texture of the working surface 16c and the degree of the compressive force applied by the working surface against the terminal portion.

FIG. 5D is an enlarged microscopic examination of the blood 44c and as illustrated the blood contains red corpuscles 460, white corpuscles 47c and platelets 48c, the latter play an important role in the natural clotting of blood by producing fibrin when exposed to air. This natural clotting ability of blood is relied upon at least in part with respect to the formation of the closures illustrated in FIGS. 6, 6A, 7 and 7A.

H65. 6 and 6A illustrate the formation of the closure which is substantially formed by clotting of the blood at the terminal position. The working surface 16d is placed in engagement with the layers of wall 42d and 43d of the blood vessel 30d, which is of a size in the capillary range, with the blood 44d contained therein. The tool member 13d preferably has a textured surface to permit air and most importantly oxygen to be delivered past the layer of skin 26a to the terminal portion 33d of the blood vessel to obtain a clotting action. The tool member 16d acts as an ultrasonic pump and stimulates the flow of air to the work site. As the air reaches the work site we have the additional action of the conversion of the ultrasonic mechanical vibrations to obtain a localized heating by the conversion of the frictional motion into heat and the localized heating expediates the formation of the blood clot 50d which forms the closure 40d. Since the blood vessel is relatively small in diameter we have the formation of the closure 40d that is substantially formed by a clotting of the blood 44d therein. As seen in FIG. 6A the tool member is then removed leaving the opening of wound 45d and closures 40d formed on each respective end of the severed blood vessels.

FIGS. 7 and 7A illustrate the formation of a closure 40a by partially closing the layers 422 and 43e of the wall 31a of the blood vessel 30e at the terminal portions 332 by the localized heating and the remainder by forming a blood clot 50e of the blood 44a contained in the rediced area of the blood vessel. The ultrasonic tool member 13c transmits the mechanial vibration which produces a plastic flow of the wall 312 of said blood vessel which flow is continued for a period of time to obtain a reduced cross sectional area" and during which same period of time the localized heating assists in the formation of the blood clot 50e which together with the reduced area forms the closure 40e to prevent the blood from escaping therefrom. The tool member is then removed past the skin 26a leaving the opening 45e.

lt is appreciated that the process although illustrated for a single blood vessel can be occurring simultaneously on a plurality of blood vessels. To increase the rate at which the closure is formed and reduce healing time the working surface of the tool member may be heated to a temperature level which is above room temperature, but below a temperature that would normally sear the terminal portion of the blood vessel. The temperature of the tool may be heated in any conventional manner, as for example, in accordance with US. Pat. No. 3,321,558.

There are instances in surgical procedures where it is desirable to be able to stop bleeding independently of having previously cut the tissue of the body. As for example, in gunshot wounds and other accidents it is often desirable to stop bleeding and accordingly spatula like tools in accordance with the present invention may be utilized.

FIGS. 8 and 8A illustrate one form of readily replaceable implement, in the form of a spatula like tool member 13f, having a body portion 28f with substantially flat parallel working surfaces 16f that have been textured to a preselected micro finish to provide means for coupling the ultrasonic vibrations to the terminal portions of the blood vessels. The surface finish is selected for the transmission of rubbing vibrations and shear waves to obtain the localized heating. One end of the spatula body portion 28f is fixedly secured to the base portion 21], and the latter has a threaded stud 20f for securement to the ultrasonic driving member. The base portion 21f is preferably of a metallic material capable of supporting ultrasonic vibrations and adapted to be set into vibration in a given direction at ultrasonic frequencies. The body portion 28f may be in the order of 0.0l to 0.160 inches thick and be concave in configuration for strength reasons. It may also be designed to vibrate elliptically to permit intermittent separation of the tool member and terminal portions to promote the flow of air to the terminal portions for clotting.

As illustrated in FIG. 9 the spatula like tool member is illustrated for surgical procedures in which it is desired to form closures at terminal ends of blood vessels 30g separately from when the actual cutting is performed. Accordingly the spatula like tool Hg is inserted within the opening 45g of the body 25g such that the working surface 16g of the tool member 13g applies a compressive force against the terminal portions 33g of the severed blood vessels. The compressive force is applied in the direction of arrow 36g. The tool 13g is simultaneously vibrated, in a direction as indicated by arrow 23g, and at an ultrasonic rate to transmit mechanical vibrations to the terminal portion 33g of the blood vessels to obtain a localized heating of at least some of the terminal portion. The application of said compressive force and mechanical vibrations are continued until a closure at the terminal portion is formed and the blood contained therein is prevented from escaping through the formed closure. The thickness of the spatula tool member 13g may be narrower, as illustrated in H0. 9, than the opening 45g in the body, such that only one surface 16g engages the severed blood vessels. If desired the width of the spatula body 283 may be substantially equal to that of the body opening 453 so that both terminal ends 333 of a respective blood vessel 30g is closed during one insertion of the tool member within the wound.

The localized heating to obtain the closures may be induced by frictional rubbing at the terminal portion 33g of the blood vessel 30g so that the closure. is produced at least in part by frictional heating. By providing a textured surface to the tool member 13g the rate of frictional heating may be controlled when combined with the other factors to produce the terminal closure. Depending upon the thickness of the spatula tool member either pure longitudinal vibration will be obtained or a fiexural component of motion, as indicated by the arrow 51g, so as to obtain elliptical vibrational motion along the working surface 16g. This permits intermittent disengagement between the wall surface or terminal end of the blood vessel 33g and the working surface 16 so that air and in turn oxygen may be continuously supplied to the work site to assist in the clotting of the blood.

FlGS. l0 and 11 illustrate one form 10h of the ultrasonic system for joining together in vivo, overlapping layers of organic tissue. The system includes a hand held instrument including an ultrasonic motor llh, which may be the type as discussed with reference to FIG. 2, and include a tool member 13h having an enlarged portion 53h terminating in a working surface 16h that extends in a plane substantially normal to the direction of mechanical vibrations illustrated by the arrow 23h. The base 21h of the tool member i3]: is secured to the insert portion 17h. Support means 5511 is provided to act as an anvil or clamp so that the overlapped layers of tissue 42h and 43h of the wall 31h of the blood vessel 30h may be compressed between the vibratory working surface and a support surface.

The support means 55h includes a pair of legs 56h and 57h respectively, secured together at their lower end by bands 58h and provided with gripping means in the form of individual lugs 59h that extend outwardly from the upper end of the legs for engagement by the fingers of the surgeon or operator 12h in a manner hereinafter described. The leg 57h has a lower extension 60h that terminates in a support arm 61h at substantially right angle to the extension 6011, and is provided with a support surface 62/1 in spaced relation to the working surface 16h of the tool member 1311.

The legs 56h and 57h are in spaced relation to each other and may be contoured to conform to the cylindrical configuration of the ultrasonic transducer housing 14h. The generator 1811 is connected to the transducer 1111 by means of cable 19h in a conventional manner. As seen in FIG. 10 the cable 19h may enter the ultrasonic motor llh from the side so as to leave the rear end 63h free for engagement by the thumb or any other finger of the surgeon to permit manual control of the relative displacement between the overlapping working and support surfaces.

The support means 55h is mounted for relative movement, with respect to the ultrasonic motor llh by providing a pair of slots 65h on each of the legs 56h and 57h, and which slots accept headed fasteners 66h which extend from the casing l4h through the slots 65h to permit free relative movement between the ultrasonic motor 1111 and support means 55h. The lower end of the casing 14h is provided with an annular shoulder 67h which is adapted to receive spring means in the form of a spring 68h which is contained within the shoulder 67h at one end thereof and in engagement with the bands 58h at the opposite end thereof. The spring 68h applies a force in the direction of arrow 68h, so that the working surfaces of the support means and ultrasonic motor means are biassed away from each other whereby the force' applied by the surgeon is required to bring the overlapping working and support surfaces together. If desired the spring may be coupled to the support and ultrasonic motor means so as to force them together with predetermined static force which might be varied in a conventional manner not shown. In this manner once the static force is determined for the particular thickness of tissue the resultant permanent or temporary seal may be obtained. Accordingly the spring means may yieldably urge the support means 55h and transducer means llh relative to each other to a position wherein the working and support surfaces 16h and 62h, respectively, are normally in engagement with each other under a predetermined static force, so that the support and transducer means are first separated for the placement of the layers of tissue 4211 and 43h therebetween. In contrast to this the spring means may be adjusted such that the working and support surfaces are normally maintained in spacially fixed relation to each other, so that the layers 42h and 43h are positioned between the surfaces which are brought together by the operation of the hand held instrument.

As previously explained during surgical procedures it becomes necessary to tie-off veins and arteries so as to prevent the flow of blood therethrough. In accordance with the invention the joining of the walls may be of a permanent or semi-permanent nature, and this is accomplished by properly selecting the frequency and amplitude of ultrasonic mechanical vibrations to produce an optimum fiow of the collagenous elements contained in the overlapping portions of tissue. This collagenous material is similar to that normally found in the ormation of scar tissue. In practice the ultrasonic instrument h may be employed to join together, at a select area the wall ofa blood vessel and as seen in FIG. 10 the wall 31h may be considered to include the overlapping layers of tissue 42h and 43h.

As seen in FIGS. 12, 12A and 128 we have the blood vessel 30h exposed within an opening 45h within the organic body 25h. To produce a joining of the overlapping layers of wall tissue 42h and 43h respectively, the arm 61h of the support means 55h is placed beneath the blood vessel 30h and the working surface 16h of the tool member 13h is brought into contact with the layer of tissue 42h. The working and support surfaces 1611 and 62h are moved relative toward each other until the blood vessel 30h has the overlapping layers of tissue 42h and 43h in contact with each other as seen in FIG. 12A. Simultaneously therewith a small compressive force, in the direction of arrow 3611, is applied to the layers of tissue traversing the area of overlap.

The working surface of the tool member 13h is vibrated at an ultrasonic rate, as for example, in the frequency range of from 15 Kc/sec to 100 Kc/sec and preferably in the range of Kc/sec to 40 Kc/sec, so as to apply an additional recurring force to the overlapped layers of tissue, and produce a superficial heating at the interface of the overlapped layers. The vibrational force has a substantial component of vibration normal to the overlapped surfaces, as indicated by the arrow 23h. The frequency of the ultrasonic rate of vibration is selected in the above frequency range so as to preferably also produce an optimum flow of the collagenous elements in the overlapped layers of tissue. The energy is then continually applied until a closure or bond 40h is formed between the collagenous elements in the overlapping layers of tissue, as seen in FIG. 12B, and

the blood is prevented from flowing past the closure.

The closure 40h may be of a temporary nature or permanent one depending upon the proper control of the vibratory energy and static force to fuse together the 5 superficially heated interface.

For certain applications it is desirable to join together the overlapping layers of tissue and at the same time cut off the excess material. As illustrated in FIG. 12C the support arm 6lj is provided with a cutting edge 70j and as the overlapped layers of tissue 42j and 43j are compressed between the working surface l6j and support surface 26] and joined together by the energy transmitted through the tool member I3j and the excess tissue layers 7lj and 72j are cut off. If desired the cutting edge may be placed on the working surface l6j of the tool member l3j.

For those applications in which it is desired to intermittently join together overlapping layers of tissue we have the apparatus illustrated in FIG. 12D. The overlapping layers of tissue 42k and 43k are first clamped together by clamping means 75k which includes clamping members 76k and 77k which may form part of the ultrasonic instrument or may be the forward portion of a pair specially designed clamping instrument. The clamping means 75k is applied in close proximity to the area of overlap of the layers of tissue 42k and 43k to be joined together. The ultrasonic instrument 10k includes the support means 55k for engaging one side of the overlapped layers of tissue and which opposite side is engaged by the tool member 13k which as illustrated is provided with a circular working surface. By intermittently moving the ultrasonic instrument along the area of overlap a number of closures or bonds k, such as stitches may be formed.

While the invention has been described in connection with particular ultrasonic motor and tool member constructions, various other devices and methods of practicing the invention will occur to those skilled in the art. Therefore, it is not desired that the invention be limited to the specific details illustrated and described and it is intended by the appended claims to cover all modifications which fall within the spirit and scope of the invention.

1 claim:

1. A method ofjoining together overlapping portions of layers of tissue in vivo, comprising the steps of A. applying ultrasonic mechanical vibrations to the overlapping portions of said layers of tissue in their area of overlap, said mechanical vibrations being applied in a direction substantially normal to said area of overlap,

B. simultaneously compressing said layers of tissue together in their area of overlap,

C. selecting the frequency and amplitude of said ultrasonic mechanical vibrations to produce a superficial heating at the interface of said overlapping layers of tissue, and

D. continuing the application of said mechanical vibrations and compressive force until said layers of tissue are fused together at said superficially heated interface.

2. A method of joining together layers of tissue in vivo, with a tool member having a working surface, comprising the steps of A. overlapping the layers of tissue in contact with each other,

l7 18 B. applying the working surface of said tool member D. selecting the frequency of said ultrasonic rate so against said overlapping portions at a surface as to produce an optimum flow of the collagenous thereof, such that said working surface applies a elements in said layers of overlapping tissue, and small compressive force to said tissue traversing E. continuing the application of said ultrasonic vibrathe area of overlap, tions until a bond in formed between the collage- C. vibrating the working surface of said tool member nous elements, so as to join together said overlapat an ultrasonic rate to apply an additional recurping layers of tissue. ring force to said layers of tissue, with said force 3. A method as claimed in claim 2, wherein said step having a substantial component of vibration norof vibrating the working surface is in the range of apmal to the overlapped surfaces of said layers of tis- 10 proximately 20 Kc/sec. to lOOKc/sec. sues, a: i :inm

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3058470 *19 Abr 195716 Oct 1962Siemens Reiniger Werke AgApparatus for electrical highfrequency surgery
US3528410 *16 Sep 196815 Sep 1970Surgical Design CorpUltrasonic method for retinal attachment
US3618594 *6 Abr 19709 Nov 1971Surgical Design CorpUltrasonic apparatus for retinal reattachment
US3636943 *27 Oct 196725 Ene 1972Ultrasonic SystemsUltrasonic cauterization
US3794040 *10 Sep 197126 Feb 1974Ultrasonic SystemsUltrasonic surgical procedures
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US4674498 *18 Jul 198523 Jun 1987Everest Medical CorporationElectro cautery surgical blade
US4832683 *15 Jul 198623 May 1989Sumitomo Bakellite Company LimitedSurgical instrument
US4886060 *8 May 198912 Dic 1989Swedemed AbEquipment for use in surgical operations to remove tissue
US5045054 *6 Feb 19903 Sep 1991Advanced Osseous Technologies Inc.Apparatus for implantation and extraction of osteal prostheses
US5062827 *14 Feb 19895 Nov 1991Swedemede AbDevice in ultrasonic aspirators
US5284484 *29 May 19918 Feb 1994Advanced Osseous Technologies, Inc.Apparatus for implantation and extraction of osteal prostheses
US5318570 *11 Jun 19917 Jun 1994Advanced Osseous Technologies, Inc.Ultrasonic tool
US5322055 *27 Ene 199321 Jun 1994Ultracision, Inc.Clamp coagulator/cutting system for ultrasonic surgical instruments
US5324297 *5 Mar 199128 Jun 1994Advanced Osseous Technologies, Inc.Ultrasonic tool connector
US5330481 *18 Feb 199219 Jul 1994Advanced Osseous Technologies, Inc.Apparatus for implantation and extraction of osteal prostheses
US5382251 *14 Feb 199217 Ene 1995Biomet, Inc.Plug pulling method
US5456686 *25 Oct 199310 Oct 1995Biomet, Inc.Implantation and removal of orthopedic prostheses
US6004335 *12 Feb 199621 Dic 1999Ethicon Endo-Surgery, Inc.Ultrasonic hemostatic and cutting instrument
US6004336 *1 Oct 199821 Dic 1999Olympus Optical Co., Ltd.Angiostomy apparatus using ultrasonic energy and angiostomy method
US6024750 *14 Ago 199715 Feb 2000United States SurgicalUltrasonic curved blade
US6036667 *14 Ago 199714 Mar 2000United States Surgical CorporationUltrasonic dissection and coagulation system
US6063050 *16 Oct 199816 May 2000United States Surgical Corp.Ultrasonic dissection and coagulation system
US6117152 *18 Jun 199912 Sep 2000Ethicon Endo-Surgery, Inc.Multi-function ultrasonic surgical instrument
US62315782 Ago 199915 May 2001United States Surgical CorporationUltrasonic snare for excising tissue
US625462330 Jun 19993 Jul 2001Ethicon Endo-Surgery, Inc.Ultrasonic clamp coagulator surgical instrument with improved blade geometry
US62677619 Sep 199731 Jul 2001Sherwood Services AgApparatus and method for sealing and cutting tissue
US62804077 Mar 200028 Ago 2001United States Surgical CorporationUltrasonic dissection and coagulation system
US63258115 Oct 19994 Dic 2001Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US64581425 Oct 19991 Oct 2002Ethicon Endo-Surgery, Inc.Force limiting mechanism for an ultrasonic surgical instrument
US64682866 Sep 200122 Oct 2002The United States Surgical CorporationUltrasonic curved blade
US6669690 *15 Jul 199930 Dic 2003Olympus Optical Co., Ltd.Ultrasound treatment system
US668252817 Sep 200227 Ene 2004Sherwood Services AgEndoscopic bipolar electrosurgical forceps
US668254411 Sep 200227 Ene 2004United States Surgical CorporationUltrasonic curved blade
US67266861 Abr 200227 Abr 2004Sherwood Services AgBipolar electrosurgical instrument for sealing vessels
US677344420 Sep 200110 Ago 2004Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US6869439 *19 Ago 200222 Mar 2005United States Surgical CorporationUltrasonic dissector
US693281014 Nov 200123 Ago 2005Sherwood Services AgApparatus and method for sealing and cutting tissue
US695807018 Oct 200125 Oct 2005Witt David ACurved clamp arm tissue pad attachment for use with ultrasonic surgical instruments
US696021013 Sep 20021 Nov 2005Sherwood Services AgLaparoscopic bipolar electrosurgical instrument
US697696914 Ene 200220 Dic 2005Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US70333544 Dic 200325 Abr 2006Sherwood Services AgElectrosurgical electrode having a non-conductive porous ceramic coating
US70836185 Abr 20021 Ago 2006Sherwood Services AgVessel sealer and divider
US709067322 Ene 200215 Ago 2006Sherwood Services AgVessel sealer and divider
US710137125 Jun 20025 Sep 2006Dycus Sean TVessel sealer and divider
US71013726 Abr 20015 Sep 2006Sherwood Sevices AgVessel sealer and divider
US71013736 Abr 20015 Sep 2006Sherwood Services AgVessel sealer and divider
US71185706 Abr 200110 Oct 2006Sherwood Services AgVessel sealing forceps with disposable electrodes
US71185876 Abr 200110 Oct 2006Sherwood Services AgVessel sealer and divider
US713197017 Nov 20047 Nov 2006Sherwood Services AgOpen vessel sealing instrument with cutting mechanism
US71350206 Abr 200114 Nov 2006Sherwood Services AgElectrosurgical instrument reducing flashover
US714763829 Abr 200412 Dic 2006Sherwood Services AgElectrosurgical instrument which reduces thermal damage to adjacent tissue
US715009713 Jun 200319 Dic 2006Sherwood Services AgMethod of manufacturing jaw assembly for vessel sealer and divider
US715074929 Sep 200419 Dic 2006Sherwood Services AgVessel sealer and divider having elongated knife stroke and safety cutting mechanism
US715684613 Jun 20032 Ene 2007Sherwood Services AgVessel sealer and divider for use with small trocars and cannulas
US71602986 Abr 20019 Ene 2007Sherwood Services AgElectrosurgical instrument which reduces effects to adjacent tissue structures
US716029928 Abr 20049 Ene 2007Sherwood Services AgMethod of fusing biomaterials with radiofrequency energy
US71792587 Abr 200420 Feb 2007Sherwood Services AgBipolar electrosurgical instrument for sealing vessels
US71956319 Sep 200427 Mar 2007Sherwood Services AgForceps with spring loaded end effector assembly
US720799029 Jun 200524 Abr 2007Sherwood Services AgLaparoscopic bipolar electrosurgical instrument
US722326516 Feb 200629 May 2007Sherwood Services AgElectrosurgical electrode having a non-conductive porous ceramic coating
US723244021 Oct 200419 Jun 2007Sherwood Services AgBipolar forceps having monopolar extension
US724129615 Dic 200310 Jul 2007Sherwood Services AgBipolar electrosurgical instrument for sealing vessels
US725266722 Jun 20047 Ago 2007Sherwood Services AgOpen vessel sealing instrument with cutting mechanism and distal lockout
US725569731 Ago 200614 Ago 2007Sherwood Services AgVessel sealer and divider
US726767730 Oct 200211 Sep 2007Sherwood Services AgVessel sealing instrument
US727066029 Jun 200518 Sep 2007Sherwood Services AgApparatus and method for sealing and cutting tissue
US72706645 May 200618 Sep 2007Sherwood Services AgVessel sealing instrument with electrical cutting mechanism
US72760682 Sep 20042 Oct 2007Sherwood Services AgVessel sealing instrument with electrical cutting mechanism
US7291161 *2 Oct 20026 Nov 2007Atricure, Inc.Articulated clamping member
US732925623 Dic 200512 Feb 2008Sherwood Services AgVessel sealing instrument
US73611724 Jun 200322 Abr 2008Sound Surgical Technologies LlcUltrasonic device and method for tissue coagulation
US736797615 Nov 20046 May 2008Sherwood Services AgBipolar forceps having monopolar extension
US73779205 May 200527 May 2008Sherwood Services AgLaparoscopic bipolar electrosurgical instrument
US738442019 May 200410 Jun 2008Sherwood Services AgVessel sealer and divider
US738442130 Sep 200510 Jun 2008Sherwood Services AgSlide-activated cutting assembly
US74352496 Abr 200114 Oct 2008Covidien AgElectrosurgical instruments which reduces collateral damage to adjacent tissue
US744219320 Nov 200328 Oct 2008Covidien AgElectrically conductive/insulative over-shoe for tissue fusion
US74421947 May 200728 Oct 2008Covidien AgBipolar forceps having monopolar extension
US74456217 May 20074 Nov 2008Covidien AgBipolar forceps having monopolar extension
US745897227 Mar 20072 Dic 2008Covidien AgElectrosurgical electrode having a non-conductive porous ceramic coating
US74732536 Abr 20016 Ene 2009Covidien AgVessel sealer and divider with non-conductive stop members
US747914828 Oct 200520 Ene 2009Crescendo Technologies, LlcUltrasonic shear with asymmetrical motion
US74818107 May 200727 Ene 2009Covidien AgBipolar forceps having monopolar extension
US749120114 May 200417 Feb 2009Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US749120231 Mar 200517 Feb 2009Covidien AgElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US75009753 Oct 200510 Mar 2009Covidien AgSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US751055624 Nov 200431 Mar 2009Coviden AgVessel sealing instrument
US751389816 Ene 20087 Abr 2009Covidien AgVessel sealing instrument
US754087219 Sep 20052 Jun 2009Covidien AgArticulating bipolar electrosurgical instrument
US755331221 Dic 200730 Jun 2009Covidien AgVessel sealing instrument
US75820876 Abr 20011 Sep 2009Covidien AgVessel sealing instrument
US759491622 Nov 200529 Sep 2009Covidien AgElectrosurgical forceps with energy based tissue division
US759769313 Jun 20036 Oct 2009Covidien AgVessel sealer and divider for use with small trocars and cannulas
US762879119 Ago 20058 Dic 2009Covidien AgSingle action tissue sealer
US762879222 Sep 20058 Dic 2009Covidien AgBilateral foot jaws
US76416534 May 20065 Ene 2010Covidien AgOpen vessel sealing forceps disposable handswitch
US765500718 Dic 20062 Feb 2010Covidien AgMethod of fusing biomaterials with radiofrequency energy
US768680410 Ene 200630 Mar 2010Covidien AgVessel sealer and divider with rotating sealer and cutter
US768682721 Oct 200530 Mar 2010Covidien AgMagnetic closure mechanism for hemostat
US770873519 Jul 20054 May 2010Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US774461518 Jul 200629 Jun 2010Covidien AgApparatus and method for transecting tissue on a bipolar vessel sealing instrument
US775390929 Abr 200413 Jul 2010Covidien AgElectrosurgical instrument which reduces thermal damage to adjacent tissue
US77669109 Nov 20063 Ago 2010Tyco Healthcare Group LpVessel sealer and divider for large tissue structures
US77714256 Feb 200610 Ago 2010Covidien AgVessel sealer and divider having a variable jaw clamping mechanism
US777603613 Mar 200317 Ago 2010Covidien AgBipolar concentric electrode assembly for soft tissue fusion
US77760377 Jul 200617 Ago 2010Covidien AgSystem and method for controlling electrode gap during tissue sealing
US778065929 Ago 200324 Ago 2010Olympus CorporationUltrasound treatment system
US778987829 Sep 20067 Sep 2010Covidien AgIn-line vessel sealer and divider
US779902613 Nov 200321 Sep 2010Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US779902826 Sep 200821 Sep 2010Covidien AgArticulating bipolar electrosurgical instrument
US78112838 Oct 200412 Oct 2010Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US781987229 Sep 200626 Oct 2010Covidien AgFlexible endoscopic catheter with ligasure
US782879827 Mar 20089 Nov 2010Covidien AgLaparoscopic bipolar electrosurgical instrument
US783768513 Jul 200523 Nov 2010Covidien AgSwitch mechanisms for safe activation of energy on an electrosurgical instrument
US78461585 May 20067 Dic 2010Covidien AgApparatus and method for electrode thermosurgery
US784616129 Sep 20067 Dic 2010Covidien AgInsulating boot for electrosurgical forceps
US785781218 Dic 200628 Dic 2010Covidien AgVessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US787785219 Sep 20081 Feb 2011Tyco Healthcare Group LpMethod of manufacturing an end effector assembly for sealing tissue
US787785319 Sep 20081 Feb 2011Tyco Healthcare Group LpMethod of manufacturing end effector assembly for sealing tissue
US78790358 Nov 20061 Feb 2011Covidien AgInsulating boot for electrosurgical forceps
US788753517 Ago 200415 Feb 2011Covidien AgVessel sealing wave jaw
US788753619 Ago 200915 Feb 2011Covidien AgVessel sealing instrument
US789687812 Mar 20091 Mar 2011Coviden AgVessel sealing instrument
US790142330 Nov 20078 Mar 2011Ethicon Endo-Surgery, Inc.Folded ultrasonic end effectors with increased active length
US790982317 Ene 200622 Mar 2011Covidien AgOpen vessel sealing instrument
US792271812 Oct 200612 Abr 2011Covidien AgOpen vessel sealing instrument with cutting mechanism
US792295328 Sep 200612 Abr 2011Covidien AgMethod for manufacturing an end effector assembly
US793164914 Feb 200726 Abr 2011Tyco Healthcare Group LpVessel sealing instrument with electrical cutting mechanism
US793505214 Feb 20073 May 2011Covidien AgForceps with spring loaded end effector assembly
US793882212 May 201010 May 2011Icecure Medical Ltd.Heating and cooling of cryosurgical instrument using a single cryogen
US794704119 Ago 200924 May 2011Covidien AgVessel sealing instrument
US795114917 Oct 200631 May 2011Tyco Healthcare Group LpAblative material for use with tissue treatment device
US795115022 Feb 201031 May 2011Covidien AgVessel sealer and divider with rotating sealer and cutter
US795533221 Sep 20057 Jun 2011Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US796396510 May 200721 Jun 2011Covidien AgBipolar electrosurgical instrument for sealing vessels
US79678145 Feb 201028 Jun 2011Icecure Medical Ltd.Cryoprobe with vibrating mechanism
US796781525 Mar 201028 Jun 2011Icecure Medical Ltd.Cryosurgical instrument with enhanced heat transfer
US800278223 Sep 200523 Ago 2011Ethicon Endo-Surgery, Inc.Curved clamp arm tissue pad attachment for use with ultrasonic surgical instruments
US80168279 Oct 200813 Sep 2011Tyco Healthcare Group LpApparatus, system, and method for performing an electrosurgical procedure
US80340521 Nov 201011 Oct 2011Covidien AgApparatus and method for electrode thermosurgery
US805749830 Nov 200715 Nov 2011Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument blades
US805877115 Jul 200915 Nov 2011Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US807074625 May 20076 Dic 2011Tyco Healthcare Group LpRadiofrequency fusion of cardiac tissue
US808000529 Jul 201020 Dic 2011Icecure Medical Ltd.Closed loop cryosurgical pressure and flow regulated system
US808373313 Abr 200927 Dic 2011Icecure Medical Ltd.Cryosurgical instrument with enhanced heat exchange
US812374329 Jul 200828 Feb 2012Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US812862430 May 20066 Mar 2012Covidien AgElectrosurgical instrument that directs energy delivery and protects adjacent tissue
US813325418 Sep 200913 Mar 2012Tyco Healthcare Group LpIn vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US814246122 Mar 200727 Mar 2012Ethicon Endo-Surgery, Inc.Surgical instruments
US81424733 Oct 200827 Mar 2012Tyco Healthcare Group LpMethod of transferring rotational motion in an articulating surgical instrument
US814748917 Feb 20113 Abr 2012Covidien AgOpen vessel sealing instrument
US816281212 Mar 201024 Abr 2012Icecure Medical Ltd.Combined cryotherapy and brachytherapy device and method
US816297315 Ago 200824 Abr 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US81825027 Feb 201122 May 2012Ethicon Endo-Surgery, Inc.Folded ultrasonic end effectors with increased active length
US819243321 Ago 20075 Jun 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US819747910 Dic 200812 Jun 2012Tyco Healthcare Group LpVessel sealer and divider
US819763315 Mar 201112 Jun 2012Covidien AgMethod for manufacturing an end effector assembly
US82111057 May 20073 Jul 2012Covidien AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US822141612 Sep 200817 Jul 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with thermoplastic clevis
US822667522 Mar 200724 Jul 2012Ethicon Endo-Surgery, Inc.Surgical instruments
US823599223 Sep 20087 Ago 2012Tyco Healthcare Group LpInsulating boot with mechanical reinforcement for electrosurgical forceps
US823599324 Sep 20087 Ago 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with exohinged structure
US823601926 Mar 20107 Ago 2012Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US823602523 Sep 20087 Ago 2012Tyco Healthcare Group LpSilicone insulated electrosurgical forceps
US82412825 Sep 200814 Ago 2012Tyco Healthcare Group LpVessel sealing cutting assemblies
US824128317 Sep 200814 Ago 2012Tyco Healthcare Group LpDual durometer insulating boot for electrosurgical forceps
US82412845 Ene 200914 Ago 2012Covidien AgVessel sealer and divider with non-conductive stop members
US824131217 Ago 200514 Ago 2012Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US825199623 Sep 200828 Ago 2012Tyco Healthcare Group LpInsulating sheath for electrosurgical forceps
US825201231 Jul 200728 Ago 2012Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument with modulator
US825330311 Nov 201128 Ago 2012Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US82573527 Sep 20104 Sep 2012Covidien AgBipolar forceps having monopolar extension
US825737727 Jul 20074 Sep 2012Ethicon Endo-Surgery, Inc.Multiple end effectors ultrasonic surgical instruments
US825738715 Ago 20084 Sep 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US82679354 Abr 200718 Sep 2012Tyco Healthcare Group LpElectrosurgical instrument reducing current densities at an insulator conductor junction
US826793623 Sep 200818 Sep 2012Tyco Healthcare Group LpInsulating mechanically-interfaced adhesive for electrosurgical forceps
US827744718 Nov 20092 Oct 2012Covidien AgSingle action tissue sealer
US829822816 Sep 200830 Oct 2012Coviden AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US829823224 Mar 200930 Oct 2012Tyco Healthcare Group LpEndoscopic vessel sealer and divider for large tissue structures
US830358215 Sep 20086 Nov 2012Tyco Healthcare Group LpElectrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US830358610 Feb 20096 Nov 2012Covidien AgSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US831778728 Ago 200827 Nov 2012Covidien LpTissue fusion jaw angle improvement
US831940024 Jun 200927 Nov 2012Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US832330211 Feb 20104 Dic 2012Ethicon Endo-Surgery, Inc.Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
US83337654 Jun 201218 Dic 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US833463524 Jun 200918 Dic 2012Ethicon Endo-Surgery, Inc.Transducer arrangements for ultrasonic surgical instruments
US834459624 Jun 20091 Ene 2013Ethicon Endo-Surgery, Inc.Transducer arrangements for ultrasonic surgical instruments
US834894829 Jul 20108 Ene 2013Covidien AgVessel sealing system using capacitive RF dielectric heating
US834896727 Jul 20078 Ene 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US836107128 Ago 200829 Ene 2013Covidien AgVessel sealing forceps with disposable electrodes
US836107219 Nov 201029 Ene 2013Covidien AgInsulating boot for electrosurgical forceps
US836670927 Dic 20115 Feb 2013Covidien AgArticulating bipolar electrosurgical instrument
US837210220 Abr 201212 Feb 2013Ethicon Endo-Surgery, Inc.Folded ultrasonic end effectors with increased active length
US838275426 Ene 200926 Feb 2013Covidien AgElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US838278211 Feb 201026 Feb 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US838864728 Oct 20095 Mar 2013Covidien LpApparatus for tissue sealing
US839409512 Ene 201112 Mar 2013Covidien AgInsulating boot for electrosurgical forceps
US839409611 Abr 201112 Mar 2013Covidien AgOpen vessel sealing instrument with cutting mechanism
US841975911 Feb 201016 Abr 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument with comb-like tissue trimming device
US842550430 Nov 201123 Abr 2013Covidien LpRadiofrequency fusion of cardiac tissue
US843089831 Jul 200730 Abr 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US84546024 May 20124 Jun 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US846174415 Jul 200911 Jun 2013Ethicon Endo-Surgery, Inc.Rotating transducer mount for ultrasonic surgical instruments
US846995621 Jul 200825 Jun 2013Covidien LpVariable resistor jaw
US84699577 Oct 200825 Jun 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US846998111 Feb 201025 Jun 2013Ethicon Endo-Surgery, Inc.Rotatable cutting implement arrangements for ultrasonic surgical instruments
US84699827 Abr 201125 Jun 2013Ethicon Endo-Surgery, Inc.Curved clamp arm for use with ultrasonic surgical instruments
US848609611 Feb 201016 Jul 2013Ethicon Endo-Surgery, Inc.Dual purpose surgical instrument for cutting and coagulating tissue
US848610720 Oct 200816 Jul 2013Covidien LpMethod of sealing tissue using radiofrequency energy
US849665616 Ene 200930 Jul 2013Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US851236531 Jul 200720 Ago 2013Ethicon Endo-Surgery, Inc.Surgical instruments
US852388927 Jul 20073 Sep 2013Ethicon Endo-Surgery, Inc.Ultrasonic end effectors with increased active length
US852389810 Ago 20123 Sep 2013Covidien LpEndoscopic electrosurgical jaws with offset knife
US853106411 Feb 201010 Sep 2013Ethicon Endo-Surgery, Inc.Ultrasonically powered surgical instruments with rotating cutting implement
US853531225 Sep 200817 Sep 2013Covidien LpApparatus, system and method for performing an electrosurgical procedure
US854071111 Jul 200724 Sep 2013Covidien AgVessel sealer and divider
US854699614 Ago 20121 Oct 2013Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US854699923 Jul 20121 Oct 2013Ethicon Endo-Surgery, Inc.Housing arrangements for ultrasonic surgical instruments
US855109130 Mar 20118 Oct 2013Covidien AgVessel sealing instrument with electrical cutting mechanism
US85684447 Mar 201229 Oct 2013Covidien LpMethod of transferring rotational motion in an articulating surgical instrument
US857422830 Jun 20105 Nov 2013Olympus CorporationUltrasound treatment system
US857992811 Feb 201012 Nov 2013Ethicon Endo-Surgery, Inc.Outer sheath and blade arrangements for ultrasonic surgical instruments
US859150616 Oct 201226 Nov 2013Covidien AgVessel sealing system
US859153611 Oct 201126 Nov 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument blades
US859729631 Ago 20123 Dic 2013Covidien AgBipolar forceps having monopolar extension
US859729729 Ago 20063 Dic 2013Covidien AgVessel sealing instrument with multiple electrode configurations
US862301723 Jul 20097 Ene 2014Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and overratchet safety
US86230273 Oct 20087 Ene 2014Ethicon Endo-Surgery, Inc.Ergonomic surgical instruments
US86232769 Feb 20097 Ene 2014Covidien LpMethod and system for sterilizing an electrosurgical instrument
US86367619 Oct 200828 Ene 2014Covidien LpApparatus, system, and method for performing an endoscopic electrosurgical procedure
US864171315 Sep 20104 Feb 2014Covidien AgFlexible endoscopic catheter with ligasure
US864734127 Oct 200611 Feb 2014Covidien AgVessel sealer and divider for use with small trocars and cannulas
US865072824 Jun 200918 Feb 2014Ethicon Endo-Surgery, Inc.Method of assembling a transducer for a surgical instrument
US86521551 Ago 201118 Feb 2014Ethicon Endo-Surgery, Inc.Surgical instruments
US866322015 Jul 20094 Mar 2014Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US866868919 Abr 201011 Mar 2014Covidien AgIn-line vessel sealer and divider
US867293530 Jun 201018 Mar 2014Olympus CorporationUltrasound treatment system
US867295921 Jun 201318 Mar 2014Ethicon Endo-Surgery, Inc.Curved clamp arm for use with ultrasonic surgical instruments
US867911423 Abr 201025 Mar 2014Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US86966679 Ago 201215 Abr 2014Covidien LpDual durometer insulating boot for electrosurgical forceps
US870442513 Ago 201222 Abr 2014Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US870903127 Ago 201229 Abr 2014Ethicon Endo-Surgery, Inc.Methods for driving an ultrasonic surgical instrument with modulator
US873444319 Sep 200827 May 2014Covidien LpVessel sealer and divider for large tissue structures
US874090120 Ene 20103 Jun 2014Covidien AgVessel sealing instrument with electrical cutting mechanism
US874911614 Ago 201210 Jun 2014Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US875457017 Dic 201217 Jun 2014Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments comprising transducer arrangements
US876474828 Ene 20091 Jul 2014Covidien LpEnd effector assembly for electrosurgical device and method for making the same
US8773001 *7 Jun 20138 Jul 2014Ethicon Endo-Surgery, Inc.Rotating transducer mount for ultrasonic surgical instruments
US877964813 Ago 201215 Jul 2014Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US878441728 Ago 200822 Jul 2014Covidien LpTissue fusion jaw angle improvement
US879527428 Ago 20085 Ago 2014Covidien LpTissue fusion jaw angle improvement
US880831927 Jul 200719 Ago 2014Ethicon Endo-Surgery, Inc.Surgical instruments
US881489528 Jun 201226 Ago 2014Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US88522288 Feb 20127 Oct 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US88585544 Jun 201314 Oct 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US888276624 Ene 200611 Nov 2014Covidien AgMethod and system for controlling delivery of energy to divide tissue
US888279127 Jul 200711 Nov 2014Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US88888091 Oct 201018 Nov 2014Ethicon Endo-Surgery, Inc.Surgical instrument with jaw member
US889888826 Ene 20122 Dic 2014Covidien LpSystem for manufacturing electrosurgical seal plates
US89002598 Mar 20122 Dic 2014Ethicon Endo-Surgery, Inc.Surgical instruments
US891146022 Mar 200716 Dic 2014Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US893997327 Nov 201327 Ene 2015Covidien AgSingle action tissue sealer
US894512510 Sep 20103 Feb 2015Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US894512627 Nov 20133 Feb 2015Covidien AgSingle action tissue sealer
US894512723 Ene 20143 Feb 2015Covidien AgSingle action tissue sealer
US89512481 Oct 201010 Feb 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US895127211 Feb 201010 Feb 2015Ethicon Endo-Surgery, Inc.Seal arrangements for ultrasonically powered surgical instruments
US89563491 Oct 201017 Feb 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US896154711 Feb 201024 Feb 2015Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments with moving cutting implement
US896831425 Sep 20083 Mar 2015Covidien LpApparatus, system and method for performing an electrosurgical procedure
US89683585 Ago 20093 Mar 2015Covidien LpBlunt tissue dissection surgical instrument jaw designs
US89798901 Oct 201017 Mar 2015Ethicon Endo-Surgery, Inc.Surgical instrument with jaw member
US89863021 Oct 201024 Mar 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US901732615 Jul 200928 Abr 2015Ethicon Endo-Surgery, Inc.Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US902304323 Sep 20085 May 2015Covidien LpInsulating mechanically-interfaced boot and jaws for electrosurgical forceps
US90284938 Mar 201212 May 2015Covidien LpIn vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US90396951 Oct 201026 May 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US904426129 Jul 20082 Jun 2015Ethicon Endo-Surgery, Inc.Temperature controlled ultrasonic surgical instruments
US90500931 Oct 20109 Jun 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US905012410 Jul 20129 Jun 2015Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US90607751 Oct 201023 Jun 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US90607761 Oct 201023 Jun 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US90667471 Nov 201330 Jun 2015Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument blades
US907253914 Ago 20127 Jul 2015Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US90893601 Oct 201028 Jul 2015Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US909534718 Sep 20084 Ago 2015Covidien AgElectrically conductive/insulative over shoe for tissue fusion
US909536722 Oct 20124 Ago 2015Ethicon Endo-Surgery, Inc.Flexible harmonic waveguides/blades for surgical instruments
US910767219 Jul 200618 Ago 2015Covidien AgVessel sealing forceps with disposable electrodes
US910768915 Jul 201318 Ago 2015Ethicon Endo-Surgery, Inc.Dual purpose surgical instrument for cutting and coagulating tissue
US91138989 Sep 201125 Ago 2015Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US911390329 Oct 201225 Ago 2015Covidien LpEndoscopic vessel sealer and divider for large tissue structures
US911390520 Jun 201325 Ago 2015Covidien LpVariable resistor jaw
US911394022 Feb 201225 Ago 2015Covidien LpTrigger lockout and kickback mechanism for surgical instruments
US914932325 Ene 20106 Oct 2015Covidien AgMethod of fusing biomaterials with radiofrequency energy
US916805416 Abr 201227 Oct 2015Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US919871429 Jun 20121 Dic 2015Ethicon Endo-Surgery, Inc.Haptic feedback devices for surgical robot
US91987172 Feb 20151 Dic 2015Covidien AgSingle action tissue sealer
US9220527 *28 Jul 201429 Dic 2015Ethicon Endo-Surgery, LlcSurgical instruments
US922676615 Mar 20135 Ene 2016Ethicon Endo-Surgery, Inc.Serial communication protocol for medical device
US922676729 Jun 20125 Ene 2016Ethicon Endo-Surgery, Inc.Closed feedback control for electrosurgical device
US92329796 Feb 201312 Ene 2016Ethicon Endo-Surgery, Inc.Robotically controlled surgical instrument
US923792115 Mar 201319 Ene 2016Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US924172815 Mar 201326 Ene 2016Ethicon Endo-Surgery, Inc.Surgical instrument with multiple clamping mechanisms
US924173115 Mar 201326 Ene 2016Ethicon Endo-Surgery, Inc.Rotatable electrical connection for ultrasonic surgical instruments
US924798821 Jul 20152 Feb 2016Covidien LpVariable resistor jaw
US925923411 Feb 201016 Feb 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments with rotatable blade and hollow sheath arrangements
US928304529 Jun 201215 Mar 2016Ethicon Endo-Surgery, LlcSurgical instruments with fluid management system
US932678829 Jun 20123 May 2016Ethicon Endo-Surgery, LlcLockout mechanism for use with robotic electrosurgical device
US933928918 Jun 201517 May 2016Ehticon Endo-Surgery, LLCUltrasonic surgical instrument blades
US934553514 Oct 201424 May 2016Covidien LpApparatus, system and method for performing an electrosurgical procedure
US935175429 Jun 201231 May 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments with distally positioned jaw assemblies
US937525425 Sep 200828 Jun 2016Covidien LpSeal and separate algorithm
US93752705 Nov 201328 Jun 2016Covidien AgVessel sealing system
US93752715 Nov 201328 Jun 2016Covidien AgVessel sealing system
US939303729 Jun 201219 Jul 2016Ethicon Endo-Surgery, LlcSurgical instruments with articulating shafts
US940862229 Jun 20129 Ago 2016Ethicon Endo-Surgery, LlcSurgical instruments with articulating shafts
US941485325 Mar 201316 Ago 2016Ethicon Endo-Surgery, LlcUltrasonic end effectors with increased active length
US942724910 May 201330 Ago 2016Ethicon Endo-Surgery, LlcRotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US942725025 Ago 201430 Ago 2016Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US943966815 Mar 201313 Sep 2016Ethicon Endo-Surgery, LlcSwitch arrangements for ultrasonic surgical instruments
US943966928 Mar 201313 Sep 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments
US943967017 Mar 201413 Sep 2016Ethicon Endo-Surgery, Inc.Curved clamp arm for use with ultrasonic surgical instruments
US944583221 Jun 201320 Sep 2016Ethicon Endo-Surgery, LlcSurgical instruments
US94630675 Nov 201311 Oct 2016Covidien AgVessel sealing system
US948623621 Mar 20128 Nov 2016Ethicon Endo-Surgery, LlcErgonomic surgical instruments
US949222511 Feb 201415 Nov 2016Covidien AgVessel sealer and divider for use with small trocars and cannulas
US94982456 May 201422 Nov 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments
US95044833 Jul 201229 Nov 2016Ethicon Endo-Surgery, LlcSurgical instruments
US950485520 Mar 201529 Nov 2016Ethicon Surgery, LLCDevices and techniques for cutting and coagulating tissue
US951085011 Nov 20136 Dic 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments
US95390539 May 201410 Ene 2017Covidien LpVessel sealer and divider for large tissue structures
US954977511 Mar 201424 Ene 2017Covidien AgIn-line vessel sealer and divider
US955484110 Abr 201431 Ene 2017Covidien LpDual durometer insulating boot for electrosurgical forceps
US95791454 Feb 201428 Feb 2017Covidien AgFlexible endoscopic catheter with ligasure
US95857163 Jun 20147 Mar 2017Covidien AgVessel sealing instrument with electrical cutting mechanism
US960365221 Ago 200828 Mar 2017Covidien LpElectrosurgical instrument including a sensor
US962323728 Sep 201518 Abr 2017Ethicon Endo-Surgery, LlcSurgical generator for ultrasonic and electrosurgical devices
US963613510 Nov 20142 May 2017Ethicon Endo-Surgery, LlcUltrasonic surgical instruments
US964264412 Mar 20159 May 2017Ethicon Endo-Surgery, LlcSurgical instruments
US96491266 Ene 201516 May 2017Ethicon Endo-Surgery, LlcSeal arrangements for ultrasonically powered surgical instruments
US965560123 Feb 201623 May 2017Sra Developments LimitedErgonomic handpiece for laparoscopic and open surgery
US96556741 Oct 201423 May 2017Covidien LpApparatus, system and method for performing an electrosurgical procedure
US9675374 *24 Mar 201413 Jun 2017Ethicon LlcUltrasonic forceps
US970033330 Jun 201411 Jul 2017Ethicon LlcSurgical instrument with variable tissue compression
US970033920 May 200911 Jul 2017Ethicon Endo-Surgery, Inc.Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US97003432 Nov 201511 Jul 2017Ethicon Endo-Surgery, LlcDevices and techniques for cutting and coagulating tissue
US970700412 Mar 201518 Jul 2017Ethicon LlcSurgical instruments
US970702720 May 201118 Jul 2017Ethicon Endo-Surgery, LlcMedical device
US970703030 Jun 201418 Jul 2017Ethicon Endo-Surgery, LlcSurgical instrument with jaw member
US97135074 Ene 201625 Jul 2017Ethicon Endo-Surgery, LlcClosed feedback control for electrosurgical device
US972411815 Mar 20138 Ago 2017Ethicon Endo-Surgery, LlcTechniques for cutting and coagulating tissue for ultrasonic surgical instruments
US973732623 Oct 201522 Ago 2017Ethicon Endo-Surgery, LlcHaptic feedback devices for surgical robot
US973735724 Sep 201322 Ago 2017Covidien AgVessel sealer and divider
US97439479 Dic 201529 Ago 2017Ethicon Endo-Surgery, LlcEnd effector with a clamp arm assembly and blade
US20010025184 *4 Abr 200127 Sep 2001Messerly Jeffrey D.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US20020026184 *18 Oct 200128 Feb 2002Witt David A.Curved clamp arm tissue pad attachment for use with ultrasonic surgical instruments
US20020188294 *5 Abr 200212 Dic 2002Couture Gary M.Vessel sealer and divider
US20030014052 *6 Jun 200216 Ene 2003Buysse Steven P.Laparoscopic bipolar electrosurgical instrument
US20030014053 *5 Abr 200216 Ene 2003Nguyen Lap P.Vessel sealing instrument
US20030018331 *25 Jun 200223 Ene 2003Dycus Sean T.Vessel sealer and divider
US20030040745 *17 Sep 200227 Feb 2003Frazier Randel AlvenEndoscopic bipolar electrosurgical forceps
US20030181910 *8 Ene 200325 Sep 2003Dycus Sean T.Bipolar electrosurgical forceps with non-conductive stop members
US20040068274 *2 Oct 20028 Abr 2004Hooven Michael D.Articulated clamping member
US20040087943 *6 Abr 20016 May 2004Dycus Sean T.Vessel sealer an divider
US20040102801 *4 Jun 200327 May 2004Cimino William W.Ultrasonic device and method for tissue coagulation
US20040115296 *5 Abr 200217 Jun 2004Duffin Terry M.Retractable overmolded insert retention apparatus
US20040116924 *6 Abr 200117 Jun 2004Dycus Sean T.Vessel sealer and divider
US20040122423 *6 Abr 200124 Jun 2004Dycus Sean T.Vessel sealer and divider with non-conductive stop members
US20040143263 *13 Nov 200322 Jul 2004Schechter David A.Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US20040147925 *15 Dic 200329 Jul 2004Buysse Steven PBipolar electrosurgical instrument for sealing vessels
US20040147946 *16 Dic 200329 Jul 2004Mastri Dominick L.Ultrasonic curved blade
US20040162557 *6 Abr 200119 Ago 2004Tetzlaff Philip M.Vessel sealing instrument
US20040199194 *27 Abr 20047 Oct 2004Witt David A.Curved clamp arm tissue pad attachment for use with ultrasonic surgical instruments
US20040225288 *7 Abr 200411 Nov 2004Buysse Steven PaulBipolar electrosurgical instrument for sealing vessels
US20040243125 *22 Ene 20022 Dic 2004Sean DycusVessel sealer and divider
US20040249371 *19 May 20049 Dic 2004Dycus Sean T.Vessel sealer and divider
US20040249374 *19 May 20049 Dic 2004Tetzlaff Philip M.Vessel sealing instrument
US20050004568 *6 Abr 20016 Ene 2005Lawes Kate R.Electrosurgical instrument reducing thermal spread
US20050004570 *29 Abr 20046 Ene 2005Chapman Troy J.Electrosurgical instrument which reduces thermal damage to adjacent tissue
US20050004589 *29 Ago 20036 Ene 2005Olympus Optical Co., Ld.Ultrasound treatment system
US20050021025 *6 Abr 200127 Ene 2005Buysse Steven P.Electrosurgical instruments which reduces collateral damage to adjacent tissue
US20050021026 *28 Abr 200427 Ene 2005Ali BailyMethod of fusing biomaterials with radiofrequency energy
US20050021027 *14 May 200427 Ene 2005Chelsea ShieldsTissue sealer with non-conductive variable stop members and method of sealing tissue
US20050101952 *17 Ago 200412 May 2005Lands Michael J.Vessel sealing wave jaw
US20050101965 *14 Nov 200112 May 2005Sherwood Services AgApparatus and method for sealing and cutting tissue
US20050107784 *22 Jun 200419 May 2005Moses Michael C.Open vessel sealing instrument with cutting mechanism and distal lockout
US20050107785 *29 Sep 200419 May 2005Dycus Sean T.Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US20050113826 *2 Sep 200426 May 2005Johnson Kristin D.Vessel sealing instrument with electrical cutting mechanism
US20050113827 *21 Oct 200426 May 2005Dumbauld Patrick L.Bipolar forceps having monopolar extension
US20050113828 *20 Nov 200326 May 2005Chelsea ShieldsElectrically conductive/insulative over-shoe for tissue fusion
US20050119655 *17 Nov 20042 Jun 2005Moses Michael C.Open vessel sealing instrument with cutting mechanism
US20050143769 *18 Feb 200530 Jun 2005White Jeffrey S.Ultrasonic dissector
US20050186440 *19 Feb 200425 Ago 2005Karlheinz HausmannFlame retardant surface coverings
US20050240179 *5 May 200527 Oct 2005Buysse Steven PLaparoscopic bipolar electrosurgical instrument
US20060020262 *23 Sep 200526 Ene 2006Witt David ACurved clamp arm tissue pad attachment for use with ultrasonic surgical instruments
US20060052777 *9 Sep 20049 Mar 2006Dumbauld Patrick LForceps with spring loaded end effector assembly
US20060052778 *19 Jul 20059 Mar 2006Chapman Troy JIncorporating rapid cooling in tissue fusion heating processes
US20060052779 *13 Sep 20059 Mar 2006Hammill Curt DElectrode assembly for tissue fusion
US20060064086 *13 Sep 200523 Mar 2006Darren OdomBipolar forceps with multiple electrode array end effector assembly
US20060074417 *3 Oct 20056 Abr 2006Cunningham James SSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US20060084963 *17 Ago 200520 Abr 2006Messerly Jeffrey DBlades with functional balance asymmetries for use with ultrasonic surgical instruments
US20060084973 *12 Oct 200520 Abr 2006Dylan HushkaMomentary rocker switch for use with vessel sealing instruments
US20060100652 *28 Oct 200511 May 2006Crescendo Technologies, LlcUltrasonic shear with asymmetrical motion
US20060122639 *16 Dic 20058 Jun 2006Mastri Dominick LUltrasonic curved blade
US20060129146 *6 Feb 200615 Jun 2006Sherwood Services AgVessel sealer and divider having a variable jaw clamping mechanism
US20060161150 *16 Feb 200620 Jul 2006Keppel David SElectrosurgical electrode having a non-conductive porous ceramic coating
US20060167452 *17 Ene 200627 Jul 2006Moses Michael COpen vessel sealing instrument
US20060189981 *21 Feb 200624 Ago 2006Dycus Sean TVessel sealer and divider
US20060217709 *30 May 200628 Sep 2006Sherwood Services AgElectrosurgical instrument that directs energy delivery and protects adjacent tissue
US20060224158 *31 Mar 20055 Oct 2006Darren OdomElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US20060259036 *19 Jul 200616 Nov 2006Tetzlaff Philip MVessel sealing forceps with disposable electrodes
US20060264922 *24 Jul 200623 Nov 2006Sartor Joe DMolded insulating hinge for bipolar instruments
US20060264931 *29 Abr 200423 Nov 2006Chapman Troy JElectrosurgical instrument which reduces thermal damage to adjacent tissue
US20070016187 *13 Jul 200518 Ene 2007Craig WeinbergSwitch mechanisms for safe activation of energy on an electrosurgical instrument
US20070043353 *27 Oct 200622 Feb 2007Dycus Sean TVessel sealer and divider for use with small trocars and cannulas
US20070078456 *29 Sep 20065 Abr 2007Dumbauld Patrick LIn-line vessel sealer and divider
US20070078458 *29 Sep 20065 Abr 2007Dumbauld Patrick LInsulating boot for electrosurgical forceps
US20070078459 *29 Sep 20065 Abr 2007Sherwood Services AgFlexible endoscopic catheter with ligasure
US20070088356 *12 Oct 200619 Abr 2007Moses Michael COpen vessel sealing instrument with cutting mechanism
US20070106295 *8 Nov 200610 May 2007Garrison David MInsulating boot for electrosurgical forceps
US20070142833 *18 Dic 200621 Jun 2007Dycus Sean TVessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US20070142834 *14 Feb 200721 Jun 2007Sherwood Services AgForceps with spring loaded end effector assembly
US20070156139 *13 Mar 20035 Jul 2007Schechter David ABipolar concentric electrode assembly for soft tissue fusion
US20070156140 *18 Dic 20065 Jul 2007Ali BailyMethod of fusing biomaterials with radiofrequency energy
US20070173814 *9 Nov 200626 Jul 2007David HixsonVessel sealer and divider for large tissue structures
US20070213706 *7 May 200713 Sep 2007Sherwood Services AgBipolar forceps having monopolar extension
US20070213707 *7 May 200713 Sep 2007Sherwood Services AgBipolar forceps having monopolar extension
US20070213708 *7 May 200713 Sep 2007Sherwood Services AgBipolar forceps having monopolar extension
US20070213712 *10 May 200713 Sep 2007Buysse Steven PBipolar electrosurgical instrument for sealing vessels
US20070255279 *7 May 20071 Nov 2007Buysse Steven PElectrosurgical instrument which reduces collateral damage to adjacent tissue
US20070260235 *5 May 20068 Nov 2007Sherwood Services AgApparatus and method for electrode thermosurgery
US20070260241 *4 May 20068 Nov 2007Sherwood Services AgOpen vessel sealing forceps disposable handswitch
US20070260242 *10 Jul 20078 Nov 2007Dycus Sean TVessel sealer and divider
US20080009860 *7 Jul 200610 Ene 2008Sherwood Services AgSystem and method for controlling electrode gap during tissue sealing
US20080015575 *14 Jul 200617 Ene 2008Sherwood Services AgVessel sealing instrument with pre-heated electrodes
US20080021450 *18 Jul 200624 Ene 2008Sherwood Services AgApparatus and method for transecting tissue on a bipolar vessel sealing instrument
US20080058802 *29 Ago 20066 Mar 2008Sherwood Services AgVessel sealing instrument with multiple electrode configurations
US20080091189 *17 Oct 200617 Abr 2008Tyco Healthcare Group LpAblative material for use with tissue treatment device
US20080097501 *22 Jun 200624 Abr 2008Tyco Healthcare Group LpUltrasonic probe deflection sensor
US20080114356 *16 Ene 200815 May 2008Johnson Kristin DVessel Sealing Instrument
US20080140061 *6 Sep 200712 Jun 2008Arbel Medical Ltd.Method And Device For Combined Treatment
US20080167651 *21 Dic 200710 Jul 2008Tetzlaff Philip MVessel sealing instrument
US20080195093 *14 Feb 200714 Ago 2008Tyco Healthcare Group LpVessel sealing instrument with electrical cutting mechanism
US20080208181 *20 Ene 200828 Ago 2008Arbel Medical Ltd.Thermally Insulated Needles For Dermatological Applications
US20080215051 *27 Mar 20084 Sep 2008Buysse Steven PLaparoscopic Bipolar Electrosurgical Instrument
US20080234708 *22 Mar 200725 Sep 2008Houser Kevin LSurgical instruments
US20080234709 *22 Mar 200725 Sep 2008Houser Kevin LUltrasonic surgical instrument and cartilage and bone shaping blades therefor
US20080234710 *22 Mar 200725 Sep 2008Neurohr Mark AUltrasonic surgical instruments
US20080234711 *22 Mar 200725 Sep 2008Houser Kevin LSurgical instruments
US20080243160 *22 May 20082 Oct 2008White Jeffrey SUltrasonic Dissector
US20080312653 *29 Jul 200818 Dic 2008Arts Gene HMechanism for Dividing Tissue in a Hemostat-Style Instrument
US20090012520 *19 Sep 20088 Ene 2009Tyco Healthcare Group LpVessel Sealer and Divider for Large Tissue Structures
US20090018535 *26 Sep 200815 Ene 2009Schechter David AArticulating bipolar electrosurgical instrument
US20090030311 *27 Jul 200729 Ene 2009Stulen Foster BUltrasonic end effectors with increased active length
US20090030351 *27 Jul 200729 Ene 2009Wiener Eitan TMultiple end effectors ultrasonic surgical instruments
US20090030437 *27 Jul 200729 Ene 2009Houser Kevin LSurgical instruments
US20090036911 *31 Jul 20075 Feb 2009Stulen Foster BUltrasonic surgical instrument with modulator
US20090036912 *31 Jul 20075 Feb 2009Wiener Eitan TUltrasonic surgical instruments
US20090036913 *31 Jul 20075 Feb 2009Eitan WienerSurgical instruments
US20090036914 *29 Jul 20085 Feb 2009Houser Kevin LTemperature controlled ultrasonic surgical instruments
US20090062794 *16 Sep 20085 Mar 2009Buysse Steven PElectrosurgical Instrument Which Reduces Collateral Damage to Adjacent Tissue
US20090088738 *17 Sep 20082 Abr 2009Tyco Healthcare Group LpDual Durometer Insulating Boot for Electrosurgical Forceps
US20090088740 *23 Sep 20082 Abr 2009Tyco Healthcare Group LpInsulating Boot with Mechanical Reinforcement for Electrosurgical Forceps
US20090088741 *23 Sep 20082 Abr 2009Tyco Healthcare Group LpSilicone Insulated Electrosurgical Forceps
US20090088744 *12 Sep 20082 Abr 2009Tyco Healthcare Group LpInsulating Boot for Electrosurgical Forceps With Thermoplastic Clevis
US20090088745 *22 Sep 20082 Abr 2009Tyco Healthcare Group LpTapered Insulating Boot for Electrosurgical Forceps
US20090088746 *23 Sep 20082 Abr 2009Tyco Healthcare Group LpInsulating Mechanically-Interfaced Boot and Jaws for Electrosurgical Forceps
US20090088747 *23 Sep 20082 Abr 2009Tyco Healthcare Group LpInsulating Sheath for Electrosurgical Forceps
US20090088748 *24 Sep 20082 Abr 2009Tyco Healthcare Group LpInsulating Mesh-like Boot for Electrosurgical Forceps
US20090088749 *24 Sep 20082 Abr 2009Tyco Heathcare Group LpInsulating Boot for Electrosurgical Forceps with Exohinged Structure
US20090088750 *24 Sep 20082 Abr 2009Tyco Healthcare Group LpInsulating Boot with Silicone Overmold for Electrosurgical Forceps
US20090105750 *3 Oct 200823 Abr 2009Ethicon Endo-Surgery, Inc.Ergonomic surgical instruments
US20090112206 *6 Ene 200930 Abr 2009Dumbauld Patrick LBipolar Forceps Having Monopolar Extension
US20090129946 *21 Nov 200821 May 2009Arbel Medical, Ltd.Pumping unit for delivery of liquid medium from a vessel
US20090131934 *26 Ene 200921 May 2009Covidion AgElectrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue
US20090143795 *30 Nov 20074 Jun 2009Robertson Galen CUltrasonic surgical instrument blades
US20090143796 *30 Nov 20074 Jun 2009Stulen Foster BFolded ultrasonic end effectors with increased active length
US20090143806 *20 Nov 20084 Jun 2009Ethicon Endo-Surgery, Inc.Ultrasonic surgical blades
US20090149853 *16 Ene 200911 Jun 2009Chelsea ShieldsTissue Sealer with Non-Conductive Variable Stop Members and Method of Sealing Tissue
US20090149854 *10 Feb 200911 Jun 2009Sherwood Services AgSpring Loaded Reciprocating Tissue Cutting Mechanism in a Forceps-Style Electrosurgical Instrument
US20090187188 *5 Mar 200923 Jul 2009Sherwood Services AgCombined energy level button
US20090198233 *28 Ene 20096 Ago 2009Tyco Healthcare Group LpEnd Effector Assembly for Electrosurgical Device and Method for Making the Same
US20090204114 *16 Abr 200913 Ago 2009Covidien AgElectrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue
US20090209957 *9 Feb 200920 Ago 2009Tyco Healthcare Group LpMethod and System for Sterilizing an Electrosurgical Instrument
US20090306660 *19 Ago 200910 Dic 2009Johnson Kristin DVessel Sealing Instrument
US20100016857 *21 Jul 200821 Ene 2010Mckenna NicoleVariable Resistor Jaw
US20100042100 *19 Ago 200918 Feb 2010Tetzlaff Philip MVessel Sealing Instrument
US20100042140 *15 Ago 200818 Feb 2010Cunningham James SMethod of Transferring Pressure in an Articulating Surgical Instrument
US20100042142 *15 Ago 200818 Feb 2010Cunningham James SMethod of Transferring Pressure in an Articulating Surgical Instrument
US20100042143 *15 Ago 200818 Feb 2010Cunningham James SMethod of Transferring Pressure in an Articulating Surgical Instrument
US20100049187 *21 Ago 200825 Feb 2010Carlton John DElectrosurgical Instrument Including a Sensor
US20100057081 *28 Ago 20084 Mar 2010Tyco Healthcare Group LpTissue Fusion Jaw Angle Improvement
US20100057082 *28 Ago 20084 Mar 2010Tyco Healthcare Group LpTissue Fusion Jaw Angle Improvement
US20100057083 *28 Ago 20084 Mar 2010Tyco Healthcare Group LpTissue Fusion Jaw Angle Improvement
US20100057084 *28 Ago 20084 Mar 2010TYCO Healthcare Group L.PTissue Fusion Jaw Angle Improvement
US20100057118 *13 Ago 20094 Mar 2010Dietz Timothy GUltrasonic surgical blade
US20100063500 *5 Sep 200811 Mar 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US20100069953 *16 Sep 200818 Mar 2010Tyco Healthcare Group LpMethod of Transferring Force Using Flexible Fluid-Filled Tubing in an Articulating Surgical Instrument
US20100076427 *25 Sep 200825 Mar 2010Tyco Healthcare Group LpSeal and Separate Algorithm
US20100076430 *24 Sep 200825 Mar 2010Tyco Healthcare Group LpElectrosurgical Instrument Having a Thumb Lever and Related System and Method of Use
US20100076431 *25 Sep 200825 Mar 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US20100076432 *25 Sep 200825 Mar 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US20100087816 *7 Oct 20088 Abr 2010Roy Jeffrey MApparatus, system, and method for performing an electrosurgical procedure
US20100087818 *3 Oct 20088 Abr 2010Tyco Healthcare Group LpMethod of Transferring Rotational Motion in an Articulating Surgical Instrument
US20100094286 *9 Oct 200815 Abr 2010Tyco Healthcare Group LpApparatus, System, and Method for Performing an Electrosurgical Procedure
US20100094287 *9 Oct 200815 Abr 2010Tyco Heathcare Group LpApparatus, System, and Method for Performing an Endoscopic Electrosurgical Procedure
US20100100122 *20 Oct 200822 Abr 2010Tyco Healthcare Group LpMethod of Sealing Tissue Using Radiofrequency Energy
US20100130971 *25 Ene 201027 May 2010Covidien AgMethod of Fusing Biomaterials With Radiofrequency Energy
US20100130977 *18 Nov 200927 May 2010Covidien AgSingle Action Tissue Sealer
US20100145334 *10 Dic 200810 Jun 2010Tyco Healthcare Group LpVessel Sealer and Divider
US20100162730 *12 Jun 20081 Jul 2010Arbel Medical Ltd.Siphon for delivery of liquid cryogen from dewar flask
US20100179577 *26 Mar 201015 Jul 2010Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US20100204697 *19 Abr 201012 Ago 2010Dumbauld Patrick LIn-Line Vessel Sealer and Divider
US20100234670 *12 Mar 201016 Sep 2010Eyal ShaiCombined cryotherapy and brachytherapy device and method
US20100281917 *4 Nov 200911 Nov 2010Alexander LevinApparatus and Method for Condensing Contaminants for a Cryogenic System
US20100298743 *20 May 200925 Nov 2010Ethicon Endo-Surgery, Inc.Thermally-activated coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US20100298851 *20 May 200925 Nov 2010Ethicon Endo-Surgery, Inc.Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US20100305439 *17 Nov 20092 Dic 2010Eyal ShaiDevice and Method for Three-Dimensional Guidance and Three-Dimensional Monitoring of Cryoablation
US20100324458 *30 Jun 201023 Dic 2010Olympus CorporationUltrasound treatment system
US20100324546 *9 Jul 200823 Dic 2010Alexander LevinCryosheath
US20100331839 *10 Sep 201030 Dic 2010Schechter David ACompressible Jaw Configuration with Bipolar RF Output Electrodes for Soft Tissue Fusion
US20100331870 *24 Jun 200930 Dic 2010Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US20110004127 *30 Jun 20106 Ene 2011Olympus CorporationUltrasound treatment system
US20110004209 *7 Sep 20106 Ene 2011Kate LawesBipolar Forceps having Monopolar Extension
US20110015624 *15 Ene 200920 Ene 2011Icecure Medical Ltd.Cryosurgical instrument insulating system
US20110015627 *15 Jul 200920 Ene 2011Ethicon Endo-Surgery, Inc.Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US20110015631 *15 Jul 200920 Ene 2011Ethicon Endo-Surgery, Inc.Electrosurgery generator for ultrasonic surgical instruments
US20110015660 *15 Jul 200920 Ene 2011Ethicon Endo-Surgery, Inc.Rotating transducer mount for ultrasonic surgical instruments
US20110018164 *6 Oct 201027 Ene 2011Sartor Joe DMolded Insulating Hinge for Bipolar Instruments
US20110034918 *5 Ago 200910 Feb 2011Tyco Healthcare Group LpBlunt Tissue Dissection Surgical Instrument Jaw Designs
US20110071522 *18 Sep 200924 Mar 2011Tyco Healthcare Group LpIn Vivo Attachable and Detachable End Effector Assembly and Laparoscopic Surgical Instrument and Methods Therefor
US20110087212 *1 Oct 201014 Abr 2011Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US20110087214 *1 Oct 201014 Abr 2011Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US20110087215 *1 Oct 201014 Abr 2011Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US20110087256 *1 Oct 201014 Abr 2011Ethicon Endo-Surgery, Inc.Surgical generator for ultrasonic and electrosurgical devices
US20110098689 *28 Oct 200928 Abr 2011Tyco Healthcare Group LpApparatus for Tissue Sealing
US20110106079 *12 Ene 20115 May 2011Covidien AgInsulating Boot for Electrosurgical Forceps
US20110166483 *15 Mar 20117 Jul 2011United States Surgical CorporationUltrasonic curved blade
US20110184446 *7 Abr 201128 Jul 2011Witt David ACurved clamp arm for use with ultrasonic surgical instruments
US20110196286 *11 Feb 201011 Ago 2011Ethicon Endo-Surgery, Inc.Ultrasonically powered surgical instruments with rotating cutting implement
US20110196287 *11 Feb 201011 Ago 2011Ethicon Endo-Surgery, Inc.Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
US20110196368 *17 Feb 201111 Ago 2011Covidien AgOpen Vessel Sealing Instrument
US20110196401 *11 Feb 201011 Ago 2011Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US20110196402 *11 Feb 201011 Ago 2011Ethicon Endo-Surgery, Inc.Dual purpose surgical instrument for cutting and coagulating tissue
US20110196404 *11 Feb 201011 Ago 2011Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments with moving cutting implement
US20110196405 *11 Feb 201011 Ago 2011Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument with comb-like tissue trimming device
US20110238067 *11 Abr 201129 Sep 2011Moses Michael COpen vessel sealing instrument with cutting mechanism
US20130274732 *7 Jun 201317 Oct 2013Ethicon Endo-Surgery, Inc.Rotating transducer mount for ultrasonic surgical instruments
US20140336686 *28 Jul 201413 Nov 2014Ethicon Endo-Surgery, Inc.Surgical instruments
US20150265305 *24 Mar 201424 Sep 2015Ethicon Endo-Surgery, Inc.Ultrasonic forceps
US20150351792 *18 Ago 201510 Dic 2015Ethicon Endo-Surgery, Inc.Ultrasonic surgical shears and method for sealing a blood vessel using same
USD49918115 May 200330 Nov 2004Sherwood Services AgHandle for a vessel sealer and divider
USD61879712 Nov 200829 Jun 2010Ethicon Endo-Surgery, Inc.Handle assembly for surgical instrument
USD6303245 Ago 20094 Ene 2011Tyco Healthcare Group LpDissecting surgical jaw
USD63196517 May 20101 Feb 2011Ethicon Endo-Surgery, Inc.Handle assembly for surgical instrument
USD64924915 Feb 200722 Nov 2011Tyco Healthcare Group LpEnd effectors of an elongated dissecting and dividing instrument
USD66180126 Sep 201112 Jun 2012Ethicon Endo-Surgery, Inc.User interface for a surgical instrument
USD66180226 Sep 201112 Jun 2012Ethicon Endo-Surgery, Inc.User interface for a surgical instrument
USD66180326 Sep 201112 Jun 2012Ethicon Endo-Surgery, Inc.User interface for a surgical instrument
USD66180426 Sep 201112 Jun 2012Ethicon Endo-Surgery, Inc.User interface for a surgical instrument
USD68022012 Ene 201216 Abr 2013Coviden IPSlider handle for laparoscopic device
USD68754924 Oct 20116 Ago 2013Ethicon Endo-Surgery, Inc.Surgical instrument
USD69126517 Oct 20118 Oct 2013Covidien AgControl assembly for portable surgical device
USD70069917 Oct 20114 Mar 2014Covidien AgHandle for portable surgical device
USD70096617 Oct 201111 Mar 2014Covidien AgPortable surgical device
USD70096717 Oct 201111 Mar 2014Covidien AgHandle for portable surgical device
USRE448347 Dic 20128 Abr 2014Covidien AgInsulating boot for electrosurgical forceps
CN101815461B24 Jul 200826 Dic 2012伊西康内外科公司Improved surgical instruments
EP0238667A1 *15 Jul 198630 Sep 1987Sumitomo Bakelite Company LimitedUltrasonic instrument for surgical operations
EP0238667A4 *15 Jul 19867 Nov 1988Sumitomo Bakelite CoUltrasonic instrument for surgical operations.
EP0695535A1 *1 Ago 19957 Feb 1996Ethicon Endo-Surgery, Inc.Ultrasonic haemostatic and cutting instrument
EP0830845A112 Sep 199725 Mar 1998United States Surgical CorporationUltrasonic dissector
EP0897696A113 Ago 199824 Feb 1999United States Surgical CorporationUltrasonic dissection and coagulation system
EP1125555A126 Ene 199422 Ago 2001Ethicon Endo-Surgery, Inc.Clamp coagulator/cutting system for ultrasonic surgical instruments
EP1364618A112 Sep 199726 Nov 2003United States Surgical CorporationUltrasonic dissector
EP1433425A126 Ene 199430 Jun 2004Ethicon Endo-Surgery, Inc.Clamp coagulator/cutting system for ultrasonic surgical instruments
EP1698289A2 *30 Sep 19976 Sep 2006United States Surgical CorporationInstrument for cutting tissue
EP1698289A3 *30 Sep 199714 Mar 2007United States Surgical CorporationInstrument for cutting tissue
EP2292161A230 Sep 19979 Mar 2011United States Surgical CorporationInstrument for cutting tissue
EP2301452A28 Sep 200030 Mar 2011Ethicon Endo-Surgery, Inc.Multifunctional curved blade for use with an ultrasonic surgical instrument
EP2311393A130 Sep 199720 Abr 2011United States Surgical CorporationInstrument for cutting tissue
EP2314199A28 Sep 200027 Abr 2011Ethicon Endo-Surgery, Inc.Multifunctional curved blade for use with an ultrasonic surgical instrument
EP2322106A28 Sep 200018 May 2011Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
WO1991011965A1 *5 Feb 199122 Ago 1991Advanced Osseous TechnologiesApparatus for implantation and extraction of prostheses
WO1994016631A1 *26 Ene 19944 Ago 1994Ultracision Inc.Clamp coagulator/cutting system for ultrasonic surgical instruments
WO1998014126A130 Sep 19979 Abr 1998United States Surgical CorporationUltrasonic dissection and coagulation system
WO1999035982A119 Ene 199922 Jul 1999Michael John Radley YoungUltrasonic cutting tool
WO2003101531A24 Jun 200311 Dic 2003Sound Surgical Technologies, LlcUltrasonic device and method for tissue coagulation
Clasificaciones
Clasificación de EE.UU.606/1, 606/158
Clasificación internacionalA61B17/12, A61B17/28, A61B17/00, B29C65/08, A61B17/32, B29C65/74, A61B18/20, A61B18/00, A61B17/11
Clasificación cooperativaA61B18/20, A61B17/11, B29L2023/005, B29C66/861, A61B17/320092, A61B17/320068, B29C65/7443, B29C65/08, A61B17/12, A61B18/00, A61B2017/00504
Clasificación europeaB29C65/08, B29C66/861, B29C65/7443, A61B18/00, A61B17/12, A61B17/11, A61B17/32U, A61B18/20