US3862851A - Method of producing Magnesium-Based coating for the sacrificial protection of metals - Google Patents

Method of producing Magnesium-Based coating for the sacrificial protection of metals Download PDF

Info

Publication number
US3862851A
US3862851A US337163A US33716373A US3862851A US 3862851 A US3862851 A US 3862851A US 337163 A US337163 A US 337163A US 33716373 A US33716373 A US 33716373A US 3862851 A US3862851 A US 3862851A
Authority
US
United States
Prior art keywords
percent
magnesium
silicate
pack
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US337163A
Inventor
Kenneth K Speirs
Martin Weinstein
Roy L Blize
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chromalloy Gas Turbine Corp
Original Assignee
Chromalloy American Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chromalloy American Corp filed Critical Chromalloy American Corp
Priority to US337163A priority Critical patent/US3862851A/en
Application granted granted Critical
Publication of US3862851A publication Critical patent/US3862851A/en
Assigned to CHROMALLOY GAS TURBINE CORPORATION, A DE. CORP. reassignment CHROMALLOY GAS TURBINE CORPORATION, A DE. CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CHROMALLOY AMERICAN CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/52Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in one step

Definitions

  • ABSTRACT A method for improving the corrosion re sistance of material substrates.
  • the method is particularly applicable to the protection of metal substrates, such ferrous metal articles, among other metals, and, in particular, to the protection of low alloy steel gas turbine engine components for aircraft in which the surface is provided with an adherent protective layer of a sacrificial coating rich in magnesium and also containing silicon, oxygen and optionally iron.
  • the coating is characterized by the presence of magnesium silicide as a major active constituent.
  • This invention relates to the protection of material substrates, particularly the protection of metal sub strates, such as ferrous and non-ferrous metals, from corrosion in highly saline and/or marine atmospheres.
  • Jet and gas turbine engine compressor components for example, discs and blades
  • Jet and gas turbine engine compressor components are subject to corrosion in highly saline atmosphere at the air intake end of the engine and also to direct impact of abrasive particulate matter, such as coral dust.
  • compressor discs and blades among other components are subjected to tremendous mechanical stresses from centrifugal forces, thermal shock, vibration and other sources of stresses.
  • corrosion can accelerate catastrophic failure, since pits and other corrosion defects can act as stress raisers.
  • High strength ferrous alloys are employed in the construction of compressor discs, spacers, blades and other aircraft engine components (e.g. Society of Automotive Engineers alloy designation AMS 6304, SAE 4340, AMS 5508, AMS 5616, and others) but, but, because of their low resistance to saline corrosion, they are generally subjected to a protective surface treatment.
  • AMS 6304, SAE 4340, AMS 5508, AMS 5616, and others are generally subjected to a protective surface treatment.
  • One in particular, is the provision of an aluminum-base diffusion coating on the ferrous substrate by packaluminizing at coating temperatures ranging up to about l,00OF (538C) and preferably not higher so as to avoid undesired crystallographic or metallurgical changes in the substrate during coating, which might have an adverse or undesired effect on the mechanical properties of the parts.
  • Another object is to provide an improved sacrificial coating system for protecting certain anodically active metals, such as aluminum and aluminum alloys.
  • a further object is to provide a method ofprotecting materials of construction which are subject to galvanic corrosion at their contacting substrates by interposing between said materials a sacrificial coating that preferentially corrod'es anodically relative to both substrates.
  • This invention is based on the discovery that a highly adherent composite sacrificial coating rich in magnesium as an essential ingredient provides unexpectedly improved galvanic protection for a wide range of substrate materials, such as ferrous and non-ferrous metal substrates, for example, low alloy steel, aluminum, aluminum alloys, titanium, titanium alloys and other metals.
  • substrate materials such as ferrous and non-ferrous metal substrates, for example, low alloy steel, aluminum, aluminum alloys, titanium, titanium alloys and other metals.
  • galvanic protection has been achieved with a thermally diffused aluminum coating based on an iron-aluminum intermetallic.
  • the required electromotive force difference between the aluminum coating and low alloy steel substrates is not always sufficient for severe corrosion environmental conditions. It has been found that the behavior of a protective coating based on thermally diffused aluminum or noble coating of nickel can be detrimental in that localized breakdown of the coating can often lead to aggravated sub-surface pitting attack.
  • one embodiment of the invention resides in providing a substrate to be coated, applying a silicon-containing coating of finite thickness to the substrate, e.g. a coating of sodium silicate, subjecting the coated substrate to a pack diffusion process by embedding the substrate in a pack comprising a magnesium-containing constituent, preferably in particulate form, and a small but effective amount of a halide energizer, subjecting the pack assembly to a temperature sufficient to cause transfer of magnesium to the substrate, for example, at a "temperature of about 700F (400C) to l,000F (538C) in a retort, and then removing the treated substrate from the pack, such that an adherent sacrificial coating is obtained rich in magnesium and also containing oxygen, silicon and possibly iron, where the substrate is a ferrous metal.
  • a silicon-containing coating of finite thickness e.g. a coating of sodium silicate
  • a pack diffusion process by embedding the substrate in a pack comprising a magnesium-containing constituent,
  • a silicate overcoat e.g. sodium silicate
  • An analysis of the coating indicates that a major portion of the magnesium is present as a magnesium silicide.
  • the pack into which the part is embedded preferably contains an inert powder diluent, such as alumina.
  • the specimen was coated with sodium silicate and the coated specimen placed in a cementation pack containing about percent magnesiurn, 78 percent aluminum oxide and 2 percent aluminum chloride.
  • the pack which was confined in a retort, was placed in a furnace and heated to 900F for about 16 hours.
  • a coating was produced as a reaction product of the silicon-containing coating with the active ingredients in the pack, the coating being enriched in magnesium, a major portion of which is in the form of magnesium silicide, the coating also containing oxygen and iron.
  • the coating In producing the coating, three steps may be employed, to wit: preparing the substrate to receive the coating, applying the silicon-containing layer (e.g. sodium, potassium or lithium silicate) and then thermally treating the coated substrate in a magnesium pack. As an optional fourth step, an overcoat of silicate or other conversion coating is preferably applied.
  • the silicon-containing layer e.g. sodium, potassium or lithium silicate
  • the surface is preferably first cleaned.
  • a preferred method is to hone it with finely divided aluminum oxide as this yields the best surface consistent with assuring good fatigue properties. While chemical cleaning can be employed, it is not preferred since it can have some effect on lowering the fatigue properties.
  • the silicon-containing layer e.g. sodium silicate
  • the silicon-containing layer should be applied as uniformly as possible using, for example, a sodium silicate or potassium silicate solution of predetermined concentration.
  • the part is immersed in the silicate solution and the excess removed by first draining it off and then blowing air over the surface. After drying the layer, it is subjected to a curing cycle at, for example, 400F (205C) to expel excess moisture.
  • the part is allowed to cure and an additional layer applied in the same manner. Additional coats may be applied, depending upon the thickness to be achieved.
  • the pack may comprise a mixture of a magnesium-containing constituent in particulate form (e.g. from about to 325 mesh) and an inert powder diluent, such as refractory oxide, e.g. alumina, plus a small but effective amount of a halide energizer.
  • a pack composition which has been found particularly useful is one containing percent by weight of nominally 100 mesh magnesium and 60 percent by weight of aluminum oxide normally about 200 mesh. To the mixture is added about 2 percent by weight of, for example, ammonium chloride.
  • the pack is placed in a two-part retort, the part embedded in it and the retort lid secured to the retort flanges with layers of aluminum inserted therebetween as a gasket and the lid then bolted to the flange.
  • the part is subjected to pack diffusion for about 16 hours in an oven maintained at an elevated temperature conducive to effect transfer of the magnesium to the substrate, e.g. between about 800F to 900F (about 427C to 482C).
  • the retort is then removed from the-oven and allowed to air cool, any excess powder adheringv to the part being removed by blowing off with air or by immersing the part in a solution of water and silicate in an ultrasonic cleaning tank.
  • the part is then dried and, as an optional step, a silicate overcoat applied.
  • the overcoat is applied with a nominal 1 percent by volume silicate solution of, for example, sodium silicate (diluted from 41.5 Baume solution), by immersion in the silicate solution, the excess solution being thereafter removed from the part followed by drying and then curing at about 400F (205C).
  • silicate solution amounts to about 0.3 percent by weight of SiO equivalent.
  • the silicate solution e.g. sodium silicate, potassium silicate, lithium silicate and ethyl silicate
  • the silicate solution is preferably applied by spraying.
  • the foregoing coating provides markedly improved protection of the substrate when subjected to the salt spray test, complete protection having been observed for times up to 500 hours in the salt spray cabinet. This test is based on the procedure outlined in ASTM B 117-64.
  • the ASTM salt spray test (Designation B 117-64) employed in testing the resistance to corrosion of the various coating systems disclosed herein comprises a fog chamber, a salt solution reservoir, a supply of suitably conditioned compressed air, one or more fog nozzles, specimen supports, provisions for heating the chamber and control means.
  • the specimens are supported or suspended between 15 and 30 from the vertical (out of contact with each other) and preferably parallel to the principal direction of horizontal flow of fog through the chamber.
  • the salt solution is made up of 5:1 parts of salt to parts of distilled water containing not more than 200 ppm, of total solids.
  • the condensed fog should have a pH of about 6.5 to 7.2.
  • the temperature within the chamber is maintained at 95F plus 2 or minus 3F.
  • the salt spray testing is carried out for a period stated herein, precautions being taken to avoid dripping of condensed solution from one specimen to another.
  • specimens comprising /2 inch cylinder or 1 inch strip of the substrate are employed.
  • a section of the coating is abraded from the specimen to be tested.
  • one edge is bevelled by abrasion on a belt or grinding wheel to expose the substrate.
  • the specimens with the partially exposed substrate are then subjected to the aforementioned ASTM salt spray test.
  • the sacrificial coating gave excellent results after 500 hours of testing as evidenced by the complete freedom of substrate deterioration.
  • the coating thickness has been found to vary between 0.2 to '1 mil (0.0002 to 0.001 inch) and is a function of the silicate thickness applied. Very good protection occurs at a nominal thickness of about 0.5 mil. Metallographically, the coating has a dark structure which is free of microcracks.
  • Fatigue tests have indicated that the coating does not adversely affect the endurance limit of the substrate metal. Thus, high cycle fatigue tests using rotating beam specimens have substantiated that the bare and coated specimens have the same endurance limit.
  • EMF measurements in a 3 percent sodium chloride solution with a calomel reference electrode showed 1.2 volts for the magnesium-based coating as compared to 0.56 volt for Aluminum Alloy No. 2016, 0.45 volt for low alloy steel designated as AMS 6304 and 0.1 1 volt for stainless steel bearing the designation AMS 5616.
  • a chemical profile of the coating as determined by the electron microprobe has established that the coating can have levels of approximately 50 percent Mg, percent Si, 20 percent oxygen and varying levels of iron on a steel substrate.
  • An analysis has indicated that a major portion of the magnesium is present in the form of magnesium silicide. This has been confirmed by X-ray diffraction.
  • the coating is apparently a reaction product resulting from the pack cementation process.
  • the iron compositional profile is such that an iron solid solution occurs at the substrate coating interface, indicating that diffusion of iron from the steel substrate into the coating has occurred.
  • the magnesium level according to the electron microprobe, has a peak associated with the silicon peak and both are at lower levels at the outer surface of the coating.
  • the exceptionally high electrochemical potential of the coating (1.2 volts as compared to about 1.3 volts for pure magnesium) and the analyzed 50 percent magnesium in the coating indicates that the magnesium in the coating exhibits a high positive deviation from ideality. This behavior is very unique in this type of coating.
  • the coating may contain about 20 percent to 50 or 60 percent by weight of magnesium, and the balance essentially silicon, oxygen and some constituents derived from the substrate.
  • EXAMPLE l A compressor disc of AMS 6304 low alloy steel and sample coupons thereof are cleaned by honing with finely divided aluminum oxide powder. The disc is then immersed in a heated potassium silicate solution of 10 percent by volume concentration derived from a 30.2 Baume solution. The 10 percent by volume concentration corresponds to about 2.1 percent by weight ofSiO equivalent. The solution is maintained in the temperature range of about 140F (60C) to 160F (70C), and the disc and coupon alternately immersed and raised above the solution to enable the liquid to drain off. Any excess liquid is blown off the surface with compressed air after which the disc and coupons are again immersed in the solution, followed by draining and drying. The foregoing is repeated seven times to provide seven layers of the silicate.
  • the coated parts are then cured in an oven for 30 minutes at about 400F (205C).
  • the parts are embedded in a pack comprising 50 percent by weight of 30 mesh magnesium (US. Standard) and about 50 percent by weight of 30 mesh aluminum oxide.
  • the pack is sealed in a retort which is then placed in an oven and heated for 30 hours at 800F (427C).
  • the parts are removed from the powder and cleaned by washing in a hot solution of potassium silicate maintained at a temperature of about 140F (60C) to 160F (71C).
  • the coupons treated together with the discs in the foregoing manner provided a coating which exhibited excellent sacrificial properties when subjected to the salt spray test.
  • the corrosion resistant properties were even further enhanced by applying an overcoat of potassium silicate from a solution containing about 25 percent by volume of 30.2 Baume potassium silicate, (about 5.2 percent by weight of SiO equivalent), the overcoat being applied in three cycles by dipping, draining, drying and curing until the desired thickness is obtained or by spraying and curing.
  • the solution concentration may range from about 0.2 percent to 5 percent SiO equivalent.
  • the solution concentration may range by weight from about 5 percent to 17.5 percent SiO equivalent.
  • the solutions may range from about 0.2 percent to 17.5 percent SiO equivalent.
  • a group of compressor blades of AMS 5616 stainless steel is cleaned by honing with aluminum oxide powder.
  • the blades are then racked and the rack immersed in a tank containing an aqueous solution of 10 to 25 percent by volume of 41.5 Baume sodium silicate (about-2.9 percent to 7.3 percent by weight of SiO equivalent).
  • the temperature of the bath is maintained at about F (26C) to 100F (38C).
  • the rack is removed and excess liquid allowed to drain off and the blades dried by blowing with air.
  • the blades are then recycled in the solution and dried by blowing off with air for a total of three applications.
  • the dried blades are then subjected -to a curing cycle at 400F (205C) for 15 minutes. This constitutes one silicate application.
  • the blades are then allowed to cool and two additional applications of silicate made in the same manner.
  • the foregoing silicate cycles provide a silicate thickness of about 0.4 mil.
  • theblades After theblades have been silicate treated, they are embedded in a pack containing about 50 percent by weight of 50 mesh magnesium powder (US. Standard), about 50 percent by weight of alumina (200 mesh) and ammonium iodide added in amounts of about 2 percent of the total weight of the pack, the pack being confined in a retort as described herein.
  • the blades are then sub jected to pack diffusion by placing the retort in an oven maintained at about 900F (482C) and the blades processed for about 24 hours. Following the pack cementation process, the blades were cooled inside the retort to substantially ambient temperature and the blades then ultrasonically cleaned in water containing about 25 percent potassium silicate (30.2 Baume).
  • the alumina is used in the pack as an inert diluent.
  • inert diluent Besides alumina, other inert and temperature stable diluents can be employed, such as zirconia, titania, hafnia, thoria, rare earth oxides, silicon carbide, titanium carbide, tungsten carbide, and the like.
  • the inert diluent employed is generally refractory in nature and has a melting point about l,300C.
  • the magnesium in the pack may range by weight from about 5 to 100 percent, the refractory diluent up to about percent by weight, and the halide energizer in small but effective amounts, such as from about A percent to 5 percent by weight of the total weight of the pack.
  • the halide energizer may comprise metal and ammoniacal halides and halide formers. such as iodine.
  • halides are NHqCl, NH F, NH 1, NH,Br and AlCl among others.
  • the temperature may range from about 200F (93C) to 800F (426C).
  • the solution whether it is sodium silicate, potassium silicate or ethyl silicate, may range by weight from about 0.2 percent to 17.5 percent SiO equivalent.
  • the silicate solution is applied as an overcoat, that is, over the pack cementation coating, the amount of silicate material in the solution may range over the foregoing composition and, more preferably, from about 5 percent to 17.5 percent by weight of SiO equivalent.
  • EXAMPLE 3 Compressor blades of a titanium alloy containing by weight about 6 percent Al, 4 percent V and the'balance essentially titanium are honed with finely divided alumina followed by cleaning in an ultrasonic tank containing 10 percent by volume solution of potassium silicate (produced from 30.2 Baume solution), the temperature of the solution being about 80F (27C). The ultrasonic cleaning action removes fine debris and enables a layer of the silicate to form on the blades. The blades are raised out of the solution and allowed to drain and dry by blowing with compressed air. The blades are then sprayed with a solution of 37.5 volume percent potassium silicate (produced from 30.2 Baume solution) which corresponds to about 7.8 percent by weight of SiO equivalent.
  • the sprayed coating is cured and the step repeated of coating and curing.
  • the treated parts are then placed in a pack mixture containing 40 percent magnesium powder of 30 mesh (US, Standard) size and 60 percent alumina, also of 30 mesh size. To the mixture is added 2 percent by weight of ammonium iodide. Where the pack is being used over again from a prior charge, about a 10 percent addition is made of magnesium and alumina. After blending the powder, the compressor blades are embedded in the pack and the assembly subjected to pack cementation in a sealed retort at about 750F (400C) for about 48 hours.
  • 750F 400C
  • the blades After the blades have been coated, they are removed and cleaned in a hot potassium silicate solution (1 percent by volume from Baume 30.2 solution) at a temperature ranging from about 140F (60C) to 160F (71C).
  • a hot potassium silicate solution (1 percent by volume from Baume 30.2 solution) at a temperature ranging from about 140F (60C) to 160F (71C).
  • EXAMPLE 4 An aluminum oxide disc is immersed in a 10 percent by volume sodium silicate solution (derived from a 41.5 Baume solution) at a temperature of about 80F (27C), the solution concentration corresponding by weight to 2.9 percent SiO equivalent. The disc is removed from solution and excess solution allowed to drain off. After drying, the disc is cured at 600F (315C) for minutes, cooled and again dipped in the solution and dried and cured, until the cycle has been repeated three times.
  • sodium silicate solution derived from a 41.5 Baume solution
  • the thus treated aluminum oxide disc is then embedded in a pack containing percent magnesium of 100 mesh size (US. Standard) and 80 percent aluminum oxide of 200 mesh size, 2 percent iodine being added as the halide-forming transfer agent.
  • the pack which is sealed in a retort is then heated at 850F (455C) for 24 hours. After the coating has been completed, the disc is removed from the pack and cleaned in a 10 vol. percent sodium silicate solution (based on Baume 41.5).
  • silicate coating is a good source for silicon in producing the magnesium silicide coating by pack cementation
  • other silicon-containing pre'coats can be employed, such as a fine dispersion of a silica gel.
  • the amount employed is determined in accordance with the percent by weight of SiO equivalent in the coating.
  • silicate solutions containing about 0.2 percent to 17.5 percent of SiO equivalent may be employed in building up a foundation pre-coat preparatory to pack cementation in a magnesium-containing pack.
  • the markedly improved electro-negative potential and the remarkable oxidation stability of the composite coating make the coating suitable for the protection of low alloy steels, mild steels, titanium, titanium alloys, aluminum and aluminum alloys and ceramics, such as shapes made from alumina.
  • the invention is particularly applicable to low alloy steels, e.g. AMS 6304, employed in jet or gas engine compressor components operating at over 300F (150C).
  • low alloy steels e.g. AMS 6304
  • the protection of aluminum and aluminum alloys is another very good application.
  • the magnesium coating of the invention to high strength steel or titanium rivets, fasteners, blading and other elements used in direct contact with aluminum and aluminum alloy sheet, castings, and other aluminum shapes or structural elements, the deterioration of the alumi' num, as well as the contacting metal, can be greatly inhibited.
  • the galvanic cell potential developed between these materials can be significantly reduced by producing generalized rather than localized corrosion attack.
  • the invention may be applied to titanium, aluminum, iron, iron alloys, magnesium alloys and numerous ceramic materials, e.g. A1 0 of MgO where EMF potential associated with the magnesium-rich coating can be desirably utilized.
  • a direct titanium-aluminum couple can be avoided in aluminumtitanium structural systems by providing one of the metals with the sacrificial coating of the invention by interposing the coating between the two metals, such that the magnesium-rich coating corrodes anodically in preference to either of the substrate metals.
  • the cementation pack may range by weight from about 5 percent to 100 percent of the magnesiumcontaining material and up to about 95 percent by weight of a refractory diluent, the pack also containing a small but effective amount of a halide energizer. Based on the total weight of the pack, the energizer may range from about A percent to 5 percent by weight.
  • a preferred pack is one containing about 30 percent to 60 percent of the magnesium material and about percent to 40 percent by weight of the diluent, e.g. aluminum oxide.
  • the cementation process is generally carried out in a retort at a temperature ranging from about 700F (about 425C) to about 1000F (about 538C) for about A hours to 60 hours.
  • the invention provides as an article of manufacture a thermally coated substrate comprising a reaction product between a silicon-containing material, e.g. a silicate salt, and magnesium consisting essentially of magnesium, silicon and oxygen, the major portion of the magnesium being in the form of magnesium silicide.
  • a silicon-containing material e.g. a silicate salt
  • magnesium consisting essentially of magnesium, silicon and oxygen, the major portion of the magnesium being in the form of magnesium silicide.
  • the substrate is a ferrous metal
  • a small portion of the coating will contain iron.
  • the substrate is aluminum or titanium, a small amount of such elements may appear in the coating.
  • the coating will consist essentially of magnesium, silicon and oxygen plus small amounts of substrate material.
  • the coating contains at least about percent by weight of magnesium, such as about 20 percent to 50 percent and, more preferably, percent to 50 percent by weight of magnesium, a major portion of which is in the form of magnesium silicide.
  • the invention is applicable to the coating of a wide diversity of substrates and, in particular, jet and gas engine turbine components or parts, such as discs, spacers, blades, tie bolts, casings, shrouds, vanes, shafts, and the like.
  • a method of protecting a metal substrate against the corrosive effects of saline and marine environments comprising, providing said substrate with a coating selected from the group consisting of sodium silicate, potassium silicate, lithium silicate and ethyl silicate and then subjecting said coated substrate to a pack cementation process at an elevated diffusion temperature comprising embedding said substrate in a pack containing by weight about 5 percent to 100 percent magnesium in particulate form and up to about 95 percent by weight of a refractory diluent together with a small but effective amount of a halide energizer and then heating said pack to said elevated diffusion temperature below the melting point of magnesium, sufficient to effect transfer of magnesium to the substrate, whereby a final coating is formed on said metal substrate containing substantial amounts of magnesium silicide to protect said metal substrate against corrosion.
  • a coating selected from the group consisting of sodium silicate, potassium silicate, lithium silicate and ethyl silicate
  • a method of improving the corrosion resistance of a metal substrate against saline and marine environments which comprises,
  • a uniform coating to said substrate with a silicate selected from the group consisting of sodium silicate, potassium silicate, lithium silicate and ethyl silicate,
  • a pack cementation process comprising embedding said substrate in a pack containing by weight about 5 percent to 100 percent magnesium in particulate form and up to about 95 percent by weight of a refractory diluent together with a small but effective amount of a halide energizer,
  • a method of improving the corrosion resistance of a metal substrate against saline and marine environments which comprises,
  • a silicate salt selected from the group consisting of sodium silicate, potassium silicate, lithium silicate and ethyl silicate
  • a pack cementation process comprising embedding said substrate in a pack containing by weight about 5 percent to 100 percent magnesium in particulate form and up to about percent by weight of a refractory diluent together with a small but effective amount of a halide energizer,
  • a method of improving the corrosion resistance of a ferrous metal substrate which comprises,
  • a ferrous metal substrate having a thermally cured uniform silicate coating on the surface thereof selected from the group consisting of sodium silicate, potassium silicate, lithium silicate whereby an adherent sacrificial coating is obtained rich in magnesium and also containing oxygen, silicon and iron, the major portion of the magnesium being in the form of magnesium silicidc to protect said metal substrate against corrosion.
  • a thermally cured uniform silicate coating on the surface thereof selected from the group consisting of sodium silicate, potassium silicate, lithium silicate whereby an adherent sacrificial coating is obtained rich in magnesium and also containing oxygen, silicon and iron, the major portion of the magnesium being in the form of magnesium silicidc to protect said metal substrate against corrosion.
  • the cementation pack contains by weight approximately 50 percent magnesium and approximately 50 percent of alumina.

Abstract

A method is provided for improving the corrosion resistance of material substrates. The method is particularly applicable to the protection of metal substrates, such as ferrous metal articles, among other metals, and, in particular, to the protection of low alloy steel gas turbine engine components for aircraft in which the surface is provided with an adherent protective layer of a sacrificial coating rich in magnesium and also containing silicon, oxygen and optionally iron. The coating is characterized by the presence of magnesium silicide as a major active constituent.

Description

United States Patent Speirs et a1.
METHOD OF PRODUCING MAGNESIUM-BASED COATING FOR THE SACRIFICIAL PROTECTION OF METALS Inventors: Kenneth K. Speirs, Universal City;
Martin Weinstein; Roy L. Blize, both of San Antonio, all of Tex.
The Chromalloy American Corporation, New York, NY.
Filed: Mar. 1, 1973 Appl. No.: 337,163
Related U.S. Application Data Division of Ser. No, 144,225, May 17, 1971, Pat. No. 3,748,172.
Assignee:
U.S. Cl. 117/70 C, 117/705, 117/1072 P, 117/135.1
Int. Cl. C23c 9/00 Field of Search 117/1072 P, 70 C, 70 S, l17/135.1, 169 R, 169 A References Cited UNITED STATES PATENTS 1/1973 Brill-Edwards ll7/l07.2 P X 3,748,172 7/1973 Speirs etal. ll7/l35.l
Primary Examiner-Leon D. Rosdol Assistant ExaminerHarris A. PlilllCk Attorney, Agent, or FirmSandoe, Hopgood & Calimafde [57] ABSTRACT A method is provided for improving the corrosion re sistance of material substrates. The method is particularly applicable to the protection of metal substrates, such ferrous metal articles, among other metals, and, in particular, to the protection of low alloy steel gas turbine engine components for aircraft in which the surface is provided with an adherent protective layer of a sacrificial coating rich in magnesium and also containing silicon, oxygen and optionally iron. The coating is characterized by the presence of magnesium silicide as a major active constituent.
15 Claims, N0 Drawings METHOD OF PRODUCING MAGNESIUM-BASED COATING FOR THE SACRIFICIAL PROTECTION OF METALS This application is a division of co-pending application Ser. No. 144,225, filedMay 17, 1971, now US. Pat. No. 3,748,172.
This invention relates to the protection of material substrates, particularly the protection of metal sub strates, such as ferrous and non-ferrous metals, from corrosion in highly saline and/or marine atmospheres.
FIELD OF THE INVENTION Jet and gas turbine engine compressor components, for example, discs and blades, are subject to corrosion in highly saline atmosphere at the air intake end of the engine and also to direct impact of abrasive particulate matter, such as coral dust. Additionally, compressor discs and blades among other components are subjected to tremendous mechanical stresses from centrifugal forces, thermal shock, vibration and other sources of stresses. Thus, corrosion can accelerate catastrophic failure, since pits and other corrosion defects can act as stress raisers.
High strength ferrous alloys are employed in the construction of compressor discs, spacers, blades and other aircraft engine components (e.g. Society of Automotive Engineers alloy designation AMS 6304, SAE 4340, AMS 5508, AMS 5616, and others) but, but, because of their low resistance to saline corrosion, they are generally subjected to a protective surface treatment. One in particular, is the provision of an aluminum-base diffusion coating on the ferrous substrate by packaluminizing at coating temperatures ranging up to about l,00OF (538C) and preferably not higher so as to avoid undesired crystallographic or metallurgical changes in the substrate during coating, which might have an adverse or undesired effect on the mechanical properties of the parts. While such coatings provide advantageous oxidation and erosion resistance and minimize the production of pulverous corrosion products on alloys, such as AMS 5615 (12 percent chromium steel), they are not sufficiently anodic with respect to low alloy steel substrates, such as AMS 6304 (less than 3 percent chromium and less than 1 percent nickel), to offer the desired sacrificial or anodic protection thereof against saline corrosion.
A surface treatment involving a magnesium-based coating has 'now been discovered which provides optimum resistance to corrosion for prolonged periods of time. As far as is known, this novel treatment for protecting metal substrates was not known prior to this invention.
OBJECTS OF THE INVENTION Another object is to provide an improved sacrificial coating system for protecting certain anodically active metals, such as aluminum and aluminum alloys.
A further object is to provide a method ofprotecting materials of construction which are subject to galvanic corrosion at their contacting substrates by interposing between said materials a sacrificial coating that preferentially corrod'es anodically relative to both substrates.
These and other objects will more clearly appear when taken in conjunction with the following description and the appended claims.
STATEMENT OF THE INVENTION This invention is based on the discovery that a highly adherent composite sacrificial coating rich in magnesium as an essential ingredient provides unexpectedly improved galvanic protection for a wide range of substrate materials, such as ferrous and non-ferrous metal substrates, for example, low alloy steel, aluminum, aluminum alloys, titanium, titanium alloys and other metals. Normally, in the case of stainless steels, galvanic protection has been achieved with a thermally diffused aluminum coating based on an iron-aluminum intermetallic. However, the required electromotive force difference between the aluminum coating and low alloy steel substrates is not always sufficient for severe corrosion environmental conditions. It has been found that the behavior of a protective coating based on thermally diffused aluminum or noble coating of nickel can be detrimental in that localized breakdown of the coating can often lead to aggravated sub-surface pitting attack.
While it is apparent that pure magnesium would provide excellent sacrificial protection for steels, a main disadvantage of pure magnesium is that it tends to react spontaneously with water and, as a consequence, such coatings would not have sufficient environmental stability. Moreover, it is practically impossible to transfer magnesium onto steel by the pack cementation process because of its insolubility in iron. The invention overcomes the foregoing difficulties and provides a magnesium-rich coating having excellent sacrificial properties.
Thus, stating it broadly, one embodiment of the invention resides in providing a substrate to be coated, applying a silicon-containing coating of finite thickness to the substrate, e.g. a coating of sodium silicate, subjecting the coated substrate to a pack diffusion process by embedding the substrate in a pack comprising a magnesium-containing constituent, preferably in particulate form, and a small but effective amount of a halide energizer, subjecting the pack assembly to a temperature sufficient to cause transfer of magnesium to the substrate, for example, at a "temperature of about 700F (400C) to l,000F (538C) in a retort, and then removing the treated substrate from the pack, such that an adherent sacrificial coating is obtained rich in magnesium and also containing oxygen, silicon and possibly iron, where the substrate is a ferrous metal. In a preferred embodiment, after the application of the magnesium coating, a silicate overcoat (e.g. sodium silicate) is applied to the surface thereof and thereafter thermally cured. An analysis of the coating indicates that a major portion of the magnesium is present as a magnesium silicide. The pack into which the part is embedded preferably contains an inert powder diluent, such as alumina.
In one embodiment of the invention as applied to a bare steel specimen, the specimen was coated with sodium silicate and the coated specimen placed in a cementation pack containing about percent magnesiurn, 78 percent aluminum oxide and 2 percent aluminum chloride. The pack, which was confined in a retort, was placed in a furnace and heated to 900F for about 16 hours. A coating was produced as a reaction product of the silicon-containing coating with the active ingredients in the pack, the coating being enriched in magnesium, a major portion of which is in the form of magnesium silicide, the coating also containing oxygen and iron.
DETAILS OF THE INVENTION In producing the coating, three steps may be employed, to wit: preparing the substrate to receive the coating, applying the silicon-containing layer (e.g. sodium, potassium or lithium silicate) and then thermally treating the coated substrate in a magnesium pack. As an optional fourth step, an overcoat of silicate or other conversion coating is preferably applied.
In preparing a ferrous metal substrate to receive the silicon-containing layer, the surface is preferably first cleaned. A preferred method is to hone it with finely divided aluminum oxide as this yields the best surface consistent with assuring good fatigue properties. While chemical cleaning can be employed, it is not preferred since it can have some effect on lowering the fatigue properties. The silicon-containing layer, e.g. sodium silicate, should be applied as uniformly as possible using, for example, a sodium silicate or potassium silicate solution of predetermined concentration. The part is immersed in the silicate solution and the excess removed by first draining it off and then blowing air over the surface. After drying the layer, it is subjected to a curing cycle at, for example, 400F (205C) to expel excess moisture. The part is allowed to cure and an additional layer applied in the same manner. Additional coats may be applied, depending upon the thickness to be achieved.
As stated above, the pack may comprise a mixture of a magnesium-containing constituent in particulate form (e.g. from about to 325 mesh) and an inert powder diluent, such as refractory oxide, e.g. alumina, plus a small but effective amount of a halide energizer. A pack composition which has been found particularly useful is one containing percent by weight of nominally 100 mesh magnesium and 60 percent by weight of aluminum oxide normally about 200 mesh. To the mixture is added about 2 percent by weight of, for example, ammonium chloride. The pack is placed in a two-part retort, the part embedded in it and the retort lid secured to the retort flanges with layers of aluminum inserted therebetween as a gasket and the lid then bolted to the flange.
The part is subjected to pack diffusion for about 16 hours in an oven maintained at an elevated temperature conducive to effect transfer of the magnesium to the substrate, e.g. between about 800F to 900F (about 427C to 482C). The retort is then removed from the-oven and allowed to air cool, any excess powder adheringv to the part being removed by blowing off with air or by immersing the part in a solution of water and silicate in an ultrasonic cleaning tank. The part is then dried and, as an optional step, a silicate overcoat applied. In one embodiment, the overcoat is applied with a nominal 1 percent by volume silicate solution of, for example, sodium silicate (diluted from 41.5 Baume solution), by immersion in the silicate solution, the excess solution being thereafter removed from the part followed by drying and then curing at about 400F (205C). Normally, three layers of silicate overcoat are applied in this manner. The foregoing silicate solution amounts to about 0.3 percent by weight of SiO equivalent. Broadly speaking, the silicate solution, (e.g. sodium silicate, potassium silicate, lithium silicate and ethyl silicate) may range by weight from 0.1 percent to 17.5 percent SiO equivalent. At the higher endof the range, the silicate solution is preferably applied by spraying.
The foregoing coating provides markedly improved protection of the substrate when subjected to the salt spray test, complete protection having been observed for times up to 500 hours in the salt spray cabinet. This test is based on the procedure outlined in ASTM B 117-64.
The ASTM salt spray test (Designation B 117-64) employed in testing the resistance to corrosion of the various coating systems disclosed herein comprises a fog chamber, a salt solution reservoir, a supply of suitably conditioned compressed air, one or more fog nozzles, specimen supports, provisions for heating the chamber and control means. The specimens are supported or suspended between 15 and 30 from the vertical (out of contact with each other) and preferably parallel to the principal direction of horizontal flow of fog through the chamber. The salt solution is made up of 5:1 parts of salt to parts of distilled water containing not more than 200 ppm, of total solids. The condensed fog should have a pH of about 6.5 to 7.2. The temperature within the chamber is maintained at 95F plus 2 or minus 3F. For the specimens in this case, the salt spray testing is carried out for a period stated herein, precautions being taken to avoid dripping of condensed solution from one specimen to another.
In using the test to evaluate the quality of the sacrificial coating, specimens comprising /2 inch cylinder or 1 inch strip of the substrate are employed. In the case of the strip, a section of the coating is abraded from the specimen to be tested. In the case of the cylindrical specimen, one edge is bevelled by abrasion on a belt or grinding wheel to expose the substrate. The specimens with the partially exposed substrate are then subjected to the aforementioned ASTM salt spray test. The sacrificial coating gave excellent results after 500 hours of testing as evidenced by the complete freedom of substrate deterioration.
Very good protection has even been observed after exposure of the coated part at 900F (482C) followed by the salt spray test. However, the coating is more effective at temperatures up to 850F (455C). Excellent salt spray protection has been obtained after exposure at temperatures up to about 800F (427C).
The coating thickness has been found to vary between 0.2 to '1 mil (0.0002 to 0.001 inch) and is a function of the silicate thickness applied. Very good protection occurs at a nominal thickness of about 0.5 mil. Metallographically, the coating has a dark structure which is free of microcracks.
Fatigue tests have indicated that the coating does not adversely affect the endurance limit of the substrate metal. Thus, high cycle fatigue tests using rotating beam specimens have substantiated that the bare and coated specimens have the same endurance limit.
EMF measurements in a 3 percent sodium chloride solution with a calomel reference electrode showed 1.2 volts for the magnesium-based coating as compared to 0.56 volt for Aluminum Alloy No. 2016, 0.45 volt for low alloy steel designated as AMS 6304 and 0.1 1 volt for stainless steel bearing the designation AMS 5616.
A chemical profile of the coating as determined by the electron microprobe has established that the coating can have levels of approximately 50 percent Mg, percent Si, 20 percent oxygen and varying levels of iron on a steel substrate. An analysis has indicated that a major portion of the magnesium is present in the form of magnesium silicide. This has been confirmed by X-ray diffraction.
The coating is apparently a reaction product resulting from the pack cementation process. In some cases, the iron compositional profile is such that an iron solid solution occurs at the substrate coating interface, indicating that diffusion of iron from the steel substrate into the coating has occurred. The magnesium level, according to the electron microprobe, has a peak associated with the silicon peak and both are at lower levels at the outer surface of the coating.
The exceptionally high electrochemical potential of the coating (1.2 volts as compared to about 1.3 volts for pure magnesium) and the analyzed 50 percent magnesium in the coating indicates that the magnesium in the coating exhibits a high positive deviation from ideality. This behavior is very unique in this type of coating. Generally, the coating may contain about 20 percent to 50 or 60 percent by weight of magnesium, and the balance essentially silicon, oxygen and some constituents derived from the substrate.
As illustrative ofthe invention, the following example is given.
EXAMPLE l A compressor disc of AMS 6304 low alloy steel and sample coupons thereof are cleaned by honing with finely divided aluminum oxide powder. The disc is then immersed in a heated potassium silicate solution of 10 percent by volume concentration derived from a 30.2 Baume solution. The 10 percent by volume concentration corresponds to about 2.1 percent by weight ofSiO equivalent. The solution is maintained in the temperature range of about 140F (60C) to 160F (70C), and the disc and coupon alternately immersed and raised above the solution to enable the liquid to drain off. Any excess liquid is blown off the surface with compressed air after which the disc and coupons are again immersed in the solution, followed by draining and drying. The foregoing is repeated seven times to provide seven layers of the silicate. The coated parts are then cured in an oven for 30 minutes at about 400F (205C). After the foregoing treatment, the parts are embedded in a pack comprising 50 percent by weight of 30 mesh magnesium (US. Standard) and about 50 percent by weight of 30 mesh aluminum oxide. The pack is sealed in a retort which is then placed in an oven and heated for 30 hours at 800F (427C). After completion of the coating, the parts are removed from the powder and cleaned by washing in a hot solution of potassium silicate maintained at a temperature of about 140F (60C) to 160F (71C).
The coupons treated together with the discs in the foregoing manner provided a coating which exhibited excellent sacrificial properties when subjected to the salt spray test.
The corrosion resistant properties were even further enhanced by applying an overcoat of potassium silicate from a solution containing about 25 percent by volume of 30.2 Baume potassium silicate, (about 5.2 percent by weight of SiO equivalent), the overcoat being applied in three cycles by dipping, draining, drying and curing until the desired thickness is obtained or by spraying and curing. Where the silicate is applied by dipping, the solution concentration may range from about 0.2 percent to 5 percent SiO equivalent. Where the coating is sprayed, the solution concentration may range by weight from about 5 percent to 17.5 percent SiO equivalent. Broadly, the solutions may range from about 0.2 percent to 17.5 percent SiO equivalent.
EXAMPLE 2.
A group of compressor blades of AMS 5616 stainless steel is cleaned by honing with aluminum oxide powder. The blades are then racked and the rack immersed in a tank containing an aqueous solution of 10 to 25 percent by volume of 41.5 Baume sodium silicate (about-2.9 percent to 7.3 percent by weight of SiO equivalent). The temperature of the bath is maintained at about F (26C) to 100F (38C). After the blades have been immersed to completely wet the surface, the rack is removed and excess liquid allowed to drain off and the blades dried by blowing with air. The blades are then recycled in the solution and dried by blowing off with air for a total of three applications. The dried blades are then subjected -to a curing cycle at 400F (205C) for 15 minutes. This constitutes one silicate application. The blades are then allowed to cool and two additional applications of silicate made in the same manner. The foregoing silicate cycles provide a silicate thickness of about 0.4 mil.
After theblades have been silicate treated, they are embedded in a pack containing about 50 percent by weight of 50 mesh magnesium powder (US. Standard), about 50 percent by weight of alumina (200 mesh) and ammonium iodide added in amounts of about 2 percent of the total weight of the pack, the pack being confined in a retort as described herein. The blades are then sub jected to pack diffusion by placing the retort in an oven maintained at about 900F (482C) and the blades processed for about 24 hours. Following the pack cementation process, the blades were cooled inside the retort to substantially ambient temperature and the blades then ultrasonically cleaned in water containing about 25 percent potassium silicate (30.2 Baume).
The alumina is used in the pack as an inert diluent. Besides alumina, other inert and temperature stable diluents can be employed, such as zirconia, titania, hafnia, thoria, rare earth oxides, silicon carbide, titanium carbide, tungsten carbide, and the like. The inert diluent employed is generally refractory in nature and has a melting point about l,300C.
The magnesium in the pack may range by weight from about 5 to 100 percent, the refractory diluent up to about percent by weight, and the halide energizer in small but effective amounts, such as from about A percent to 5 percent by weight of the total weight of the pack. The halide energizer may comprise metal and ammoniacal halides and halide formers. such as iodine.
7 Examples of halides are NHqCl, NH F, NH 1, NH,Br and AlCl among others.
In curing the silicate layer, whether applied as a foundation coat or an overcoat, the temperature may range from about 200F (93C) to 800F (426C). When applying the silicate layer as a foundation coat prior to pack cementation, the solution, whether it is sodium silicate, potassium silicate or ethyl silicate, may range by weight from about 0.2 percent to 17.5 percent SiO equivalent. Where the silicate solution is applied as an overcoat, that is, over the pack cementation coating, the amount of silicate material in the solution may range over the foregoing composition and, more preferably, from about 5 percent to 17.5 percent by weight of SiO equivalent.
As additional examples, the following are given.
EXAMPLE 3 Compressor blades of a titanium alloy containing by weight about 6 percent Al, 4 percent V and the'balance essentially titanium are honed with finely divided alumina followed by cleaning in an ultrasonic tank containing 10 percent by volume solution of potassium silicate (produced from 30.2 Baume solution), the temperature of the solution being about 80F (27C). The ultrasonic cleaning action removes fine debris and enables a layer of the silicate to form on the blades. The blades are raised out of the solution and allowed to drain and dry by blowing with compressed air. The blades are then sprayed with a solution of 37.5 volume percent potassium silicate (produced from 30.2 Baume solution) which corresponds to about 7.8 percent by weight of SiO equivalent. The sprayed coating is cured and the step repeated of coating and curing. The treated parts are then placed in a pack mixture containing 40 percent magnesium powder of 30 mesh (US, Standard) size and 60 percent alumina, also of 30 mesh size. To the mixture is added 2 percent by weight of ammonium iodide. Where the pack is being used over again from a prior charge, about a 10 percent addition is made of magnesium and alumina. After blending the powder, the compressor blades are embedded in the pack and the assembly subjected to pack cementation in a sealed retort at about 750F (400C) for about 48 hours.
After the blades have been coated, they are removed and cleaned in a hot potassium silicate solution (1 percent by volume from Baume 30.2 solution) at a temperature ranging from about 140F (60C) to 160F (71C).
EXAMPLE 4 An aluminum oxide disc is immersed in a 10 percent by volume sodium silicate solution (derived from a 41.5 Baume solution) at a temperature of about 80F (27C), the solution concentration corresponding by weight to 2.9 percent SiO equivalent. The disc is removed from solution and excess solution allowed to drain off. After drying, the disc is cured at 600F (315C) for minutes, cooled and again dipped in the solution and dried and cured, until the cycle has been repeated three times.
The thus treated aluminum oxide disc is then embedded in a pack containing percent magnesium of 100 mesh size (US. Standard) and 80 percent aluminum oxide of 200 mesh size, 2 percent iodine being added as the halide-forming transfer agent. The pack which is sealed in a retort is then heated at 850F (455C) for 24 hours. After the coating has been completed, the disc is removed from the pack and cleaned in a 10 vol. percent sodium silicate solution (based on Baume 41.5).
While the silicate coating is a good source for silicon in producing the magnesium silicide coating by pack cementation, other silicon-containing pre'coats can be employed, such as a fine dispersion of a silica gel. in employing the silicate coating technique, the amount employed is determined in accordance with the percent by weight of SiO equivalent in the coating. Thus, silicate solutions containing about 0.2 percent to 17.5 percent of SiO equivalent may be employed in building up a foundation pre-coat preparatory to pack cementation in a magnesium-containing pack.
The markedly improved electro-negative potential and the remarkable oxidation stability of the composite coating make the coating suitable for the protection of low alloy steels, mild steels, titanium, titanium alloys, aluminum and aluminum alloys and ceramics, such as shapes made from alumina.
The invention is particularly applicable to low alloy steels, e.g. AMS 6304, employed in jet or gas engine compressor components operating at over 300F (150C). The protection of aluminum and aluminum alloys is another very good application. By applying the magnesium coating of the invention to high strength steel or titanium rivets, fasteners, blading and other elements used in direct contact with aluminum and aluminum alloy sheet, castings, and other aluminum shapes or structural elements, the deterioration of the alumi' num, as well as the contacting metal, can be greatly inhibited. By employing the invention in situations in which magnesium is in direct contact with steel, the galvanic cell potential developed between these materials can be significantly reduced by producing generalized rather than localized corrosion attack. Thus, as stated above, the invention may be applied to titanium, aluminum, iron, iron alloys, magnesium alloys and numerous ceramic materials, e.g. A1 0 of MgO where EMF potential associated with the magnesium-rich coating can be desirably utilized. Thus, a direct titanium-aluminum couple can be avoided in aluminumtitanium structural systems by providing one of the metals with the sacrificial coating of the invention by interposing the coating between the two metals, such that the magnesium-rich coating corrodes anodically in preference to either of the substrate metals.
As has been stated herein, the cementation pack may range by weight from about 5 percent to 100 percent of the magnesiumcontaining material and up to about 95 percent by weight of a refractory diluent, the pack also containing a small but effective amount of a halide energizer. Based on the total weight of the pack, the energizer may range from about A percent to 5 percent by weight. A preferred pack is one containing about 30 percent to 60 percent of the magnesium material and about percent to 40 percent by weight of the diluent, e.g. aluminum oxide.
The cementation process is generally carried out in a retort at a temperature ranging from about 700F (about 425C) to about 1000F (about 538C) for about A hours to 60 hours.
As will be apparent from the description, the invention provides as an article of manufacture a thermally coated substrate comprising a reaction product between a silicon-containing material, e.g. a silicate salt, and magnesium consisting essentially of magnesium, silicon and oxygen, the major portion of the magnesium being in the form of magnesium silicide. Where the substrate is a ferrous metal, a small portion of the coating will contain iron. Likewise, where the substrate is aluminum or titanium, a small amount of such elements may appear in the coating. Generally speaking, the coating will consist essentially of magnesium, silicon and oxygen plus small amounts of substrate material.
Usually, the coating contains at least about percent by weight of magnesium, such as about 20 percent to 50 percent and, more preferably, percent to 50 percent by weight of magnesium, a major portion of which is in the form of magnesium silicide.
As stated hereinbefore, the invention is applicable to the coating of a wide diversity of substrates and, in particular, jet and gas engine turbine components or parts, such as discs, spacers, blades, tie bolts, casings, shrouds, vanes, shafts, and the like.
Although the present invention has been described in conjunction with preferred embodiments, it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the invention as those skilled in the art will readily understand. Such modifications and variations are considered to be within the purview and scope of the invention and the appended claims.
What is claimed is:
1. In a method of protecting a metal substrate against the corrosive effects of saline and marine environments, the improvement which comprises, providing said substrate with a coating selected from the group consisting of sodium silicate, potassium silicate, lithium silicate and ethyl silicate and then subjecting said coated substrate to a pack cementation process at an elevated diffusion temperature comprising embedding said substrate in a pack containing by weight about 5 percent to 100 percent magnesium in particulate form and up to about 95 percent by weight of a refractory diluent together with a small but effective amount of a halide energizer and then heating said pack to said elevated diffusion temperature below the melting point of magnesium, sufficient to effect transfer of magnesium to the substrate, whereby a final coating is formed on said metal substrate containing substantial amounts of magnesium silicide to protect said metal substrate against corrosion.
2. The method of claim 1, wherein the pack contains by weight about 30 percent to 60 percent magnesium and about 70 percent to percent by weight of the diluent.
3. The method of claim 1, wherein the diluent is alu mina.
4. The method of claim 1, wherein the substrate is a ferrous metal.
5. A method of improving the corrosion resistance of a metal substrate against saline and marine environments which comprises,
cleaning said substrate,
applying a uniform coating to said substrate with a silicate selected from the group consisting of sodium silicate, potassium silicate, lithium silicate and ethyl silicate,
subjecting said coated substrate to a pack cementation process comprising embedding said substrate in a pack containing by weight about 5 percent to 100 percent magnesium in particulate form and up to about 95 percent by weight of a refractory diluent together with a small but effective amount of a halide energizer,
heating said pack to a temperature of about 700F to 1,000F in a retort, and then removing the treated substrate from the pack, 7
whereby an adherent sacrificial coating is obtained rich in magnesium and also containing oxygen and silicon, a major portion of said magnesium being in the form of magnesium silicide to protect said metal substrate against corrosion.
6. The method of claim 5, wherein following the pack cementation step, the coating is covered with an overcoat of silicate salt selected from the group consisting of sodium silicate, potassium silicate, lithium silicate and ethyl silicate.
7. The method of claim 5, wherein the substrate is a ferrous metal.
8. The method of claim 5, wherein the pack contains by weight about 30 percent to percent magnesium powder, and about percent to 40 percent of the refractory diluent.
9. The method of claim 8, wherein the refractory dil uent is alumina.
10. A method of improving the corrosion resistance of a metal substrate against saline and marine environments which comprises,
cleaning said substrate,
applying a coating of a solution of a silicate salt selected from the group consisting of sodium silicate, potassium silicate, lithium silicate and ethyl silicate, to the surface of said substrate, removing excess solution from said surface and drying said surface,
thermally curing said silicate coated surface, repeating the foregoing steps until a uniform silicate layer is formed of a desired thickness,
subjecting said treated substrate to a pack cementation process comprising embedding said substrate in a pack containing by weight about 5 percent to 100 percent magnesium in particulate form and up to about percent by weight of a refractory diluent together with a small but effective amount of a halide energizer,
subjecting the pack to a temperature of about 700F to lOOOF in a retort,
and then removing the treated substrate from said pack,
whereby an adherent sacrificial coating is obtained rich in magnesium and also containing oxygen and silicon, a major portion of the magnesium being in the form of magnesium silicide to pro tect said metal substrate against corrosion.
11. The method of claim'l0, wherein the cementation pack contains by weight about 30 percent to 60 percent magnesium and 70 percent to 40 percent alumina.
12. The method of claim 10, wherein following the formation of the magnesium-containing coating an overcoat of said silicate salt is applied to the surface thereof and thereafter thermally cured.
13. A method of improving the corrosion resistance of a ferrous metal substrate which comprises,
providing a ferrous metal substrate having a thermally cured uniform silicate coating on the surface thereof selected from the group consisting of sodium silicate, potassium silicate, lithium silicate whereby an adherent sacrificial coating is obtained rich in magnesium and also containing oxygen, silicon and iron, the major portion of the magnesium being in the form of magnesium silicidc to protect said metal substrate against corrosion. 14. The method of claim 13, wherein following the formation of the magnesium-containing coating, an overcoat of said silicate salt is applied to the surface thereof and thereafter thermally cured.
15. The method of claim 13, wherein the cementation pack contains by weight approximately 50 percent magnesium and approximately 50 percent of alumina.

Claims (14)

  1. 2. The method of claim 1, wherein the pack contains by weight about 30 percent to 60 percent magnesium and about 70 percent to 40 percent by weight of the diluent.
  2. 3. The method of claim 1, wherein the diluent is alumina.
  3. 4. The method of claim 1, wherein the substrate is a ferrous metal.
  4. 5. A method of improving the corrosion resistance of a metal substrate against saline and marine environments which comprises, cleaning said substrate, applying a uniform coating to said substrate with a silicate selected from the group consisting of sodium silicate, potassium silicate, lithium silicate and ethyl silicate, subjecting said coated substrate to a pack cementation process comprising embedding said substrate in a pack containing by weight about 5 percent to 100 percent magnesium in particulate form and up to about 95 percent by weight of a refractory diluent together with a small but effective amount of a halide energizer, heating said pack to a temperature of about 700*F to 1,000*F in a retort, and then removing the treated substrate from the pack, whereby an adherent sacrificial coating is obtained rich in magnesium and also containing oxygen and silicon, a major portion of said magnesium being in the form of magnesium silicide to protect said metal substrate against corrosion.
  5. 6. The method of claim 5, wherein following the pack cementation step, the coating is covered with an overcoat of silicate salt selected from the group consisting of sodium silicate, potassium silicate, lithium silicate and ethyl silicate.
  6. 7. The method of claim 5, wherein the substrate is a ferrous metal.
  7. 8. The method of claim 5, wherein the pack contains by weight about 30 percent to 60 percent magnesium powder, and about 70 percent to 40 percent of the refractory diluent.
  8. 9. The method of claim 8, wherein the refractory diluent is alumina.
  9. 10. A method of improving the corrosion resistance of a metal substrate against saline and marine environments which comprises, cleaning said substrate, applying a coating of a solution of a silicate salt selected from the group consisting of sodium silicate, potassium silicate, lithium silicate and ethyl silicate, to the surface of said substrate, removing excess solution from said surface and drying said surface, thermally curing said silicate coated surface, repeating the foregoing steps until a uniform silicate layer is formed of a desired thickness, subjecting said treated substrate to a pack cementation process comprising embedding said substrate in a pack containing by weight about 5 percent to 100 percent magnesium in particulate form and up to about 95 percent by weight of a refractory diluent together with a small but effective amount of a halide energizer, subjecting the pack to a temperature of about 700*F to 1000*F in a retort, and then removing the treated substrate from said pack, whereby an adherent sacrificial coating is obtained rich in magnesium and also containing oxygen and silicon, a major portion of the magnesium being in the form of magnesium silicide to protect said metal substrate against corrosion.
  10. 11. The method of claim 10, wherein the cementation pack contains by weight about 30 percent to 60 percent magnesium and 70 percent to 40 percent alumina.
  11. 12. The method of claim 10, wherein following the formation of the magnesium-containing coating an overcoat of said silicate salt is applied to the surface thereof and thereafter thermally cured.
  12. 13. A method of improving the corrosion resistance of a ferrous metal substrate which comprises, Providing a ferrous metal substrate having a thermally cured uniform silicate coating on the surface thereof selected from the group consisting of sodium silicate, potassium silicate, lithium silicate and ethyl silicate, subjecting said treated substrate to a pack cementation process comprising embedding said substrate in a pack containing by weight about 5 percent to 100 percent magnesium in particulate form and up to about 95 percent by weight of a refractory diluent together with a small but effective amount of a halide energizer, subjecting the pack assembly to a temperature of about 700*F to 1,000*F in a retort, and then removing the treated substrate from said pack, whereby an adherent sacrificial coating is obtained rich in magnesium and also containing oxygen, silicon and iron, the major portion of the magnesium being in the form of magnesium silicide to protect said metal substrate against corrosion.
  13. 14. The method of claim 13, wherein following the formation of the magnesium-containing coating, an overcoat of said silicate salt is applied to the surface thereof and thereafter thermally cured.
  14. 15. The method of claim 13, wherein the cementation pack contains by weight approximately 50 percent magnesium and approximately 50 percent of alumina.
US337163A 1971-05-17 1973-03-01 Method of producing Magnesium-Based coating for the sacrificial protection of metals Expired - Lifetime US3862851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US337163A US3862851A (en) 1971-05-17 1973-03-01 Method of producing Magnesium-Based coating for the sacrificial protection of metals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14422571A 1971-05-17 1971-05-17
US337163A US3862851A (en) 1971-05-17 1973-03-01 Method of producing Magnesium-Based coating for the sacrificial protection of metals

Publications (1)

Publication Number Publication Date
US3862851A true US3862851A (en) 1975-01-28

Family

ID=26841785

Family Applications (1)

Application Number Title Priority Date Filing Date
US337163A Expired - Lifetime US3862851A (en) 1971-05-17 1973-03-01 Method of producing Magnesium-Based coating for the sacrificial protection of metals

Country Status (1)

Country Link
US (1) US3862851A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141776A (en) * 1989-04-06 1992-08-25 Merzhanov Alexandr G Method of depositing a refractory inorganic coating on the surface of a workpiece
US5707453A (en) * 1994-11-22 1998-01-13 United Technologies Corporation Method of cleaning internal cavities of an airfoil
US5718944A (en) * 1995-02-10 1998-02-17 Psc Technologies, Inc. Corrosion protection in concrete sanitary sewers
US5833864A (en) * 1995-02-10 1998-11-10 Psc Technologies, Inc. Method for the reduction and control of the release of gas and odors from sewage and waste water
US5976419A (en) * 1998-06-09 1999-11-02 Geotech Chemical Company Method for applying a coating that acts as an electrolytic barrier and a cathodic corrosion prevention system
US6440332B1 (en) 1998-06-09 2002-08-27 Geotech Chemical Company Method for applying a coating that acts as an electrolytic barrier and a cathodic corrosion prevention system
US6627117B2 (en) 1998-06-09 2003-09-30 Geotech Chemical Company, Llc Method for applying a coating that acts as an electrolytic barrier and a cathodic corrosion prevention system
US20040257822A1 (en) * 2003-06-19 2004-12-23 Hopkins Timothy Nevin Pole light including navigation light and ultraviolet light source
US6916900B1 (en) 2003-04-03 2005-07-12 Geotech Chemical Company, Llc Catalytic effects of transition metal ions in the synthesis of polyaniline grafted lignosulfonic acid
US6977050B1 (en) 2003-04-07 2005-12-20 Polyone Corporation Synthesis of lignosulfonic acid-doped polyaniline using transition metal ion catalysts
US7063808B1 (en) 2003-04-07 2006-06-20 Poly One Corporation Lignosulfonic acid-doped polyaniline composites with carbon allotropes
US20090188859A1 (en) * 2008-01-30 2009-07-30 Matheis Timothy F Wastewater treament systems and methods
US20090250389A1 (en) * 2003-12-02 2009-10-08 Siemens Water Technologies Corp. Composition for odor control
US8430112B2 (en) 2010-07-13 2013-04-30 Siemens Industry, Inc. Slurry feed system and method
US8968646B2 (en) 2011-02-18 2015-03-03 Evoqua Water Technologies Llc Synergistic methods for odor control
EP2749781B1 (en) 2011-08-23 2018-07-25 NTN Corporation Roller bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711315A (en) * 1968-05-31 1973-01-16 Chromalloy American Corp Sacrificial corrosion resistant diffusion coatings
US3748172A (en) * 1971-05-17 1973-07-24 Chromalloy American Corp Magnesium based coating for the sacrificial protection of metals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711315A (en) * 1968-05-31 1973-01-16 Chromalloy American Corp Sacrificial corrosion resistant diffusion coatings
US3748172A (en) * 1971-05-17 1973-07-24 Chromalloy American Corp Magnesium based coating for the sacrificial protection of metals

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141776A (en) * 1989-04-06 1992-08-25 Merzhanov Alexandr G Method of depositing a refractory inorganic coating on the surface of a workpiece
US5707453A (en) * 1994-11-22 1998-01-13 United Technologies Corporation Method of cleaning internal cavities of an airfoil
US6056997A (en) * 1995-02-10 2000-05-02 Psc Technologies Inc. Corrosion protection in concrete sanitary sewers
US5833864A (en) * 1995-02-10 1998-11-10 Psc Technologies, Inc. Method for the reduction and control of the release of gas and odors from sewage and waste water
US5834075A (en) * 1995-02-10 1998-11-10 Psc Technologies, Inc. Corrosion protection in concrete sanitary sewers
US5718944A (en) * 1995-02-10 1998-02-17 Psc Technologies, Inc. Corrosion protection in concrete sanitary sewers
US5976419A (en) * 1998-06-09 1999-11-02 Geotech Chemical Company Method for applying a coating that acts as an electrolytic barrier and a cathodic corrosion prevention system
US7074348B2 (en) 1998-06-09 2006-07-11 Polyone Corporation Method for applying a coating that acts as an electrolytic barrier and a cathodic corrosion prevention system
US6231789B1 (en) * 1998-06-09 2001-05-15 Geotech Chemical Co., Llc Method for applying a coating that acts as an electrolytic barrier and a cathodic corrosion prevention system
US6440332B1 (en) 1998-06-09 2002-08-27 Geotech Chemical Company Method for applying a coating that acts as an electrolytic barrier and a cathodic corrosion prevention system
US6627117B2 (en) 1998-06-09 2003-09-30 Geotech Chemical Company, Llc Method for applying a coating that acts as an electrolytic barrier and a cathodic corrosion prevention system
US7595009B2 (en) 1998-06-09 2009-09-29 Polyone Corporation Method of applying a coating that acts as an electrolytic barrier and a cathodic prevention system
US20070114498A1 (en) * 1998-06-09 2007-05-24 Polyone Corporation Method of applying a coating that acts as an electrolytic barrier and a cathodic prevention system
US6916900B1 (en) 2003-04-03 2005-07-12 Geotech Chemical Company, Llc Catalytic effects of transition metal ions in the synthesis of polyaniline grafted lignosulfonic acid
US6977050B1 (en) 2003-04-07 2005-12-20 Polyone Corporation Synthesis of lignosulfonic acid-doped polyaniline using transition metal ion catalysts
US7063808B1 (en) 2003-04-07 2006-06-20 Poly One Corporation Lignosulfonic acid-doped polyaniline composites with carbon allotropes
US20040257822A1 (en) * 2003-06-19 2004-12-23 Hopkins Timothy Nevin Pole light including navigation light and ultraviolet light source
US20090250389A1 (en) * 2003-12-02 2009-10-08 Siemens Water Technologies Corp. Composition for odor control
US7972532B2 (en) 2003-12-02 2011-07-05 Siemens Industry, Inc. Composition for odor control
US20090188859A1 (en) * 2008-01-30 2009-07-30 Matheis Timothy F Wastewater treament systems and methods
US20100012558A1 (en) * 2008-01-30 2010-01-21 Matheis Timothy F Wastewater treatment systems and methods
US7799224B2 (en) 2008-01-30 2010-09-21 Siemens Water Technologies Corp. Wastewater treatment methods
US7799215B2 (en) 2008-01-30 2010-09-21 Siemens Water Technologies Corp. Wastewater treatment systems
US8430112B2 (en) 2010-07-13 2013-04-30 Siemens Industry, Inc. Slurry feed system and method
US8968646B2 (en) 2011-02-18 2015-03-03 Evoqua Water Technologies Llc Synergistic methods for odor control
EP2749781B1 (en) 2011-08-23 2018-07-25 NTN Corporation Roller bearing

Similar Documents

Publication Publication Date Title
US3862851A (en) Method of producing Magnesium-Based coating for the sacrificial protection of metals
US5098797A (en) Steel articles having protective duplex coatings and method of production
US3544348A (en) Overhaul process for aluminide coated gas turbine engine components
US3677789A (en) Protective diffusion layer on nickel and/or cobalt-based alloys
US3873347A (en) Coating system for superalloys
US3748172A (en) Magnesium based coating for the sacrificial protection of metals
CA2091799C (en) Diffusion coating process and method
US4339282A (en) Method and composition for removing aluminide coatings from nickel superalloys
NL8303606A (en) METHODS FOR FORMING A PROTECTIVE DIFFUSION LAYER ON NICKEL, COBALT AND IRON-BASED ALLOYS.
US3922396A (en) Corrosion resistant coating system for ferrous metal articles having brazed joints
EP0267143A2 (en) Method for applying aluminide coatings to superalloys
US4009146A (en) Method of and mixture for aluminizing a metal surface
US6174448B1 (en) Method for stripping aluminum from a diffusion coating
JPH0788564B2 (en) Method for forming platinum-silicon-doped diffusion aluminide coating on superalloy substrate
JPS6339663B2 (en)
US5260099A (en) Method of making a gas turbine blade having a duplex coating
US3904789A (en) Masking method for use in aluminizing selected portions of metal substrates
KR20160111410A (en) Methods of applying chromium diffusion coatings onto selective regions of a component
US3859061A (en) Corrosion resistant coating system for ferrous metal articles having brazed joints
US4241113A (en) Process for producing protective coatings on metals and metal alloys for use at high temperatures
US4036602A (en) Diffusion coating of magnesium in metal substrates
US4260654A (en) Smooth coating
EP1032725A1 (en) Enhancement of coating uniformity by alumina doping
US3898052A (en) Corrosion resistant coating system for ferrous metal articles having brazed joints
US20020128376A1 (en) Method of application of a protective coating to a substrate

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHROMALLOY GAS TURBINE CORPORATION, BLAISDELL ROAD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CHROMALLOY AMERICAN CORPORATION;REEL/FRAME:004862/0635

Effective date: 19880311

Owner name: CHROMALLOY GAS TURBINE CORPORATION, A DE. CORP., N

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHROMALLOY AMERICAN CORPORATION;REEL/FRAME:004862/0635

Effective date: 19880311