US3864478A - Storage-stable hemoglobin solutions and method for their preparation - Google Patents

Storage-stable hemoglobin solutions and method for their preparation Download PDF

Info

Publication number
US3864478A
US3864478A US403141A US40314173A US3864478A US 3864478 A US3864478 A US 3864478A US 403141 A US403141 A US 403141A US 40314173 A US40314173 A US 40314173A US 3864478 A US3864478 A US 3864478A
Authority
US
United States
Prior art keywords
solution
propiolactone
hemoglobin
stroma
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US403141A
Inventor
Klaus Bonhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotest AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3864478A publication Critical patent/US3864478A/en
Assigned to BIOTEST A.G., A JOINT STOCK CO. reassignment BIOTEST A.G., A JOINT STOCK CO. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BONHARD, KLAUS
Assigned to BIOTEST A.G. reassignment BIOTEST A.G. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BIOTEST SERUM-INSTITUT G.M.B.H., A LIMITED LIABILITY COMPANY OF GERMANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/795Porphyrin- or corrin-ring-containing peptides
    • C07K14/805Haemoglobins; Myoglobins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/827Proteins from mammals or birds
    • Y10S530/829Blood

Definitions

  • ABSTRACT Method for obtaining a storage-stable, infusionable and hepatitis-safe hemoglobin solution having a stabilized 2,3-diphospho-glycerate level which method comprises a. treating a starting material containing human erythrocyte with a dilute solution of B-propiolactone at temperatures between 5 and 15C. to result in a mixture containing B-propiolactone in an amount of from 4 to 12 g per liter of erythrocyte sediment, thereafter b. treating the mixture with a neutral or weakly alkaline washing solution to wash out the excess B-propiolactone and its reaction products,
  • the invention relates to a method for obtaining hemoglobin solutions, particularly hemoglobin solutions which are storage-stable and infusionable and which are free of potential hepatitis causing infectants or contaminants, and to such compositions per se.
  • the present invention provides a method for obtaining hepatitis-safe, storage-stable and infusionable hemoglobin solutions with a stabilized 2,3-diphosphoglycerate level, which thus substantially overcame the disadvantages of known compositions.
  • the inventive method comprises a. treating a starting material containing human erythrocyte with a dilute solution of B-propiolactone at temperatures between 5 and C. to result in a mixture containing B-propiolactone in an amount of from 4 to 12 g per liter of erythrocyte sediment, thereafter b. treating the mixture with a neutral or weakly alkaline washing solution to wash out the excess B-propiolactone and its reaction products,
  • step (a), above) is performed preferably with 6 to 16 g of B-propiolactone in solutions of 1.2 tp 3.2 g/lOO ml per 1.5 liter erythrocyte sediment, and for no longer than 25 minutes.
  • the content of not yet completely reacted B-propiolactone in the erythrocyte supernatant is decreased to 20 to 10 mg%, whereby preferably washing solutions are used which contain sodium chloride and- /or sodium bicarbonate.
  • Other suitable washing agents are solutions of tert. sodium citrate, tert. sodium phosphate and sodium carbonate.
  • the remaining B-propiolactone is further diluted to l/50. Only in such a concentration does the B-propiolactone come into direct contact with the hemoglobin and the other components of the cell nucleus, and it can then completely react.
  • Distilled water is used as a preferred diluent.
  • physiologically suitable electrolyte solutions can be added, for example sodium chloride solutions, glucose solutions or bicarbonate solutions.
  • the step of the B-propiolactone treatment is ommited, after 3 months of storage, the product has about double the content of free phosphate than has the product according to the invention
  • the treatment according to the invention fi-propiolactone results in stabilization of the 2,3-diophospho-glycerate content in hemoglobin solutions at a value of about 0.4 mmole per 0.8 mmole of hemoglobin over a period of time of more than three month, as determined by direct measurements. Without this stabilization, the corresponding 2,3-diphospho-glcerate value fluctuates from charge to charge between 0 and 0.25 mmole.
  • Solutions of 3.8% of sodium bicarbonate or 1.6% of sodium chloride are particularly suitable solutions for the washing treatment according to the invention. When diluting, particularly the erythrocyte volume is diluted 4.5 times.
  • Particularly suitable cation exchange resins are acid polystyrene-sulfonate cation exchangers, especially the resins commercially sold by the Dow Chemical Company, Midland, Michigan, under the designation Dowex 5O WX, which have an exchange capacity of 4 to 5 milliequivalents per each gram of dry resin.
  • Suitable exchangers are, for example, Amberlite lR-120 of the Rohm and Haas Company, Philadelphia "Zero-Karb 225" of the Permutit Company Ltd., London, and Lewatit" of Wegriken Bayer, Leverkusen.
  • the lowering of the potassium content takes place in the method according to the invention preferably by the cation exchange 1t. against 11* and the subsequent centrifuge treatment.
  • the cation exchange 1t. against 11* and the subsequent centrifuge treatment there should be present about 6.3 g of hemoglobin per 100 ml.
  • the stabilized pH-value at the end of the process amounts advantageously to 7.4.
  • a preferred agent for the control of isotonicity is glucose, however all other agents conventional for this purpose are also suitable.
  • a product In freezing the hemoglobin solution obtained according to the invention and partial re-thawing, a product can be withdrawn which is rich in hemoglobin, which product, by repetition of this process, can be brought up to a 15% hemoglobin content (this corresponds to the total hemoglobin content of blood).
  • the relative viscosity of such a solution of about 1.3 at 37C. is still within the normal range of plasma.
  • the final adjustment of the isotonicity is advantageously carried out only after the initial concentration, so that the obtained V hyperoncotic concentrate, i.e., concentrate whose colloidal osmotic pressure exceeds that of normal plasma is not also hypertonic.
  • the method according to the invention is illustrated by the following examples.
  • the products obtained in accordance with these examples have already been tested on mammals such as mice, rats, rabbits, dogs, pigs, and humans, and have been found compatible as well as oxygen-transport effective.
  • EXAMPLE 1 Erythrocyte sediments from 6 blood donors, donating 500 ml of blood each, were separated from the plasma, combined, diluted with 1.6% sodium chloride solution to a volume of 2 liters and at C. mixed with 5 g of freshly distilled B-propiolactone for minutes at 10 to 12C. The mixture was subjected for minutes to a cooling centrifugation, the supernatant was sucked off and the erythrocyte sediments were washed with fresh, 1.6% sodium chloride solution four times in succession in proportions of about 1.1 liters, each, on the centrifuge and then placed into 5.2 liters of sterile, demineralized and distilled water.
  • the oxygen binding curve of a product prepared in accordance with this example showed that after 2 months of storage at 10C., a P 50 value of 19 mm Hg and a pH-value of 7.4. Calculated on an intraerythrocytic pH-value of 7.2, the P 50 value of the hemoglobin of said preparation would be 23 mm Hg.
  • the P 50 value is the oxygen partial pressure under which the hemoglobin preparation is saturated to 50% of its maximum oxygen binding capacity.
  • Example 1 was repeated but 16 g of ,B-propiolactone was added to 2 liters of erythrocyte suspension. After centrifugation and sucking off the supernatant, the erythrocyte sediment was washed with about 1.1 liters of each of the following solutions:
  • Example 2 The sediment was then further processed as in Example 1 through the stroma separation. Prior to the sterile filtration the pH-value was adjusted with n-NaOl-l to 7.0, 33 g per liter of glucose were added, then 2.5 g per liter sodium bicarbonate were added and adjusted with n-NaOH to a final pH-value of 7.4.
  • Example 1 was repeated through the stroma separation. Thereafter, the mixture was concentrated to blood-analogous hemoglobin content of 15 g/ ml by way of the following steps: the hemoglobin solution was frozen in portions of 500 ml each, in 1000 ml bottles lying on their side, and thereafter thawed at room temperature with the bottles placed in an upside down position in such a manner that by perforation of the stopper closure with a sterile blood-taking-device the deepred melt could be continuously removed from the remaining white ice stick. A repetition of the process resulted in a solution containing about g/liter of hemoglobin, which was then worked-up in accordance with Example 1 to an infusionable product.
  • Method for obtaining a hemoglobin solution having a stabilized 2,3-diophospho-glycerate level comprises a. treating a starting material containing human erythrocytes with a diluted solution of B-propiolactone at temperatures between 5 and 15C. to result in a mixture containing B-propiolactone in an amount of from 4 to 12 g per liter of erythrocyte sediment, thereafter treating the mixture with a neutral or weakly alkaline washing solution to wash out the excess B-propiolactone and its reaction products,
  • step (a) of the method from 6 to 16 g. of ,B-propiolactone are used in solutions of 1.2 to 3.2 g/lOO ml per 1.5 liter erythrocyte sediment.
  • washing step (b) is effected with a solution of sodium bicarbonate.
  • washing step (b) is effected with a solution of sodium chloride.
  • step (c) is a polystyrenesulfonate resin in H-form.
  • Method as claimed in claim 1 including the additional step between steps (d) and (e) of adjusting the isotonicity by adding glucose, sodium acetate or sodium bicarbonate.
  • Method as claimed in claim 1 including the additional step between steps (d) and (e) of adjusting the pl-l-value to about 7.4 with caustic soda.
  • step (e) is effected by use of celluloseasbestos filters or cellulose acetate discs.
  • a hemoglobin solution having a stabilized 2,3-diphospho-glycerate level prepared by the method claimed in claim 1.

Abstract

Method for obtaining a storage-stable, infusionable and hepatitis-safe hemoglobin solution having a stabilized 2,3diphospho-glycerate level which method comprises A. TREATING A STARTING MATERIAL CONTAINING HUMAN ERYTHROCYTE WITH A DILUTE SOLUTION OF Beta -PROPIOLACTONE AT TEMPERATURES BETWEEN 5* AND 15*C. to result in a mixture containing Beta propiolactone in an amount of from 4 to 12 g per liter of erythrocyte sediment, thereafter B. TREATING THE MIXTURE WITH A NEUTRAL OR WEAKLY ALKALINE WASHING SOLUTION TO WASH OUT THE EXCESS Beta -PROPIOLACTONE AND ITS REACTION PRODUCTS, C. THEN TREATING THE RESULTING HEMOLYSATE, AFTER MIXING THE ERYTHROCYTES IN DISTILLED WATER, WITH A CATION EXCHANGE RESIN IN H -form, until the pH-value has dropped to 5.0 to 5.5, to result in precipitation of a stroma-lipid mass, D. SEPARATING THE HEMOLYSATE FROM THE RESIN AND THE PRECIPITATED STROMA MASS BY CENTRIFUGING, E. OPTIONALLY ADJUSTING THE DESIRED HEMOGLOBIN CONCENTRATION BY DILUTING WITH WATER, F. OPTIONALLY ADDING AGENTS FOR THE CONTROL OF THE ISOTONICITY AND FOR THE STABILIZATION OF PH-value and ferrous protein bound iron content and G. RECOVERING THE HEMOGLOBIN SOLUTION BY STERILE FILTRATION.

Description

United States Patent [191 Bonhard [451 Feb. 4, 1975 i 1 STORAGE-STABLE I-IEMOGLOBIN SOLUTIONS AND METHOD FOR THEIR PREPARATION Klaus Bonhard, Sandeldamm l6, Hanau, Germany 22 Filed: Oct.3, 1973 21 Appl. No.: 403,141
[76] Inventor:
[30] Foreign Application Priority Data Primary ExaminerSam Rosen Attorney, Agent, or Firm-Burgess, Dinklage & Sprung [57] ABSTRACT Method for obtaining a storage-stable, infusionable and hepatitis-safe hemoglobin solution having a stabilized 2,3-diphospho-glycerate level which method comprises a. treating a starting material containing human erythrocyte with a dilute solution of B-propiolactone at temperatures between 5 and 15C. to result in a mixture containing B-propiolactone in an amount of from 4 to 12 g per liter of erythrocyte sediment, thereafter b. treating the mixture with a neutral or weakly alkaline washing solution to wash out the excess B-propiolactone and its reaction products,
0. then treating the resulting hemolysate, after mixing the erythrocytes in distilled water, with a cation exchange resin in H form, until the pH-value has dropped to 5.0 to 5.5, to result in precipitation of a stroma-lipid mass,
(1. separating the hemolysate from the resin and the precipitated stroma mass by centrifuging,
e. optionally adjusting the desired hemoglobin concentration by diluting with water,
f. optionally adding agents for the control of the isotonicity and for the stabilization of pH-value and ferrous protein bound iron content and g. recovering the hemoglobin solution by sterile filtration.
15 Claims, N0 Drawings STORAGE'STABLE HEMOGLOBIN SOLUTIONS AND METHOD FOR THEIR PREPARATION The invention relates to a method for obtaining hemoglobin solutions, particularly hemoglobin solutions which are storage-stable and infusionable and which are free of potential hepatitis causing infectants or contaminants, and to such compositions per se.
The commercially available. so-called blood substitutes have the following advantages over conserved whole blood:
1. Their application does not require diagnosis of blood groups.
2. They are stable over longer periods of time.
3. They are free of heptatitis-causing contaminants and are thus hepatitis-safe.
The main disadvantage of such blood substitutes, however, is that they cannot replace many special functions of the blood, as for example the oxygen transport of the red blood cells. Particularly for this purpose, isotonic solutions of human hemoglobin have been used for some years in pre-clinical tests, as an alternative to whole blood. Since the decisive factor in causing shock is an insufficient oxygen supply, such preparations have been particularly useful in shock-therapy.
It has already been attempted to use aqueous emulsions of carbon fluoride compounds as oxygen carrier, especially for the perfusion of isolated organs. Since, however, there is no natural way of elimination for this kind of substance, an intravenous infusion thereof into the body is currently not practical, particularly since such foreign substances, not being metabolized, are necessarily stored in the tissue. Contrary thereto, free hemoglobin is capable of passing into the urine, or will be in part resorbed and subjected to natural metabolic processes. However, there is a potential hepatitis danger in connection with the known hemoglobin preparations and this is significant in clinical application, be cause in the case of donated blood as starting material, an infection potentional cannot be excluded.
Methods have already been described as to how hemoglobin solutions adjusted to the blood plasma physiology can be prepared from human erythrocytes with lowering of the potassium content and removal of the stroma-lipid also ocurring in the hemolysis. However, in testing these known hemoglobin solutions, disadvantages have been found which so far have prevented clinical application, particularly since kidney disturbances had been observed. Other known hemoglobin solutions are kidney-compatible, but for their preparation a dialysis method, among others, is being used, whereby the phosphate ester, the 2,3-di-phosphoglycerate, responsible for the physiologically important oxygen affinity, is quantitatively removed.
The present invention provides a method for obtaining hepatitis-safe, storage-stable and infusionable hemoglobin solutions with a stabilized 2,3-diphosphoglycerate level, which thus substantially overcame the disadvantages of known compositions.
Essentially, the inventive method comprises a. treating a starting material containing human erythrocyte with a dilute solution of B-propiolactone at temperatures between 5 and C. to result in a mixture containing B-propiolactone in an amount of from 4 to 12 g per liter of erythrocyte sediment, thereafter b. treating the mixture with a neutral or weakly alkaline washing solution to wash out the excess B-propiolactone and its reaction products,
0. then treating the resulting hemolysate by mixing the erythrocytes in distilled water with a cation exchange resin in H* form, until the pH-value has dropped to 5.0 to 5.5, to result in precipitation of a stroma-lipid mass,
d. separating the hemolysate from the resin and the precipitated stroma mass by centrifuging,
e. adjusting the desired hemoglobin concentration by diluting with water,
f. adding agents for the control of the isotonicity and for the stabilization of pH-value and iron content and g. recovering the hemoglobin solution by sterile filtration.
By this combination of critical process steps, a product is obtained whose application to humans excludes the danger of hepatitis.
The treatment with the solution of the B-propiolactone (step (a), above) is performed preferably with 6 to 16 g of B-propiolactone in solutions of 1.2 tp 3.2 g/lOO ml per 1.5 liter erythrocyte sediment, and for no longer than 25 minutes. By washing four times on the centrifuge, the content of not yet completely reacted B-propiolactone in the erythrocyte supernatant, is decreased to 20 to 10 mg%, whereby preferably washing solutions are used which contain sodium chloride and- /or sodium bicarbonate. Other suitable washing agents are solutions of tert. sodium citrate, tert. sodium phosphate and sodium carbonate. In the subsequent hemolysis, the remaining B-propiolactone is further diluted to l/50. Only in such a concentration does the B-propiolactone come into direct contact with the hemoglobin and the other components of the cell nucleus, and it can then completely react.
Distilled water is used as a preferred diluent. However, also physiologically suitable electrolyte solutions can be added, for example sodium chloride solutions, glucose solutions or bicarbonate solutions.
It has surprisingly been found that with a method performed in such a manner, particularly the enzyme system responsible for the hydrolysis of the 2,3-diphospho glycerate is clearly inhibited. If in the method of the invention, the step of the B-propiolactone treatment is ommited, after 3 months of storage, the product has about double the content of free phosphate than has the product according to the invention The treatment according to the invention fi-propiolactone results in stabilization of the 2,3-diophospho-glycerate content in hemoglobin solutions at a value of about 0.4 mmole per 0.8 mmole of hemoglobin over a period of time of more than three month, as determined by direct measurements. Without this stabilization, the corresponding 2,3-diphospho-glcerate value fluctuates from charge to charge between 0 and 0.25 mmole.
Solutions of 3.8% of sodium bicarbonate or 1.6% of sodium chloride are particularly suitable solutions for the washing treatment according to the invention. When diluting, particularly the erythrocyte volume is diluted 4.5 times. Particularly suitable cation exchange resins are acid polystyrene-sulfonate cation exchangers, especially the resins commercially sold by the Dow Chemical Company, Midland, Michigan, under the designation Dowex 5O WX, which have an exchange capacity of 4 to 5 milliequivalents per each gram of dry resin. Other suitable exchangers are, for example, Amberlite lR-120 of the Rohm and Haas Company, Philadelphia "Zero-Karb 225" of the Permutit Company Ltd., London, and Lewatit" of Farbenfabriken Bayer, Leverkusen.
The lowering of the potassium content takes place in the method according to the invention preferably by the cation exchange 1t. against 11* and the subsequent centrifuge treatment. Advantageously, there should be present about 6.3 g of hemoglobin per 100 ml. The stabilized pH-value at the end of the process amounts advantageously to 7.4. A preferred agent for the control of isotonicity is glucose, however all other agents conventional for this purpose are also suitable.
In freezing the hemoglobin solution obtained according to the invention and partial re-thawing, a product can be withdrawn which is rich in hemoglobin, which product, by repetition of this process, can be brought up to a 15% hemoglobin content (this corresponds to the total hemoglobin content of blood). The relative viscosity of such a solution of about 1.3 at 37C. is still within the normal range of plasma. In this careful manner, by using sterile bottles and blood transfusion devices, there can be obtained in a closed system a variant with increased active material concentration. The final adjustment of the isotonicity is advantageously carried out only after the initial concentration, so that the obtained V hyperoncotic concentrate, i.e., concentrate whose colloidal osmotic pressure exceeds that of normal plasma is not also hypertonic.
The method according to the invention is illustrated by the following examples. The products obtained in accordance with these examples have already been tested on mammals such as mice, rats, rabbits, dogs, pigs, and humans, and have been found compatible as well as oxygen-transport effective.
The following examples are illustrative of, but not limitative of, the method of the invention.
EXAMPLE 1 Erythrocyte sediments from 6 blood donors, donating 500 ml of blood each, were separated from the plasma, combined, diluted with 1.6% sodium chloride solution to a volume of 2 liters and at C. mixed with 5 g of freshly distilled B-propiolactone for minutes at 10 to 12C. The mixture was subjected for minutes to a cooling centrifugation, the supernatant was sucked off and the erythrocyte sediments were washed with fresh, 1.6% sodium chloride solution four times in succession in proportions of about 1.1 liters, each, on the centrifuge and then placed into 5.2 liters of sterile, demineralized and distilled water. After stirring for 5 minutes, 500 ml of very pure (pA quality) cation exchanger Dowex 50 were added in H -form and the pl-l-value was stopped at 5.0 by addition of normal caustic soda, until stroma-lipid sedimentation became visible. The mixture was then adjusted to a pH value of 5.5 and after 10 minutes centrifuged at 2,000 g.
From about 1 liter of separated sediment (stroma and exchange resin) about 5 liters of 6-7% hemoglobin solution were removed by decantation. After addition of 40 g of glucose, the pH-value was adjusted to 7.4 with caustic soda, the solution was again centrifuged in the above described manner and sterilefiltered with a cellulose-asbestos filter (EKS I of the company Seitz- Werke, Bad Kreuznach, Germany). Also, the following types of filters can be used successfully: Filtrox sterile filters of the Filtrox-Werke AG, St., St. Gallen, Switzerland, filter candles of the company Pall, type Ultipore" (both are cellulose asbestos filters) or cellulose acetate membrane filters, such as Millipore type GSWP ofthe Millipore Corp., Bedford, Mass, Sartorius type SM 1 107 of the Sartorius-Werke Goettingen, Germany, and similar materials.
The oxygen binding curve of a product prepared in accordance with this example showed that after 2 months of storage at 10C., a P 50 value of 19 mm Hg and a pH-value of 7.4. Calculated on an intraerythrocytic pH-value of 7.2, the P 50 value of the hemoglobin of said preparation would be 23 mm Hg. The P 50 value is the oxygen partial pressure under which the hemoglobin preparation is saturated to 50% of its maximum oxygen binding capacity.
EXAMPLE 2 Example 1 was repeated but 16 g of ,B-propiolactone was added to 2 liters of erythrocyte suspension. After centrifugation and sucking off the supernatant, the erythrocyte sediment was washed with about 1.1 liters of each of the following solutions:
1. with a sodium bicarbonate solution with a content of 38 g per liter, 2. repeat of (l), 3. with a solution which contained 38 g of sodium bicarbonate and 16 g of NaCl per liter and mixed in the ratio 1:1,
4. with a sodium chloride solution having a content of 16 g of NaCl per liter.
The sediment was then further processed as in Example 1 through the stroma separation. Prior to the sterile filtration the pH-value was adjusted with n-NaOl-l to 7.0, 33 g per liter of glucose were added, then 2.5 g per liter sodium bicarbonate were added and adjusted with n-NaOH to a final pH-value of 7.4.
EXAMPLE 3 Example 1 was repeated through the stroma separation. Thereafter, the mixture was concentrated to blood-analogous hemoglobin content of 15 g/ ml by way of the following steps: the hemoglobin solution was frozen in portions of 500 ml each, in 1000 ml bottles lying on their side, and thereafter thawed at room temperature with the bottles placed in an upside down position in such a manner that by perforation of the stopper closure with a sterile blood-taking-device the deepred melt could be continuously removed from the remaining white ice stick. A repetition of the process resulted in a solution containing about g/liter of hemoglobin, which was then worked-up in accordance with Example 1 to an infusionable product.
It will be understood that the foregoing specification and examples are illustrative but not limitative of the present invention inasmuch as other embodiments within the spirit and scope of the invention will suggest themselves to those skilled in the art.
What is claimed is:
1. Method for obtaining a hemoglobin solution having a stabilized 2,3-diophospho-glycerate level which method comprises a. treating a starting material containing human erythrocytes with a diluted solution of B-propiolactone at temperatures between 5 and 15C. to result in a mixture containing B-propiolactone in an amount of from 4 to 12 g per liter of erythrocyte sediment, thereafter treating the mixture with a neutral or weakly alkaline washing solution to wash out the excess B-propiolactone and its reaction products,
c. then mixing the erythocytes with distilled water to form a hemolysate which is treated with a cation exchange resin in H*-form,-until the pH-value has dropped to 5.0 to 5.5, to result in precipitation of a stroma-lipid mass,
d. separating the hemolysate from the resin and the precipitated stroma mass by centrifuging, and e. recovering the hemoglobin solution by sterile filtration.
2. Method as claimed in claim 1, wherein, in step (a) of the method, from 6 to 16 g. of ,B-propiolactone are used in solutions of 1.2 to 3.2 g/lOO ml per 1.5 liter erythrocyte sediment.
3. Method as claimed in claim 1, wherein prior to the sterile filtration of step (e) of the method, the solution present after the stroma separation of step (d) is frozen in stick-shaped form and then thawed in vertical position and the melt rich in hemo-globin is seperated from the ice block.
4. Method as claimed in claim 1, wherein the B-propiolactone treatment of step (a) is performed at 10 to 12C.
5. Method as claimed in claim 1, wherein the washing step (b) for the removal of excess B-propiolactone is repeated at least four times.
6. Method as claimed in claim 1, wherein the washing step (b) is effected with a solution of sodium bicarbonate.
7. Method as claimed in claim 6, wherein said solution is 3.8% sodium bicarbonate.
8. Method as claimed in claim 1, wherein the washing step (b) is effected with a solution of sodium chloride.
9. Method as claimed in claim 8, wherein said solution is l.6sodium chloride.
10. Method as claimed in claim I, wherein the cation exchange resin used in step (c) is a polystyrenesulfonate resin in H-form.
11. Method as claimed in claim 1, including the additional step between steps (d) and (e) of adjusting the isotonicity by adding glucose, sodium acetate or sodium bicarbonate.
12. Method as claimed in claim 1, including the additional step between steps (d) and (e) of adjusting the pl-l-value to about 7.4 with caustic soda.
13. Method as claimed in claim 1, wherein sterile filtration of step (e) is effected by use of celluloseasbestos filters or cellulose acetate discs.
14. A hemoglobin solution having a stabilized 2,3-diphospho-glycerate level, prepared by the method claimed in claim 1.
15. A hemoglobin solution having a stabilized 2,3-diphospho-glycerate level, prepared by diphosphoglycerate method claimed in claim 3.

Claims (15)

1. METHOD FOR OBTAINING A HEMOGLOBIN SOLUTION HAVING A STABILIZED 2,3-DIOPHOSPHO-GLYCERATE LEVEL WHICH METHOD COMPRISES A. TREATING A STARTING MATERIAL CONTAINING HUMAN ERYTHROCYTES WITH A DILUTED SOLUTION OF B-PROPIOLACTONE AT TEMPERATURES BETWEEN 5* AND 15*C. TO RESULT IN A MIXTURE CONTAINING B-PROPIOLACTONE IN AN AMOUNT OF FROM 4 TO 12 G PER LITER OF ERYTHROCYTE SEDIMENT, THEREAFTER TREATING THE MIXTURE WITH A NEUTRAL OR WEAKLY ALKALINE WASHING SOLUTION TO WASH OUT THE EXCESS B-PROPIOLACTONE AND ITS REACTION PRODUCTS, C. THEN MIXING THE ERYTHOCYTES WITH DISTILLED WATER TO FORM A HEMOLYSATE WHICH IS TREATED WITH A CATION EXCHANGE RESIN IN H+-FORM, UNTIL THE PH-VALUE HAS DROPPED TO 5.0 TO 5.5, TO RESULT IN PRECIPITATION OF A STROMA-LIPID MASS, D. SEPARATING THE HEMOLYSATE FROM THE RESIN AND THE PRECIPITATED STROMA MASS BY CENTRIFUGING, AND E. RECOVERING THE HEMOGLOBIN SOLUTION BY STERILE FILTRATION.
2. Method as claimed in claim 1, wherein, in step (a) of the method, from 6 to 16 g. of Beta -propiolactone are used in solutions of 1.2 to 3.2 g/100 ml per 1.5 liter erythrocyte sediment.
3. Method as claimed in claim 1, wherein prior to the sterile filtration of step (e) of the method, the solution present after the stroma separation of step (d) is frozen in stick-shaped form and then thawed in vertical position and the melt rich in hemo-globin is seperated from the ice block.
4. Method as claimed in claim 1, wherein the Beta -propiolactone treatment of step (a) is performed at 10* to 12*C.
5. Method as claimed in claim 1, wherein the washing step (b) for the removal of excess Beta -propiolactone is repeated at least four times.
6. Method as claimed in claim 1, wherein the washing step (b) is effected with a solution of sodium bicarbonate.
7. Method as claimed in claim 6, wherein said solution is 3.8% sodium bicarbonate.
8. Method as claimed in claim 1, wherein the washing step (b) is effected with a solution of sodium chloride.
9. Method as claimed in claim 8, wherein said solution is 1.6sodium chloride.
10. Method as claimed in claim 1, wherein the cation exchange resin used in step (c) is a polystyrenesulfonate resin in H-form.
11. Method as claimed in claim 1, including the additional step between steps (d) and (e) of adjusting the isotonicity by adding glucose, sodium acetate or sodium bicarbonate.
12. Method as claimed in claim 1, including the additional step between steps (d) and (e) of adjusting the pH-value to about 7.4 with caustic soda.
13. Method as claimed in claim 1, wherein sterile filtration of step (e) is effected by use of cellulose-asbestos filters or cellulose acetate discs.
14. A hemoglobin solution having a stabilized 2,3-diphospho-glycerate level, prepared by the method claimed in claim 1.
15. A hemoglobin solution having a stabilized 2,3-diphospho-glycerate level, prepared by diphospho-glycerate method claimed in claim 3.
US403141A 1972-10-03 1973-10-03 Storage-stable hemoglobin solutions and method for their preparation Expired - Lifetime US3864478A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2248475A DE2248475C3 (en) 1972-10-03 1972-10-03 Process for obtaining hepatic-safe, storage-stable and infusable hemoglobin solutions

Publications (1)

Publication Number Publication Date
US3864478A true US3864478A (en) 1975-02-04

Family

ID=5858076

Family Applications (1)

Application Number Title Priority Date Filing Date
US403141A Expired - Lifetime US3864478A (en) 1972-10-03 1973-10-03 Storage-stable hemoglobin solutions and method for their preparation

Country Status (5)

Country Link
US (1) US3864478A (en)
JP (1) JPS6025411B2 (en)
DE (1) DE2248475C3 (en)
FR (1) FR2201102B1 (en)
GB (1) GB1430217A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991181A (en) * 1975-06-18 1976-11-09 Warner-Lambert Company Injectable stroma free hemoglobin solution and its method of manufacture
US4401652A (en) * 1980-12-31 1983-08-30 Allied Corporation Process for the preparation of stroma-free hemoglobin solutions
US4439357A (en) * 1981-08-04 1984-03-27 Biotest-Serum-Institut Gmbh Process for obtaining hepatitis-safe, sterile hemoglobin solutions free of pyrogens and stroma
US4526715A (en) * 1984-03-31 1985-07-02 Biotest Pharma Gmbh Method of preparing highly purified, stroma-free, non-hepatitic human and animal hemoglobin solutions
WO1985004407A1 (en) * 1984-03-23 1985-10-10 Baxter Travenol Laboratories, Inc. Virus risk-reduced hemoglobin and method for making same
US4908350A (en) * 1985-10-31 1990-03-13 The Regents Of The University Of California Hyperosmotic/hyperoncotic solutions for resuscitation of hypodynamic shock
US4927806A (en) * 1987-04-23 1990-05-22 The Regents Of The University Of California Saturated salt/concentrated dextran formulation to treat hemorrhage
US5281579A (en) * 1984-03-23 1994-01-25 Baxter International Inc. Purified virus-free hemoglobin solutions and method for making same
US5439882A (en) * 1989-12-29 1995-08-08 Texas Tech University Health Sciences Center Blood substitute
US5691453A (en) * 1995-06-07 1997-11-25 Biopure Corporation Separation of polymerized hemoglobin from unpolymerized hemoglobin on hydroxyapatite using HPLC
US5741894A (en) * 1995-09-22 1998-04-21 Baxter International, Inc. Preparation of pharmaceutical grade hemoglobins by heat treatment in partially oxygenated form
US5753616A (en) * 1986-11-10 1998-05-19 Biopure Corporation Method for producing a stable polymerized hemoglobin blood-substitute
US5895810A (en) * 1995-03-23 1999-04-20 Biopure Corporation Stable polymerized hemoglobin and use thereof
US5955581A (en) * 1986-11-10 1999-09-21 Biopure Corporation Method for producing a stable polymerized hemoglobin blood-substitute
US20030113707A1 (en) * 2001-02-28 2003-06-19 Biopure Corporation Use of defibrinated blood for manufacture of a hemoglobin-based oxygen carrier
US20030165573A1 (en) * 2002-02-28 2003-09-04 Biopure Corporation Purification of red blood cells by separation and diafiltration

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001200A (en) * 1975-02-27 1977-01-04 Alza Corporation Novel polymerized, cross-linked, stromal-free hemoglobin
GB1578776A (en) * 1976-06-10 1980-11-12 Univ Illinois Hemoglobin liposome and method of making the same
DE3225408A1 (en) * 1982-07-07 1984-01-12 Biotest-Serum-Institut Gmbh, 6000 Frankfurt AQUEOUS SOLUTION FOR SUSPENDING AND STORING CELLS, ESPECIALLY ERYTHROCYTES
SE9301188D0 (en) * 1993-04-08 1993-04-08 Gramineer Ab NEW PROCESS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2527210A (en) * 1944-01-25 1950-10-24 John O Bower Hemoglobin solution and method
US3634290A (en) * 1969-08-06 1972-01-11 Tipton L Golias Method of preparing hemolysates for hemoglobin and other types of electrophoresis using chelating agents

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2527210A (en) * 1944-01-25 1950-10-24 John O Bower Hemoglobin solution and method
US3634290A (en) * 1969-08-06 1972-01-11 Tipton L Golias Method of preparing hemolysates for hemoglobin and other types of electrophoresis using chelating agents

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991181A (en) * 1975-06-18 1976-11-09 Warner-Lambert Company Injectable stroma free hemoglobin solution and its method of manufacture
US4401652A (en) * 1980-12-31 1983-08-30 Allied Corporation Process for the preparation of stroma-free hemoglobin solutions
US4439357A (en) * 1981-08-04 1984-03-27 Biotest-Serum-Institut Gmbh Process for obtaining hepatitis-safe, sterile hemoglobin solutions free of pyrogens and stroma
WO1985004407A1 (en) * 1984-03-23 1985-10-10 Baxter Travenol Laboratories, Inc. Virus risk-reduced hemoglobin and method for making same
US5281579A (en) * 1984-03-23 1994-01-25 Baxter International Inc. Purified virus-free hemoglobin solutions and method for making same
US4526715A (en) * 1984-03-31 1985-07-02 Biotest Pharma Gmbh Method of preparing highly purified, stroma-free, non-hepatitic human and animal hemoglobin solutions
US4908350A (en) * 1985-10-31 1990-03-13 The Regents Of The University Of California Hyperosmotic/hyperoncotic solutions for resuscitation of hypodynamic shock
US5955581A (en) * 1986-11-10 1999-09-21 Biopure Corporation Method for producing a stable polymerized hemoglobin blood-substitute
US5753616A (en) * 1986-11-10 1998-05-19 Biopure Corporation Method for producing a stable polymerized hemoglobin blood-substitute
US4927806A (en) * 1987-04-23 1990-05-22 The Regents Of The University Of California Saturated salt/concentrated dextran formulation to treat hemorrhage
US5439882A (en) * 1989-12-29 1995-08-08 Texas Tech University Health Sciences Center Blood substitute
US5895810A (en) * 1995-03-23 1999-04-20 Biopure Corporation Stable polymerized hemoglobin and use thereof
US5691453A (en) * 1995-06-07 1997-11-25 Biopure Corporation Separation of polymerized hemoglobin from unpolymerized hemoglobin on hydroxyapatite using HPLC
US5741894A (en) * 1995-09-22 1998-04-21 Baxter International, Inc. Preparation of pharmaceutical grade hemoglobins by heat treatment in partially oxygenated form
US20030113707A1 (en) * 2001-02-28 2003-06-19 Biopure Corporation Use of defibrinated blood for manufacture of a hemoglobin-based oxygen carrier
US6986984B2 (en) 2001-02-28 2006-01-17 Biopure Corporation Use of defibrinated blood for manufacture of a hemoglobin-based oxygen carrier
US20060084137A1 (en) * 2001-02-28 2006-04-20 Gawryl Maria S Use of defibrinated blood for manufacture of hemoglobin-based oxygen carrier
US7553613B2 (en) 2001-02-28 2009-06-30 Biopure Corporation Use of defibrinated blood for manufacture of hemoglobin-based oxygen carrier
US20030165573A1 (en) * 2002-02-28 2003-09-04 Biopure Corporation Purification of red blood cells by separation and diafiltration
US7001715B2 (en) 2002-02-28 2006-02-21 Biopure Corporation Purification of red blood cells by separation and diafiltration

Also Published As

Publication number Publication date
FR2201102B1 (en) 1977-01-28
FR2201102A1 (en) 1974-04-26
DE2248475C3 (en) 1978-09-28
DE2248475A1 (en) 1974-04-25
JPS6025411B2 (en) 1985-06-18
JPS5012223A (en) 1975-02-07
GB1430217A (en) 1976-03-31
DE2248475B2 (en) 1978-02-23

Similar Documents

Publication Publication Date Title
US3864478A (en) Storage-stable hemoglobin solutions and method for their preparation
Quick On the constitution of prothrombin
CA1299110C (en) Synthetic, plasma-free, transfusible platelet storage medium
US4061537A (en) Polyionic isotonic salt solution
AU569958B2 (en) Prolonged storage of red blood cells
US4439357A (en) Process for obtaining hepatitis-safe, sterile hemoglobin solutions free of pyrogens and stroma
US4224313A (en) Physiological preparation containing loaded cells in suspension and an agent for counteraction of cell membrane disintegration
EP0142339A1 (en) Method of and medium for storing blood platelets
JPS6363616A (en) Preservation agent for concentrated erythrocyte liquid and method for preservation
CA2397344C (en) Compositions for the storage of platelets
JPS63165328A (en) Medicine containing tissue protein pp4
JPH0530811B2 (en)
US5919907A (en) Preparation and utilization of a novel sterile albumin
JPH05504766A (en) Polyhemoglobin stabilized with purine derivatives and glutathione
Scudder et al. Studies in blood preservation
US2460550A (en) Modified globin and method for its preparation
US4178241A (en) Method of removing urea and/or creatinine
US6194138B1 (en) Method for flushing blood cells using gelatin
Sarajas et al. Release of 5-hydroxytryptamine and adenosinetriphosphate in extracorporeal circulatory systems as a result of corpuscular blood trauma
RU2225692C2 (en) Preserving agent for washed out erythrocytes
SU1708347A1 (en) Method for stabilizing the donor blood
Ohyama et al. Effect of phosphoenolpyruvate on metabolic and morphological recovery of red cells after prolonged liquid storage and subsequent freezing in glycerol medium
JPS6112626A (en) Preservative for blood
Sandler et al. Restoration of stored bank blood to biochemical normalcy
JPS59167519A (en) Removal of fibrinogen from mixed serum proteins with deactivated thrombin gel

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIOTEST A.G., FED. REP. OF GERMANY, A JOINT STOCK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BONHARD, KLAUS;REEL/FRAME:004842/0507

Effective date: 19880129

Owner name: BIOTEST A.G., A JOINT STOCK CO.,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BONHARD, KLAUS;REEL/FRAME:004842/0507

Effective date: 19880129

AS Assignment

Owner name: BIOTEST A.G., A JOINT STOCK COMPANY OF GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BIOTEST SERUM-INSTITUT G.M.B.H., A LIMITED LIABILITY COMPANY OF GERMANY;REEL/FRAME:004893/0230

Effective date: 19871120

Owner name: BIOTEST A.G., GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOTEST SERUM-INSTITUT G.M.B.H., A LIMITED LIABILITY COMPANY OF GERMANY;REEL/FRAME:004893/0230

Effective date: 19871120

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)