US3867213A - Ferrocene-containing monomers and copolymers - Google Patents

Ferrocene-containing monomers and copolymers Download PDF

Info

Publication number
US3867213A
US3867213A US144280A US14428071A US3867213A US 3867213 A US3867213 A US 3867213A US 144280 A US144280 A US 144280A US 14428071 A US14428071 A US 14428071A US 3867213 A US3867213 A US 3867213A
Authority
US
United States
Prior art keywords
weight percent
copolymers
amount
pentaerythritol
butadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US144280A
Inventor
Trevis E Stevens
Jr Samuel F Reed
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00849254A external-priority patent/US3857870A/en
Application filed by US Department of Army filed Critical US Department of Army
Priority to US144280A priority Critical patent/US3867213A/en
Application granted granted Critical
Publication of US3867213A publication Critical patent/US3867213A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/007Ballistic modifiers, burning rate catalysts, burning rate depressing agents, e.g. for gas generating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System

Definitions

  • polymerizable monomer is well known.
  • whhen applied to the propellant art generally means a compound useful in propellants because it is capable of forming an elastic tough rubbery polymer by condensation or polymerization reactions in the pro pellant mix.
  • the resulting rubbery polymer functions as a binder for the propellant charge.
  • the binder provides strength for the propellant charge or grain.
  • Many of the prior art compounds have been concerned with binder materials. The present trend has been to increase the performance of propellants by employing an energetic binder material, improved oxidizer, and burning rate catalyst.
  • the prior art esters of polymerizable compounds have been employed as energetic binder materials having oxidizing and plasticizing capabilities.
  • the term energetic binder is a term to distinguish one type of binder from another type of binder known as nonenergetic binder.
  • the non-energetic binders provide binding functions while contributing little, if any, to the propellant burning processes.
  • the propellant burning process is a complex process requiring a proper balance of fuel, oxidizer, and catalysts.
  • the oxygen content of a number of energetic binders of the prior art enables those binders to contribute to the oxidizing capability of the propellant composition in addition to the binding capability of the propellant composition.
  • Each active ingredient in a propellant composition contributes to one or more functions of the propellant system. Naturally, a multi-functional ingredient offers distinct advantages.
  • a burning rate additive has been required for use in the prior art propellant compositions to obtain increased burning rates.
  • These additives or catalysts have included metallic oxides and organo-metallic compounds. Ferrocene and n-butyl ferrocene have been utilized as burning rate catalysts. The liquid ferrocene compounds have been effective in promoting burning rates.
  • the characteristic disadvantages of liquid additives such as loss by evaporation. migration, etc., have caused processing problems as well as problems encountered later during long term storage ofpropellants.
  • the present invention has as its principal object to provide ferrocene-containing monomers which can be polymerized to form an energetic binder having a burning rate catalyst as an integral part thereof.
  • Another object is to provide copolymerization products of ferrocene-containing monomers and butadiene which serves as energetic binder and burning rate catalyst for propellant compositions.
  • a further object of this invention is to provide a propellant composition having a combination energetic binder and catalyst which does not evaporate during propellant processing or migrate in the finished propellant.
  • the ferrocene-containing monomers, pentaerythritol methacrylate tris (ferrocenoate) and pentaerythritol acrylate tris (ferrocenoate) are produced from pentaerythritol arsenite methacrylate and pentaerythritol arsenite acrylate respectively as the starting compounds.
  • the monomers become constituents of copolymers of butadiene when polymerization reaction is initiated by a suitable initiator.
  • the copolymers of this invention are useful as binders for solid propellants which also contain an oxidizer, metal fuel, and plasticizer.
  • the binders also function as a burning rate catalyst since the catalyst is an integral part thereof.
  • the catalyst being an integral part of the cured binder does not migrate during propellant storage.
  • the catalyst is evenly and widely dispersed as an integral part of the binder; therefore, this arrangement is conducive to uniform burning rate control and stability to burning of the propellant composition.
  • pentaerythritol arsenite acrylate forms another monomer and may be produced as follows:
  • the reaction mixture is cooled to keep the temperature below 30C during the addition; after the benzenesulfonyl chloride addition, the mixture is stirred at 30C for one hour.
  • the solvent is then removed at reduced pressure and the residue dried at ambient temperature and l millimeter of pressure for 30 minutes.
  • the residue is extracted three times with 200 ml. of hot ligroin containing 0.0lg of hydroquinone.
  • the residue is taken up in methylene chloride and again stripped to dryness. Recrystallization from ligroin yields the monomer, penare re-crystallia ed from methanol. +1... $615 its... taerythritol acrylate tris (ferrocenoate), 1.05 g, m.p. 19 ,.E1Q9-..
  • Table I sets forth burning rates of uncured composite propellants using the hydroxy-terminated copolymer of butadiene and pentaerythritol methacrylate tris (ferrocenoate) as compared with a propellant using unmodified hydroxy-termin ated polybutadiene, and a propellant using n-butyl ferrocene, a standard burningrate promoter.
  • the copolymer of pentaerythritol acrylate tris (ferrocenoate) and butadiene may be used as the binder and catalyst for a propellant composition.
  • the copolymer On cooling the solvent is removed by evaporation and the copolymer reprecipitated by dissolving in ether followed by the addition of methanol. After decanting the solvents, the copolymer is stripped of excess solvents on a rotatory evaporator and finally dried at 70-75C. under reduced pressure (1 mm) for a period of 24 hours. The yield of liquid copolymer is 7.1 g percent).
  • the copolymer is characterized by molecular weight (3,500), Ol-I end groups (1.21 wt percent) and elemental analysis (Fe, Found: 3.9).
  • the mole ratio of butadiene to monomer is from about 40 to 1 to about 80 to 1 for the monomer selected.
  • the mole ratio in Examples III and IV is also satisfactory when the monomer pentaerythritol acrylate tris (ferrocenoate) is selected 'for copolymer preparation.
  • Burning Rate Data V The hydroxy-terminated copolymer of butadiene and Analysis Calculated for C H Fe O z C,60.0; H, 4.80; Fe, 19.94.
  • the plasticizers noted above may be used with the copolymers of this invention in amounts from about to about weight percent of the propellant composition.
  • the ammonium perchlorate may vary from about 50 to about 70 weight percent of the propellant composition.
  • the copolymers of this invention may be used in propellant compositions in amounts from about 5 to about weight percent.
  • Aluminum metal from about 5 to about 20 weight percent may be used in the propellant composition containing the copolymers of this invention.
  • copolymers of this invention may be substituted for polybutadiene and the burning rate catalyst employed in a propellant composition since the copolymers contain a catalyst as an integral part thereof.
  • the copolymers of this invention are particularly attractive as a source of catalysis for the propellant composition in order to avoid the problems associated with the use ofliquid catalysts (e.g. problems, such as, loss by evaporation or migration within the propellant during storage).
  • a propellant composition comprising ammonium perchlorate in an amount from about 50 to about 70 weight percent; aluminum metal in an amount from about 5 to about 20 weight percent; a plasticizer se lected from diisooctyl azelate, di-Z-ethylhexyl azelate, dipropylene glycol dipelargonate, and isodecyl pelargonate in an amount from about 5 to about 25 weight percent of the propellant composition; and copolymers in an amount from about 5 to about 30 weight percent, said copolymers being formed from butadiene reacted with a polymerizable monomer selected from pentaerythritol metacrylate tris(ferrocenoate) and pentaerythritol acrylate tris(ferrocenoate), said butadiene and said monomer being reacted in a mole ratio of butadiene to monomer from about 40 to l to about 80 to 1 while in the presence ofa suitable initiator contained in

Abstract

The ferrocene-containing polymerizable monomers, pentaerythritol methacrylate tris (ferrocenoate) and pentaerythritol acrylate tris (ferrocenoate), are disclosed along with the pertinent preparative procedures therefor. The specified ferrocenecontaining monomers when copolymerized with butadiene serve as the propellant binder and catalyst for fast-burning composite propellants. The copolymers perform the functions of binder and catalyst in a propellant composition containing ammonium perchlorate, a plasticizer, and aluminum metal fuel.

Description

United States Patent [191 Stevens et al.
[ 1 FERROCENE-CONTAINING MONOMERS AND COPOLYMERS [75] inventors: Trevis E. Stevens; Samuel F. Reed,
Jr., both of Huntsville, Ala.
[73] Assignee: The United States of America as represented by the Secretary of the Army, Washington, DC.
[22] Filed: May 18, 1971 [21] Appl. No.: 144,280
Related U.S. Application Data [62] Division of Ser. No. 849,254, July 31, 1969.
[52] U.S. Cl l49/l9.2,149/l9.5,149/l9.l, l49/l9.91, 149/20 [51] Int. Cl C0611 5/06 [58] Field of Search l49/l9.2, 19.9, 19.5, 19.91, 149/20 [56] References Cited UNITED STATES PATENTS 3,718,633 2/1973 Baldwin l49/l9.2 3,739,004 6/1973 Ponder et al. l49/l9.2 3,770,787 11/1973 Burnett l49/l9.2
[451 Feb. 18,1975
OTHER PUBLICATIONS Pittman et al., Macromolecules, Vol. 3, (1970), pp. 746-754 [QD380M3].
Neuse, Ferrocene Polymers, Advances in Macromolecular Chemistry, Ed. by W. M. Pasika, Vol. I, Academic Press, N.Y., (1968) Pp. l-28 [QD38OA2].
Primary Examiner-Benjamin R. Padgett Attorney, Agent, or FirmEdward J. Kelly; Herbert Berl; Jack W. Voigt [57] ABSTRACT tion containing ammonium perchlorate, a plasticizer,
and aluminum metal fuel.
2 Claims, No Drawings FERROCENE-CONTAINING MONOMERS AND COPOLYMERS Cross-Reference to Related Application: This is a division of application Ser. No. 849,254, filed July 31, 1969.
BACKGROUND OF THE INVENTION Prior art compounds resulting from the selective partial esterification of pentaerythritol are known. Two derivatives of pentaerythritol which serve as the starting compounds for the preparation of the ferrocene containing monomers of this invention are pentaerythritol arsenite methacrylate and pentaerythritol arsenite acrylate.
The term polymerizable monomer is well known. The term whhen applied to the propellant art generally means a compound useful in propellants because it is capable of forming an elastic tough rubbery polymer by condensation or polymerization reactions in the pro pellant mix. The resulting rubbery polymer functions as a binder for the propellant charge. The binder provides strength for the propellant charge or grain. Many of the prior art compounds have been concerned with binder materials. The present trend has been to increase the performance of propellants by employing an energetic binder material, improved oxidizer, and burning rate catalyst.
The prior art esters of polymerizable compounds have been employed as energetic binder materials having oxidizing and plasticizing capabilities. The term energetic binder is a term to distinguish one type of binder from another type of binder known as nonenergetic binder. The non-energetic binders provide binding functions while contributing little, if any, to the propellant burning processes. The propellant burning process is a complex process requiring a proper balance of fuel, oxidizer, and catalysts. The oxygen content of a number of energetic binders of the prior art enables those binders to contribute to the oxidizing capability of the propellant composition in addition to the binding capability of the propellant composition. Each active ingredient in a propellant composition contributes to one or more functions of the propellant system. Naturally, a multi-functional ingredient offers distinct advantages.
Generally, a burning rate additive has been required for use in the prior art propellant compositions to obtain increased burning rates. These additives or catalysts have included metallic oxides and organo-metallic compounds. Ferrocene and n-butyl ferrocene have been utilized as burning rate catalysts. The liquid ferrocene compounds have been effective in promoting burning rates. However, like all liquids used as additives, the characteristic disadvantages of liquid additives such as loss by evaporation. migration, etc., have caused processing problems as well as problems encountered later during long term storage ofpropellants.
An additive which is not subject to the disadvantages of some of the prior art compounds would be attractive for use in propellants.
The present invention has as its principal object to provide ferrocene-containing monomers which can be polymerized to form an energetic binder having a burning rate catalyst as an integral part thereof.
Another object is to provide copolymerization products of ferrocene-containing monomers and butadiene which serves as energetic binder and burning rate catalyst for propellant compositions.
A further object of this invention is to provide a propellant composition having a combination energetic binder and catalyst which does not evaporate during propellant processing or migrate in the finished propellant.
Summary of the Invention: The ferrocene-containing monomers, pentaerythritol methacrylate tris (ferrocenoate) and pentaerythritol acrylate tris (ferrocenoate) are produced from pentaerythritol arsenite methacrylate and pentaerythritol arsenite acrylate respectively as the starting compounds. The monomers become constituents of copolymers of butadiene when polymerization reaction is initiated by a suitable initiator. The copolymers of this invention are useful as binders for solid propellants which also contain an oxidizer, metal fuel, and plasticizer. The binders also function as a burning rate catalyst since the catalyst is an integral part thereof. The catalyst being an integral part of the cured binder does not migrate during propellant storage. The catalyst is evenly and widely dispersed as an integral part of the binder; therefore, this arrangement is conducive to uniform burning rate control and stability to burning of the propellant composition.
Description of the Preferred Embodiments: The starting compound, pentaerythritol arsenite methacrylate, forms one of the monomers of this invention and may be produced as follows:
To a clear solution of 10.4 grams (0.050 mole) of pentaerythritol arsenite in 20 milliliters of acetonitrile and 8 milliliters of triethylamine is added drop wise a mixture of5.5g. (0.052 mole) of methacryloyl chloride and 5 ml. of acetonitrile. The addition requires about 15 minutes while the temperature is maintained at about 35C to about 40C by external cooling. The mixture is stirred at 50C for 2 hours, then the solvent is removed at reduced pressure, and the residue is dried at ambient temperature and l millimeter of pressure for 30 minutes. The residue is extracted with three ml. portions of hot ligroin (each containing 5 mg. of hydroquinone). The extracts are concentrated and chilled and the product removed by filtration. The solid obtained is recrystallized from ligroin to give 5.40 grams of the monomer, pertaerythritol arsenite methacrylate, m.p. 83C to 845C.
Another starting compound, pentaerythritol arsenite acrylate, forms another monomer and may be produced as follows:
To a mixture of 10.4g. (0.050 mole) of pentaerythritol arsenite and 10 ml. of acetonitrile is added 4.5 ml. (0.065 mole) of acrylic acid followed by 24 ml. (0.175 mole) of triethylamine. When the exotherm from the addition of the amine (the reaction temperature should not be allowed to exceed 20C) is subsided, 7.7 ml (0.060 mole) of benzene-sulfonyl chloride in 10 ml. of acetonitrile is added over a 15 minute period. The reaction mixture is cooled to keep the temperature below 30C during the addition; after the benzenesulfonyl chloride addition, the mixture is stirred at 30C for one hour. The solvent is then removed at reduced pressure and the residue dried at ambient temperature and l millimeter of pressure for 30 minutes. The residue is extracted three times with 200 ml. of hot ligroin containing 0.0lg of hydroquinone. The residue is taken up in methylene chloride and again stripped to dryness. Recrystallization from ligroin yields the monomer, penare re-crystallia ed from methanol. +1... $615 its... taerythritol acrylate tris (ferrocenoate), 1.05 g, m.p. 19 ,.E1Q9-..
Analysis Calculated for c H Fe O z C, 59.60; H, 4.64; Fe, 20.3.
, mers which are prepared as set forth hereinbelow under Examples I and II. The specified monomers when copolymerized with butadiene form binders that provide in addition to the binder function the function of "catalysis for the propellant system'w'herein used. Example III and Example IV are illustrative of the procedures for preparation of the copolymers of this invention. Table I sets forth burning rates of uncured composite propellants using the hydroxy-terminated copolymer of butadiene and pentaerythritol methacrylate tris (ferrocenoate) as compared with a propellant using unmodified hydroxy-termin ated polybutadiene, and a propellant using n-butyl ferrocene, a standard burningrate promoter. Similarly, the copolymer of pentaerythritol acrylate tris (ferrocenoate) and butadiene may be used as the binder and catalyst for a propellant composition.
EXAMPLE 1 Preparation of Pentaerythritrol Methacrylate Tris (ferrocenoate) A 2.20 g. (8 mole) sample of pentaerythritol arsenite methacrylate and mg. of dicyanobenzoquinone is stirred with ml of acetone and 6 ml of water for minutes at 40C. The solution is filtered, and the filtrate is stripped to dryness. The residue, in methylene chloride, is dried over calcium sulfate. The solution is again stripped to dryness, and the residue taken up in 8 ml methylene chloride and 8 ml of chlorobenzene. This solution is added to 8.44 g. of ferrocenoyl chloride in 18 ml of chlorobenzene in a flask maintained at 200- mm pressure. When addition is complete, the pressure is reduced to 150 mm and the temperature is maintained at 50C for 1 hour. The chlorobenzene is removed in vacuo and the residue is partitioned betweenmethylene chloride and water. The organic residue is chromatographed on a silica gel column packed in pen,- tane-methylene chloride (2:1 and 1:1), and methylene chloride gives a center cut of 1.69 g. This portion is re- Found: C, 59.1; H, 4.59; Fe, l9.7.
EXAMPLE Ill Copolymerization With Butadiene Introduce to a glass high-pressure reactor (Aerosol tube): 30 ml. of toluene, 2:1 12g (0.0084 mole) az'o-bis- (2-methyl-5-hydroxy-valeronitrile) as initiator, and 2.1g (0.0025 mole) pentaerythritol methacrylate tris- (ferrocenoate). The reactor is attached to a vacuum line and deaerated by three alternate freeze-thaw cycles. Butadiene (10.8g., 0.2 mole) is condensed into the reactor, and the reactor transferred to an oil bath at 6667C. Heating is continued for a period of 72 hours. On cooling the solvent is removed by evaporation and the copolymer reprecipitated by dissolving in ether followed by the addition of methanol. After decanting the solvents, the copolymer is stripped of excess solvents on a rotatory evaporator and finally dried at 70-75C. under reduced pressure (1 mm) for a period of 24 hours. The yield of liquid copolymer is 7.1 g percent). The copolymer is characterized by molecular weight (3,500), Ol-I end groups (1.21 wt percent) and elemental analysis (Fe, Found: 3.9).
EXAMPLE IV In a similar reaction to that set forth in Example 111, 5.4 g. (0.1) butadiene is copolymerized with 2.1g (0.0025 mole) of pentaerythritol methacrylate tris- (ferrocenoate) in toluene with 0.756 g. (0.003 mole) azo-bis-(2-methyl-5-hydroxy-valeronitrile) as initiator to give 4.2 g. (56 percent) of the copolymer analyzing as follows; molecular weight (4,700), OH end groups (0.8 weight percent) and elemental analysis (Fe, Found 6.9 percent).
As noted in Examples III and IV the mole ratio of butadiene to monomer is from about 40 to 1 to about 80 to 1 for the monomer selected. The mole ratio in Examples III and IV is also satisfactory when the monomer pentaerythritol acrylate tris (ferrocenoate) is selected 'for copolymer preparation.
Burning Rate Data V The hydroxy-terminated copolymer of butadiene and Analysis Calculated for C H Fe O z C,60.0; H, 4.80; Fe, 19.94.
Found: c, 59.7; H, 4.80; Fe, 20.9.
EXAMPLE II Preparation of Pentaerythritol Acrylate tris (ferrocenoate) The procedure outlined in Example I above is followed using 1.71 g of pentaerythritol monoacrylate (prepared by hydrolysis of pentaerythritol arsenite acrylate) and 10 g. of ferrocenoyl chloride. The organic residue obtained upon evaporation ofthe organic sol- Table I Burning Rates of Uncured Composite Propellants R,, at R,, at 750 psi 1500 psi Unmodified hydroxy-terminuted poly-butadiene. "n-butyl fcrrocene. a standard burning-rate promoter ethylhexyl azelate, and dipropylene glycol diperlargon-;
ate.
The plasticizers noted above may be used with the copolymers of this invention in amounts from about to about weight percent of the propellant composition. The ammonium perchlorate may vary from about 50 to about 70 weight percent of the propellant composition. The copolymers of this invention may be used in propellant compositions in amounts from about 5 to about weight percent. Aluminum metal from about 5 to about 20 weight percent may be used in the propellant composition containing the copolymers of this invention.
The copolymers of this invention may be substituted for polybutadiene and the burning rate catalyst employed in a propellant composition since the copolymers contain a catalyst as an integral part thereof. The copolymers of this invention are particularly attractive as a source of catalysis for the propellant composition in order to avoid the problems associated with the use ofliquid catalysts (e.g. problems, such as, loss by evaporation or migration within the propellant during storage).
We claim:
1. A propellant composition comprising ammonium perchlorate in an amount from about 50 to about 70 weight percent; aluminum metal in an amount from about 5 to about 20 weight percent; a plasticizer se lected from diisooctyl azelate, di-Z-ethylhexyl azelate, dipropylene glycol dipelargonate, and isodecyl pelargonate in an amount from about 5 to about 25 weight percent of the propellant composition; and copolymers in an amount from about 5 to about 30 weight percent, said copolymers being formed from butadiene reacted with a polymerizable monomer selected from pentaerythritol metacrylate tris(ferrocenoate) and pentaerythritol acrylate tris(ferrocenoate), said butadiene and said monomer being reacted in a mole ratio of butadiene to monomer from about 40 to l to about 80 to 1 while in the presence ofa suitable initiator contained in a suitable organic solvent for a predetermined period of time and at a predetermined temperature to form said copolymers; said suitable initiator being azo-bis- (Z-methyl-5-hydroxy-valeronitrile); said suitable organic solvent being toluene; said predetermined period of time being about 72 hours; said predetermined temperature being from about 66C to about 67C; said copolymers being characterized by a molecular weight in the range from about 3,500 to about 4,700, OH end groups from about 0.8 to 1.2 weight percent, and Fe content from about 3.9 to about 6.9 weight percent.
2. The propellant composition of claim 1 wherein said plasticizer is isodecyl pelargonate present in an amount of about 10 weight percent, said ammonium perchlorate is present in an amount of about 70 weight percent, said copolymers are present in an amount of about 10 weight percent, and aluminum metal is present in an amount of about 10 weight percent.
* l= l l

Claims (2)

1. A PROPELLANT COMPOSITION COMPRISING AMMONIUM PERCHLORATE IN AN AMOUNT FROM ABOUT 50 TO ABOUT 70 WEIGHT PERCENT, ALUMINUM METAL IN AN AMOUNT FROM ABOUT 5 TO ABOUT 20 WEIGHT PERCENT, A PLASTICIZER SELECTED FROM DIISOOCTYL AZELATE, DI-2-ETHYLHEXYL AZELATE, DIPROPYLENE GLYCOL DIPELARGONATE AND ISODECYL PELARGONATE IN AN AMOUNT ROM ABOUT 5 TO ABOUT 25 WEIGHT PERCENT OF THE PROPELLANT COMPOSITION, AND COPOLYMERS IN AN AMOUNT FROM ABOUT 5 TO ABOUT 30 WEIGHT PERCENT, SAID COPOLYMERS BEING FORMED FROM BUTADIENE REACTED WITH A POLYMERIZABLE MONOMER SELECTED FROM PENTAERYTHRITOL METACRYLATE TRIS(FERROCENOATE) AND PENTAERYTHRITOL ACRYLATE TRIS(FERROENOATE), SAID BUTADIENE AND SAID MONOMER BEING REACTED IN A MOLE RATIO OF BUTADIENE TO MONOMER FROM ABOUT 40 TO 1 TO ABOUT 80 TO 1 WHILE IN THE PRESENCE OF A SUITABLE INITIATOR CONTAINED IN A SUITABLE ORGANIC SOLVENT FOR A PREDETERMINED PERIOD OF TIME AND AT A PREDETERMINED TEMPERATURE TO FROM SAID COPOLYMERS, SAID SUITABLE INITIATOR BEING AZO-BIS-(2METHYL1-5-HYDROXY-VALERONITRILE), SAID SUITABLE ORGANIC SOLVENT BEING TOLUENE, SAID PREDETERMINED PERIOD OF TIME BEING ABOUT 72 HOURS, SAID PREDETERMINED TEMPERATURE BEING FROM ABOUT 66*C TO ABOUT 67*C, SAID COPOLYMERS BEING CHARACTERIZED BY A MOLECULAR WEIGHT IN THE RANGE FROM ABOUT 3,500 TO ABOUT 4,700, OH END GROUPS FROM ABOUT 0.8 TO 1.2 WEIGHT PERCENT, AND FE CONTENT FROM ABOUT 3.9 TO ABOUT 6.9 WEIGHT PERCENT.
2. The propellant composition of claim 1 wherein said plasticizer is isodecyl pelargonate present in an amount of about 10 weight percent, said ammonium perchlorate is present in an amount of about 70 weight percent, said copolymers are present in an amount of about 10 weight percent, and aluminum metal is present in an amount of about 10 weight percent.
US144280A 1969-07-31 1971-05-18 Ferrocene-containing monomers and copolymers Expired - Lifetime US3867213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US144280A US3867213A (en) 1969-07-31 1971-05-18 Ferrocene-containing monomers and copolymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00849254A US3857870A (en) 1969-07-31 1969-07-31 Ferrocene containing monomers and copolymers
US144280A US3867213A (en) 1969-07-31 1971-05-18 Ferrocene-containing monomers and copolymers

Publications (1)

Publication Number Publication Date
US3867213A true US3867213A (en) 1975-02-18

Family

ID=26841844

Family Applications (1)

Application Number Title Priority Date Filing Date
US144280A Expired - Lifetime US3867213A (en) 1969-07-31 1971-05-18 Ferrocene-containing monomers and copolymers

Country Status (1)

Country Link
US (1) US3867213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668313A (en) * 1984-07-20 1987-05-26 Societe Nationale Des Poudres Et Explosifs Polymer with ethylenic unsaturations incorporating silylmetallocene groups, process for the manufacture of this polymer, and propellant composition having this polymer as a binder
US20090023581A1 (en) * 2004-12-30 2009-01-22 Magnesium Elektron Limited THERMALLY STABLE DOPED AND UNDOPED POROUS ALUMINUM OXIDES AND NANOCOMPOSITE CeO2-ZrO2 AND Al2O3 CONTAINING MIXED OXIDES
RU2444505C1 (en) * 2010-08-03 2012-03-10 Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Ammonium nitrate based gas-generating composition
CN103566972A (en) * 2013-11-20 2014-02-12 苏州大学 Ferrocene oligomer and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718633A (en) * 1969-11-25 1973-02-27 Us Army Hydroxy-terminated copolymers of butadiene and ferrocene derivatives
US3739004A (en) * 1971-10-01 1973-06-12 Us Army Synthesis ferrocenyl butadiene compounds
US3770787A (en) * 1969-09-17 1973-11-06 Us Army Vinyl ferrocene butadiene copolymer burning rate catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770787A (en) * 1969-09-17 1973-11-06 Us Army Vinyl ferrocene butadiene copolymer burning rate catalyst
US3718633A (en) * 1969-11-25 1973-02-27 Us Army Hydroxy-terminated copolymers of butadiene and ferrocene derivatives
US3739004A (en) * 1971-10-01 1973-06-12 Us Army Synthesis ferrocenyl butadiene compounds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668313A (en) * 1984-07-20 1987-05-26 Societe Nationale Des Poudres Et Explosifs Polymer with ethylenic unsaturations incorporating silylmetallocene groups, process for the manufacture of this polymer, and propellant composition having this polymer as a binder
US20090023581A1 (en) * 2004-12-30 2009-01-22 Magnesium Elektron Limited THERMALLY STABLE DOPED AND UNDOPED POROUS ALUMINUM OXIDES AND NANOCOMPOSITE CeO2-ZrO2 AND Al2O3 CONTAINING MIXED OXIDES
RU2444505C1 (en) * 2010-08-03 2012-03-10 Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Ammonium nitrate based gas-generating composition
CN103566972A (en) * 2013-11-20 2014-02-12 苏州大学 Ferrocene oligomer and preparation method thereof

Similar Documents

Publication Publication Date Title
US4288262A (en) Gun propellants containing polyglycidyl azide polymer
US3609115A (en) Propellant binder
US5061330A (en) Insensitive high energetic explosive formulations
US3756874A (en) Temperature resistant propellants containing cyclotetramethylenetetranitramine
US3867213A (en) Ferrocene-containing monomers and copolymers
US3255059A (en) Fluoroalkyl acrylate polymeric propellant compositions
US4168191A (en) Thermally stable, plastic-bonded explosives
US4001191A (en) Combustible monomers and polymers therefrom
US3441549A (en) Acrylates of nf2-containing polyethers
US3857870A (en) Ferrocene containing monomers and copolymers
US3804683A (en) High energy, low burning rate solid propellant compositions based on acrylic prepolymer binders
US3718633A (en) Hydroxy-terminated copolymers of butadiene and ferrocene derivatives
US3847958A (en) Ferrocene-containing monomers
US5205983A (en) Energetic plasticizer and improved gas producing charges
US3755311A (en) Ferrocene derivatives
US3427295A (en) Pentaerythritol derivatives
US3816380A (en) Telechelic copolymers of dienes and polymerizable ferrocene or carborane compounds
US3962297A (en) High burning rate catalyst
US3878002A (en) Nitrogen and fluorine containing solid propellant compositions based on acrylic prepolymer binders
US3441550A (en) Tetrakis nf2 adduct of divinylcarbinol and acrylate and polymer thereof
US3886190A (en) Carboxy-terminated butadiene-vinyl ferrocene copolymers
US3847882A (en) Hydroxy-terminated copolymers of butadiene and acrylates
US3789609A (en) Propulsion method using 1-isopropenyl-2-ferrocenoyl-carborane burning rate catalyst
US3753812A (en) Propellant compositions with hydroxy-terminated copolymers of butadiene and ferrocene derivatives
US3813306A (en) Propellant composition using carboxyterminated copolymers of butadiene and ferrocene derivatives