US3867671A - Spark gap protective device for cathode ray tubes - Google Patents

Spark gap protective device for cathode ray tubes Download PDF

Info

Publication number
US3867671A
US3867671A US417029A US41702973A US3867671A US 3867671 A US3867671 A US 3867671A US 417029 A US417029 A US 417029A US 41702973 A US41702973 A US 41702973A US 3867671 A US3867671 A US 3867671A
Authority
US
United States
Prior art keywords
cathode ray
spark gap
tube
base
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US417029A
Inventor
Tore Rudolf Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Corp
Original Assignee
AMP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMP Inc filed Critical AMP Inc
Priority to US417029A priority Critical patent/US3867671A/en
Application granted granted Critical
Publication of US3867671A publication Critical patent/US3867671A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/08Overvoltage arresters using spark gaps structurally associated with protected apparatus

Definitions

  • a device for providing spark gap protection between the several pins of a cathode ray tube [52] Cl 317/615 /G and solid state circuitry associated therewith.
  • the device includes an insulated substrate having resilient arms osed about a central p g in the Substrate 58 F ld f8 11 p 1 2 Z 339/111 for centering the device on the tube base and a metal- 64 6 58 7 59 lic layer fixed to the substrate and to a mounting strap.
  • the Field Of The lnvention is related to a device for providing spark gap protection between the separate pins of a cathode ray tube and solid state circuitry associated with the control elements of the tube and in particular to a device for providing high voltage spark discharge emanating from the anode of the tube.
  • Anode discharges can occur within the picture tube to any of the tube electrodes so. that all semi-conductor circuits associated with the picture tube must be protected.
  • Another method of redirecting the stored energy in the anode is to provide a low voltage spark gap to permit discharge to ground.
  • These spark gaps usually discharge at 1,000 to 1,500 volts.
  • the focusing grid which operates at 6,000 volts d.c., is operated with a 10,000 spark gap.
  • the present practice usually provides a resistor of 1,000 to 3,000 ohms in series with the output of the semi-conductor circuit connected to the picture tube elements and a spark gap to ground for each of the electrodes of the picture tube.
  • Such a circuit is disclosed in U.S. Pat. No. 3,733,522.
  • One method of providing spark gaps for the picture tube electrodes is to incorporate a grounded metal ring within the picture tube socket closely spaced to the socket terminals.
  • An example of this type of device may be found in U.S. Pat. No. 2,850,714. While this method has the advantage of simplicity of installation, it has the disadvantage of not permitting inspection of the gaps for short circuits or excessively large gaps.
  • Another disadvantage is that the length of the spark gap, and hence its discharge voltage, depends upon the cumulative sum of several dimensional tolerances so that the discharge voltage is subject to considerable variation.
  • the ground return strap must be attached to the socket in addition to all of the other control leads which forms a cumbersome assembly for handling during manufacture of the socket assembly and also during production of the complete television receiver.
  • a still further disadvantage is that a short circuited spark gap (which renders the receiver inoperative) requires replacement of the entire socket, an expensive service operation requiring soldering and replacing over a dozen connection wires.
  • a further disadvantage of the previous spark gaps arrangements is that they will be completely unsuitable for use with the recently introduced tube base (RCA JEDEC Base No. B12-260) which will be the new standard for the cathode ray tube industry.
  • the individual pins lie in channels extending along the periphery of the base rather than individually projecting from the bottom of the base where they are subject to being bent and/or broken.
  • the present invention is a spark gap protection device providing a plurality of individual spark gaps between the pins of a cathode ray tube and associated solid state circuitry and includes an insulating substrate adapted to be mounted on the base of the picture tube, means on said insulating substrate for centering the device with respect to the picture tube base, a metallic layer attached to the substrate providing multiple spark gaps between the metallic layer and each pin of the tube and a common ground connected to the metallic layer.
  • one of the objects of this invention is to construct a multiple spark gap protection device which is entirely separate from a cathode ray tube socket and which can be readily replaced by detaching a single lead wire, namely the ground strap.
  • Another object of this invention is to produce a multiple spark gap protective device which can be easily inspected for short circuited spark gaps or excessively large spark gaps without disassembling any components.
  • Yet another object of the present invention is to construct a multiple spark gap protective device which is suitable for use with the new standard cathode ray tube base in which the pins do not project from the bottom of the base but rather are exposed in longitudinal channels formed along the periphery of the base.
  • a further object of the present invention is to produce a multiple spark gap protective device consisting of an integral unit whose dimensions can be closely controlled, thus allowing close control of the length of each spark gap and hence its discharge voltage, and which device will be accurately centered on the tube base at all times.
  • FIG. 1 shows one end portion of cathode ray tube 10, which is the type of tube used as the picture tube in a color television receiver.
  • the new standard 110 tube base 12 (RCA JEDEC Base No. B12-260) is a cylindrical body of insulating material.
  • the illustrated base has 14 positions including a-keying projection 14 which extends longitudinally outwardly from one side thereof, and thirteen longitudinally extending channels 16. The channels are open ended towards the free end of the base and terminate at a uniform, but interrupted, shelf or step 18 at the end of the base adjacent the tube.
  • the particular cathode ray tube illustrated has 12 pins 20, each lying in a respective one of the channels 16.
  • the pins are not embedded in the base along the channels but preferably are spaced slightly from the bottom of the channels.
  • Pins 22 are used for the tube heater circuit and do not require spark gaps, since they are at nearly ground potential and are not directly associated with semi-conductor circuits.
  • the anode pin 24 is isolated from the remaining pins by the key projection 14 and empty channel 26 and operates at from 4,000 to 6,000 volts, depending upon the anode voltage and the focusing requirement. For this reason it is provided with a much larger spark gap in order to permit breakdown at a higher voltage, usually between 8 and 10 kilovolts.
  • the base 12 is integrally attached to the cathode ray tube 10 by conventional means.
  • the subject spark gap protective device 28 includes two layers, one of which is an insulating substrate 30 having a keyed central aperture 32, a plurality resilient centering members 34 forming at least a part of the periphery of said central aperture and two smaller apertures 36.
  • the centering members preferably are arcuate cantilever arms, as shown, which contact the base at a plurality of arcuately offset positions to thereby center the device on the base.
  • the substrate 30 is formed from any of the well known insulating materials.
  • a metallic layer 38 is fixedly mounted on the substrate 30 by rivets 40 or the like passing through apertures 42 in the layer 38 and 36 in the substrate 30. At least one of these rivets can be used to attach the device to a grounding strap (not shown).
  • the metal layer 38 has a central aperture 44 of a particular configuration which includes an arcuate portion 46 of a first radius and a second arcuate portion 48 of a larger radius.
  • a plurality of radially inwardly directed points 50 are formed about the first arcuate portion 46 and a single radially inwardly directed point 52 is formed substantially centered in the second arcuate portion 48.
  • the spark gap protective device is positioned on the base 12, as shown in FIGS. 2 and 3 with the centering key 14 passing through the keyed portion of aperture 32, and moved until the metal layer 38 rests against the interrupted annular shelf 18 of the base. It will be noted from FIG. 3 that the projections 50 of the metal layer extend over at least a portion of the shelf to come within a short distance of the individual pins 20. It should also be noted that the metal layer is slightly undercut to insure that no carbonization will build up from arcing, which then would cause a leakage path be tween a particular pin and the associated spark gap.
  • FIG. 2 shows how the centering means 34, which in this case are three arcuate resilient cantilevered arms, serve to always center the spark gap protective device on the tube base so that uniform air gaps are formed between the projections on the metal layer and the individual pins.
  • a multiple spark gap protective device for protecting solid state circuitry associated with cathode ray tubes from high voltage discharges from such tubes comprising:
  • an insulating substrate having a keyed central aperture and a plurality of resilient centering means disposed about the periphery of said aperture, said resilient centering means including a plurality of arcuate cantilevered arms integral with said substrate and disposed about the periphery of said aperture;
  • a metallic plate secured to said insulating substrate including a central aperture having a plurality of radially inwardly directed projections extending over the central aperture of said substrate in cantilever fashion whereby a plurality of spark gaps are formed between said projections and pins of a cathode ray tube when said device is mounted on the base of said tube;
  • common ground means secured to said plate.

Abstract

A device is disclosed for providing spark gap protection between the several pins of a cathode ray tube and solid state circuitry associated therewith. The device includes an insulated substrate having resilient arms disposed about a central opening in the substrate for centering the device on the tube base and a metallic layer fixed to the substrate and to a mounting strap. The device is mounted on the base of a cathode ray tube with projections of the metallic layer extending to within a predetermined distance from the tube pins to provide a spark gap therebetween.

Description

United States Patent Johnson Feb. 18, 1975 [5 SPARK GAP PROTECTIVE DEVICE FOR 3,278,886 10/1966 Blumenberg et al 339/111 x CATHODE RAY TUBES 3,281,620 10/1966 Miller 313/318 X 3,502,933 3/1970 Le1montas ct al. 317/615 Inventor: Tore Rudolf Johnson, Harrisburg, 3,683,228 8/1972 Kleen 313/318 [73] Assignee: AMP Incorporated, Harrisburg, Pa. Primary EXami'ler*Jame$ Tfammell [22] Filed: Nov. 19, 1973 211 Appl. N().I 417,029 ABSTRACT A device is disclosed for providing spark gap protection between the several pins of a cathode ray tube [52] Cl 317/615 /G and solid state circuitry associated therewith. The device includes an insulated substrate having resilient arms osed about a central p g in the Substrate 58 F ld f8 11 p 1 2 Z 339/111 for centering the device on the tube base and a metal- 64 6 58 7 59 lic layer fixed to the substrate and to a mounting strap. 1 147 313/318 The device is mounted on the base of a cathode ray tube with projections of the, metallic layer extending [56] References C'ted to within a predetermined distance from the tube pins UNITED STATES PATENTS to provide a spark gap therebetween. 2,476,671 7/1949 Leighton 313/318 3,227,910 1/1966 Pittman 313/318 1 Clam" 4 Drawmg Flgures SPARK GAP PROTECTIVE DEVICE FOR CATIIODE RAY TUBES BACKGROUND OF THE INVENTION 1. The Field Of The lnvention The present invention is related to a device for providing spark gap protection between the separate pins of a cathode ray tube and solid state circuitry associated with the control elements of the tube and in particular to a device for providing high voltage spark discharge emanating from the anode of the tube.
2. The Prior Art I Many modern television receivers, especially color television receivers, are presently manufactured with solid state circuitry replacing the previously well known vacuum tubes in order to reduce weight, cost, and service problems related to the comparatively short service life of vacuum tubes. The most commonly used solid state device is the transistor which consists of two types of semi-conducting materials separated by a thin membrane of semi-conducting material, which usually acts as a controlling element. While such devices have a high degree of reliability and comparatively long life when used within their ratings, they are subject to rapid destruction when their ratings are greatly exceeded.
Large color television tubes are usually operated with an anode potential of 25,000 volts. .The anode capacity to ground is approximately 2,000 picofarads which permits the storage of appreciable energy at this high potential. Since the energy stored is equal to /2 CE joules, the anode can store 0.625 joules or wattseconds. If this energy were to be discharged in 10 microseconds, it would produce 62.5 kilowatts of instantaneous power. The destructive effects of such anode discharges on associated transistorized circuitry is readily apparent. Anode discharges can occur within the picture tube to any of the tube electrodes so. that all semi-conductor circuits associated with the picture tube must be protected.
It has been common practice to provide means of redirecting this energy so that it will not pass through the semi-conductors. One method of reducing the energy passing through the semi-conductors is to use a high resistance between the semi-conductor and the picture tube element. However, even a 1,000 ohm resistor will allow an initial current of 25 amperes to pass through the transistor while a resistor as large as 2,500 ohms limits the initial currentrto l0 amperes. Resistors of greater value would seriously impair the efficiency of the control circuit and thus are not practical.
Another method of redirecting the stored energy in the anode is to provide a low voltage spark gap to permit discharge to ground. These spark gaps usually discharge at 1,000 to 1,500 volts. The focusing grid, which operates at 6,000 volts d.c., is operated with a 10,000 spark gap. Thus the present practice usually provides a resistor of 1,000 to 3,000 ohms in series with the output of the semi-conductor circuit connected to the picture tube elements and a spark gap to ground for each of the electrodes of the picture tube. Such a circuit is disclosed in U.S. Pat. No. 3,733,522.
One method of providing spark gaps for the picture tube electrodes is to incorporate a grounded metal ring within the picture tube socket closely spaced to the socket terminals. An example of this type of device may be found in U.S. Pat. No. 2,850,714. While this method has the advantage of simplicity of installation, it has the disadvantage of not permitting inspection of the gaps for short circuits or excessively large gaps. Another disadvantage is that the length of the spark gap, and hence its discharge voltage, depends upon the cumulative sum of several dimensional tolerances so that the discharge voltage is subject to considerable variation. A further disadvantage is that the ground return strap must be attached to the socket in addition to all of the other control leads which forms a cumbersome assembly for handling during manufacture of the socket assembly and also during production of the complete television receiver. A still further disadvantage is that a short circuited spark gap (which renders the receiver inoperative) requires replacement of the entire socket, an expensive service operation requiring soldering and replacing over a dozen connection wires.
A further disadvantage of the previous spark gaps arrangements is that they will be completely unsuitable for use with the recently introduced tube base (RCA JEDEC Base No. B12-260) which will be the new standard for the cathode ray tube industry. In the new tube base the individual pins lie in channels extending along the periphery of the base rather than individually projecting from the bottom of the base where they are subject to being bent and/or broken.
SUMMARY OF THE INVENTION The present invention is a spark gap protection device providing a plurality of individual spark gaps between the pins of a cathode ray tube and associated solid state circuitry and includes an insulating substrate adapted to be mounted on the base of the picture tube, means on said insulating substrate for centering the device with respect to the picture tube base, a metallic layer attached to the substrate providing multiple spark gaps between the metallic layer and each pin of the tube and a common ground connected to the metallic layer.
Accordingly, one of the objects of this invention is to construct a multiple spark gap protection device which is entirely separate from a cathode ray tube socket and which can be readily replaced by detaching a single lead wire, namely the ground strap.
Another object of this invention is to produce a multiple spark gap protective device which can be easily inspected for short circuited spark gaps or excessively large spark gaps without disassembling any components.
Yet another object of the present invention is to construct a multiple spark gap protective device which is suitable for use with the new standard cathode ray tube base in which the pins do not project from the bottom of the base but rather are exposed in longitudinal channels formed along the periphery of the base.
A further object of the present invention is to produce a multiple spark gap protective device consisting of an integral unit whose dimensions can be closely controlled, thus allowing close control of the length of each spark gap and hence its discharge voltage, and which device will be accurately centered on the tube base at all times.
Other objects and advantages of the present invention will become apparent to those skilled in the art from the following detailed description taken with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 shows one end portion of cathode ray tube 10, which is the type of tube used as the picture tube in a color television receiver. The new standard 110 tube base 12 (RCA JEDEC Base No. B12-260) is a cylindrical body of insulating material. The illustrated base has 14 positions including a-keying projection 14 which extends longitudinally outwardly from one side thereof, and thirteen longitudinally extending channels 16. The channels are open ended towards the free end of the base and terminate at a uniform, but interrupted, shelf or step 18 at the end of the base adjacent the tube. The particular cathode ray tube illustrated has 12 pins 20, each lying in a respective one of the channels 16. The pins are not embedded in the base along the channels but preferably are spaced slightly from the bottom of the channels. Pins 22 are used for the tube heater circuit and do not require spark gaps, since they are at nearly ground potential and are not directly associated with semi-conductor circuits. The anode pin 24 is isolated from the remaining pins by the key projection 14 and empty channel 26 and operates at from 4,000 to 6,000 volts, depending upon the anode voltage and the focusing requirement. For this reason it is provided with a much larger spark gap in order to permit breakdown at a higher voltage, usually between 8 and 10 kilovolts. The base 12 is integrally attached to the cathode ray tube 10 by conventional means.
The subject spark gap protective device 28 includes two layers, one of which is an insulating substrate 30 having a keyed central aperture 32, a plurality resilient centering members 34 forming at least a part of the periphery of said central aperture and two smaller apertures 36. The centering members preferably are arcuate cantilever arms, as shown, which contact the base at a plurality of arcuately offset positions to thereby center the device on the base. The substrate 30 is formed from any of the well known insulating materials. A metallic layer 38 is fixedly mounted on the substrate 30 by rivets 40 or the like passing through apertures 42 in the layer 38 and 36 in the substrate 30. At least one of these rivets can be used to attach the device to a grounding strap (not shown). The metal layer 38 has a central aperture 44 of a particular configuration which includes an arcuate portion 46 of a first radius and a second arcuate portion 48 of a larger radius. A plurality of radially inwardly directed points 50 are formed about the first arcuate portion 46 and a single radially inwardly directed point 52 is formed substantially centered in the second arcuate portion 48.
The spark gap protective device is positioned on the base 12, as shown in FIGS. 2 and 3 with the centering key 14 passing through the keyed portion of aperture 32, and moved until the metal layer 38 rests against the interrupted annular shelf 18 of the base. It will be noted from FIG. 3 that the projections 50 of the metal layer extend over at least a portion of the shelf to come within a short distance of the individual pins 20. It should also be noted that the metal layer is slightly undercut to insure that no carbonization will build up from arcing, which then would cause a leakage path be tween a particular pin and the associated spark gap.
FIG. 2 shows how the centering means 34, which in this case are three arcuate resilient cantilevered arms, serve to always center the spark gap protective device on the tube base so that uniform air gaps are formed between the projections on the metal layer and the individual pins.
The present invention may be subject to many various modifications and changes without departing from the spirit or essential characteristics thereof. The foregoing embodiment is therefor intended to be illustrative and not restrictive as to the scope of the invention.
What is claimed is:
1. A multiple spark gap protective device for protecting solid state circuitry associated with cathode ray tubes from high voltage discharges from such tubes comprising:
an insulating substrate having a keyed central aperture and a plurality of resilient centering means disposed about the periphery of said aperture, said resilient centering means including a plurality of arcuate cantilevered arms integral with said substrate and disposed about the periphery of said aperture;
a metallic plate secured to said insulating substrate including a central aperture having a plurality of radially inwardly directed projections extending over the central aperture of said substrate in cantilever fashion whereby a plurality of spark gaps are formed between said projections and pins of a cathode ray tube when said device is mounted on the base of said tube; and
common ground means secured to said plate.

Claims (1)

1. A multiple spark gap protective device for protecting solid state circuitry associated with cathode ray tubes from high voltage discharges from such tubes comprising: an insulating substrate having a keyed central aperture and a plurality of resilient centering means disposed about the periphery of said aperture, said resilient centering means including a plurality of arcuate cantilevered arms integral with said substrate and disposed about the periphery of said aperture; a metallic plate secured to said insulating substrate including a central aperture having a plurality of radially inwardly directed projections extending over the central aperture of said substrate in cantilever fashion whereby a plurality of spark gaps are formed between said projections and pins of a cathode ray tube when said device is mounted on the base of said tube; and common ground means secured to said plate.
US417029A 1973-11-19 1973-11-19 Spark gap protective device for cathode ray tubes Expired - Lifetime US3867671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US417029A US3867671A (en) 1973-11-19 1973-11-19 Spark gap protective device for cathode ray tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US417029A US3867671A (en) 1973-11-19 1973-11-19 Spark gap protective device for cathode ray tubes

Publications (1)

Publication Number Publication Date
US3867671A true US3867671A (en) 1975-02-18

Family

ID=23652292

Family Applications (1)

Application Number Title Priority Date Filing Date
US417029A Expired - Lifetime US3867671A (en) 1973-11-19 1973-11-19 Spark gap protective device for cathode ray tubes

Country Status (1)

Country Link
US (1) US3867671A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040707A (en) * 1976-07-02 1977-08-09 Gte Sylvania Incorporated Cathode ray tube base
US4040708A (en) * 1976-07-02 1977-08-09 Gte Sylvania Incorporated Cathode ray tube base
US4064412A (en) * 1976-07-02 1977-12-20 Gte Sylvania Incorporated Cathode ray tube base
US4075531A (en) * 1977-01-03 1978-02-21 Zenith Radio Corporation Base-socket system with arc prevention means
US4349235A (en) * 1979-08-23 1982-09-14 Murata Manufacturing Co., Ltd. Cathode-ray tube socket substrate
US5674083A (en) * 1995-11-22 1997-10-07 The Whitaker Corporation ESD protected electrical connector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2476671A (en) * 1945-09-28 1949-07-19 Gen Electric Electric projection lamp
US3227910A (en) * 1961-05-09 1966-01-04 Ind Electronic Hardware Corp Kinescope socket
US3278886A (en) * 1964-09-25 1966-10-11 Nat Video Corp Electronic device
US3281620A (en) * 1962-05-16 1966-10-25 Miller Robert Keith Adjustably positionable reflector lamp
US3502933A (en) * 1968-07-29 1970-03-24 Connector Corp Kinescope socket with spark gap
US3683228A (en) * 1970-04-30 1972-08-08 Ibm Printed circuit spark gap protector for cathode ray tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2476671A (en) * 1945-09-28 1949-07-19 Gen Electric Electric projection lamp
US3227910A (en) * 1961-05-09 1966-01-04 Ind Electronic Hardware Corp Kinescope socket
US3281620A (en) * 1962-05-16 1966-10-25 Miller Robert Keith Adjustably positionable reflector lamp
US3278886A (en) * 1964-09-25 1966-10-11 Nat Video Corp Electronic device
US3502933A (en) * 1968-07-29 1970-03-24 Connector Corp Kinescope socket with spark gap
US3683228A (en) * 1970-04-30 1972-08-08 Ibm Printed circuit spark gap protector for cathode ray tube

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040707A (en) * 1976-07-02 1977-08-09 Gte Sylvania Incorporated Cathode ray tube base
US4040708A (en) * 1976-07-02 1977-08-09 Gte Sylvania Incorporated Cathode ray tube base
US4064412A (en) * 1976-07-02 1977-12-20 Gte Sylvania Incorporated Cathode ray tube base
US4075531A (en) * 1977-01-03 1978-02-21 Zenith Radio Corporation Base-socket system with arc prevention means
US4349235A (en) * 1979-08-23 1982-09-14 Murata Manufacturing Co., Ltd. Cathode-ray tube socket substrate
US5674083A (en) * 1995-11-22 1997-10-07 The Whitaker Corporation ESD protected electrical connector

Similar Documents

Publication Publication Date Title
US3755715A (en) Line protector having arrester and fail-safe circuit bypassing the arrester
US2951960A (en) Gaseous discharge device
US2825008A (en) Lightning arresters
US3867671A (en) Spark gap protective device for cathode ray tubes
US4352140A (en) Surge arrester
US3227910A (en) Kinescope socket
US2290526A (en) Spark gap
US3377612A (en) Electron tube arc-over ring
US3867670A (en) Multiple spark gap protective device
KR100375644B1 (en) ARC suppressive protection of field emission devices
US2628322A (en) Lightning arrester
US2575372A (en) Cold cathode gaseous discharge device
EP0064319B1 (en) Colour display tube
US3958854A (en) Spark gap apparatus
US3366831A (en) Overvoltage arrester having stacked arrays of arc gap and grading resistor units
US3869633A (en) Electron tube socket
US2963617A (en) Over-voltage protective device
US3141108A (en) Lightning arrester with an arcextinguishing gas
US2740068A (en) Traveling wave electron discharge device
US2567359A (en) Electron discharge apparatus
US5107187A (en) High voltage protection resistor
US4745324A (en) High power switch tube with Faraday cage cavity anode
US2250529A (en) Signal translating apparatus
USRE30724E (en) Line protector having arrester and fail-safe circuit bypassing the arrester
US5229743A (en) High voltage protection resistor