Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3875945 A
Tipo de publicaciónConcesión
Fecha de publicación8 Abr 1975
Fecha de presentación2 Nov 1973
Fecha de prioridad2 Nov 1973
Número de publicaciónUS 3875945 A, US 3875945A, US-A-3875945, US3875945 A, US3875945A
InventoresFriedman Joshua
Cesionario originalDemetron Corp
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Electrosurgery instrument
US 3875945 A
Resumen  disponible en
Imágenes(1)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

United States Patent n 1 Friedman 1 Apr. 8, 1975 [73] Assignee: Demetron Corporation, Ridgefield.

Conn.

221 Filed: Nov. 2, 1973 [21] Appl. No.: 412.292

[521 US. Cl l28/303.l4; 128/303.l7 [51] Int. Cl. A6lh l7/36;A61n 3/02 [58] Field of Search..... l28/303.l4. 303.13, 303.17,

Primary E.\'aminerRichard A. Gaudet Assistant liraminer-Lee S. Cohen [57] ABSTRACT An electrosurgery instrument having a radio frequency oscillator energized from a power supply controlled by a switching arrangement to produce either dc, full wave rectified ac. or half-wave rectified ac at its output. depending upon whether it is desired to operate in the cut. coagulate, or fulgurate modes, respectively. The level of output voltage of the power supply may be set to any value within a range and thereafter increased by a fixed percentage upon the operation of a remote control switch. The level of output voltage in any mode of operation, once set, is regulated by a feedback control circuit to minimize sparking at the electrode tip. The oscillator output is coupled to an operating probe through an impedance transformer and coaxial cable designed to deliver maximum radio frequency power to the patient without the use of a ground plate. An indicating lamp is connected to points of different potential in the cable and within the probe in order to give a positive indication of the presence of radio frequency power at the probe tip.

7 Claims, 1 Drawing Figure PATENTEDAPR 8191s ONLI ELECTROSURGERY INSTRUMENT The present invention relates to electrosurgery instruments and. more particularly. to an electrosurgery instrument capable of efficiently delivering an adjust able quantity of radio frequency power for use in a selected one of three modes of operation.

For many years various types of surgical tool's using electrical energy have been used to carry out various medical and dental operations. Early instruments uti lized spark gap current to burn tissue and. while this was satisfactory for operations where the purpose was destruction of tissue, it was unsatisfactory where it was used to make an incision or for hemostasis with a minimum of necrosis and other undesirable histological changes in adjacent tissue.

Improved instruments, utilizing radio frequency electromagnetic or diathermy energy. overcome some of these limitations but nevertheless suffer from certain disadvantages which have limited their utility. For example. a number ofevisting radio frequency electrosurgical devices utilize vacuum tubes with their concomitant bulk. delay for warm up time. excessive heat generation and poor reliability Other such units are hazardous to the patient and operator in that they require ground plates to minimize the patient to ground impedance and to complete the radio frequency circuit, or they lack effective means for accurately indicating a hot" electrode tip. lllustratively, units requiring a ground plate may not only hinder the operator and present a psychological deterrent to an already apprehensive patient. but they also suffer the disadvantage of subjecting the patient to the possibility of raio frequency burn where non uniform contact is made between the ground plate and the patient's skin, or where, by reason of an unsuspected intermittent break in the plate-connecting wire, the operator finds it necessary to increase the output power level only to find that the output increases still further when the break is reconnected. Still other radio frequency electro-surgery units lack effective means for giving a true indication that the tip is energized and thus give rise to the possibility of severe burns if the "hot" tip is inadvertently touched or wiped to remove tissue therefrom. Another significant disadvantage in existing electrosurgery units is the lack of versatility where there are but two output wave forms to choose from. for it is often desireable to have available an intermediate operational mode for coagulation as well as a cutting mode. designed for incision with a minimum of tissue destruction. and a fulguration mode. designed primarily for tissue destruction. Other such instruments fail to provide the operator with means enabling him to switch from one operational mode to another without taking his eyes from the site of surgery.

Accordingly. it is an object of my invention to provide a compact, efficient. reliable and versatile electrosurgery unit which utilizes radio frequency power and overcomes the shortcomings of the prior art.

It is still another object of my invention to provide a radio frequency electrosurgery instrument which operates efficiently without the need for a ground plate.

It is another object of my invention to provide a radio frequency electrosurgery instrument which affords the operator an opportunity to select from amongst three modes of operation designed primarily for cutting. coagulation. and fulguration. respectively.

lt is still another object of my invention to provide a radio frequency electrosurgery instrument in which the operator may quickly switch from one mode of opera tion to another without diverting his attention from the site of surgery. or removing his hands from the electrode handpiece.

It is yet another object of my invention to provide an electrosurgery instrument in which there is a positive indication of a "hot" tip to prevent inadvertent injury to the patient. operator. or operators assistant.

In most existing radio frequency electrosurgery instruments the operating voltage at the cutting tip varies markedly as contact is made and broken between the cutting tip and the tissue being cut. When this occurs sparking takes place, causing undesireable damage to the tissue.

Accordingly, it is another object of my invention to provide an electrosurgery instrument in which the radio frequency voltage applied to the cutting tip is kept constant, independent of the probe tip to ground impedance.

In accordance with the foregoing and other objects and features of the invention, l have provided an electro-surgery instrument in which a power supply connected to a radio frequency oscillator delivers power over a coaxial cable to a probe containing a surgical tip held in place by a spring loaded or other chuck. The instrument is designed to permit the operator to select from amongst three modes of operation by means of a switching arrangement that causes the power supply to deliver either a dc voltage, a full wave rectified ac. or a half-wave rectified ac as the supply voltage to an r.f. oscillator. The electrode tip coupled to the output of the oscillators is thus energized with a radio frequency voltage which is either unmodulated for operation in the cut mode, or modulated with a cps signal for operation in the coagulate mode. or modulated with a l20cps signal for operation in the fulgurate mode.

After the unit is turned on, the particular mode of operation is selected by first actuating a corresponding switch on a console control panel and thereafter en abling the first stage of a two position control switch remotely located from the console in the area of the pa tient. This switch may be foot operated or be mounted within the hand probe proximate to the cutting tip. The operator may. by increasing the pressure on the control switch, enable the second stage of the switch to in crease the level of output voltage from the power supply and consequently the peak level of radio frequency output power. And when the instrument is being operated in the cut mode, engagement of the second stage of the control switch also causes operation to switch into the coagulation mode.

The instrument also incorporates an impedance transformer, for matching the oscillator low output impedance to the higher patient to ground impedance for the efficient transmission of power without the need of a ground plate, and an indicating lamp, connected within the probe to give positive, reliable indications of a hot tip.

These and other objectives and features of my invention will be better understood if reference is had to the following detailed description and accompanying draw' ing depicting a schematic circuit and probe construction used in my invention.

Referring now to the drawing, the electrosurgery instrument includes a power supply 10 driving an oscillator 20 which is coupled by means of an impedance tranformer 30 to a coaxial cable 40 terminated in a sur gical probe 50 containing a cutting tip 60.

The basic components of power supply include a step down transformer, a bridge rectifier and filter and a voltage regulator circuit. Also connected to control the power supply is a remote control two stage switch 108 and 108.

Step down transformer 1 is arranged so that its primary winding is connected through a normally open switch 2 and a fuse 3 to the 110 volt source of power. The secondary of transformer l is connected to a full wave bridge rectifier comprising diodes 4, 5, 6 and 7. A filter circuit. consisting of resistor 8 and electrolytic capacitor 9, is connected between the positive output terminal of the bridge circuit and ground. An output voltage regulating circuit 11 is connected between the positive output terminal of the bridge circuit and the output of the power supply.

Power supply 10, oscillator and impedance transformer 30 may all be included within a console containing on-off switch 2 and mode switches 105, 105'. 106, 107 and 107' as well as indicating lamps 117, 119 and 121. Switches 105 and 105' are mechanically coupled as are 107 and 107'. and switches 105, 106 and 107 are mechanically interlocked so that only one may be actuated at a time. A two stage spring loaded control switch 108 and 108', remotely situated from the console in the area of the patient. also forms part of the circuit for the electrosurgical instrument.

The drawing depicts the circuit as it exists when line power is applied to the instrument, the cut mode of op eration is selected at the console and the first stage only of the control switch is actuated. Under these circumstances on-off switch 2 is closed, cut switch contacts 105' are closed to deliver ac power from the secondary of transformer 1 through limiting resistor 116 to lamp 117 located under the cut mode switch button, the normally open contacts 108 in the first stage of the control switch are closed and the single pole double throw contacts of switch 108' are as shown to connect resistor 111 through the closed contacts of switches 108, 108' and 105 to the positive terminal of capacitor 9. At the same time resistor 8 is shorted through switches 108' and 105.

When the pressure on the control switch is increased sufficiently to actuate the second stage of the control switch. contacts 108 remain closed and the position of contacts 108 are changed to remove the short across resistor 8 and connect the emitter of transistor 104 through resistor 110 to the positive output terminal of the bridge rectifier circuit. Now resistor 8 is connected in series between the positive terminal of the bridge rectifier and capacitor 9. Resistor 111 remains connected to the positive terminal of the bridge rectifier.

When normally open switch 105 is actuated for the cut mode of operation. the contacts of coagulate mode switch 106 are open and the contacts of the fulgurate mode switch 107 and 107' are as shown with ground connected to the negative output terminal of the bridge circuit. With the first stage of the control switch actuated as shown. a full wave rectified ac voltage is pro duced at the output terminals of the bridge circuit and thereafter filtered to deliver dc power to the input of the oscillator which in turn produces an unmodulated radio frequency signal at its output. The filter circuit consists of capacitor 9 connected directly across the output terminals of the bridge circuit inasmuch as resistor 8 is shorted through the contacts of switches and 108. Capacitor 9 must be large enough to provide a relatively smooth, ripple free dc voltage across its terminals.

A feedback circuit is provided to regulate the voltage at the cutting tip in order to keep it constant at a selected value in the face of varying load impedance. A portion of the radio frequency voltage at the output of oscillator 20 e.g., the voltage drop between the input and first tap in inductance 32 of impedance tranformer 30 is rectified by diode 114 and thereafter filtered by capacitor 115 connected in parallel with potentiometer 109. A portion of this rectified and filtered voltage is picked off by the wiper of potentiometer 109 and impressed upon the base of transistor 104 which is connected as an inverting amplifier. Transistors 102 and 101 connected as Darlington emitter followers are connected between the collector-output of transistor 104 and the output of power supply 10. The emitter voltage of transistor 101 follows the base voltage of transistor 102. Since the collector of transistor 104 is connected to the base of transistor 102, the emitter voltage of transistor 101, which is the dc supply voltage for oscillator 20, follows the collector voltage of transistor 104.

Thus, if the wiper of potentiometer 109 is set closer to its grounded end, a smaller voltage is applied to the base of transistor 104 causing its collector voltage to increase. This. in turn, causes the emitter voltage at transistor 101, and thus the output voltage of power supply 10, to increase. Since the output voltage of rf oscillator 20 is proportional to its dc input voltage. it is controlled by the dc voltage at the emitter of transistor 101. Accordingly. the rf output voltage at the tip of probe 60 is adjusted by moving the wiper of potentiometer 109 the closer the wiper is to ground, the higher the output rf voltage applied to cutting tip 60.

As is well known in the art. the tip to ground impedance varies considerably during operation. Thus. for example, tip to ground impedance when the tip is not in contact with the patients tissue is substantially greater than when contact is made. Unless this variation in impedance is compensated for, the rf voltage at the probe tip will vary during operation, producing a high voltage when the tip is separated from the tissue being cut and a much lower voltage when the tip is in contact with the tissue. And when the voltage increases as described, sparking occurs between the tip and the tissue being cut. causing undesireable tissue damage. It is a prevent this, as well as to make the output independent of power line variations. that I have provided the voltage regulating circuit 11.

By means of the negative feedback arrangement described, any rf voltage increase at the tip of the probe above the level set by potentiometer 109, is detected by diode 114. After passing through the wiper of potentiometer 109 and transistor inverting amplifier 104, the probe tip voltage increase causes a voltage decrease at the collector of transistor 104. This, in turn, causes the dc supply voltage to the oscillator to decrease and thus produces a decrease in the oscillator output voltage ap plied to the cutting tip. In this fashion the rf voltage at cutting tip 60, selected by the position of the slide on potentiometer 109, is maintained at a relatively constant level despite variations in load impedance seen by the cutting tip.

Also shown in the drawing are three lamp circuits connected in parallel across the secondary of transformer I to provide an indication of the mode of operation selected. As described above. when switch I05 is actuated for operation in the cut mode. normally open switch contacts 105' are closed to deliver ac power from the secondary of transformer I through limiting resistor 116 to lamp II7 located under the cut mode switch button. Similar arrangements are provided for the coagulate mode and the fulgurate mode in the form of switches 106 and 107'. respectively.

If. while in the cut mode of operation. the operator desires to switch to the coagulate mode. he will increase his pressure on the control switch and thereby actuate the second stage contacts I08 to simultaneously remove the short across resistor 8 and connect resistor 110 between the emitter of transistor I04 and the output of the bridge circuit. This puts resistor 8 in series with capacitor 9, and since resistor 8 is substantially larger than the bridge circuit impedance. a substantially unfiltered full wave rectified ac appears across the positive output terminal of the bridge circuit and thus across resistor 110 in series with resistor 103. Resistor H0 and resistor 103 form a voltage divider with the portion of the unfiltered full wave ac voltage across resistor I03 applied to emitter of transistor 104 to increase its collector voltage by a fixed amount. This. of course, also increases the rf output voltage of the oscillator by a fixed amount. The voltage regulating circuit II continues to function as before, only now a full wave rectified ac voltage is produced at the output of power supply 10 and connected to oscillator as a modulating signal. It can be shown histologically that by selecting a value for resistor 110 which permits an increase of approximately 50 percent in the ratio of peak to average output voltage, more effective in vivo operation in the coagulate mode results.

It can be seen that the two stage switch circuit arrangement produces certain desirable advantages. Often. during operation in the cut mode. the operator wishes to quickly and effectively coagulate blood without removing his eyes from the surgical site. He may do this by actuating the second stage of the control switch. If. thereafter. he reduces his pressure on the control switch. the second stage will disengage and operation in the cut mode is resumed. When this is done switch contacts 108 return to their original state to again short out resistor 8 and disconnect resistor 110 from the emitter of transistor I04.

When the operator selects the coagulate mode of operation by actuating switch 106 at the console, switch 105 opens to remove the short from across resistor 8 which is then connected in series between the positive output terminal of the bridge circuit and capacitor 9. When the first stage of the control switch is actuated, contacts 108 are closed and the resistor III is connected to the positive output terminal of the bridge rectifier circuit to energize transistor 104. As before a full wave rectified ac voltage is produced at the output of power supply I0. If. now, the operator wishes to momentarily actuate the second stage of the control switch i.e.. contacts I08 resistor 110 is connected to the emitter of transistor 104 to increase the peak to average output voltage as before.

If it is desired to operate the instrument in the fulgurate mode. the operator actuates switch 107, which, by reason of its mechanical interconnection. causes switches I05 and I06 to open. When this occurs the ground is removed from the negative terminal of the bridge circuit and applied instead to one side of the secondary winding of transformer 1. Of course. switch I05 is opened and the short is removed from across resistor 8. The effect of this is to convert the full-wave bridge rectifier circuit into a half-wave rectifier circuit. utilizing only rectifier 5 to produce a half-wave rectified ac voltage at the positive terminal of the bridge circuit. And since resistor 8 is now connected in series with capacitor 9, the half wave output voltage. in substantially unfiltered form, is applied to the collector of transistor 104 through resistor Ill and the terminals of contacts 108 of the first stage of the foot switch. As before. the unfiltered voltage appears at the output of power supply 10. Once again. if the operator desires to momentarily increase the output power, he will engage the second stage of the control switch and actuate contacts 108' to connect resistor 110 between the emitter of transistor 104 and the positive terminal of the rectifier circuit to deliver an increased peak to average voltage at the output of power supply 10.

In each mode of operation the power supply pro duces the direct current power to operate and modulate oscillator 20. While a common emitter feedback type oscillator circuit is shown, it has been found that any oscillator producing a radio frequency in the range of l to 4 megacycles will enable the instrument to perform satisfactorily.

Typically, the collector impedance of transistor power oscillators such as oscillator 20 is small compared to the impedance between the cutting tip and ground e. g.. the power oscillator collector impedance is resistive and on the order of 5 ohms. while the tip to ground impedance, consisting of the patient body resistance in series with the patient to ground capacitance, can be as high as 1,500 ohms. In conventional electrosurgery instruments this mismatch is compensated for by reducing the tip to ground impedance with a ground plate with its concomitant disadvantage.

In my invention, l have eliminated the need for a ground plate and simultaneously avoided the problems of radiation interference and the possibility of radio frequency burns (where insulation becomes defective) associated with the common usage of an insulated conductor connecting the oscillator to the probe.

In my invention, coaxial cable is connected between the probe and an impedance transformer 30 to match the load impedance to the oscillator output impedance for efficient and safe power transfer. By choosing a length for cable 40 which is less than one quarter wavelength. the impedance seen looking into the cable at the junction with impedance transformer 30 is approximately the capacitance of cable 40 in parallel with the patient-body impedance. As will be understood by those versed in the art, the cable capacitance adds to the capacitance of capacitor 31 in impedance tranformer 30, and this augmented capacitance is connected in a 1r network, including capacitor 33 and the portion of inductor 32 between capacitor 3i and capacitor 33, to transform the high patient impedance into a lower impedance approximating the output impedance of oscillator 20.

An inductance 56 may be connected between the end of the cable 40 and a terminal post that is electrically connected to a chuck fitted within the hollow of probe 50, which may be fashioned from cylindrically shaped insulation material. The inductance will then be in series with the patient to ground circuit. This inductance 56 is selected to have a value so that its positive rcactance equals the negative reactance of an average patient to ground capacitance to further increase the effective rf power delivered to the cutting site.

The shield of coaxial cable 40 is grounded at a jack terminal at the impedance transformer within the console. Insulation is stripped away from a portion of cable within probe some distance from terminal post to expose a shield segment 5!. A series circuit consisting of resistor 54 and lamp 53 is connected between the end of the center conductor of cable 40 and the exposed shield segment 51 to provide a means for indicating when radio frequency power is present at the cutting tip 60. Probe 50 is constructed with a translucent circumferential band forming a window 57 that permits the light from lamp 53 to be seen over a 360 viewing angle.

A series circuit consisting of resistor 41 and a lamp 42 may be connected at the console between the output of impedance transformer 30 and ground to indi cate when oscillator 20 is energized. Lamps 53 and 42 may be neon bulbs or any other indicators that can be energized directly by rf voltage.

Finally. the chuck may be any of a variety of convenient devices which enable cutting tip 60 to be inserted and removed with facility. Thus. for example. the chuck may be a friction device or. as shown in the drawing and as more fully described in US. Pat. No. 2,80l .613. a device having 3 or 4 normally open jaws 71 made from spring brass or other conductive metal which are closed by a spring loaded collar 72. Cap 73 is press fitted over a retainer bushing 74 fitted over collar 72, which in turn acts against spring 75. laws 71 are fitted within collar 72 so that their shaft extends through spring 75 into a tapped portion of terminal post 55 so an electrical connection is made therebetween. When cap 73 is pushed to compress spring 75, the jaws of the chuck extend from collar 72 to expand and permit the insertion or removal of cutting tip 60. This extension of jaws 71 takes place entirely within cap 73. which has a small opening 76 at its end to admit tip 60. With this arrangement, the chuck is made to accept various diameter cutting tips.

It is to be understood that the above-described arrangements are illustrative of the application of the principles of the invention. Numerous other arrangements may be devised by those skilled in the art without departing from the spirit and scope of the invention.

What I claim is;

1. An electrosurgery instrument connected to a source of ac power comprising a power supply including a switching means for selectively producing a full wave rectified output voltage, a half wave rectified output voltage and a substantially ripple-free dc output voltage from said source of ac power; and ac oscillator having input terminals and output terminals; an operating probe containing a cutting tip, means for coupling said oscillator output terminals to said cutting tip; and regulator means for connecting a selected one of said output voltages to said oscillator input terminals including feedback means connected to said coupling means for maintaining a substantially constant voltage at said oscillator output terminals independent of variations in load impedance and power line voltage.

2. An clectrosurgery instrument in accordance with claim I wherein said regulator means includes means for selectively adjusting the magnitude of output voltage from said power supply independent from said switching means.

3. An electrosurgery instrument in accordance with claim 2 wherein said regulator means further includes a feedback circuit comprising a rectifier connected to a portion of said oscillator output voltage. a filter network including a potentiometer connected to said rectifier. an inverting amplifier connected to the slide of said potentiometer and amplifier means controlled by said inverting amplifier for connecting a selected one of said power supply output voltages to said oscillator input terminals.

4. An electrosurgery instrument in accordance with claim 1 wherein said switching means includes a primary switch for selecthely producing one of said out put voltages at the output of said power supply and a remotely situated control switch having a first stage for energizing said oscillator input terminals with a selected one of said power supply output voltages and a second stage for simultaneously increasing the magnitude of said selected output voltage and for overriding said primary switch to produce said full wave rectified voltage at said output of said power supply when said primary switching means is arranged to select said ripple-free dc output voltage for application to said output of said power supply.

5. An clectrosurgery instrument in accordance with claim 4 wherein said oscillator produces a voltage having a frequency in the range of l to 4 megacycles.

6. An electrosurgery instrument in accordance with claim 1 wherein said means for coupling said oscillator to said cutting tip includes an impedance transformer to effect a substantial match between the operating impedance seen by said cutting tip and the output impedance of said oscillator, a coaxial cable having a length less than one-quarter the wave length of said oscillator voltage connected between said cutting tip and said impedance transformer and an inductance having a magnitude in the range of 10-40 microhenrys serially connected between the terminal of said cable within said probe and said cutting tip.

7. An electrosurgery instrument in accordance with claim 1 wherein said operating probe comprises a hollow tubular housing fabricated from an electrical insulator material having a translucent band running circumferentially over a portion of its length and an interior lamp adjacent to said band having two terminals connected to points of different potential on said cable. t l i I

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3089496 *19 Ago 195914 May 1963Code IncControl system for surgical apparatus
US3532095 *21 Jun 19686 Oct 1970Weck & Co Inc EdwardElectrosurgical instrument
US3675655 *4 Feb 197011 Jul 1972Electro Medical Systems IncMethod and apparatus for high frequency electric surgery
US3699967 *30 Abr 197124 Oct 1972Valleylab IncElectrosurgical generator
US3707149 *16 Oct 197026 Dic 1972Majesco IncElectrosurgery unit and instrument
US3720896 *18 May 197113 Mar 1973Siemens AgHandle for high frequency electrodes
US3730188 *24 Mar 19711 May 1973Ellman IElectrosurgical apparatus for dental use
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3952748 *18 Jul 197427 Abr 1976Minnesota Mining And Manufacturing CompanyElectrosurgical system providing a fulguration current
US3964487 *9 Dic 197422 Jun 1976The Birtcher CorporationUncomplicated load-adapting electrosurgical cutting generator
US3999552 *20 May 197528 Dic 1976Universal Technology, Inc.Epilator
US4034761 *15 Dic 197512 Jul 1977The Birtcher CorporationDisposable electrosurgical switching assembly
US4057063 *27 Feb 19768 Nov 1977U.S. Philips CorporationDevice for sterilization by transuterine tube coagulation
US4092986 *14 Jun 19766 Jun 1978Ipco Hospital Supply Corporation (Whaledent International Division)Constant output electrosurgical unit
US4114623 *29 Jul 197619 Sep 1978Karl Storz Endoscopy-America, Inc.Cutting and coagulation apparatus for surgery
US4196734 *16 Feb 19788 Abr 1980Valleylab, Inc.Combined electrosurgery/cautery system and method
US4209018 *30 May 197824 Jun 1980Karl FastenmeierTissue coagulation apparatus and method
US4301801 *16 Feb 197924 Nov 1981Ipco Hospital Supply Corporation (Whaledent International Division)Electrosurge failsafe system
US4372315 *3 Jul 19808 Feb 1983Hair Free CentersImpedance sensing epilator
US4492231 *17 Sep 19828 Ene 1985Auth David CNon-sticking electrocautery system and forceps
US4498475 *27 Ago 198212 Feb 1985Ipco CorporationElectrosurgical unit
US4566454 *16 Jun 198128 Ene 1986Thomas L. MehlSelected frequency hair removal device and method
US4569345 *29 Feb 198411 Feb 1986Aspen Laboratories, Inc.High output electrosurgical unit
US4574801 *29 Feb 198411 Mar 1986Aspen Laboratories, Inc.Electrosurgical unit with regulated output
US4580562 *7 Jun 19848 Abr 1986Goof Sven Karl LennartElectrosurgical apparatus
US4800878 *26 Ago 198731 Ene 1989Becton, Dickinson And CompanyElectrosurgical knife with visual alarm
US4818954 *6 Feb 19874 Abr 1989Karl Storz Endoscopy-America, Inc.High-frequency generator with automatic power-control for high-frequency surgery
US4932952 *20 Dic 198812 Jun 1990Alto Development CorporationAntishock, anticlog suction coagulator
US5312327 *9 Oct 199217 May 1994Symbiosis CorporationCautery override safety systems endoscopic electrosurgical suction-irrigation instrument
US5458598 *2 Dic 199317 Oct 1995Cabot Technology CorporationCutting and coagulating forceps
US5472443 *17 Mar 19945 Dic 1995Hemostatic Surgery CorporationElectrosurgical apparatus employing constant voltage and methods of use
US5633578 *15 Jul 199427 May 1997Hemostatic Surgery CorporationElectrosurgical generator adaptors
US5647869 *28 Jun 199515 Jul 1997Gyrus Medical LimitedElectrosurgical apparatus
US5693045 *7 Jun 19952 Dic 1997Hemostatic Surgery CorporationElectrosurgical generator cable
US5817091 *20 May 19976 Oct 1998Medical Scientific, Inc.Electrosurgical device having a visible indicator
US5928227 *10 Mar 199727 Jul 1999The University Of Iowa ResearchRemote controlled coagulator system and methods
US5984918 *22 Dic 199716 Nov 1999Garito; Jon C.Electrosurgical handpiece with multiple electrode collet
US6039734 *21 Oct 199621 Mar 2000Gyrus Medical LimitedElectrosurgical hand-held battery-operated instrument
US622808011 Dic 19988 May 2001Sherwood Services AgElectrosurgical generator with adaptive power control
US6676660 *23 Ene 200213 Ene 2004Ethicon Endo-Surgery, Inc.Feedback light apparatus and method for use with an electrosurgical instrument
US70449484 Dic 200316 May 2006Sherwood Services AgCircuit for controlling arc energy from an electrosurgical generator
US71004034 May 20045 Sep 2006Acco Brands Usa LlcComputer physical security device
US71004049 Dic 20045 Sep 2006Acco Brands Usa LlcComputer physical security device
US713186020 Nov 20037 Nov 2006Sherwood Services AgConnector systems for electrosurgical generator
US71379801 May 200321 Nov 2006Sherwood Services AgMethod and system for controlling output of RF medical generator
US71568426 Oct 20042 Ene 2007Sherwood Services AgElectrosurgical pencil with improved controls
US715684420 Nov 20032 Ene 2007Sherwood Services AgElectrosurgical pencil with improved controls
US72010299 Dic 200410 Abr 2007Acco Brands Usa LlcComputer physical security device
US723507217 Feb 200426 Jun 2007Sherwood Services AgMotion detector for controlling electrosurgical output
US724129419 Nov 200310 Jul 2007Sherwood Services AgPistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same
US72442575 Nov 200317 Jul 2007Sherwood Services AgElectrosurgical pencil having a single button variable control
US72556944 Dic 200314 Ago 2007Sherwood Services AgVariable output crest factor electrosurgical generator
US730043521 Nov 200327 Nov 2007Sherwood Services AgAutomatic control system for an electrosurgical generator
US730355727 Dic 20044 Dic 2007Sherwood Services AgVessel sealing system
US736457724 Jul 200329 Abr 2008Sherwood Services AgVessel sealing system
US739335423 Jul 20031 Jul 2008Sherwood Services AgElectrosurgical pencil with drag sensing capability
US739633627 Oct 20048 Jul 2008Sherwood Services AgSwitched resonant ultrasonic power amplifier system
US741643723 Ago 200626 Ago 2008Sherwood Services AgConnector systems for electrosurgical generator
US750097428 Jun 200510 Mar 2009Covidien AgElectrode with rotatably deployable sheath
US7503917 *5 Ago 200517 Mar 2009Covidien AgElectrosurgical pencil with improved controls
US751389624 Ene 20067 Abr 2009Covidien AgDual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US762190912 Jun 200824 Nov 2009Covidien AgElectrosurgical pencil with drag sensing capability
US762878616 May 20058 Dic 2009Covidien AgUniversal foot switch contact port
US763790719 Sep 200629 Dic 2009Covidien AgSystem and method for return electrode monitoring
US764849921 Mar 200619 Ene 2010Covidien AgSystem and method for generating radio frequency energy
US765149224 Abr 200626 Ene 2010Covidien AgArc based adaptive control system for an electrosurgical unit
US76514933 Mar 200626 Ene 2010Covidien AgSystem and method for controlling electrosurgical snares
US772260130 Abr 200425 May 2010Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US77317178 Ago 20068 Jun 2010Covidien AgSystem and method for controlling RF output during tissue sealing
US77492176 May 20036 Jul 2010Covidien AgMethod and system for optically detecting blood and controlling a generator during electrosurgery
US776669316 Jun 20083 Ago 2010Covidien AgConnector systems for electrosurgical generator
US77669054 Feb 20053 Ago 2010Covidien AgMethod and system for continuity testing of medical electrodes
US778066223 Feb 200524 Ago 2010Covidien AgVessel sealing system using capacitive RF dielectric heating
US7789878 *29 Sep 20067 Sep 2010Covidien AgIn-line vessel sealer and divider
US779445728 Sep 200614 Sep 2010Covidien AgTransformer for RF voltage sensing
US78244003 Mar 20062 Nov 2010Covidien AgCircuit for controlling arc energy from an electrosurgical generator
US782879425 Ago 20059 Nov 2010Covidien AgHandheld electrosurgical apparatus for controlling operating room equipment
US783448416 Jul 200716 Nov 2010Tyco Healthcare Group LpConnection cable and method for activating a voltage-controlled generator
US7879033 *24 Ene 20061 Feb 2011Covidien AgElectrosurgical pencil with advanced ES controls
US790140027 Ene 20058 Mar 2011Covidien AgMethod and system for controlling output of RF medical generator
US792732824 Ene 200719 Abr 2011Covidien AgSystem and method for closed loop monitoring of monopolar electrosurgical apparatus
US79316481 Nov 200626 Abr 2011Schneider Andrew ISurgical glove system
US794703912 Dic 200524 May 2011Covidien AgLaparoscopic apparatus for performing electrosurgical procedures
US7951145 *19 Ene 200631 May 2011Schneider Andrew ISurgical glove system
US795115022 Feb 201031 May 2011Covidien AgVessel sealer and divider with rotating sealer and cutter
US79553278 Ene 20077 Jun 2011Covidien AgMotion detector for controlling electrosurgical output
US795963318 Dic 200614 Jun 2011Covidien AgElectrosurgical pencil with improved controls
US797232824 Ene 20075 Jul 2011Covidien AgSystem and method for tissue sealing
US797233216 Dic 20095 Jul 2011Covidien AgSystem and method for controlling electrosurgical snares
US801215030 Abr 20046 Sep 2011Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US801682421 Oct 200913 Sep 2011Covidien AgElectrosurgical pencil with drag sensing capability
US802566018 Nov 200927 Sep 2011Covidien AgUniversal foot switch contact port
US80340498 Ago 200611 Oct 2011Covidien AgSystem and method for measuring initial tissue impedance
US806101426 Ago 200922 Nov 2011Covidien AgMethod of assembling a cordless hand-held ultrasonic cautery cutting device
US808000818 Sep 200720 Dic 2011Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US809696127 Jun 200817 Ene 2012Covidien AgSwitched resonant ultrasonic power amplifier system
US810090230 Ene 200924 Ene 2012Covidien AgElectrode with rotatably deployable sheath
US810495623 Oct 200331 Ene 2012Covidien AgThermocouple measurement circuit
US810532324 Oct 200631 Ene 2012Covidien AgMethod and system for controlling output of RF medical generator
US811305727 Jun 200814 Feb 2012Covidien AgSwitched resonant ultrasonic power amplifier system
US81286229 Jul 20076 Mar 2012Covidien AgElectrosurgical pencil having a single button variable control
US814748523 Feb 20093 Abr 2012Covidien AgSystem and method for tissue sealing
US814748917 Feb 20113 Abr 2012Covidien AgOpen vessel sealing instrument
US816293727 Jun 200824 Abr 2012Tyco Healthcare Group LpHigh volume fluid seal for electrosurgical handpiece
US8180458 *17 Dic 200715 May 2012Thermage, Inc.Method and apparatus for digital signal processing for radio frequency surgery measurements
US81824796 Abr 201122 May 2012Schneider Andrew ISurgical glove system
US81872623 Jun 200929 May 2012Covidien AgDual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US819750225 Mar 201112 Jun 2012Covidien AgMethod of maintaining constant movement of a cutting blade on an ultrasonic waveguide
US819763315 Mar 201112 Jun 2012Covidien AgMethod for manufacturing an end effector assembly
US820227125 Feb 200919 Jun 2012Covidien AgDual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US82162207 Sep 200710 Jul 2012Tyco Healthcare Group LpSystem and method for transmission of combined data stream
US821622323 Feb 200910 Jul 2012Covidien AgSystem and method for tissue sealing
US822663910 Jun 200824 Jul 2012Tyco Healthcare Group LpSystem and method for output control of electrosurgical generator
US823161623 Ago 201031 Jul 2012Covidien AgTransformer for RF voltage sensing
US8231620 *10 Feb 200931 Jul 2012Tyco Healthcare Group LpExtension cutting blade
US823598721 Nov 20087 Ago 2012Tyco Healthcare Group LpThermal penetration and arc length controllable electrosurgical pencil
US823602025 Mar 20117 Ago 2012Covidien AgCordless hand-held ultrasonic cautery cutting device
US824127829 Abr 201114 Ago 2012Covidien AgLaparoscopic apparatus for performing electrosurgical procedures
US82573527 Sep 20104 Sep 2012Covidien AgBipolar forceps having monopolar extension
US826792829 Mar 201118 Sep 2012Covidien AgSystem and method for closed loop monitoring of monopolar electrosurgical apparatus
US826792916 Dic 201118 Sep 2012Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US828752828 Mar 200816 Oct 2012Covidien AgVessel sealing system
US82982235 Abr 201030 Oct 2012Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US83035805 Abr 20106 Nov 2012Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US833377825 Mar 201118 Dic 2012Covidien AgCordless hand-held ultrasonic cautery cutting device
US833377925 Mar 201118 Dic 2012Covidien AgMethod of maintaining constant movement of a cutting blade of an ultrasonic waveguide
US833446825 Ago 201018 Dic 2012Covidien AgMethod of switching a cordless hand-held ultrasonic cautery cutting device
US833872625 Ago 201025 Dic 2012Covidien AgTwo-stage switch for cordless hand-held ultrasonic cautery cutting device
US834894829 Jul 20108 Ene 2013Covidien AgVessel sealing system using capacitive RF dielectric heating
US835390518 Jun 201215 Ene 2013Covidien LpSystem and method for transmission of combined data stream
US836107219 Nov 201029 Ene 2013Covidien AgInsulating boot for electrosurgical forceps
US83720997 Nov 200812 Feb 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US837210125 Mar 201112 Feb 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US837708525 Mar 201119 Feb 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US839409512 Ene 201112 Mar 2013Covidien AgInsulating boot for electrosurgical forceps
US839409611 Abr 201112 Mar 2013Covidien AgOpen vessel sealing instrument with cutting mechanism
US84039486 Nov 200826 Mar 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US840394912 Nov 200826 Mar 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US840395013 Nov 200826 Mar 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US841834925 Mar 201116 Abr 2013Covidien AgMethod of assembling a cordless hand-held ultrasonic cautery cutting device
US84197576 Nov 200816 Abr 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US84197586 Nov 200816 Abr 2013Covidien AgCordless hand-held ultrasonic cautery cutting device
US842554526 Ago 200923 Abr 2013Covidien AgCordless hand-held ultrasonic cautery cutting device and method
US843525726 Ago 20097 May 2013Covidien AgCordless hand-held ultrasonic cautery cutting device and method
US84399398 Feb 201114 May 2013Covidien AgMethod of powering a surgical instrument
US844466212 Nov 200821 May 2013Covidien LpCordless hand-held ultrasonic cautery cutting device
US844954010 Feb 200928 May 2013Covidien AgElectrosurgical pencil with improved controls
US844954119 Abr 201228 May 2013Andrew I. SchneiderSurgical glove system
US84546024 May 20124 Jun 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US846028923 Ene 201211 Jun 2013Covidien AgElectrode with rotatably deployable sheath
US847544723 Ago 20122 Jul 2013Covidien AgSystem and method for closed loop monitoring of monopolar electrosurgical apparatus
US848599316 Ene 201216 Jul 2013Covidien AgSwitched resonant ultrasonic power amplifier system
US848606124 Ago 201216 Jul 2013Covidien LpImaginary impedance process monitoring and intelligent shut-off
US848719919 Oct 201216 Jul 2013Covidien AgMethod of switching a surgical device
US849743619 Oct 201230 Jul 2013Covidien AgTwo-stage switch for surgical device
US849743719 Oct 201230 Jul 2013Covidien AgMethod of switching a surgical device
US850209119 Oct 20126 Ago 2013Covidien AgTwo-Stage Switch for Surgical Device
US850656523 Ago 200713 Ago 2013Covidien LpElectrosurgical device with LED adapter
US851233221 Sep 200720 Ago 2013Covidien LpReal-time arc control in electrosurgical generators
US852385523 Ago 20103 Sep 2013Covidien AgCircuit for controlling arc energy from an electrosurgical generator
US852389810 Ago 20123 Sep 2013Covidien LpEndoscopic electrosurgical jaws with offset knife
US855109130 Mar 20118 Oct 2013Covidien AgVessel sealing instrument with electrical cutting mechanism
US855689014 Dic 200915 Oct 2013Covidien AgArc based adaptive control system for an electrosurgical unit
US8568400 *23 Sep 200929 Oct 2013Covidien LpMethods and apparatus for smart handset design in surgical instruments
US85684447 Mar 201229 Oct 2013Covidien LpMethod of transferring rotational motion in an articulating surgical instrument
US859150616 Oct 201226 Nov 2013Covidien AgVessel sealing system
US859150923 Jun 200826 Nov 2013Covidien LpElectrosurgical pencil including improved controls
US859729227 Feb 20093 Dic 2013Covidien LpElectrosurgical pencil including improved controls
US859729631 Ago 20123 Dic 2013Covidien AgBipolar forceps having monopolar extension
US863253623 Jun 200821 Ene 2014Covidien LpElectrosurgical pencil including improved controls
US863673326 Feb 200928 Ene 2014Covidien LpElectrosurgical pencil including improved controls
US864171315 Sep 20104 Feb 2014Covidien AgFlexible endoscopic catheter with ligasure
US86473404 Ene 201211 Feb 2014Covidien AgThermocouple measurement system
US865212528 Sep 200918 Feb 2014Covidien LpElectrosurgical generator user interface
US866321424 Ene 20074 Mar 2014Covidien AgMethod and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US866321823 Jun 20084 Mar 2014Covidien LpElectrosurgical pencil including improved controls
US866321923 Jun 20084 Mar 2014Covidien LpElectrosurgical pencil including improved controls
US86632628 Feb 20114 Mar 2014Covidien AgBattery assembly for battery-powered surgical instruments
US866868817 Jul 201211 Mar 2014Covidien AgSoft tissue RF transection and resection device
US866868919 Abr 201011 Mar 2014Covidien AgIn-line vessel sealer and divider
US867911423 Abr 201025 Mar 2014Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US868501623 Feb 20091 Abr 2014Covidien AgSystem and method for tissue sealing
US8709006 *14 Abr 201029 Abr 2014Old Dominion Research FoundationSystem and method for applying plasma sparks to tissue
US870901017 Jun 201129 Abr 2014Gyrus Medical LimitedElectrosurgical system
US873443821 Oct 200527 May 2014Covidien AgCircuit and method for reducing stored energy in an electrosurgical generator
US873444410 Oct 200827 May 2014Covidien LpSystem and method for delivering high current to electrosurgical device
US874090120 Ene 20103 Jun 2014Covidien AgVessel sealing instrument with electrical cutting mechanism
US874226924 May 20133 Jun 2014Covidien AgTwo-stage switch for surgical device
US875333410 May 200617 Jun 2014Covidien AgSystem and method for reducing leakage current in an electrosurgical generator
US877794110 May 200715 Jul 2014Covidien LpAdjustable impedance electrosurgical electrodes
US880816123 Oct 200319 Ago 2014Covidien AgRedundant temperature monitoring in electrosurgical systems for safety mitigation
US88522288 Feb 20127 Oct 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US88585544 Jun 201314 Oct 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US889888826 Ene 20122 Dic 2014Covidien LpSystem for manufacturing electrosurgical seal plates
US89451246 Ago 20123 Feb 2015Covidien LpThermal penetration and arc length controllable electrosurgical pencil
US894512510 Sep 20103 Feb 2015Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US896698116 Jul 20133 Mar 2015Covidien AgSwitched resonant ultrasonic power amplifier system
US899255530 Abr 201331 Mar 2015Covidien AgMethod of assembling a cordless hand-held ultrasonic cautery cutting device
US901735523 Ago 201128 Abr 2015Covidien AgBattery-powered hand-held ultrasonic surgical cautery cutting device
US90284938 Mar 201212 May 2015Covidien LpIn vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US90667471 Nov 201330 Jun 2015Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument blades
US908462530 Abr 201321 Jul 2015Covidien AgBattery assembly for battery-powered surgical instruments
US909536722 Oct 20124 Ago 2015Ethicon Endo-Surgery, Inc.Flexible harmonic waveguides/blades for surgical instruments
US910769030 Nov 201118 Ago 2015Covidien AgBattery-powered hand-held ultrasonic surgical cautery cutting device
US91138989 Sep 201125 Ago 2015Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US911390031 Ene 201225 Ago 2015Covidien AgMethod and system for controlling output of RF medical generator
US911394022 Feb 201225 Ago 2015Covidien LpTrigger lockout and kickback mechanism for surgical instruments
US91196248 Oct 20131 Sep 2015Covidien AgARC based adaptive control system for an electrosurgical unit
US914932325 Ene 20106 Oct 2015Covidien AgMethod of fusing biomaterials with radiofrequency energy
US914933725 Sep 20126 Oct 2015Andrew I. SchneiderSurgical glove systems and method of using the same
US916808931 Ene 201227 Oct 2015Covidien AgMethod and system for controlling output of RF medical generator
US918620030 May 201217 Nov 2015Covidien AgSystem and method for tissue sealing
US919871429 Jun 20121 Dic 2015Ethicon Endo-Surgery, Inc.Haptic feedback devices for surgical robot
US919872024 Feb 20141 Dic 2015Covidien LpElectrosurgical pencil including improved controls
US922052728 Jul 201429 Dic 2015Ethicon Endo-Surgery, LlcSurgical instruments
US922676615 Mar 20135 Ene 2016Ethicon Endo-Surgery, Inc.Serial communication protocol for medical device
US922676729 Jun 20125 Ene 2016Ethicon Endo-Surgery, Inc.Closed feedback control for electrosurgical device
US92329796 Feb 201312 Ene 2016Ethicon Endo-Surgery, Inc.Robotically controlled surgical instrument
US923792115 Mar 201319 Ene 2016Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US924172815 Mar 201326 Ene 2016Ethicon Endo-Surgery, Inc.Surgical instrument with multiple clamping mechanisms
US924173115 Mar 201326 Ene 2016Ethicon Endo-Surgery, Inc.Rotatable electrical connection for ultrasonic surgical instruments
US924176425 Sep 201226 Ene 2016Andrew I. SchneiderMethod of making polymeric gloves having embedded surgical support systems and discrete elements
US927179020 Ago 20131 Mar 2016Coviden LpReal-time arc control in electrosurgical generators
US928304529 Jun 201215 Mar 2016Ethicon Endo-Surgery, LlcSurgical instruments with fluid management system
US931426118 Feb 201519 Abr 2016Covidien AgBattery-powered hand-held ultrasonic surgical cautery cutting device
US932678829 Jun 20123 May 2016Ethicon Endo-Surgery, LlcLockout mechanism for use with robotic electrosurgical device
US933928918 Jun 201517 May 2016Ehticon Endo-Surgery, LLCUltrasonic surgical instrument blades
US934553514 Oct 201424 May 2016Covidien LpApparatus, system and method for performing an electrosurgical procedure
US935175429 Jun 201231 May 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments with distally positioned jaw assemblies
US93752705 Nov 201328 Jun 2016Covidien AgVessel sealing system
US93752715 Nov 201328 Jun 2016Covidien AgVessel sealing system
US939303729 Jun 201219 Jul 2016Ethicon Endo-Surgery, LlcSurgical instruments with articulating shafts
US940862229 Jun 20129 Ago 2016Ethicon Endo-Surgery, LlcSurgical instruments with articulating shafts
US941485325 Mar 201316 Ago 2016Ethicon Endo-Surgery, LlcUltrasonic end effectors with increased active length
US942724910 May 201330 Ago 2016Ethicon Endo-Surgery, LlcRotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US943966815 Mar 201313 Sep 2016Ethicon Endo-Surgery, LlcSwitch arrangements for ultrasonic surgical instruments
US943966928 Mar 201313 Sep 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments
US944583221 Jun 201320 Sep 2016Ethicon Endo-Surgery, LlcSurgical instruments
US94630675 Nov 201311 Oct 2016Covidien AgVessel sealing system
US947456427 Mar 200625 Oct 2016Covidien AgMethod and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US94982456 May 201422 Nov 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments
US95044833 Jul 201229 Nov 2016Ethicon Endo-Surgery, LlcSurgical instruments
US950485520 Mar 201529 Nov 2016Ethicon Surgery, LLCDevices and techniques for cutting and coagulating tissue
US951085011 Nov 20136 Dic 2016Ethicon Endo-Surgery, LlcUltrasonic surgical instruments
US952203221 May 201420 Dic 2016Covidien AgCircuit and method for reducing stored energy in an electrosurgical generator
US954977511 Mar 201424 Ene 2017Covidien AgIn-line vessel sealer and divider
US95791454 Feb 201428 Feb 2017Covidien AgFlexible endoscopic catheter with ligasure
US95857163 Jun 20147 Mar 2017Covidien AgVessel sealing instrument with electrical cutting mechanism
US962323728 Sep 201518 Abr 2017Ethicon Endo-Surgery, LlcSurgical generator for ultrasonic and electrosurgical devices
US963613510 Nov 20142 May 2017Ethicon Endo-Surgery, LlcUltrasonic surgical instruments
US963616514 Feb 20142 May 2017Covidien LpSystems and methods for measuring tissue impedance through an electrosurgical cable
US964264412 Mar 20159 May 2017Ethicon Endo-Surgery, LlcSurgical instruments
US964266527 Feb 20149 May 2017Covidien AgMethod and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US96491266 Ene 201516 May 2017Ethicon Endo-Surgery, LlcSeal arrangements for ultrasonically powered surgical instruments
US965567014 Feb 201423 May 2017Covidien LpSystems and methods for measuring tissue impedance through an electrosurgical cable
US96556741 Oct 201423 May 2017Covidien LpApparatus, system and method for performing an electrosurgical procedure
US970033920 May 200911 Jul 2017Ethicon Endo-Surgery, Inc.Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US97003432 Nov 201511 Jul 2017Ethicon Endo-Surgery, LlcDevices and techniques for cutting and coagulating tissue
US970700412 Mar 201518 Jul 2017Ethicon LlcSurgical instruments
US970702720 May 201118 Jul 2017Ethicon Endo-Surgery, LlcMedical device
US97135074 Ene 201625 Jul 2017Ethicon Endo-Surgery, LlcClosed feedback control for electrosurgical device
US972411815 Mar 20138 Ago 2017Ethicon Endo-Surgery, LlcTechniques for cutting and coagulating tissue for ultrasonic surgical instruments
US973732623 Oct 201522 Ago 2017Ethicon Endo-Surgery, LlcHaptic feedback devices for surgical robot
US97439479 Dic 201529 Ago 2017Ethicon Endo-Surgery, LlcEnd effector with a clamp arm assembly and blade
US976416420 Dic 201319 Sep 2017Ethicon LlcUltrasonic surgical instruments
US976837323 Ene 201519 Sep 2017Covidien AgSwitched resonant ultrasonic power amplifier system
US97702872 May 201426 Sep 2017Covidien LpSystem and method for delivering high current to electrosurgical device
US97821807 May 201210 Oct 2017Covidien AgMethod of maintaining constant movement of a cutting blade of an ultrasonic waveguide
US979540518 Feb 201524 Oct 2017Ethicon LlcSurgical instrument
US979580813 Mar 201524 Oct 2017Ethicon LlcDevices and techniques for cutting and coagulating tissue
US980164828 Oct 201431 Oct 2017Ethicon LlcSurgical instruments
US20030139742 *23 Ene 200224 Jul 2003Wampler Scott D.Feedback light apparatus and method for use with an electrosurgical instrument
US20040206138 *4 May 200421 Oct 2004Kensington Microware LimitedComputer physical security device
US20040230262 *17 Feb 200418 Nov 2004Sartor Joe D.Motion detector for controlling electrosurgical output
US20050113823 *20 Nov 200326 May 2005Reschke Arlan J.Electrosurgical pencil with improved controls
US20050113824 *6 Oct 200426 May 2005Sartor Joe D.Electrosurgical pencil with improved controls
US20050150262 *9 Dic 200414 Jul 2005Acco Brands, Inc.Computer physical security device
US20050150263 *9 Dic 200414 Jul 2005Acco Brands, Inc.Computer physical security device
US20050215995 *13 May 200529 Sep 2005Japan Medical Dynamic Marketing, Inc.Electromagnetic field surgical device and method
US20060041257 *5 Ago 200523 Feb 2006Sartor Joe DElectrosurgical pencil with improved controls
US20060058783 *23 Jul 200316 Mar 2006Sherwood Services AgElectrosurgical pencil with drag sensing capability
US20060112740 *29 Nov 20041 Jun 2006Acco Brands, Inc.Security device including engagement member
US20060178667 *24 Ene 200610 Ago 2006Sartor Joe DElectrosurgical pencil with advanced es controls
US20060235378 *18 Abr 200519 Oct 2006Sherwood Services AgSlider control for ablation handset
US20060293655 *28 Jun 200528 Dic 2006Sherwood Services AgElectrode with rotatably deployable sheath
US20070174947 *19 Ene 20062 Ago 2007Andrew SchneiderSurgical glove system
US20070192931 *1 Nov 200623 Ago 2007Schneider Andrew ISurgical glove system
US20090012516 *17 Jun 20088 Ene 2009Gyrus Medical LimitedElectrosurgical system
US20090138012 *30 Ene 200928 May 2009Sherwood Services AgElectrode with Rotatably Deployable Sheath
US20090157067 *17 Dic 200718 Jun 2009Thermage, Inc.Method and apparatus for digital signal processing for radio frequency surgery measurements
US20090248010 *23 Jun 20081 Oct 2009Monte FryElectrosurgical Pencil Including Improved Controls
US20090248017 *26 Feb 20091 Oct 2009Tyco Healthcare Group LpElectrosurgical Pencil Including Improved Controls
US20090322034 *27 Jun 200831 Dic 2009Cunningham James SHigh Volume Fluid Seal for Electrosurgical Handpiece
US20100004669 *26 Ago 20097 Ene 2010Smith Kevin WCordless Hand-Held Ultrasonic Cautery Cutting Device and Method
US20100094288 *10 Oct 200815 Abr 2010Tyco Healthcare Group LpSystem and Method for Delivering High Current to Electrosurgical Device
US20100204696 *10 Feb 200912 Ago 2010Tyco Healthcare Group LpExtension Cutting Blade
US20100280513 *14 Abr 20104 Nov 2010Old Dominion University Research FoundationSystem and method for applying plasma sparks to tissue
US20110071520 *23 Sep 200924 Mar 2011Tyco Healthcare Group LpMethods and Apparatus for Smart Handset Design in Surgical Instruments
US20110077631 *28 Sep 200931 Mar 2011Tyco Healthcare Group LpElectrosurgical Generator User Interface
US20110167619 *25 Mar 201114 Jul 2011Smith Kevin WCordless Hand-Held Ultrasonic Cautery Cutting Device
US20110172689 *25 Mar 201114 Jul 2011Smith Kevin WMethod of Maintaining Constant Movement of a Cutting Blade on an Ultrasonic Waveguide
US20110178542 *25 Mar 201121 Jul 2011Smith Kevin WCordless Hand-Held Ultrasonic Cautery Cutting Device
US20110191935 *6 Abr 201111 Ago 2011Schneider Andrew ISurgical glove system
US20110196368 *17 Feb 201111 Ago 2011Covidien AgOpen Vessel Sealing Instrument
US20120253339 *7 Feb 20124 Oct 2012Tyco Healthcare Group LpRadio frequency-based surgical implant fixation apparatus
US20150001956 *26 Jun 20141 Ene 2015Tdk CorporationWireless power receiving device, and wireless power transmission device
US20160174636 *5 Ene 201623 Jun 2016Andrew I. SchneiderMethod of making polymeric gloves having embedded surgical support systems and discrete elements
USD68022012 Ene 201216 Abr 2013Coviden IPSlider handle for laparoscopic device
USRE403888 May 200317 Jun 2008Covidien AgElectrosurgical generator with adaptive power control
EP1034747A1 *3 Mar 200013 Sep 2000Gyrus Medical LimitedElectrosurgery system and instrument
EP1197184A1 *27 May 199817 Abr 2002Kabushikikaisha Nihon M.D.MApparatus for biological tissue treatment utilizing high frequency
EP1197184B1 *27 May 199827 Abr 2005Kabushikikaisha Nihon M.D.MApparatus for biological tissue treatment utilizing high frequency
EP1645233A1 *6 Oct 200512 Abr 2006Sherwood Services AGElectrosurgical pencil with improved controls
EP1707145A3 *31 Mar 200625 Mar 2009Covidien AGElectrosurgical pencil with advanced es controls
EP2292171A3 *6 Oct 200517 Sep 2014Covidien AGElectrosurgical pencil with improved controls
WO1996039087A1 *3 Jun 199612 Dic 1996Valleylab Inc.Exit spark control for an electrosurgical generator
WO1998040022A1 *10 Mar 199817 Sep 1998The University Of Iowa Research FoundationRemote controlled coagulator system and methods
WO2002054967A1 *15 Ene 200118 Jul 2002Silhouet-Tone LtéeProbe assembly, device and system for rf epilation
WO2005060849A1 *20 Nov 20037 Jul 2005Sherwood Services AgElectrosurgical pencil with plurality of controls
WO2011025857A1 *26 Ago 20103 Mar 2011Syntheon, LlcTwo -stage switch for cordless hand-held ultrasonic cautery cutting device
Clasificaciones
Clasificación de EE.UU.606/45, 606/49, 606/38
Clasificación internacionalA61B18/12
Clasificación cooperativaA61B2018/1253, A61B18/1206
Clasificación europeaA61B18/12G