Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3881621 A
Tipo de publicaciónConcesión
Fecha de publicación6 May 1975
Fecha de presentación2 Jul 1973
Fecha de prioridad2 Jul 1973
Número de publicaciónUS 3881621 A, US 3881621A, US-A-3881621, US3881621 A, US3881621A
InventoresDomas Adomaitis
Cesionario originalContinental Can Co
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Plastic container with noneverting bottom
US 3881621 A
Resumen
A plastic container having a lower side wall of ogival configuration merging into a bend-load resistant thickened annulus at the juncture of a base of a conical inverted dome center section of the bottom.
Imágenes(2)
Previous page
Next page
Descripción  (El texto procesado por OCR puede contener errores)

O Umted States Patent 11 1 1111 3,881,621 Adomaitis May 6, 1975 1 PLASTIC CONTAINER WITII 3,643,829 2 1972 Lachner 215 1 c NONEVERTING BOTTOM 3,655,084 4/1972 Willhaus 215/1 C I 3,718,229 2 1973 Wyeth [75] Inventor: Domas Adomaltls, Ch1cago, 111. 3,720,339 3 1973 Khetani 3,722,726 3/1973 Stewart [73] Assgnee' g 'g fi" 3,759,410 9/1973 Uhlig 215/1 c or 3,811,588 5/1974 Vermeerbergen 215 1 c [22] Filed: July 2, 1973 Primary Examiner-William 1. Price [21] Appl' 3753l0 Assistant Examiner-R. E. Hart Attorney, Agent, or FirmJ0hn J. Kowalik; Joseph E. [52] U.S. Cl. 215/1 C; 215/12 R Kerwin; William A. Dittmann [51] Int. Cl. B65d 23/00 [58] Field of Search 215/1 C, 12 R; 62/457, [57] ABSTRACT A plastic container having a lower slde wall of ogival [56] References Cited configuration merging into a bend-load resistant thick- UNITED STATES PATENTS ened annulus at the uncture of a base of a comcal 1nverted dome center sect1on of the bottom. 3,043,461 7/1962 Glassco 3,511,401 5/1970 Lachner 215/1 C 10 Claims, 6 Drawing Figures PLASTIC CONTAINER WITH NONEVERTING BOTTOM DISCUSSION OF THE PRIOR ART In the construction of plastic bottles, the weakest portion is the bottom of the bottle. Various configurations have been suggested including the so called champagne bottle structure which incorporates an inverted dome connected at its base to the lower edges of the side wall of the bottom. The problem with such construction is that invariably during the blow molding process, the juncture area between the base of the inverted dome and the side wall of the bottom stretches and becomes thinned out. Also this juncture area is subjected not only to tensile stresses but to severe dome loads since the inverted dome tends to revert to a hemispherical shape into what is commonly known as a bulged bottom and the bottle becomes a rocker in that it cannot stand up. In this juncture area the compressive stresses on the domed section are changing to tensile stresses and to flexural (bending) stresses. Since plastic material is weakest in tension, the critical tensile stresses are reached first and they are followed by critical flexural stresses before critical compressive stresses develop SUMMARY OF THE INVENTION This invention is directed to a novel construction of a plastic bottle for containing pressurized liquid such as carbonated drinks or beer.

The invention contemplates the provision of a novel bottom structure for such bottle which will withstand the developed pressures and will not bulge or crack.

A specific object of the invention is to provide a novel bottom construction for a plastic container by forming an integral reinforcing ring at the juncture of the inverted dome and the ogival section of the side wall of the bottle in order:

l. to arrange the components in such manner that is subjected to essentially compressive stresses;

2 to inhibit development of tensile and bending stresses at the base of the dome;

3. to minimize the material content of the bottom of the container and providing a satisfactory structure by strategically locating the material to resist the destructive stresses.

These and other objects and advantages inherent in and encompassed by the invention will become more apparent from the specification and the drawings wherein:

FIG. 1 is an elevational view of a plastic bottle made in accordance with the invention shown partly in axial section;

FIG. 2 is an enlarged axial section of the lower and bottom portions of the bottle shown in FIG. 1;

FIG. 3 is a bottom end view of the bottle;

FIG. 4 is an enlarged diagrammatic elevational view of the bottom portion of the bottle;

FIG. 5 is a longitudinal section of an apparatus for making the bottle; and

FIG. 6 is an enlarged longitudinal section of another mold assembly shown in closed position for making the bottle.

DESCRIPTION OF THE INVENTION Referring to the drawings, there is shown in FIGS. 1

and 2 the preferred themoplastic bottle structure generally designated 1 which is a hollow container having a pour opening 2 at one end defined by a lip 3 at the top of a narrow cylindrical neck 4 which is joined to a cone frustrum section 5. The cone section 5, which forms the upper section of the side wall of the bottle, merges at its base end into a cylindrical intermediate section 7 which in turn merges at its lower end into a truncated hemispherical or ogival lower section 8.

The bottom generally designated 9 comprises a central conical section 10 centered on the center line XX of the bottle and comprises a top apex l3 and a downwardly sloping conical wall section 14 which merges into a thick annulus or junction ring 15 which interconnects with the base edge portion 16 of conical wall section 14 and the inturned lower edge portion 17 of an ogival section 8 of the lowermost portion of the side wall of the bottle.

The reinforcing junction ring is flattened at 19 to pro vide a seat normal to the axis X-X of the bottle and has a transversely arcuate upper surface contour 20 which provides a stress resistant structure. The thickest section identified at 22 is centered in the junction area and the ring is feathered or blended at its inner circumference 24 into the interior surface 25 of the conical section above its base edge 16 and also blends at its outer circumference 21 into the inner face 28 of the ogival section above its lower edge.

FIG. 4 is a diagrammatic representation of the displacement of different sections of the bottom portion of the bottle due to pressurizing of the bottle. It will be noted that the height C-D of the dome can decrease to C D only if the base diameter A-B and the circumference of the dome at these points elongate to A'B' concurrent with bending of the lower ogival section of the dome outwardly so that points A, B would move to positions A B respectively. The provision of the reinforcing ring 15 of the same material as the container and at the junction or transition area between the base of the conical portion and the ogival portion not only provides a practical structure, but also a construction which resists the expansion, this being done by thickening the critical area to provide adequate strength.

The bottle shown may be made of the type of plastic material such as Du Pont NR- 1 6 material or Barex-2 l 0 sold by Vistron Corporation.

The bottle may be formed by the blow molding process wherein the plastic is extruded through an extruder which comprises a shell 36 having a bore 37 into which the melted plastic is force fed from an inlet 38. The plastic material exits through an annular slot 39 which is defined between the bore surface 37 and a core blank 40. The core element 40 is axially movably by a motor 42 and the motor is connected to a programmer 44 of well known type which is effective to adjust the position of the core and particularly to vary the cross-sectional area of the metering slot 39 by displacing the position of the frusto-conical head 45 of the core element.

The plastic material is extruded to form a parison or tubular preform 46 of generally uniform thickness except for a predetermined bulge of material at 47 which is to form the reinforcing ring 15 at the bottom of the bottle. This bulge or thickness is an annulus which is between 2 or 3 times the thickness of the remainder of the parison length 46.

The thickened portion is formed by opening the clearance between the core blank 40 and the bore 37 to enlarge the metering slot 39.

As best seen in FIG. 5 the annulus is positioned in relation to the bottom forming surfaces 50, 50 of the mold halves 51, 51 such that when the molds are closed as seen in FIG. 6 and the air is blown into the bottle by the air nozzle 53, the thickened portion will locate, due to the stretch of the material and the formation of the dome portion on the core inset 55, in the groove 56 of the molds 51 at the juncture of the truncated hemicylindrical portion 8, the mold providing in the groove 56 an annular surface 57 which forms the seating area of the bottle and causes the material of the ring to bulge inwardly of the bottle and located essentially tangentially to the hemispherical surface section of the side wall of the bottom. The inward displacement of the ring-forming material thus does not modify the spherical maximum-pressure-accommodating contour of the bottom section of the bottle and being of thicker section than the dome portion which is loaded in compression and being located at the base of the dome portion is effective to resist the hoop stresses. Tests on NR-16 material 42 mils thick at 140F for 1 hour withstood stresses of about 4000 psi, a stress load of about 6500 psi was withstood by material 25 mils thick and material 32 mils thick withstood a stress load of about 5200 psi. Thus it was empirically established that a ring thickness of 2 or 3 times the wall thickness would be adequate to contain the selected pressurized beverage or liquid without eversion.

A preferred form of the invention has been described for purposes of best illustrating the invention. It will be realized that other modifications will now become apparent which come within the scope of the appended claims.

I claim:

1. In a generally cylindrical thermoplastic container biaxially oriented, at least in the generally cylindrical section, the improvement wherein the bottom configuration comprises essentially of a series of connected geometric curves rotationally symmetrical about the center line of the bottle comprising:

a truncated hemispherical section at the lower end of said bottom;

an inwardly concaved bottom section within said hemispherical section having an upwardly directed apex and a base adjacent to the lower end of said hemispherical section;

an arcuate toroidal juncture section between the base and the lower edge of said hemispherical section; and

a strength-imparting thick annulus located at and integrated with said juncture section and thicker than said sections.

2. The invention according to claim 1 and said annulus projecting widthwise into the container.

3. The invention according to claim 2 and said annulus formed of thermoplastic material of said container.

4. The invention according to claim 3 and said annulus merging into the internal surfaces of said conical section and said hemispherical section.

5. The invention according to claim 4 and said annulus located in the high stress area between said conical section and said hemispherical section.

6. The invention according to claim 5 and said annulus projecting widthwise into the bottle.

7. The invention according to claim 6 and said bottom having a continuous smoothly blended uninterrupted exterior surface contour on the conical section and hemispherical section and said surface contour being substantially flat in axial alignment with the annulus and providing a seating surface for the bottle normal to the axis thereof.

8. The invention according to claim 7 and said hemispherical section and conical section having an area of intersection inwardly of the cylindrical side wall of the bottle and said annulus providing an arcuate pressuredistributing surface area within the container.

9. The invention according to claim 8 and said surface area being essentially in axial alignment with the base edge portion of said conical section.

10. The invention according to claim 1 and said strength-imparting annulus being essentially centered between the lower edge portions of said center section and said hemispherical section and providing extended surface areas converging into the container and sloping toward the adjacent walls of the conical and hemispherical sections transversely of the axis of the con-

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3043461 *26 May 196110 Jul 1962Purex CorpFlexible plastic bottles
US3511401 *11 Jul 196812 May 1970Lever Brothers LtdPressure-resistant plastics bottle
US3643829 *22 Ago 196922 Feb 1972Lever Brothers LtdPressure-resistant plastics bottle
US3655084 *15 Dic 197011 Abr 1972Bosch Gmbh RobertContainer with pressure retaining sealing elements
US3718229 *26 Oct 197127 Feb 1973Du PontNoneverting bottom for thermoplastic bottles
US3720339 *24 Sep 197013 Mar 1973Monsanto CoPlastic container for pressurized materials-a
US3722726 *1 Nov 197127 Mar 1973Du PontNoneverting bottom for thermoplastic bottles
US3759410 *15 Dic 197118 Sep 1973Owens Illinois IncPressure resistant plastic container
US3811588 *6 Abr 197221 May 1974Saint GobainBottle
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3973693 *5 Mar 197510 Ago 1976Plastona (John Waddington) LimitedContainers for containing carbonated beverages
US4231483 *31 Oct 19784 Nov 1980Solvay & Cie.Hollow article made of an oriented thermoplastic
US4301933 *7 Dic 197924 Nov 1981Yoshino Kogyosho Co., Ltd.Synthetic resin thin-walled bottle
US4318489 *31 Jul 19809 Mar 1982Pepsico, Inc.Plastic bottle
US4334627 *24 Mar 198115 Jun 1982The Continental Group, Inc.Blow molded plastic bottle
US4352435 *30 Ene 19815 Oct 1982Yoshino Kogyosho Co., Ltd.Synthetic resin made thin-walled bottle
US4355728 *30 Ene 198126 Oct 1982Yoshino Kogyosho Co. Ltd.Synthetic resin thin-walled bottle
US4403706 *8 Jun 198213 Sep 1983The Continental Group, Inc.Plastic container with hollow internal rib reinforced bottom and method of forming the same
US4525401 *30 Nov 197925 Jun 1985The Continental Group, Inc.Plastic container with internal rib reinforced bottom
US4573597 *20 Dic 19834 Mar 1986Metal Box P.L.C.Containers
US4780257 *29 May 198725 Oct 1988Devtech, Inc.One piece self-standing blow molded plastic bottles
US4785948 *1 May 198722 Nov 1988Herbert StrassheimerBlow molded plastic container having a reinforced wall structure and preform therefor
US4865206 *23 Ene 198912 Sep 1989Hoover Universal, Inc.Blow molded one-piece bottle
US4889752 *7 Dic 198726 Dic 1989Devtech, Inc.One piece self-standing blow molded plastic containers
US4892205 *15 Jul 19889 Ene 1990Hoover Universal, Inc.Concentric ribbed preform and bottle made from same
US4927679 *21 Oct 198822 May 1990Devtech, Inc.Preform for a monobase container
US4969563 *24 Ago 198913 Nov 1990Plasticon Patents, S.A.Self-stabilizing base for pressurized bottle
US4978015 *10 Ene 199018 Dic 1990North American Container, Inc.Plastic container for pressurized fluids
US4989738 *13 Oct 19895 Feb 1991General Electric CompanyPlastic bottle with reinforced concave bottom
US4997692 *4 Dic 19845 Mar 1991Yoshino Kogyosho Co., Ltd.Synthetic resin made thin-walled bottle
US5024340 *4 Oct 199018 Jun 1991Sewell Plastics, Inc.Wide stance footed bottle
US5038947 *21 May 199013 Ago 1991Plasticon Patents, S.A.Self-stabilizing base for pressurized bottle
US5080244 *31 May 198914 Ene 1992Yoshino Kogyosho Co., Ltd.Synthetic resin thin-walled bottle and method of producing same
US5160059 *2 Abr 19873 Nov 1992Continental Pet Technologies, Inc.Reinforced container base and method of forming same
US5205434 *9 Jun 199227 Abr 1993Constar Plastics, Inc.Footed container
US5427258 *26 Mar 199327 Jun 1995Continental Pet Technologies, Inc.Freestanding container with improved combination of properties
US5482170 *15 Nov 19949 Ene 1996Plastic Technologies, Inc.Multi-chamber containers
US5599496 *27 Sep 19944 Feb 1997Continental Pet Technologies, Inc.Method of making a refillable polyester container
US5804227 *18 Sep 19968 Sep 1998Colgate-Palmolive CompanyInspection mold for a multi-chamber container preform
US5853829 *29 Ene 199729 Dic 1998Continental Pet Technologies, Inc.Refillable polyester container and preform for forming the same
US5988416 *10 Jul 199823 Nov 1999Crown Cork & Seal Technologies CorporationFooted container and base therefor
US621332522 Nov 199910 Abr 2001Crown Cork & Seal Technologies CorporationFooted container and base therefor
US629647126 Ago 19982 Oct 2001Crown Cork & Seal Technologies CorporationMold used to form a footed container and base therefor
US67695618 Oct 20023 Ago 2004Ball CorporationPlastic bottle with champagne base
US715937410 Nov 20049 Ene 2007Inoflate, LlcMethod and device for pressurizing containers
US7409794 *19 Sep 200512 Ago 2008Daniel TrianoFishing line casting and bait projectile system
US76370825 Oct 200629 Dic 2009Inoflate, LlcMethod and device for pressurizing containers
USRE36639 *16 May 19964 Abr 2000North American Container, Inc.Plastic container
EP0029639A1 *9 Jun 19803 Jun 1981The Continental Group, Inc.Plastics container, method of forming same, a preform for use in forming the container and a mold unit for forming the preform
EP0277557A2 *22 Ene 198810 Ago 1988Plasticon Patents, S.A.Blow molded plastic container
EP0293147A2 *23 May 198830 Nov 1988Devtech IncOne piece self-standing blow molded plastic containers
EP0577155A1 *23 May 19885 Ene 1994Devtech, Inc.One-piece self-standing blow molded plastic containers
EP0751071A1 *26 Jun 19952 Ene 1997THE PROCTER & GAMBLE COMPANYA container for liquid products
WO2000002783A17 Jul 199920 Ene 2000Crown Cork & Seal Tech CorpFooted container and base therefor
WO2000012289A118 Ago 19999 Mar 2000Crown Cork & Seal Tech CorpMould assembly for footed container with ribs between the feet
Clasificaciones
Clasificación de EE.UU.215/373, D09/520, 215/12.1, 220/606, D09/500
Clasificación internacionalB29C49/00, B29C49/04, B65D1/02
Clasificación cooperativaB29C49/0073, B65D1/0284, B29B2911/1404, B29B2911/1402, B29B2911/14033, B29C49/04, B29B2911/14026
Clasificación europeaB65D1/02D2E, B29C49/00G, B29C49/04