Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3886945 A
Tipo de publicaciónConcesión
Fecha de publicación3 Jun 1975
Fecha de presentación7 Nov 1973
Fecha de prioridad14 Jun 1972
Número de publicaciónUS 3886945 A, US 3886945A, US-A-3886945, US3886945 A, US3886945A
InventoresJoseph F Andera, Joseph G Stumpf
Cesionario originalFrigitronics Of Conn Inc
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Cryosurgical apparatus
US 3886945 A
Resumen  disponible en
Imágenes(2)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

United States Patent 11 1 Stumpt et al.

1111 3,886,945 June 3, 1975 CRYOSURGICAL APPARATUS {75] Inventors: Joseph G. Stumpi, Fairfield; Joseph F. Andera, Trumbull, both of Conn.

[73] Assignee: Frigitronics of Conn., lnc., Shelton,

Conn.

[63] Continuation-impart of Ser. No. 262,543. June 14,

1972, Pat. No. 3.807.403v

Primary Examiner-Channing L. Pace Attorney, Agent, or Firm-Buckles and Bramblett ABSTRACT There is disclosed a cryosurgical apparatus of the type which operates from a source of compressed gas. it includes a handle portion with removable and interchangeable probes. A defrost valve in the exhaust conduit permits easy and quiet operation by the surgeon.

52 us. (:1 128/303.1; 239/597 It is constructed such a manner that the exhaust 511 int. c1. A6lb 17/36; BOSb 1/00 valve be clsed unless Probe is My Seated 58 Field of Search 62/293- i2s/303.1- the handle includes an improved "0111c which is substantially less critical than prior art 1102 zles and permits simplified and less expensive con- [56] References Cited Strucuon- I ED ST E PATENTS The foregoing abstract is not to be taken either as a 359 602 3H8 Gray 239,597 X complete exposition or as a limitation of the present 1,0511069 1/1913 Bahni I:It:12:11:13.... 239 597 understand mute and 5 5 (M926 Spigdmire 239/597 X extent of the technical disclosure of this application, 2,645,097 7/1953 Posch l28/303. UX reference must be had to the following detailed 3,4ll,483 ll/1968 Canoy l28/303.l X description and the accompanying drawings as well as 3,696 8l3 l0/l972 Wallach 128/3031 to the claims, 3,807,403 4/l974 Stumpf et al. [28/3031 766,100 4/1934 France 239/597 7 71526628 44, 5 60 M V f/ i i t a 131: is

CRYOSURGICAL APPARATUS BACKGROUND OF THE INVENTION This application is a continuation in part of our copending US. Pat. Ser. No. 262,543, filed June 14,1972 now US. Pat. No. 3,807,403, for Cryosurgical Apparatus".

This invention pertains to cryosurgical instruments of the type which are cooled under the influence of high pressure gas escaping from an orifice. Instruments of this type are well known in the art and are widely employed for a number of surgical procedures such as the necrosis of diseased tissue. Several gases exhibit the Joule-Thomson effect and may be used in the operation of the instrument. The most common, however, are nitrous oxide and carbon dioxide.

In instruments of this type, the gas expansion orifice is of an extremely small size and in all prior art instruments the spacing between the orifice and the inner wall of the cooling tip is extremely critical. For example, with prior art instruments, the orifice is positioned approximately 0.050 inch from the inner wall of the tip and the permitted tolerance is only 0.010 inch. This results in such instruments being difficult and costly to manufacture For example. the parts of such instruments are commonly threaded so that they may be factory adjusted prior to shipment.

Another problem connected with prior art instruments of this type is found in the exhaust valve of instruments which have controlled defrost. For example, one such instrument is normally warm, which means that the exhaust valve is normally closed and the device is filled with compressed gas at bottle pressure. As the bottle gas pressure may commonly be as high as 800 psi, it will be quite apparent that this creates an explosion hazard. The exhaust valve used in this prior art de vice comprises a cylindrical piston which seats against a small exhaust orifice and is retained in the seated position by means of a heavy spring. The piston is raised against the force of a spring by means of a finger operated toggle. When the surgeon wishes to cool the probe tip, he must apply substantial force to depress the toggle which is, itself, detrimental, particularly in the case of very delicate surgical procedures. Secondly, as soon as the piston begins to leave the orifice, the full bottle pressure, which was formerly applied only to a small area of the piston, is now applied to the full area of the piston end, slamming the piston open with an explosive-like report.

Still another problem with prior art devices arises from the fact that most of them are designed with probe tips of specific shapes and sizes. This requires a surgeon to have different instruments for different surgical applications. It has been proposed to provide a single in strument with interchangeable probes. However this creates a problem due to the high pressures referred to in the preceding paragraph. If a probe were not fully seated, by negligence or otherwise, or if it were not fully seated because of a defect such as stripped threads, the high pressures involved could result in the probe and tip being forcibly ejected during a surgical procedure with potentially disastrous results.

Accordingly, it is a primary object of the present invention to provide an improved cryosurgical instrument of the gas operated type having replaceable and interchangeable probe tips. Another object is to provide such an instrument wherein the exhaust valve cannot be closed to pressurize the instrument unless the probe is fully seated. Another object is to provide such an instrument which is only intermittently exposed to full bottle gas pressure. Another object is to provide such an instrument which has a substantially silent and easily operated exhaust valve. The manner in which these objects are achieved will be apparent from the following description and appended claims.

SUMMARY OF THE INVENTION The invention comprises a gas operated cryosurgical instrument which comprises a handle and a movable first valve member in the handle. A tubular exhaust conduit terminates at one end in a hollow tip of high thermal conductivity. The other end defines a second valve member and includes means for detachably securing the exhaust conduit to the handle. A gas delivery conduit extends through the exhaust conduit when it is so secured and terminates at a nozzle within the tip. Means are provided for selectively advancing the first valve member against the second valve member to close the exhaust conduit. Means are also provided for limiting the movement of the first valve member to prevent closure of the exhaust conduit when it is improperly secured to the handle.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a perspective view of a cryosurgical instru ment in accordance with the present invention connected to a source of bottled gas;

FIG. 2 is an enlarged cross section taken through the instrument of FIG. 1;

FIG. 3 is a cross section of the exhaust valve of FIG. 2 shown in its closed position;

FIG. 4 is a greatly enlarged cross section of the nozzle portion of the apparatus;

FIG. 5 is an illustration of the gas jet obtained with the nozzle of FIG. 4;

FIG. 6 is a cross section taken substantially along the line 66 of FIG. 5;

FIG. 7 is an illustration of one type nozzle used in the prior art;

FIG. 8 is a cross section taken substantially along the line 88 of FIG. 7;

FIG. 9 is an illustration of another type nozzle used in the prior art;

FIG. 10 is an enlarged cross section showing the orifice of the FIG. 9 nozzle; and

FIG. 11 shows still another type nozzle used in the prior art.

DESCRIPTION OF THE PREFERRED EMBODIMENT With particular reference to FIG. 1, there is disclosed an instrument of the type utilized in treating cervicitis. It comprises an elongated probe 10 mounted in a handle l2 and terminating in a substantially conical hollow applicator tip 14. A line I6 is connected between the instrument and a suitable source 18 of pressurized gas. A trigger 20 extends from the handle for selective defrosting as will be explained.

Referring to FIG. 2, the handle I2 will be seen to define a recess 22 for the trigger 20 and a Tshaped recess 24 communicating therewith and enclosing a metal T fitting 26. The horizontal portion of fitting 26 has internal threads 28 and the lower end of the vertical portion is provided with similar internal threads 30. Within the vertical portion of the T fitting 26 and near its juncture with the horizontal portion. there is defined an internal shoulder 32. Mounted against the shoulder 32 is a resilient O ring 34. Bearing against the O-ring 34 is a circular plastic sealing ring 36. A trunnion ball 38 is mounted against the sealing ring 36. The trunnion ball 38 is integral with an upper rod 40 and lower rod 42. The end of upper rod 40 includes a flattened portion 44 which defines an opening 46 therein. Opening 46 is substantially coaxial with the bore of the horizontal portion of T-fitting 26, as illustrated in FIG. 2. The lower rod 42 extends into the recess 22 of handle 12 and the trigger 20 is secured to lower rod 42 by means of a set screw 48. The trunnion ball assembly is retained within the T-fitting by a lower plastic sealing ring 50 supporting the trunnion ball 38, a compression spring 52, and an annular retainer nut 54 threaded into the threads 30. A trigger return coil spring 56, supported within a bore 58 in trigger 20 and seated against the back wall of recess 22, maintains the trigger in its normally extended position as shown in FIG. 2.

The flexible gas delivery line 16 is connected by means of a retainer ring 60 to the end of a stainless steel delivery tube 62 which extends forwardly outward of the handle and terminates at a nozzle 64. The outer diameter of tube 62 is less than the diameter of the opening 46 in the flattened portion 44 of upper rod 40. In one embodiment, the delivery tube 62 is a gauge stainless steel hypodermic tube. The tube 62 passes through a ball 66 to which it is integrally secured as by welding.

The probe tip 10 is a complete assembly which is detachable from the handle portion of the instrument. It comprises a threaded sleeve 68 which screws into the T-fitting 26 as shown. Fixedly secured to the sleeve 68, as by welding, is a stop ring 70. An O-ring 72 provides a seal between stop ring 70 and the T-fitting 26. Fixedly secured to the inside of sleeve 68 is an exhaust conduit 74 which surrounds, and is spaced from, delivery tube 62. The distal end of exhaust conduit 74 carries a sleeve 76 to which is secured the hollow tip 14. Surrounding and spaced from the exhaust conduit 74 is an insulator tube 78, secured at one end to the sleeve 76 and tip 14 and at the other to sleeve 68 and stop ring 70. This tube is provided with a knurled finger grip 80. The end of exhaust conduit 74 forms, with sleeve 68, a tapered valve seat 82.

The construction of nozzle 64 will be best understood by reference to FIG. 4. As will be seen therein, the internal diameter of the delivery tube 62 is reduced via a smooth wall reduction passage 84 to a cylindrical gas discharge passage 86. This configuration is achieved by inserting into the end of the hypodermic tube a hardened wire having an external diameter equal to the desired diameter of the gas discharge passage. The end of the tube is then swaged onto the wire and the wire is removed. In one actual embodiment, the tube 62 has an internal diameter of 0.059 inch and the internal diame ter of the gas discharge passage 86 is 0.01065 inch. The distance from the nozzle tip to the beginning of reduction (A FIG. 4) is 0.20 inch and the distance between the nozzle tip and the end reduction (8) is 0.12 inch.

The performance of the nozzle 64 is strikingly superior to those of the prior art. The reason for this is not fully understood but is believed to be due to the smooth continuous inner surface formed by the reduction passage 84 and the gas discharge passage 86. This is believed to prevent gas turbulence and permit laminar flow out of nozzle 64. FIG. 5 illustrates the gas flow from nozzle 64 as actually observed in practice. As will be seen, it presents an elongated flamelike appearance and shape. FIGS. 7-]] illustrate three prior art nozzle constructions and the jets obtained thereby. FIGS. 7 and 8 illustrate a pinched tube configuration. FIGS. 9 and 10 illustrate a rolled end construction. and FIG. 11 illustrates a type of orifice known as a double reduction orifice which comprises a series of tubes of reduced diameter. The jets from these prior art nozzles appear as indicated. In these prior art nozzles, the dis tance from the orifice to the wall of the applicator tip is very critical and the spacing must be quite close. As an example, this distance may be 0.050 inch with a tol erance of 0.010 inch. In contrast, in utilizing the nozzle of this invention, the distance from the nozzle tip to the wall may be 0.250 inch with a tolerance of i 0.060 inch. Accordingly, by means of this invention, manufacture and assembly are greatly simplified, resulting in a highly effective instrument at a much lower cost.

The described nozzle construction may be utilized in connection with either a non-defrostable or a defrostable cryosurgical probe. The probe illustrated herein is of the defrostable type. Defrosting is obtained by means of the valve illustrated in detail in FIGS. 2 and 3. When the valve is in its normally open position as shown in FIG. 2, high pressure gas entering through delivery line 16 passes through the delivery tube 62 to nozzle 64. From the nozzle it expands into tip 14 causing the tip to be cooled by the .IouleThomson effect. The expanded gas then passes rearwardly through exhaust tube 74 and out of the instrument through the T- fitting 26 and the recess 24. If desired, it may be remotely exhausted through an exhaust line enclosing delivery line 16. The high pressure exhaust gas tends to maintain the exhaust valve formed by the ball 66 and the valve seat 82 in its normally open position, with the ball retracted from the seat as shown in FIG. 2. In order to defrost the instrument, the trigger 20 is depressed by the surgeon, whereupon the trunnion ball 38 and the rods 40, 42 assume the positions illustrated in FIG. 3, forcing the ball 66 forwardly against the valve seat 82, forming a gas tight seal. With the exhaust valve closed, gas pressure within tip 14 rises to bottle pressure and the heat of compression causes rapid defrosting of the probe tip. It is important to note, however, that either of two different limit stops restrict the forward movement of ball 66. These include the point C which may be contacted by the upper rod 40 and the point D which may be contacted by the lower rod 42. No matter how much force is exerted on trigger 20, the ball 66 can be driven no further forward than the limit set by a stop. This is a very significant improvement because it means that. if the probe tip 10 is not fully seated within the T-fitting 26, the exhaust valve cannot be closed and pressurization cannot occur.

With an instrument of the type disclosed herein. a single handle and valve unit may be supplied with a plu rality of probes and tips for performing various surgical procedures. These may be readily interchanged by the surgeon or his assistant without the danger of a probe being improperly inserted. Furthermore as the valve is normally open, it will be closed only for the period of time during which the surgeon desires to defrost the probe tip. Therefore. the instrument is exposed to full bottle pressure only intermittently and for short periods of time. greatly increasing the safety of the apparatus.

It is believed that the construction and operation of this invention will now be apparent to those skilled in the art. It will also be apparent that a number of variations and modifications may be made in this invention without departing from its spirit and scope. Accordingly. the foregoing description is to be construed as illustrative only, rather than limiting. This invention is limited only by the scope of the following claims.

We claim:

1. A gas operated cryosurgical instrument which comprises: a handle defining a socket therein; a movable first valve member in said handle; a tubular exhaust conduit terminating at one end in a hollow tip of high thermal conductivity, the other end defining a second valve member and including means detachably securing said exhaust conduit seated within said socket; a gas delivery conduit mounted in said handle and extending through said socket and through said exhaust conduit when so secured and terminating at a nozzle within said tip; means for selectively advancing said first valve member against said second valve member to close said exhaust conduit when said exhaust conduit is fully seated within said socket; and means for limiting the movement of said first valve member to prevent closure of said exhaust conduit when the conduit is not fully seated within said socket.

2. The instrument of claim 1 wherein said first valve member is carried by said gas delivery conduit.

3. The instrument of claim 2 wherein said advancing means comprises a manually operable trigger connected to advance both of said delivery conduit and valve member.

4. The instrument of claim I wherein said first valve member comprises a ball.

5. The instrument of claim 1 wherein said nozzle includes a cylindrical gas discharge passage of smaller diameter than said delivery conduit and a smoothly curved reduction passage therebetween.

6. The instrument of claim 1 wherein said advancing means comprises: pivot means within said handle; a rod supported by said pivot means having a first end engaging said first valve member on one side of said pivot means and a second end on the other side of said means; and a manually operable trigger secured to the second end of said rod.

7. The instrument of claim 6 wherein said pivot means comprises a trunnion ball rotatably supported within said handle. 4

8. The instrument of claim 7 wherein said first valve member is carried by said gas delivery conduit.

9. The instrument of claim 8 wherein said first valve member comprises a ball.

10. The instrument of claim 9 wherein said nozzle includes a cylindrical gas discharge passage of smaller diameter than said delivery conduit and a smoothly curved reduction passage therebetween.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US359602 *9 Feb 188622 Mar 1887 Hose-nozzle
US1051069 *21 Oct 191121 Ene 1913Carl BoehmeOil-burner tip.
US1588503 *15 Mar 192215 Jun 1926Bethlehem Steel CorpLiquid-fuel burner
US2645097 *9 Nov 195014 Jul 1953William F TeagueThermal tooth testing instrument
US3411483 *19 Dic 196619 Nov 1968Albert G. CanoyMethod and apparatus for low temperature branding of animals
US3696813 *6 Oct 197110 Oct 1972CryomedicsCryosurgical instrument
US3807403 *14 Jun 197230 Abr 1974Frigitronics Of Conn IncCryosurgical apparatus
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US5433717 *23 Mar 199318 Jul 1995The Regents Of The University Of CaliforniaMagnetic resonance imaging assisted cryosurgery
US5706810 *2 Jun 199513 Ene 1998The Regents Of The University Of CaliforniaMagnetic resonance imaging assisted cryosurgery
US5846235 *14 Abr 19978 Dic 1998Johns Hopkins UniversityEndoscopic cryospray device
US5916212 *23 Ene 199829 Jun 1999Cryomedical Sciences, Inc.Hand held cyrosurgical probe system
US6161543 *15 Oct 199719 Dic 2000Epicor, Inc.Methods of epicardial ablation for creating a lesion around the pulmonary veins
US708362017 Jul 20031 Ago 2006Medtronic, Inc.Electrosurgical hemostat
US709423513 Ene 200422 Ago 2006Medtronic, Inc.Method and apparatus for tissue ablation
US71185663 Feb 200310 Oct 2006Medtronic, Inc.Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US71287402 Abr 200331 Oct 2006Jacobs Clemens JMethod for interrupting conduction paths within the heart
US715684516 Sep 20052 Ene 2007Medtronic, Inc.Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US716610520 Sep 200523 Ene 2007Medtronic, Inc.Pen-type electrosurgical instrument
US716914431 Oct 200330 Ene 2007Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US724715518 May 200424 Jul 2007Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US725004820 Ago 200431 Jul 2007Medtronic, Inc.Ablation system and method of use
US725005126 Abr 200631 Jul 2007Medtronic, Inc.Method and apparatus for tissue ablation
US72941433 Feb 200313 Nov 2007Medtronic, Inc.Device and method for ablation of cardiac tissue
US730932528 Jun 200518 Dic 2007Medtronic, Inc.Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US734785814 Oct 200325 Mar 2008Medtronic, Inc.Method and system for treatment of atrial tachyarrhythmias
US73645783 Dic 200429 Abr 2008Medtronic, Inc.System and method of performing an electrosurgical procedure
US73679729 Sep 20036 May 2008Medtronic, Inc.Ablation system
US74225887 Dic 20069 Sep 2008Medtronic, Inc.Pen-type electrosurgical instrument
US743525018 Feb 200514 Oct 2008Medtronic, Inc.Method and apparatus for tissue ablation
US747027230 Jun 200430 Dic 2008Medtronic, Inc.Device and method for ablating tissue
US749785729 Abr 20033 Mar 2009Medtronic, Inc.Endocardial dispersive electrode for use with a monopolar RF ablation pen
US750723528 May 200224 Mar 2009Medtronic, Inc.Method and system for organ positioning and stabilization
US75663342 Jun 200528 Jul 2009Medtronic, Inc.Ablation device with jaws
US761501520 Jun 200310 Nov 2009Medtronic, Inc.Focused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
US762878030 Nov 20048 Dic 2009Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US76781082 Jun 200516 Mar 2010Medtronic, Inc.Loop ablation apparatus and method
US767811129 Nov 200516 Mar 2010Medtronic, Inc.Device and method for ablating tissue
US769980530 Nov 200720 Abr 2010Medtronic, Inc.Helical coil apparatus for ablation of tissue
US770688213 May 200527 Abr 2010Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area
US770689426 Abr 200527 Abr 2010Medtronic, Inc.Heart wall ablation/mapping catheter and method
US77132665 Dic 200511 May 2010Myoscience, Inc.Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US774062323 Jun 200522 Jun 2010Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US774456210 Oct 200629 Jun 2010Medtronics, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US77585762 Jun 200520 Jul 2010Medtronic, Inc.Clamping ablation tool and method
US77585802 Jun 200520 Jul 2010Medtronic, Inc.Compound bipolar ablation device and method
US779446011 Ago 200814 Sep 2010Medtronic, Inc.Method of ablating tissue
US781803915 Jul 200519 Oct 2010Medtronic, Inc.Suction stabilized epicardial ablation devices
US782439916 Feb 20062 Nov 2010Medtronic, Inc.Ablation system and method of use
US785068328 Jun 200714 Dic 2010Myoscience, Inc.Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US78625586 Mar 20094 Ene 2011Myoscience, Inc.Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US78714092 Feb 200918 Ene 2011Medtronic, Inc.Endocardial dispersive electrode for use with a monopolar RF ablation pen
US78750288 Jul 200925 Ene 2011Medtronic, Inc.Ablation device with jaws
US795962620 Jul 200714 Jun 2011Medtronic, Inc.Transmural ablation systems and methods
US796396321 Ene 200521 Jun 2011Medtronic, Inc.Electrosurgical hemostat
US796781625 Ene 200228 Jun 2011Medtronic, Inc.Fluid-assisted electrosurgical instrument with shapeable electrode
US797570331 Ago 200612 Jul 2011Medtronic, Inc.Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US799813712 Abr 201016 Ago 2011Myoscience, Inc.Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US81629333 Mar 200424 Abr 2012Medtronic, Inc.Vibration sensitive ablation device and method
US816294120 Dic 201024 Abr 2012Medtronic, Inc.Ablation device with jaws
US817283714 Jun 20108 May 2012Medtronic, Inc.Clamping ablation tool and method
US82214029 Dic 200517 Jul 2012Medtronic, Inc.Method for guiding a medical device
US822141527 Jul 200717 Jul 2012Medtronic, Inc.Method and apparatus for tissue ablation
US826264927 Jul 200711 Sep 2012Medtronic, Inc.Method and apparatus for tissue ablation
US827307218 Nov 200925 Sep 2012Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US829821614 Nov 200830 Oct 2012Myoscience, Inc.Pain management using cryogenic remodeling
US833376412 May 200418 Dic 2012Medtronic, Inc.Device and method for determining tissue thickness and creating cardiac ablation lesions
US840918516 Feb 20072 Abr 2013Myoscience, Inc.Replaceable and/or easily removable needle systems for dermal and transdermal cryogenic remodeling
US840921930 Sep 20092 Abr 2013Medtronic, Inc.Method and system for placement of electrical lead inside heart
US841457311 Oct 20069 Abr 2013Medtronic, Inc.Device and method for ablation of cardiac tissue
US851233720 Ago 200420 Ago 2013Medtronic, Inc.Method and system for treatment of atrial tachyarrhythmias
US856840931 Oct 200729 Oct 2013Medtronic Advanced Energy LlcFluid-assisted medical devices, systems and methods
US86230109 Jun 20097 Ene 2014Medtronic, Inc.Cardiac mapping instrument with shapeable electrode
US863253323 Feb 201021 Ene 2014Medtronic Advanced Energy LlcFluid-assisted electrosurgical device
US866324519 Abr 20074 Mar 2014Medtronic, Inc.Device for occlusion of a left atrial appendage
US870626027 Oct 201122 Abr 2014Medtronic, Inc.Heart wall ablation/mapping catheter and method
US871527513 Sep 20126 May 2014Myoscience, Inc.Pain management using cryogenic remodeling
US880170714 Ago 201212 Ago 2014Medtronic, Inc.Method and devices for treating atrial fibrillation by mass ablation
US882148813 May 20092 Sep 2014Medtronic, Inc.Tissue lesion evaluation
US890601230 Jun 20109 Dic 2014Medtronic Advanced Energy LlcElectrosurgical devices with wire electrode
US89266352 Oct 20096 Ene 2015Medtronic, Inc.Methods and devices for occlusion of an atrial appendage
US901731822 Ene 201328 Abr 2015Myoscience, Inc.Cryogenic probe system and method
US906671222 Dic 200930 Jun 2015Myoscience, Inc.Integrated cryosurgical system with refrigerant and electrical power source
US907249817 Nov 20107 Jul 2015Myoscience, Inc.Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US910134630 Sep 201311 Ago 2015Myoscience, Inc.Pain management using cryogenic remodeling
US91138555 Mar 201325 Ago 2015Myoscience, Inc.Replaceable and/or easily removable needle systems for dermal and transdermal cryogenic remodeling
US911389628 Dic 200725 Ago 2015Medtronic, Inc.Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US915558414 Ene 201313 Oct 2015Myoscience, Inc.Cryogenic probe filtration system
US92270883 May 20105 Ene 2016Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US924175314 Ene 201326 Ene 2016Myoscience, Inc.Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments
US925416221 Dic 20069 Feb 2016Myoscience, Inc.Dermal and transdermal cryogenic microprobe systems
US929551212 Sep 201329 Mar 2016Myoscience, Inc.Methods and devices for pain management
US931429014 Ene 201319 Abr 2016Myoscience, Inc.Cryogenic needle with freeze zone regulation
US9333027 *3 Oct 201310 May 2016Medtronic Advanced Energy LlcMethod of producing an electrosurgical device
US93455267 Jul 201124 May 2016Myoscience, Inc.Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US938106123 Nov 20115 Jul 2016Medtronic Advanced Energy LlcFluid-assisted medical devices, systems and methods
US948628320 Dic 20138 Nov 2016Medtronic Advanced Energy LlcFluid-assisted electrosurgical device
US961011218 Mar 20144 Abr 2017Myoscience, Inc.Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis
US96560632 Abr 201323 May 2017Medtronic, Inc.Method and system for placement of electrical lead inside heart
US966880018 Mar 20146 Jun 2017Myoscience, Inc.Methods and systems for treatment of spasticity
US96938193 Ene 20074 Jul 2017Medtronic, Inc.Vibration sensitive ablation device and method
US97241192 Dic 20158 Ago 2017Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20040064152 *29 Sep 20021 Abr 2004Roni ZvuloniDevice, system, and method for cryosurgical treatment of cardiac arrhythmia
US20050240117 *1 Jul 200527 Oct 2005Galil Medical Ltd.Thermal sensing device for thermal mapping of a body conduit
US20070129714 *5 Dic 20057 Jun 2007Echo Healthcare LlcSubdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (FAT)
US20080015562 *20 Jul 200717 Ene 2008Medtronic, Inc.Transmural ablation systems and methods
US20080091194 *30 Nov 200717 Abr 2008Mulier Peter MHelical coil apparatus for ablation of tissue
US20080183164 *28 Jun 200731 Jul 2008Myoscience, Inc.Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US20080200910 *16 Feb 200721 Ago 2008Myoscience, Inc.Replaceable and/or Easily Removable Needle Systems for Dermal and Transdermal Cryogenic Remodeling
US20080221561 *17 Jul 200611 Sep 2008Jorg GeigerSpray Device for Dispensing a Cooling Fluid
US20090171334 *6 Mar 20092 Jul 2009Myoscience, Inc.Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US20090248001 *14 Nov 20081 Oct 2009Myoscience, Inc.Pain management using cryogenic remodeling
US20090270857 *8 Jul 200929 Oct 2009Christian Steven CAblation Device with Jaws
US20100198207 *12 Abr 20105 Ago 2010Myoscience, Inc.Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US20110144631 *17 Nov 201016 Jun 2011Myoscience, Inc.Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US20140026395 *3 Oct 201330 Ene 2014Medtronic Advanced Energy LlcFluid-assisted electrosurgical devices, and methods of manufacture thereof
Clasificaciones
Clasificación de EE.UU.606/26, 239/597
Clasificación internacionalA61F7/12, F25B9/02, A61B18/02
Clasificación cooperativaF25B2309/022, F25B9/02, A61F7/12, F25B2309/021, A61B18/02
Clasificación europeaF25B9/02, A61B18/02, A61F7/12
Eventos legales
FechaCódigoEventoDescripción
11 Mar 1992ASAssignment
Owner name: COOPERVISION, INC. A NY CORPORATION, NEW YORK
Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:FRIGI ACQUISITION, INC., A CORPORATION OF DE;REEL/FRAME:006047/0568
Effective date: 19911004
Owner name: FRIGI ACQUISITION, INC., CONNECTICUT
Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:COOPERVISION, INC. A CORP. OF NEW YORK;REEL/FRAME:006047/0578
11 Mar 1992AS27Nunc pro tunc assignment
Free format text: FRIGI ACQUISITION, INC. A DE CORP. 770 RIVER ROAD SHELTON, CONNECTICUT 06484 * COOPERVISION, INC. ACORP. OF NEW YORK : 19911004
16 Jul 1990ASAssignment
Owner name: FRIGITRONICS OF CONN., INC.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK COMMERCIAL CORPORATION, THE;REEL/FRAME:005395/0050
Effective date: 19900612
28 Mar 1990ASAssignment
Owner name: FRIGI ACQUISITION, INC., 3145 PORTER DRIVE, PALO A
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FRIGITRONICS OF CONN., INC.;REEL/FRAME:005262/0818
Effective date: 19900316
Owner name: FRIGI ACQUISITION, INC., A CORP. OF DE, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FRIGITRONICS OF CONN., INC.;REEL/FRAME:005262/0818
20 May 1988ASAssignment
Owner name: BANK OF NEW YORK COMMERCIAL CORPORATION, THE, 530
Free format text: SECURITY INTEREST;ASSIGNOR:FRIGITRONICS OF CONNECTICUT, INC.,;REEL/FRAME:004935/0800
Effective date: 19870724
Owner name: FRIGITRONICS INC., A DE CORPORATION
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FRIGITRONICS OF CONN., INC.;REEL/FRAME:004935/0794
26 Oct 1987ASAssignment
Owner name: FRIGITRONICS OF CONN., INC.
Free format text: MERGER;ASSIGNORS:FRG TWENTY-NINE CORPORATION (MERGED INTO);FRG TWENTY-EIGHT CORPORATION (CHANGED TO);REEL/FRAME:004858/0786
Effective date: 19870126
Owner name: FRIGITRONICS, INC., A CORP. OF DE
Free format text: MERGER;ASSIGNORS:FRIGITRONICS, INC., A CORP. OF CT.;FRIGITRONICS OF CONN., INC., A CORP. OF CT;REEL/FRAME:004858/0780;SIGNING DATES FROM 19680314 TO 19861208
26 Oct 1987AS03Merger
Owner name: FRG TWENTY-EIGHT CORPORATION (CHANGE
Owner name: FRG TWENTY-NINE CORPORATION (MERGED INTO)
Effective date: 19870126
Owner name: FRIGITRONICS OF CONN., INC.