Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3887374 A
Tipo de publicaciónConcesión
Fecha de publicación3 Jun 1975
Fecha de presentación2 Ago 1973
Fecha de prioridad2 Ago 1973
También publicado comoCA1023184A1
Número de publicaciónUS 3887374 A, US 3887374A, US-A-3887374, US3887374 A, US3887374A
InventoresBrongo Ralph T, Fleming James C, Manthey Joseph W
Cesionario originalEastman Kodak Co
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Tetrazolium alt photoreductive imaging
US 3887374 A
Resumen
A tetrazolium salt capable of reduction to a formazan dye is present in a radiation-sensitive layer in combination with a photoreductant capable of producing, in the presence of labile hydrogen atoms, a reducing agent precursor in radiation-struck areas of the layer. An image is produced in the layer by bringing the layer into contact with a base after imagewise exposure to actinic radiation.
Imágenes(20)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

United States Patent [191 Brongo et al.

[ June 3, 1975 TETRAZOLIUM ALT PHOTOREDUCTIVE IMAGING [75] Inventors: Ralph T. Brongo; James C. Fleming;

Joseph W. Manthey, all of Rochester, NY.

[73] Assignee: Eastman Kodak Company,

Rochester, NY.

[22] Filed: Aug. 2, 1973 [21] Appl. No.: 384,859

3,278,366 10/1966 Schiele.. ..96/l.5

3,642,478 2/1972 Brault et al. 96/48 FOREIGN PATENTS OR APPLICATIONS 670,883 4/1972 United Kingdom 96/48 908,299 10/1962 United Kingdom 96/48 Primary ExaminerWon I-I. Louie, Jr. Attorney, Agen i or Firm-D. M. Schmidt [57] ABSTRACT A tetrazolium salt capable of reduction to a formazan dye is present in a radiation-sensitive layer in combination with a photoreductant capable of producing, in the presence of labile hydrogen atoms, a reducing agent precursor in radiation-struck areas of the layer. An image is produced in the layer by bringing the layer into contact with a base after imagewise exposure to actinic radiation.

67 Claims, No Drawings TETRAZOLIUM ALT PHOTOREDUCTIVE IMAGING This invention relates to an improved photographic element which exhibits low, stable background densities without fixing and to a process for recording images therewith. In a specific aspect, this invention is directed to an improved photographic element and to a process for its use in which a visible formazan dye is selectively produced from a formazan dye precursor in image areas, while the background areas remain stable and of low optical density in the presence of actinic radiation and without removal or alteration of the formazan dye precursor.

It is well known in the photographic arts to record images by incorporating within a radiation-sensitive layer of a photographic element a dye precursor of low optical density capable of conversion to a visible dye. In order to avoid dye printout in background areas after exposure it is conventional practice to inactivate and/or wash out the dye precursor. Where the dye is formed by oxidation of its precursor there is frequently a problem with background printout attributable to atmospheric oxidation of the dye precursor remaining in the background area. The loss of contrast is, of course, further accelerated if the dye itself also tends to fade.

The reduction of a tetrazolium salt to form a formazan dye image is generally well known in the art. For example, in Brault et al. U.S. Pat. No. 3,642,478, issued Feb. 15, 1972; Brault et al. U.S. Pat. No. 3,655,382, issued Apr. 11, 1972 and Bissonette et al. U.S. Pat. No. 3,671,244, issued June 20, 1972, there are disclosed processes for utilizing a zero valent metal image to reduce a tetrazolium salt and produce a formazan dye image.

A system that does not require the presence of a metal image is disclosed by Jaeken et al. in British Pat. No. 670,883, published Apr. 30, 1952. Jaeken et al. incorporates into a photographic element a tetrazolium salt and a reducing agent precursor which on exposure to light produce a formazan dye image. After exposure the photographic element is washed in up to three successive aqueous baths intended to fix the image by removal of the unreduced tetrazolium salt remaining in the background areas, enhance the image density and remove the remaining reducing agent precursor and the reaction products which, if left in place, would stain the background of the photographic element. Reducing agent precursors such as ferric salts, vanadic compounds, tungstic compounds and uranium salts are employed. Baths containing organic hydroxy acids or their ammonium salts are used to remove the brown oxides produced by ferric salts. Aqueous ammonia solutions are optionally used for image enhancement while water or dilute acid fixing baths are used to remove residual tetrazolium salts.

As improvements on the teachings of Jaeken et al., Telefunken British Pat. No. 1,016,822, published Jan. 12, 1966, and Schiele U.S. Pat. No. 3,278,366, issued Oct. 1 l, 1966, teach the reduction of a tetrazolium salt to a formazan dye in response to radiation of 200 nm or less. In contrast to the system of Jaeken et al in which the reducing agent precursor is acted on by radiation to produce a reducing agent. Telefunken and Schiele activate the tetrazolium salt by radiation to cause it to react with the available reducing agent. For very high-energy radiation below 200 nm, no separate reducing agent is required to convert the tetrazolium salt to a formazan dye. The exposed photographic elements of Schiele and Telefunken can be viewed without fixing since they are insensitive to radiation within the visible spectrum. Of course, re-exposure to actinic radiation would result in background printout.

It is an object of this invention to provide photographic elements that are responsive to radiation within the ultraviolet and visible spectrum, that do not require the incorporation of metals or metal salts, that can be processed in a dry state, that do not require fixing prior to re-exposure, and that exhibit low, stable background densities.

It is another object to provide a process for using such photographic elements which requires only image exposure followed by a single processing step, which can be performed in a dry state.

In one aspect this invention is directed to a photographic element having a support and at least one radiation-sensitive image recording layer. The image recording layer is comprised of a tetrazolium salt capable of reduction to a formazan dye and a photoreductant capable of producing a base activatible reducing agent precursor on exposure to actinic radiation in the presence of labile hydrogen atoms.

In another aspect this invention is directed to an image recording process comprising converting a photoreductant within a selected areal portion of a radiation-sensitive layer of a photographic element to a reducing agent precursor. Conversion of the photoreductant to the reducing agent precursor is accomplished by imagewise exposing the photoreductant to actinic radiation in the presence of labile hydrogen atoms. Thereafter the precursor is activated with a base to form a reducing agent which in turn reduces tetrazolium salt present within the selected areal portions containing the reducing agent to formazan dye.

In a specifically preferred embodiment of the invention a tetrazolium salt capable of reduction to form a formazan dye and a photoreductant are associated within a binder in the presence of a source of labile hydrogen atoms and coated onto a conventional photographic support to form a radiation-sensitive image recording layer. The resulting photographic element is then exposed image-wise to actinic radiation. Actinic radiation in this case is radiation-in the ultraviolet and- /or visible spectrum--that is, electromagnetic radiation of less than 700 nm in wavelength and, preferably, below 500 nm. Exposure causes the photoreductant to form a latent image in the radiation-struck areas of the image recording layer. In latent image formation the photoreductant is converted to a reducing agent precursor which, in turn, can be readily converted to a reducing agent in the presence of a base.

While it is not intended that the invention be limited to any particular theory as to how the photoreductant forms the latent image, it is believed that one or more of the labile hydrogen atoms present in the image recording layer chemically bond to the photoreductant at a radiation-sensitive site within the photoreductant molecule. As formed, the reducing agent precursor generated by the radiation-struck photoreductant is incapable of directly reducing the tetrazolium salt to produce a formazan dye. However, when the exposed radiation-sensitive layer is treated with a base, preferably gaseous ammonia, the reducing agent precursor is converted to an active reducing agent which reacts with the tetrazolium salt to form a formazan dye.

It is a specific advantage that the exposed imagebearing photographic elements of this invention can be re-exposed to actinic radiation without fixing. The reason for this is that, while the remaining photoreductant will form a second latent image in the background areas when the photographic element is re-exposed, this does not interfere with seeing the existing visible image. The photoreductant is specifically chosen to yield a reducing agent precursor that is light in color and, preferably, is substantially colorless, so that a sharp visible contrast exists between the formazan dye image and the background areas.

It is another distinct advantage of the photographic elements of this invention that they exhibit stable, low density backgrounds when stored in the atmosphere over extended periods. Since the atmosphere is free of basic substances, the reducing agent precursor is not converted to a reducing agent during storage of the photographic element in contact with the atmosphere. Similarly, there is no direct atmospheric reduction of the tetrazolium salt on storage of the photographic elements. Over an extended period of time atmospheric oxygen can oxidize the latent image of reducing agent precursor, thereby entirely eliminating the possibility of unwanted image formation. Thus, in marked contrast to photographic elements that contain dye precursors which form visible dyes on oxidation, the photographic elements of the present invention are notably free of background printout.

Whereas in classical photography a succession of developing, stopping, fixing and rinsing baths are typically used in the course of forming a stable photographic record, it is a significant feature of this invention that wet processing of the photographic element is not required. While it is recognized that the reducing agent precursor could, if desired, be brought into contact with a basic solution for activation as a reducing agent, according to the preferred practice of this invention the reducing agent precursor is contacted with gaseous ammonia to produce the active reducing agent. In one form the gaseous ammonia can be generated in situ. Beyond this, in the image recording layer each of the components and each of the reaction products formed, except for the formazan dye, are of low optical density. This avoids any need for rinsing or processing baths to remove or alter any of the components or reaction products formed within the image-recording layer.

Since the single processing step of exposure to gaseous ammonia can be performed in commercially available equipment sold for this purpose and since no resort to comparatively cumbersome conventional photographic processing techniques, such as processing baths, uniform or image area heating, volatilizing components and the like, is required, it is apparent that the photographic elements of the present invention are advantageously simple and convenient to use.

This invention can be practiced utilizing any tetrazolium salt which on reduction forms a formazan dye of a detectibly different color. A wide variety of such tetrazolium salts are known to the art including bistetrazolium salts linked directly or through intervening divalent radicals in the 2 or positions. As is well understood by those skilled in the art, tetrazolium salts require for preparation the presence of aromatic (e.g., phenyl, naphthyl, anthryl, etc.) or aromatic-like (e.g.,

pyridyl, oxazolyl, thiazolyl, quinolinyl, benzoxazolyl, benzothiazolyl, etc.) substituents in the 2 and 3 positions of the tetrazole nucleus. For purposes of illustration exemplary suitable known tetrazolium salts are set forth in Tables I, III and IV.

It is recognized that some tetrazolium salts are yellow or can become yellow when exposed to light for an extended period in the imaging layer. To be useful in the practice of this invention it is required only that the tetrazolium salt incorporated into the image-forming layer undergo a detectible color change upon reduction to the corresponding dye. Since the formazan dyes are for the most part red and of significantly higher optical densities than their parent tetrazolium salts, they produce a sharp visible contrast with yellow, white or transparent background areas. Of course, white or fully transparent backgrounds present minimum optical densities (hence highest contrast), and for this reason it is generally preferred to choose tetrazolium salts that remain colorless until reduced to the corresponding dye. Additionally, aesthetic considerations dictate white or transparent backgrounds for many applications.

TABLE I Exemplary Dye Forming Tetrazolium Salts T- l 2,3,5-triphenyI-ZH-tetrazolium chloride T- 2 2-(2-methylphenyl)-3,5-diphenyl-2H- tetrazolium tetrafluoroborate T- 3 2-(4-chlorophenyl)-3,5-diphenyl-2H- tetrazolium tetrafluoroborate T- 4 2,3-diphenyl-5-(4-chlorophenyl)-2H- tetrazolium tetrafluoroborate T- 5 2-(4-iodophenyl)-3,5-diphenyl-2H- tetrazolium tetrafluoroborate T- 6 2-(4-chlorophenyl)-3-(2-chlorophenyl)- 5-( 2-pyridyl)-2H-tetrazolium iodide T- 7 2,3-diphenyl-2H-tetrazolium sulfate T- 8 2-(2-methoxyphenyl)-3,5-diphenyl-2l-I- tetrazolium tetrafluorobo'rate T- 9 2,3-diphenyl-5-methyl-2l-I-tetrazolium c oride T- l O 2,3-diphenyl-5-dodecyl-2H-tetrazolium chloride T-l l 5-(3-iodophenyl)-2,3-diphenyl-2H-tetrazolium chloride T- l 2 5-cyano-2,3-diphenyl-2H-tetrazolium chloride T- l 3 5-acetyl-2,3-diphenyl-2H-tetrazolium chloride T- l 4 2,5-diphenyl-3-( 4-tolyl )-2l-I-tetrazolium bromide T- l 5 2,5-diphenyl-3-(4-biphenylyl)-2l-I- tetrazolium chloride T- l 6 2.3-diphenyl-5-( 2-chlorophenyl )-2I-ltetrazolium iodide T- l 7 5-( 3,4-climethoxyphenyl )-3-(4-nitrophenyl)-2-phenyl-2H-tetrazolium iodide T- l 8 2,3-diphenyl-5-nitro-ZH-tetrazolium chloride T- l 9 2.3-diphenyl-5-( Z-naphthyl )-2H-tetrazolium chloride T-20 ethylcnebisl 5-( 2.3-

- diphenyl-ZH-tetruzolium chloride)] T-2l l,6-hexylenebis[5-(2,3-diphenyl-2H- tetrazolium chloridell T-22 l.4-phcnylenebis[ 5-( 2.3-diphenyl-2H- tetrazolium chloride )1 T-23 4,4'-biphenylylenebis[ 2-( 5-methyl-3- phenyl-ZH-tetrazolium chloride )1 T-24 4,4'-phenylene sulfoxide-bisl 2-(3,5- diphenyl-ZH-tetrazolium chloride )1 T-25 4,4-hiphenylylenebis[ 2-( 3-diphcnyl-5- 3 ,4-methylenedioxyphcnyl-2H- tetrazolium chloride)] T-26 2-phenyl-3-(4-nitrophenyl )-5-undecyl- 2H-tetrazolium chloride T-27 2,3-diphenyl-S-carbcthoxy-ZH-tetrazolium chloride T-28 S-carhohcxoxy-Z.3-diphenyl-2H-tetrazolium chloride T-29 5-acetyl-2-phcnyl-3-( 4-chlorophenyl TABLE l-Continued Exemplary Dye Forming Tetrazolium Salts 2H-tetrazolium tetrafluorohorute tetrazolium tetrafluoroborate For many applications it is preferred to use tetrazolium salts which produce formazan dyes exhibiting high image densities and having a low susceptibility to fading. A preferred class of such tetrazolium salts are those having substituents on the tetrazole nucleus which are, collectively, predominantly electronegative (i.e., electron withdrawing). Such tetrazolium salts are disclosed and claimed by Bailey in commonly assigned concurrently filed application Ser. No.- 384,858, titled PHOTOGRAPHIC ELEMENTS AND PROCESSES FOR PRODUCING FORMAZAN DYE IMAGES OF ENHANCED STABILITY. Particularly stable tetrazolium salts are those having tetrazole nucleus substituents the algebraic sum of whose Hammett sigma values is collectively greater than 0.78 and, preferably, greater than 1.00. If one or more of the substituent rings is in turn substituted at only one ring position adjacent to the ring-to-nucleus bonding position-i.e., the ring position (or positions) ortho to the bonding position, the algebraic sum of the sigma values for all tetrazole nucleus substituents need only be greater than 0.40 and, preferably, 0.50 in order to achieve the advantages of significantly improved image densities and dye stabilities. When two such ortho position electronegative substituents are present in a single substituent ring, however, they are essentially subtractive in effect. For example, two like ortho substituents on a 2,3, or 5 position phenyl ring of a tetrazolium salt are substantially self-cancelling in effect. A comparable tetrazolium salt having only one ortho substituent and having summed Hammett sigma values for all substituents of 0.40 or greater exhibits marked stability. If a 2,3-diphenyl or 2,3,5-triphenyl-Zl-I-tetrazolium salt has no ortho substituents (or cancelling ortho substituents), but has meta and/or para substituents so that the summed sigma values for the phenyl rings are greater than 0.78, then the salt exhibits a marked improvement in its stability.

In certain applications it can be advantageous to produce formazan dye images that fade at an accelerated rate. For example, it may be desirable to form a slide in which the image or a portion thereof disappears while being viewed or after a prescribed period of projection. By incorporating a predominance of electron donating (electropositive) substituents in the tetrazolium salts used in the practice of this invention the fading characteristics of the resulting formazan dyes can be augmented.

The tetrazolium salts used in the preferred practice of this invention can be comprised of any desired combination of 2, 3 and, optionally, 5 position aromatic or aromatic-like heterocyclic rings such as phenyl, naphthyl, anthryl, quinolinyl pyridyl, azolyl, and the like.

Typical azolyl rings include oxazolyl, thiazolyl, benzoxazolyl, benzothiazolyl and the like. These rings can in turn carry substituents. Exemplary of specifically contemplated ring substituents are lower alkyl (i.e., one to six carbon atoms), lower alkenyl (i.e., two to six carbon atoms), lower alkynyl (i.e., two to six carbon atoms), benzyl, styryl, phenyl, biphenyl, naphthyl, alkoxy (e.g., methoxy, ethoxy, etc.), aryloxy (e.g., phenoxy), carboalkoxy (e.g., carbomethoxy, carboethoxy, etc.), carboaryloxy (e.g., carbophenoxy, carbonaphthoxy), acyloxy (e.g., acetoxy, benzoxy, etc.), acyl (e.g., acetyl, benzoyl, etc.), halogen (i.e., fluoride, chloride, bromide, iodide), cyanide, azide, nitro, haloalkyl (e.g., trifluoromethyl, trifluoroethyl, etc.), amino (e.g., dimethylamino), amido (e.g., acetamido, benzamido), ammonium (e.g., trimethylammonium), azo (e.g., phenylazo), sulfonyl (e.g., methylsulfonyl, phenylsulfonyl), sulfoxide (e.g., methylsulfoxide), sulfonium (e.g., dimethylsulfonium), silane (e.g., trimethylsilane) and thioether (e.g., methyl mercaptide) substituents.

Hammett sigma values for the substituents of the tetrazole nucleus can be determined by reference to the published literature or can be determined directly using known determination procedures. Exemplary meta and para sigma values and procedures for their determination are set forth by H. VanBekkum, P. E. Verkade and B. M. Wepster in Rec. Trav. Chim, volume 78, page 815, published 1959; by P. R. Wells in Chem Revs., volume 63, page 171, published 1963, by H. H. .laffe, Chem. Revs., volume 53, page 191, published 1953; by M. J. S. Dewar and P. J. Grisdale in J. Amer. Chem. Soc., volume 84, page 3548, published 1962; and by Barlin and Perrin in Quart. Revs., volume 20, page et seq., published 1966.

In accordance with established practice, electron withdrawing (electronegative) substituents are assigned positive sigma values while electron donating (electropositive) substituents are assigned negative sigma values. Each tetrazole nucleus substituent is assigned a Hammett sigma value which is the algebraic sum of its unsubstituted sigma value and the sigma value of its own substituents, if any. For example, unsubstituted phenyl tetrazole nucleus substituents have neutral sigma values, while the sigma values of substituted phenyl tetrazole nucleus substituents can be determined algebraically simply be determining from the literature the known Hammett sigma values for each substituent and obtaining the algebraic sum thereof. Other tetrazole nucleus substituents, particularly heterocyclic tetrazole nucleus substituents, can exhibit sigma values even when unsubstituted. For example, a Z-pyridyl substituent exhibits a sigma value of 0.56; a 3-pyridyl substituent exhibits a sigma value of 0.73; a 4-pyridyl substituent exhibits a sigma value of 0.83; a 2-thiazolyl substituent exhibits a sigma value of approximately 0.5; a 2-oxazolyl substituent exhibits a sigma value of 0.75. It is then apparent that a tetrazolium salt including an unsubstituted 4-pyridyl or Z-pyridyl substituent constitutes a preferred, stabilized dye producing tetrazolium salt, provided the remaining tetrazole nucleus substituents are on balance neutral or electronegative in their sigma values.

Sigma values for a given substituent are noted to vary as a function of ring position and resonance induced by conjugation. For example, a given substituent to a phenyl ring can exhibit one sigma value in the meta position and another when in the para position. A few sub- TABLE II Exemplary Hammett Sigma Values For Triphenyltctrazolium Salt Substituents 0.60 for 2 and 3 position phenyl rings as para substituent "+0.75 for 2 and 3 position phenyl rings as para substituent +0.95 for 2 and 3 position phenyl rings as para substituent Exemplary preferred tetrazolium salts having predominately electronegative tetrazole nucleus substituents are set forth in Table 111. These tetrazolium salts in all instances incorporate tetrazole nucleus substituents the summed sigma values of which are equal to or greater than those required to impart enhanced stability to the corresponding formazan dyei.e., greater than 0.78 or, in the case of tetrazolium salts having a substituent ring which is in turn singly substituted at a carbon atom adjacent the bonding carbon atom, greater than 0.40.

TABLE III Exemplary Preferred Tetrazolium Salts for forming Dyes of Enhanced Stability Tetrazolium Salt 2-(4-methylthiophenyl)-3-(3.5- dichlorophenyl)--(3-nitrophenyl)- ZH-tetrazolium hexafluorophosphate 2(4-cyanophenyl)-3-(3-benzamidophenyl)- 5-( 3 .4-dichlorophe nyl )-2 H-tetrazolium perchlorate 2-( Z-naphthyl )-3-( 3-nitro-5-chlorophenyl )-5-( 4-cyanophenyl )-2H- tetrazolium sulfate 2-( 4-bromol -naphthyl )-3-( 4-cyanophenyl 5-(3.4-dichlorophenyl)JH-tetrazolium chloride 2-( 3-pyridyl )-3-phenyl-5-( 4-chlorophenyD-ZH-tetrazolium bromide 2-(2.4-dichlorophenyl)-3 (4-nitrophenyl)-5-phenyl-2H4etrazolium tetrafluoroboratc 2-(2.4.5-trichlorophenyl)-3-(4- TABLE III-Continued Exemplary Preferred Tetrazolium Salts for forming Dyes of Enhanced Stability Tetrazolium Salt nitrophenyl )-5-phenyl-2H-tctrazolium tetrafluoroboratc 2(2.4,5-trichlorophenyl)-3-(4- phenylsulfonyl phenyl)-5-phenyl-2H tetrazolium chloride 2-(2,3,4,5-tetrachlorophenyl)-3-(4- nitrophenyl)-5phenyl-2H-tetra2olium iodide 2-(Z-trifluoromethyl-Schlorophenyl)-3- (4-cyanophenyl)-5phenyl-ZH-tetrazolium bromide 2-(4-pyridyl)-3-(2trifluoromethylphenyl )5-phenyl-2H tetrazolium tetrafluoroborate 2-(2-chloro-5 trifluoromethylphenyl)-3- (3.4dichlorophenyl )-5-phenyl-2H- tetrazolium hexafluorophosphate 2-( 2-chloro-5-nitrophenyl )-3-( 4-acetyl phenyl)-5-(3-nitrophenyl)-2H-tctrazolium chloride 2-(2-chloro-4-cyanophcnyl)-3-(4-benzoylphenyl)-5-(3-chlorophenyl)-2H-tetrazolium perchlorate 2-(2-nitro-4-chlorophenyl )-3-(4-phenylazophenyl)-5-(4-chlorophenyl)-2H- tetrazolium chloride 2[4-(4-nitrophenyl)thiophenyl]-3 (2-chloro-5trifluoromethylphenyl )-5- (3-nitrophenyl )-2H-tetrazolium bromide 2-( 4-phenylsulfonylphenyl )-3-( 2-chloro-5- trifluoromethyl phenyl )-5-( 3,4-dichlorophenyl)-2H-tetrazolium bromide 2-(4-benzylphenyl)-3-(2,4-dichlorophenyl)- 5-(4-nitrophenyl)-2H-tetrazolium sulfate 2-(4-phenylsulfonylphenyl )-3-( 2-chl0ro-4- cyanophenyl)-5-(3,4-dichlorophenyl)-2H- tetrazolium chloride 2-( 2-meth0xy-4-nitrophenyl )-3-( 4-cyanophenyl)5-phenyl-2H-tetrazolium chloride 2-(3-propionylphenyl)-3-(2.4-dichlorophenyl )-5-( 3-nitrophenyl )-2H-tetrazolium chloride 2-( Z-biphenyl )-3( 3,4-dichlorophenyl )-5- (4-cyanophenyl)-2H-tetrazolium chloride 2-(4-nitrophenyl)-3-(3-pyridyl)- 5-phenyl-2H-tetrazolium perchlorate 2-( 2-chloro-4-cyanophenyl )-3-( 2-chloro-5- trifluoromethylphenyl)-5-(3-chlorophenyl)- ZH-tetrazolium tctrafluoroborate 2-(4-pyridyl)-3-(2,3.4,5-tetrafluorophenyl)- 5-phenyl-2H-tetrazolium hexafluorophosphate 2-(2-benzoylphenyl)-3-(2,4-dichlorophenyl)- 5-( 3-nitrophenyl )-2H-tetrazolium hexafluorophosphate 2-( l-nitro-2-naphthyl)-3-(2-methyl-4- nitrophenyl)-5-(4-chlorophenyl)-2H- tetrazolium chloride 2-( 3-phenylformamidophenyl )-3-( 2-nitro- 4-chlorophenyl)-5-(3-chl0r0phenyl)-2H- tetrazolium tetrafluoroborate 2-( anthraquinone-2-yl )-3-( 2-nitro-4- chlorophenyl)-5-(4-cyan0phenyl)-2H- tetrazolium tetrafluoroborate 2-(2,5-dichlorophenyl)-3-phenyl-5- (4-nitrophenyl)-2H-tetrazolium tetrafluoroborate 2-( 2.4dibromophenyl )-3-(4-nitrophenyl S-methyl-ZH-tetrazolium chloride 2-( 2.5-dichlorophenyl )-3-( Z-methoxy- 4-nitrophenyl)-5-(4-mcthoxyphcnyl)- ZH-tetrazolium chloride 2-( 2,4.5-trichlorophenyl )-3-( 3-nitrophenyl)-5-ethyl-2H-tetrazolium bromide 2-(4-trifluoromethylphenyl)-3-(4-cyanophenyl )-S-n-propyl-ZH-tetrazolium bromide 2-( 2phenoxy-4-chlorophenyl )-3-( 4- nitrophenyl )-5n-hexyl-ZH-tetrazolium tetrafluoroboratc 2-( 2-bromophenyl )-3-( 2-nitrophenyl )-5- phenyl-ZH-tetrazolium tetrafluoroborate 2.3-di(4-nitrophenyl)-5-mcthyl-2H- tetrazolium hexafluorophosphate 2-( 4-bromophenyl )-3-( 4-nitrophenyl )-5- tert-butyl-ZH-tetrazolium tetrafluoroborate 2-( 4-iodophenyl )-3-( 4-nitrophenyl )-5- TABLE lll-Continued Exemplary Preferred Tetrazolium Salts for fonning Dyes of Enhanced Stability Tetrazolium Salt phenyl-ZH-tetrazolium chloride 2-( 2-nitrol -naphthyl )-3-( 4-cyanophenyl S-methyl-ZH-tetrazolium tetrafluoroborate 2-( 2-nitro-4-chloro-l-naphthyl)-3- (4-trifluoromethylphenyl )5 -methyl- ZH-tetrazolium perchlorate 2-( 2-bromo-4-cyanol -naphthyl )-3- (4-nitrophenyl)-5-n-propyl-2H- tetrazolium chloride 2( l-bromo-4-nitro-2-naphthyl )-3- (3,4-dichlorophenyl )-5-ethyl-2H- tetrazolium hexafluorophosphate 2-( 3 ,6,7-trichlorl -naphthyl )-3- (4-nitrophenyl )--n-hexyl-2H- tetrazolium hexafluorophosphate 2-(5-nitro-2-naphthyl)-3-(2,4,5- trichlorophcnyl)-5-isobutyl-2H- tetrazolium hexafluorophosphate 2-(5,8-dichloro-l-naphthyl)-3-(4- nitrophcnyl)-5-methyl-2H-tctrazolium sulfate 2-( 3 ,S-dibromo-Z-naphthyl )-3-( 4-chlorophenyl)-5-propyl-2H-tetrazolium iodide 2.3-di(2-chlorophcnyl)-5-phenyl-2H- tetrazolium tetrafluoroborate 2-( 2-nitrophenyl )-3,5-diphenyl-2H- tetrazolium tctrafluoroboratc 2-( 2-chloro-4-nitrophenyl )-3,5- diphenyl-ZH-tetrazolium tetrafluoroborate 2-( 2-chlorophenyl )-3-phenyl-5-( 3-nitrophenyl )-2H-tetrazolium tetrafluoroborate 2-( 2,4-dinitrophenyl )-3,5-diphenyl- ZH-tetrazolium tetrafluoroborate 2,3,5-tri(4-nitrophenyl)-2l-ltetrazolium chloride 2-( 2-methyl-4-nitrophenyl )-3 ,5-diphenyl- 2H-tetrazolium tetrafluoroboratc 2-(4-nitrophenyl)-3,5-diphenyl-2H tetrazolium tetrafluoroboratc 2-(4-iodophenyl)-3-(4-nitrophenyl)-5- phenyl-ZH-tetrazolium tetrafluoroborate 2-(4-nitrophenyl-3-phenyl-5-( 4-chlorophenyl )-2H-tetrazolium tetrafluoroborate 2,3-di(4-nitrophenyl)-5-phenyl-2H- tetrazolium tetrafluoroborate 2,5-di(4-nitrophenyl)-3-phenyl-2H- tetrazolium tetrafluoroborate 2,3-di( 4-nitrophenyl )-5-( 4-methoxyphenyl)-2H-tetrazolium tetrafluoroboratc 2-( 3-chlorophenyl )-3-(4-cyanophenyl )-5 (3,4-dichlorophenyl)-2H-tetrazolium iodide 2-(4-phenylsulfonyl phenyl)-3( 3,5- dichlorophenyl )-5-(4-cyanophenyl )-2H- tetrazolium chloride 2-(4-diphenyl)-3-(3,5-dinitrophenyl)-5- (4-trimethylammonium phenyl)-2H- tetrazolium dichloride 2-( 4-acetylphenyl )-3-( 3-trifluoromethyl-4-chlorophenyl )-5-( 4-nitrophenyl)-2H-tetrazolium bromide Any anion known to be useful in formazan dye forming tetrazolium salts can be used in the practice of this invention. Preferred anions are those set forth in Tables I and III. Any one of these anions can be incorporated in place of any other anion in any of the tetrazolium salts set forth in Tables I and III. Non-basic, nonnucleophilic anions are preferred, such as tetrafluoroborate and hexafluorophosphate, for example. Such anions provide the resulting tetrazolium salt with enhanced protection against anion induced reduction, and for this reason their use is preferred.

it has been recognized prior to this invention that the color of the formazan dye can be influenced by the incorporation of various metal salts in combination with the tetrazolium salt. .laeken et al.. noted above, suggests the use of salts of metals such as iron, nickel, cobalt, copper, zinc, cadmium, chromium, titanium, molybdenum or tungsten, for this purpose. It is recognized that such metal salts can be used also in the practice of this invention for the purpose of chelating the formazan dye produced on exposure, thereby stabilizing the dye against subsequent fading. All formazan dyes are capable of forming at least bidentate chelates. While distinct stabilization is observed for bidentate and tridentate formazan dye chelates, the use of tetrazolium salts that form tridentate chelates gives greater stabilization and is preferred. Exemplary of tetrazolium salts capable of forming tridentate formazan dye chelates are those having one or more N-heterocyclic aromatic rings in the 2 or 3 position, such as Z-pyridyl and 2- azolyl (e.g., 2-thiazolyl, 2-benzothiazolyl, 2-oxazolyl, Z-benzoxazolyl, etc.) ring structures, for example. Certain exemplary preferred tetrazolium salts for forming highly stable tridentate formazan dye chelates are set forth in Table IV.

TABLE IV Exemplary Preferred Tetrazolium Salts for Forming Tridentate Formazan Dye Chelates T- 100 2-( Z-pyridyl )-3-( 2,6-dimethylphenyl S-phenyI-ZH-tetrazolium hexafluorophosphate T-lOl 2-(2-pyridyl)-3-phenyl-5-n-hexyl-2H- tetrazolium tetrafluoroborate T-l02 2-(2-pyridyl)-3,5-diphenyl-2H-tetrazolium bromide T-l03 2-(benzothiazol-2- l)-3,5-diphenyl-2H- tetrazolium bromi e T-l04 2-(2-pylidyl)-3-(4-chlorphenyl)-5- phenyLZl-l-tetrazolium nitrate T-lOS 2,2-di(thiazol-2-yl)-3,3 -diphenyl-5,5'- diphenylene-di( ZH-tetrazolium iodide) T- l 06 2,3-di( benzothiazol-Z-yl )-5-dodecyl-2H- tetrazolium chloride T- 107 2-phenyl-3-benzothiazol-2-yl )-5-( 3- chlorophenyl)-2H-tetrazolium chloride T-l08 2,3-di(benzothiazol-Z-yl)-5-cyano-2H- tetrazolium chloride T- 1 O9 2-phenyl-3( benzothiazol-Z-yl )-5-propyl- 2H-tetrazolium iodide T-l l0 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl- 2H-tetrazolium bromide Ti 1 l 2-(2- yridyl)-3,5-diphenyl-2H-tetrazolium tetra uoroborate T- l 12 2-( 2-quinolinyl )-3-phenyl-5-( 3-nitrophenyl)-2H-tetrazolium tetrafluoroborate T-l13 2-(2- yridyl)-3-(2-tolyl)-5-(4-cyano henyl)-2 -tetrazolium hexafluorophosp ate T-l l4 l,5-naphthalene-bis[3-[2-(2-pyridyl)-5- (3,4-dichlorophenyl )-2H-tetrazolium tetrafluoroborate 1 T-l l5 2-(Z-pyridyl)-3-(4-nitrophenyl)-5- phenyl-ZH-tetrazolium nitrate T-l l6 2-( benzothiazol-Z-yl )-3,5-di( 4- chlorophenyl )-2H-tetrazolium chloride T-l l7 2-( benzothiazol-Z-yl )-3-( 3-nitrophenyl 5-(4-iodophenyl )-2H-tetrazolium tetrafluoroborate T-l l8 Z-(benzothiazol-Z-yl )-3-( 2-fluorophenyl 5-(4-cyanophenyl)-2H-tetrazolium tetrafluoroborate T-l l9 2-( 4,5-dimethylthiazol-2-yl)-3-( 3- trifluoromethylphenyl )-5-( 4-bromophenyl ZH-tetrazolium tetrafluoroborate T- l 20 2-( benzoxazol-Z-yl )-3-( 4-chlorophenyl S-phenyl-ZH-tetrazolium chloride In addition to greater stabilities, another advantage of chelated formazan dyes is that they are generally more absorptive in the red spectrum than the corresponding unchelated formazan dyes. Thus, whereas formazan dyes generally tend toward red images, chelated formazan dyes are considerably bluer, producing more neutral images.

From the foregoing it is apparent that the formazan dye images produced according to this invention can, if desired, be stabilized either by adding electronegative substituents to the tetrazole nucleus or by incorporating metal salts in combination with the tetrazolium salts. If desired, these two stabilization techniques can be used in combination. For example, the tetrazolium salts T-l04 and T-l 12 through T-lZO are sufficiently electronegative in their tetrazole nucleus substituents to constitute preferred tetrazolium salts in terms of stability, even without chelation. These tetrazolium salts can be used to produce formazan dyes of even greater stability by forming tridentate chelates.

If a metal salt is incorporated within the imaging layer for the purpose of chelating, some increase in background density can occur upon prolonged reexposure to actinic radiation, unless the residual photoreductant, the remaining chelating metal salt, the unreduced tetrazolium salt or all of these are removed from the non-image areas. This can be accomplished, for example, by washing the photographic element in a suitable solvent, such as a polar solvent, like water, which does not attack or leach the formazan dye. To obtain minimal background densities and to avoid processing the photographic element after image formation, it is preferred to utilize tetrazolium salts with electronegative substituents that produce stabilized formazan dyes rather than to incorporate chelating metal salts. Where extended re-exposure to actinic radiation is not contemplated or where increasing background densities can be tolerated, the formazan dyes can be chelated and the photoreductant, the tetrazolium salt and the unreacted metal salt in the background areas can be left in the photographic element. In other words, processing after image formation can be omitted.

As employed herein, the term photoreductant" designates a material capable of molecular photolysis or photo-induced rearrangement to generate a reducing agent precursor. The term reducing agent precursor designates a compound which is not capable of reducing a tetrazolium salt employed in combination therewith, but which can be activated by a base to become a reducing agent capable of reducing the tetrazolium salt.

Exemplary of the photoreductants which can be utilized in the practice of this invention are disulfides capable of being photolytically cleaved at the S--S bond to form a mercaptan in the presence of labile hydrogen atoms. A variety of such disulfides are known in the art. It is preferred to employ hydrocarbon disulfides and, more specifically, aryl disulfides. The aryl disulfides preferred are the alkyl aryl disulfides having from 1 to 20 (preferably one to six) alkyl carbon atoms and diaryl disulfides. Either single or fused aromatic ring structures can be employed-cg, phenyl, naphthyl, anthryl and similar ring structures. It is also contemplated that aromatic disulfides that incorporate nonbasic heterocyclic aromatic rings can be utilized. Typical of such disulfides are those incorporating five and six membered aromatic rings having oxygen and/or sulfur heteroatoms.

ln addition to the disulfides set forth above, phenazinium salts can be utilized as photoreductants in the practice of this invention. Also useful as photoreductants are diazoanthrones, ,B-ketosulfides and nitroarenes. The arene ring can be any aromatic carbocyclic ring structure--e.g., phenyl, naphthyl, anthryl and similar ring structures. It is specifically contemplated that the nitroarenes can incorporate substituents having labile hydrogen atoms and that these labile hydrogen atoms can be used in converting the photoreductant to a reducing agent precursor. For example, the nitroarenes can incorporate hydroxyalkyl substituents to provide labille hydrogen atoms.

Specific exemplary disulfides, phenazinium salts, diazoanthrones, B-ketosulfides and nitroarenes are set forth in Table V.

TABLE V Exemplary Photoreductants PR- l 2-nitrobenzyl alcohol PR- 2 4-bromonitrobenzene PR- 3 2-( l-hydroxyethyl)-l-nitronaphthalene PR- 4 2-nitroanthracene PR- 5 4-hexoxynitrobenzene PR- 6 2,5-diethoxynitrobenzene PR- 7 2-nitronaphthalene PR- 8 2-ethoxy-l-nitronaphthalene PR- 9 2-isoprop lnitrobenzene PR- 1 Z-benzylmtrobenzene PR-l l l-methyl-4-nitropyridinium tetrafluoroborate PR-l2 l-naphthyl-l '-phenethyl disulfide PR-l3 B-naphthyl disulfide PR-l4 9-anthryl disulfide PR-l cyclohexyl Z-naphthyl disulfide PR-l6 diphenylmethyl Z-naphthyl disulfide PR17 2-dodecyl l'-naphthyl disulfide PR-l8 4,4'-dihexyldiphenyl disulfide PR- 1 9 2,2'-bis( hydroxymethyl )diphenyl disulflde PR-20 4.4-dinitrodiphenyl disulfide PR-2l 3-phenyl-3H-naphthol 1,2-c]- l ,Z-dithiole PR-22 phenazinium 4-toluenesulfonate PR-23 N-methyl phenazinium bromide PR-24 Z-methoxyphenazinium hexafluorophosphate PR-25 2-nitrophenazinium tetrafluoroborate PR-26 l-(hydroxymethyl)phenazinium chloride PR-27 l-isopropoxyl O-methylphenazinium tetrafluoroborate PR-28 2,3,9-trimethylphenazinium chloride PR-29 2,3-dimethyl-5-nitrophenazinium methyl sulfate PR-3O 2,3-dichlorophenazinium chloride PR-3l Z-cyanophenazinium tetrafluoroborate PR-32 1,2-benzophenazinium 4-toluenesulfonat PR-33 IO-diazoanthrone PR-34 Z-methoxyl O-diazoanthrone Y PR-35 3-nitrol O-diazoanthrone PR-36 3,6-diethoxyl O-diazoanthrone PR-37 3-chlorol O-diazoanthrone PR-3 8 4-ethoxyl O-diazoanthrone PR-39 4-( l-hydroxyethyl l O-diazoanthrone PR-40 2,7-diethyll O-diazoanthrone PR-4l 2-( 4-tolyl)thiochromanone PR-42 7-methyl-Z-tolylthiochromanone PR-43 2-( 2,4,6-trimethylphenylthio l-tetralone PR-44 2-benzylthiol -tetralone PR-45 2-( 4-tolyl )thiol -tetralone PR-46 4-tolylthioacetone PR-47 3-phenyl-2-(4-tolyl)thiopropiophenone PR-48 2-ethylthio-3-phenylpropiophenone PR-49 3-phenyl-2-phenylthioproplophenone PR-SO 3-phenyll 4-tolyl )th1o-2 '-propionaphth0ne PR-S l 4'-methoxy-3-phenyl-2-phenylthiopropiophenone PR-52 3,3-diphenyl-2'phenylthiopropiophenone Quinones are useful as photoreductants in the practice of this invention. Useful quinones include ortho and para-benzoquinones, diphenoquinones, ortho and para-naphthoquinones, phenanthrenequinones and anthraquinones. The quinones may be unsubstituted or incorporate any substituent or combination of substituents that do not interfere with the conversion of the quinone to the corresponding reducing agent precursore.g., hydroquinone. A variety of such substituents are known to the art and include, but are not limited to, primary, secondary and tertiary alkyl, alkenyl and alkynyl, aryl, alkoxy, aryloxy, aralkoxy, alkaryloxy, hydroxyalkyl, hydroxyalkoxy, alkoxyalkyl, acyloxyalkyl, aryloxyalkyl, aroyloxyalkyl, aryloxyalkoxy, alkylcarbonyl,

carboxyl, primary and secondary amino, aminoalkyl, amidoalkyl, anilino, piperidino, pyrrolidino, morpholino, nitro, halide and other similar substituents. Such aryl substituents are preferably phenyl substituents and such alkyl, alkenyl and alkynyl substituents, whether present as sole substituents or present in combination with other atoms, typically incorporate twenty (preferably six) or fewer carbon atoms.

Specific exemplary quinones intended to be used in combination with a separate source of labile hydrogen atoms are set forth in Table VI.

I TABLE VI Exemplary Quinones Useful with External Hydrogen Source PR-53 Anthraquinone PR-54 Z-Methylanthraquinone PR-55 2-t-Butylanthraquinone PR-56 l,4-Dimethylanthraquinone PR-57 2-Piperidinoanthraquinone PR-S 8 Z-Methyll ,4-anthraq uinone PR-59 l-( N-methyl )aminoanthraquinone PR-60 2,5-Dimethyll ,4-benzoquinone PR-6l Phenanthrenequinone PR-62 Duroquinone PR-63 2,5-Di-t-butyll ,4-benzoq uinone PR-64 Z-Methyll ,4-benzoquinone PR-65 2,3 ,5-Trimethyl-6-bromo l ,4-benzoquinone PR-66 Z-Phen yll ,4-benzoquinone PR-67 1,4-Naphthoquinone PR-68 Z-Methyl-l ,4-naphthoquinne PR-69 2,3-Dimethyl-l ,4-naphthoquinone PR-70 2,3-Dichloro-l ,4-naphthoquinone PR-7 l Z-Thiomethyl-1,4-naphth0quin0ne PR-72 2-Methyl-3-(methylthio l ,4-

naphthoquinone PR-73 2,3-Dithiomethyll ,4-naphthoquinone PR-74 2-Amino-3-chlorol ,4-naphthoquinone PR-75 2-( Acetylthiomethyl )-3-methyl-l ,4-

naphthoquinone Any conventional source of labile hydrogen atoms that is not otherwise reactive with the remaining components or their reaction products contained within the photographic element can be utilized. Generally preferred for use are organic compounds having a hydrogen atom attached to a carbon atom to which a substituent is also attached which greatly weakens the carbon to hydrogen bond, thereby rendering the hydrogen atom labile. Preferred hydrogen source compounds are those which have a hydrogen atom bonded to a carbon atom to which is also bonded the oxygen atom of an oxy substituent and/or the trivalent nitrogen atom of an amine substituent. As employed herein the term amine substituent is inclusive of amide and imine substituents. Exemplary preferred substituents which produce marked lability in a hydrogen atom associated with a common carbon atom are oxy substituents, such as hydroxy, alkoxy, aryloxy, alkaryloxy substituents and amino substituents, such as alkylarylamino, diarylamino, amido, N,N-bis(l-cyanoalkyl)amino, N-aryl-N-( l-cyanoalkyl)amino, N-alkyl-N-( lcyanoalkyl)amino, N,N-bis( l-carbalkoxyalkyl)amino, N-aryl-N-( l-carbalkoxyalkyl)amino, N-alkyl-N-( lcarbalkoxyalkyl)amino, N-N-bis-(l-nitroalkyl)amino,

N-alkyl-N-( l-nitroalkyl)amino, N-aryl-N-( lnitroalkyl)amino, N,N-bis( l-acylalkyl)amino, N-alkyl-N-( l-acylalkyl )amino, N-aryl-N-( lacylalkyl)amino, and the like. The aryl substituents and substituent moieties are preferably phenyl or phenylene while the aliphatic hydrocarbon substituents and substituent moieties preferably incorporate twenty or fewer carbon atoms and, most preferably, six or fewer carbon atoms. Exemplary of compounds which can be used in the practice of this invention for the purpose of providing a ready source of labile hydrogen atoms are those set forth in Table VII. Compounds known to be useful in providing labile hydrogen atoms are also disclosed in US. Pat. No. 3,383,212, issued May 14, 1968, the disclosure of which is here incorporated by reference.

TABLE VII Exemplary External Hydrogen Source Compounds HS- 1 poly(ethylene glycol) HS- 2 phenyl-LZ-ethanediol HS- 3 nitrilotriacetonitrile HS- 4 triethylnitrilotriacetate HS- 5 poly(ethylene glycol) HS 6 poly(vinyl butyral) HS- poly(vinyl acetal) HS- 8 1,4-benzenedimethanol HS- 9 methyl cellulose HS-l0 cellulose acetate butyrate HS-l l 2,2-bis-(hydroxymethyl)-propionic acid HS- 1 2 l,3 bis-( hydroxymethyl )-urea HS-l3 4-nitrobenzyl alcohol HS-l4 4-methoxybenzyl alcohol HS-l5 2,4-dimethoxybenzyl alcohol HS- 1 6 3,4-dichlorophenylglycol HS- 1 7 N-( hydroxymethyl )-benzamide HS- 1 8 N-( hydroxymethyl )-phthalimide HS-l9 5-(hydroxymethyl)-uracil hemihydrate HS-20 nitrilotriacctic acid HS-2l 2,2',2"-triethylnitrilotripropionate HS-22 2,2,2"-nitrilotriacetophenone HS-23 poly(vinyl acetate) HS-24 poly(vinyl alcohol) HS-25 ethyl cellulose HS-26 carboxymethyl cellulose HS-27 poly(vinyl formal) The compounds of Table VII capable of providing labile hydrogen atoms are referred to as external hydrogen source compounds. The external hydrogen source compounds are incorporated within the photographic elements of the present invention and can, in fact, perform more than one function. For example, the external hydrogen source polymers of Table VII can also be used as binders as well as to provide a source of labile hydrogen atoms. These compounds are designated as external hydrogen source compounds only to point up that the labile hydrogen atoms are not incorporated in the photoreductant. As specifically noted above in connection with useful nitroarenes, the photoreductants can themselves incorporate labile hydrogen atoms which facilitate their conversion to reducing agent precursors. Such photoreductants are herein referred to as internal hydrogen source photoreductants.

A preferred class of internal hydrogen source photoreductants are the internal hydrogen source quinones disclosed and claimed in our commonly assigned concurrently filed application Ser. No. 384,861 titled PHOTOGRAPI-IIC ELEMENTS AND PROCESSES FOR INCORPORATED HYDROGEN SOURCE PHOTOREDUCTION IMAGING, now abandoned.

It has been discovered that quinones incorporating labile hydrogen atoms are more easily photoreduced than quinones which do not incorportae labile hydrogen atoms. Even when quinones lacking labile hydrogen atoms are employed in combination with an external hydrogen source while incorporated hydrogen source quinones are similarly employed without external hydrogen source compounds, the internal hydrogen source quinones continue to exhibit greater ease of photoreduction When internal hydrogen source quinones are employed with external hydrogen source compounds, their ease of photoreduction can generally be further improved, although the improvement is greater for those internal hydrogen source quinones which are less effective when employed without an external hydrogen source compound.

Using quionones exhibiting greater ease of photoreduction results in photographic elements which exhibit improved image densities for comparable exposures and which produce comparable image densities with lesser exposure time. Hence, incorporated hydrogen source quinones can be employed to achieve greater photographic speeds and/r image densities.

Particularly preferred internal hydrogen source quinones are 5,8-dihydro-1,4-naphthoquinones having at least one hydrogen atom in each of the and 8 ring positions. Other preferred incorporated hydrogen source quinones are those which have a hydrogen atom bonded to a carbon atom to which is also bonded the oxygen atom of an oxy substituent or a nitrogen atom of an amine substituent with the further provision that the carbon to hydrogen bond is the third or fourth bond removed from at least one quinone carbonyl double bond. As employed herein the term amine substituent is inclusive of amide and imine substituents. Disubstituted amino substituents are preferred. 1,4- Benzoquinones and naphthoquinones having one or more 1' or 2'-hydroxyalkyl, alkoxy (including alkoxyalkoxy--particularly l or 2'-alkoxyalkoxy, hydroxyalkoxy, etc.), 1' or 2-alkoxyalkyl, aralkoxy, 1' or 2'-acyloxyalkyl, lor 2-aryloxyalkyl, aryloxyalkoxy, 1' or 2-aminoalkyl (preferably a l or 2-aminoalkyl in which the amino group contains two substituents in addition to the alkyl substituent, at least one of which is an electronegative or aryl substituent, l or 2'- aroyloxyalkyl, alkylarylamino, dialkylamino, N,N-bis- (1-cyanoalkyl)amino, N-aryl-N-( l-cyanoalkyl)amino, N-alkyl-N-( l-cyanoalkyl)amino, N,N-bis( l-carbalkoxyalkyl)amino, N-aryl-N-( l-carbalkoxyalkyl)amino, N-

alkyl-N-( l-carbalkoxyalkyl)amin0, N,N-bis(1- nitroalkyl)amin0, N-aklyl-N-( l-nitroalkyl)amino, N-aryl-N-( 1-nitroalkyl)amino, N,N-bis( 1- acylalkyl)amino, N-alkyl-N-( lacylalkyl)amino,

N-aryl-N-(1-acylalkyl)amino, pyrrolino, pyrrolidino, piperidino, and/or morpholino substituents in the 2 and/or 3 position are particularly preferred. Other substituents can, of course, be present. Unsubstituted 5,8- dihydro-1,4-naphthoquinone and 5,8-dihydro-1,4- naphthoquinones substituted at least in the 2 and/or 3 position with one or more of the above-listed preferred quinone substituents also constitute preferred internal hydrogen source quinones. It is recognized that additional fused rings can be present within the incorporated hydrogen source quinones. For example, 1,4- dihydro-anthraquinones represeent a useful species of 5,8-dihydro-1,4-naphthoquinones useful as incorporated hydrogen source quinones. The aryl substituents and substituent moieties of incorporated hydrogen source quinones are preferably phenyl or phenylene while the aliphatic hydrocarbon substituents and substituent moieties preferably incorporate twenty or fewer carbon atoms and, most preferably, six or fewer carbon atoms. Exemplary preferred internal hydrogen source quinones are set forth in Table VIII.

TABLE VIII Exemplary lntemal Hydrogen Source Quinones PR- 76 PR-77 PR-80 PR81 PR-83 PR-84 PR-85 PR-86 PR-87 PR-88 PR-89 PR-90 PR-9l PR-92 PR-93 PR-94 PR-95 PR-99 PR- 100 PR-lOl PR-l03 PR-lOS PR-l06 PR-l07 PR-I08 PR-l 10 PR-l37 PR- l 38 PR- 1 3) 5,8-dihydrol ,4-naphthoquinone 5 ,8-dihydr0 2 6,7-trimethyl-1.4- naphthoquinone 5 ,6-dihydro-6,7-dimethyl-2 phenyll ,4-naphthoquinone 5 ,8-dihydro-2,5,8-trimethyll ,4- naphthoquinone 2,5-bis( dimethylamino l ,4-benzoquinone 2,5-dimethyl-3,6-bis(dimethylamino l ,4- benzoq uinone 2.5dimethyl-3,6-bispyrrolidinol ,4- benzoquinone 2-ethoxy-5-methyh1,4-bcnzoquinone 2,6-dimethoxy-l ,4-benzoquinone 2,5-dimethoxy-l ,4-benzoquinone 2,6-diethoxyl ,4-benzoquinone 2,5-diethoxy-1,4-benzoquinone 25-bis( 2 methoxyethoxy l ,4-benzoquinone 2,5-bis(B-phenoxyethoxy)l .4- benzoquinone 2,5-diphenethoxyl ,4-benzoquinone 2,5-di-n-propoxyl ,4benzoquinone 2,5-di-isopropoxyl ,4-benzoq uinonc 2,5-de-n-butoxy-l ,4-benzoquinone 2,5-di-sec-butoxy-1,4-benzoquinone 2-( N-ethylacetamidomethyl )-5-tertbutyl l ,4-benzoquin0ne bis [Z-(S-methyl-l.4-benzoquinone-2-yl)- ethyl ]ether 2-methyl-5-morpholinomethyll 4- benzoquinone 2,3.S-trimethyl-6-morpholinomethyll ,4 benzoquinone 2,5-bis(morpholinomethyl)- l ,4-benzoquinone 2-(1-hydroxy-2-methyl-n-propyl)- S-methyll ,4-benzoquinone 2-hydroxymethyl-3,5 .-trimethyll .4- benzoquinone 2-( l-hydroxyethyl )-5-methyll ,4- benzoquinone 2-(1-hydroxy-n-propyD-S-methyl-1 ,4- benzoquinone 2-( l-hydroxy-n-octyl )-5-methyll ,4- benzoquinone 2-( l ,l-dimethyl-2-hydroxyethyl) -5-methyll ,4-benzoquinone 2-( l-acetoxyethyl )-5-methyl- 1 ,4- benzoquinone 2-( l-methoxyethyl )-5-methyll ,4- benzoquinone 2-( l-ethoxyethyl)-5-methyll ,4- benzoquinone 2-( l-isopropoxyethyl )-5-methyll ,4- benzoquinone 2-chloro-3-n-octylaminol ,4- naphthoquinone 1,4-dihydro-l ,4-dimethylanth raquinone l,4-dihydro-2,3-dimethylanthraquinone 2-dimethylaminol ,4-naphthoquinone Z-methoxyl ,4-naphthoquinone 2-benzyloxy-l ,4-naphthoquinone 2-methoxy-3-chloro-l ,4-naphthoquinone 2,3-dimethoxyl ,4-naphthoquinone 2.3-diethoxyl ,4-naphthoquinone Z-ethoxyl ,4-naphthoquinone Z-phenethoxyl 4-naphthoquin0ne 2-( Z-methoxyethoxy l ,4-naphthoquinone 2-( 2-ethoxyethoxy)- l ,4-naphthoquinone 2-( Z-phenoxy )ethoxyl .4-naphthoquinone 2-ethoxy-5-methoxy4 .4-naphthoquinone 2-ethoxy-6-methoxyl ,4-naphthoquinone 2-ethoxy-7-methoxyl ,4-naphthoquinone 2-n-propoxy-1,4naphthoquinone 2-( 3-hydroxypropoxy l .4-naphthoquinone 2-isopropoxyl ,4-naphthoquinone 7-methoxy-2-isopropoxyl .4-naphthoquinone Z-n-butoxyl ,4-naphthoquinone 2-scc-butoxyl ,4-naphlhoquinone Z-n-pentoxy-l .4-naphthoquinone Z-n-hexoxyl .4-naphthoquinonc 2-n-heptoxyl A-naphthoquinone Z-acetoxymethyl-3-methyl-l ,4-naphthoquinone Z-methoxymelhyl-3-methyll .4- naphthoquinone I 2-( B-ncetoxyethyl l .4-nuphthoquinone 2-N N-bis( cyanomethyl )aminomcthyl-3- methyl- 1 .4-naphthoquinone 2-methyl-3-morpholinomethyll 4- TABLE VIII-Continued Exemplary Internal Hydrogen Source Quinones naphthoquinone To form a radiation-sensitive composition useful in the present invention it is merely necessary to bring together the photoreductant and the tetrazolium salt in the presence of labile hydrogen atoms. The radiationsensitive composition can then be brought into a spacially fixed relationship, as by coating the composition onto a support to form a photographic element according to the present invention. For maximum efficiency of performance it is preferred that the components of the radiation-sensitive composition, particularly, the photoreductant, the tetrazolium salt and the external hydrogen source, if any, be intimately associated. This can be readily achieved, for example, by dissolving the reactants in a solvent system.

The solvent system can be a common solvent or a combination of miscible solvents which together bring all of the reactants into solution. Typical preferred solvents which can be used alone or in combination are lower alkanols, such as methanol, ethanol, isopropanol, t-butanol and the like; ketones, such as methylethyl ketone, acetone and the like; water; liquid hydrocarbons; chlorinated hydrocarbons, such as chloroform, ethylene chloride, carbon tetrachloride and the like; ethers, such as diethyl ether, tetrahydrofuran, and the like; acetonitrile; dimethyl sulfoxide and dimethyl formamide.

For each of coating and for the purposes of imparting strength and resilience to the radiation-sensitive layer it is generally preferred to disperse the radiationsensitive reactants in a resinous polymer matrix or binder. A wide variety of polymers can be used as binders. In order to be useful it is only necessary that the binders be chemically compatible with the radiationsensitive reactants. In addition to performing their function as a binder the polymers can also serve as external hydrogen sources to supplement or replace other hydrogen sources as described above. For example, any of the polymers set forth in Table V11 can be used both as binders and as external hydrogen sources.

It is preferred to employ linear film-forming polymers such as, for example, cellulose compounds, such as ethyl cellulose. butyl cellulose, celulose acetate, cellulose triacetate, cellulose butyrate, cellulose acetate butyrate and the like; vinyl polymers, such as poly(vinyl acetate), poly(vinylidene chloride), a poly(vinyl acetal) such as poly( vinyl butyral), poly(vinyl chloride-covinyl acetate). polystyrene, and polymers of alkyl acrylates and methacrylates including copolymers incorporating acrylic or methacrylic acid; and polyesters; such as poly( ethylene glycol-co-isophthalic acid-coterephthalic acid), poly(p-cyclohexane dicarboxylic acid-co-isophthalic acid-cocyclohexylenebismethanol), poly(pcyclohexanedicarboxylic acid-co-2,2,4,4-

tetramethylcyclobutane-l ,3-diol) and the like. The condensation product of epichlorohydrin and bispheno] is also a preferred useful binder. Generally any binder known to have utility in photographic elements and, particularly, diazo photographic elements can be used in the practice of this invention. These binders are well known to those skilled in the art so that no useful purpose would be served by including an extensive catalogue of representative binders in this specification. Any of the vehicles disclosed in Product Licensing Index Vol. 92, Dec., 1971, publication 9232, at page 108, can be used as binders in the photographic elements of this invention.

While the proportions of the reactants forming the radiation-sensitive layer of a photographic element can be varied widely, it is generally preferred for most efficient utilization of the reactants that they be present in roughly stoichiometric concentrations--that is, equal molar concentrations. One or more of the reactants can, of course, be present in excess. For example, where the external hydrogen source is also used as a binder, it is typically present in a much greater concentration than is essential merely for donation of labile hydrogen atoms. It is generally preferred to incorporate from 0.1 to 10 moles of the tetrazolium salt per mole of the photoreductant. External hydrogen sources supplied solely to perform this function are typically conveniently incorporated in concentrations of from 0.5 to 10 moles per mole of photoreductant. Where a metal is added for the purpose of chelating the formazan dye, it is preferably incorporated in a proportion of from 0.1 to 10 moles per mole of tetrazolium salt. The binder can account for up to 99 percent by weight of the radiation-sensitive layer, but is typically employed in proportions of from 50 to percent by weight of the radiation-sensitive layer. It is, of course, recognized that the binder can be omitted entirely from the radiation-sensitive layer. The surface or areal densities of the reactants can vary as a function of the formazan dyesformed and the image densities desired. It is generally preferred to incorporate the tetrazolium salt in a concentration of at least 1 X 10 moles per square decimeter and, most preferably, in a concentration of from 1 X 10' to 8 X 10' moles per square decimeter. The areal densities of the remaining reactants are, of course, proportionate. Typically the radiation-sensitive layer can vary widely in thickness depending on the characteristics desired for the photographic element-- e.g., image density, flexibility, transparency, etc. For most photographic applications coating thicknesses in the range of from 2 microns to 20 microns are preferred.

Any conventional photographic support can be used in the practice of this invention. Typical supports include transparent supports, such as film supports and glass supports as well as opaque supports, such as metal and photographic paper supports. The support can be either rigid or flexible. Preferred photographic supports for most applications are paper of film supports. The support can incorporate one or more subbing layers for the purpose of altering its surface properties. Typically subbing layers are employed to enhance the adherency of the radiation-sensitive coating to the support. Suitable exemplary supports are disclosed in Product Licensing Index Vol. 92, December 1971, publication 9232, at page 108.

The radiation-sensitive layer can be formed on the support using any conventional coating technique. Typically the reactants, the binder (if employed) and any other desired addenda are dissolved in a solvent system and coated onto the support by such means as whirler coating, brushing, doctor blade coating, hopper coating and the like. Thereafter the solvent is evaporated. Other exemplary coating procedures are set forth in the Product Licensing Index publication cited above, at page 109. Coating aids can be incorporated into the coating composition to facilitate coating as disclosed on page 108 of the [Product Licensing Index publication. It is also possible to incorporate antistatic layers and/or matting agents as disclosed on this page of the Product Licensing Index publication.

It is a distinct advantage of this invention that the photographic elements can be processed in a dry state using commercially available exposure and processing equipment. Exposure to actinic radiation in the ultraviolet or visible portions of the spectrum can be readily achieved using mercury arc lamps, carbon arc lamps, photoflood lamps, lasers and the like. Negative images can be formed by exposure through a positive stencil or transparency while positive images can be formed by exposure through a negative stencil or transparency.

To avoid direct printout on exposure with the consequent necessity of fixing where uniform re-exposure to actinic radiation is contemplated, the radiationsensitive layer is maintained significantly less basic than is required to convert the reducing agent precursor to the reducing agent. While the exact degree of permissible basicity of the radiation-sensitive layer will vary somewhat as a function of the specific reactants chosen, it is generally preferred to avoid the incorporation of strongly basic reactants in the radiationsensitive layer. For this reason components of the radiation-sensitive layer are chosen to be free of strongly basic moieties. It is preferred, for maximum protection against premature and/or background printout, that the radiation-sensitive layer be maintained neutral or on the acid side of neutrality.

The latent image that is produced in the photographic element on exposure is easily developed using gaseous ammonia processors, such as those which release moist ammonia vapors at ambient pressure or those which use high pressure anhydrous ammonia gas. Other volatile bases, such as methyl amine, dimethyl amine, trimethyl amine, ethyl amine, diethyl amine, triethyl amine, propyl amine, butyl amine, etc., can be used. Although wet processing is not preferred, it is also contemplated that the photographic elements of this invention can be developed using aqueous alkaline solutions. It is contemplated that the radiation-sensitive layer or an adjacent layer of the photographic element can contain a base source which is convertible to a base at will. For example, it is contemplated that the radiation-sensitive layer can contain a compound that will release ammonia on exposure to heat or other activating energy.

This invention is further illustrated by the following examples of preferred embodiments:

Examples 1 and 2 A solution containing 13.5 g. of acetone, 1.5 g. of cellulose acetate butyrate, 0.037 g. of poly(ethylene glycol) (commercially available under the trademark Carbowax 600) (HS-1), 0.18 g. of phenazine and 0.76 g.

of 4-toluenesulfonic acid was mixed with a solution of 0.33 g. of 2,3,5-triphenyl-ZH-tetrazolium chloride (T-l) in 5.0 g. of methanol. This mixture was coated on a paper support at room temperature and on a poly- (ethylene terephthalate) film base at 38C with a 150 micron coating blade. Both coatings were contact exposed with a silver negative using a high pressure mercury light source and were then processed in a commercial diazo ammonia processor. A dark reddishbrown positive image on a buff background was produced in in both instances. The exposed and processed elements were held under normal office light conditions for several days without any substantial increase in background coloration.

EXAMPLE 3 A mixture was prepared by dissolving the following components in an ethylene chloride-methanol solvent blend of 9.0 and 2.5 cc of respective solvents:

2-( 1-hydroxyethyl)-5-methyl-1 ,4- benzoquinone (PR-102) 2-(4-iodophenyl )-3-( 4-nitrophenyl S-phenyl-ZH-tetrazolium chloride (T-74) styrene-butadiene random copolymer consisting essentially of 78% by weight styrene and 22% by weight butadiene (sold commerciall under the trademark KRO-3 by Piiillips Petroleum) 1.0 mmole l .0 mmole A coating of approximately microns wet thickness of the mixture was formed on a poly( ethylene terephthalate) film support and samples were exposed from 8 seconds through a step tablet and developed in a commercial diazo ammonia processor. Intense red negative prints were obtained with an average green density of 1.77. The results are included in Table 1X.

EXAMPLE 4 other than the binders was present in either instance.

Sensitometric curves for the two elements formed showed the poly(vinyl butyral) containing film to have a photographic speed 2 to 4 times greater than that of the cellulose acetate butyrate containing film.

EXAMPLES 5 AND 6 To a mixture of 0.33 g. of 2,3,5-triphenyl-2H- tetrazolium chloride (T-l) in 5.0 g. of methanol was added a solution of a photoreductant as set forth in Table X below and 1.50 g. of cellulose acetate butyrate in 13.5 g. of acetone. The mixture was coated on a paper support with a micron blade at room temperature and then exposed as in Example 1. 1n Example 5 a dark orange image was obtained on a light yellow background. In Example 6 a dark red imgae was obtained on a light buff background.

TABLE X Amount Photoreductant Used Ex. No

phenanthrenequinone (PR-61) 0.20 g. 1,4-naphthoquinone (PR-67) 0.16 g. 6

EXAMPLES 7 THROUGH 13 To a mixture containing 0.33 g. of cellulose acetate butyrate, 0.69g. phenyl-l,2-ethanediol (HS-2), 0.167 g. of 2,3,5-triphenyl-2I-I-tetrazolium chloride, 1,85 g. of methanol, and 2.64 g. of acetone was added 0.50 millimoles of a photoreductant. The mixture was coated onto a poly(ethylene terephthalate) film base with a 100 micron coating blade at 22C. All of the coatings were exposed and processed as in Example 1, except that the coatings of Examples 7, 8 and 9 were exposed through a 0.3 log E step tablet. Six steps were visible in Example 7; 3 in Example 8 and 2 in Example 9. In Example 7 a red image was obtained on a clear background. In both of Examples 8 and 9 a dark red image was obtained on a light yellow background. See Table IX for maximum and minimum green densities and for the photoreductants chosen.

EXAMPLES 14 THROUGH 16 A mixture consisting of 0.25 g. of 2,3,5-triphenyl-2H- tetrazolium chloride (T-l), 0.26 g. of 2-methyl-l,4- naphthoquinone, (PR-68) 1.0 g. cellulose acetate butyrate (HS-l0), 1.25 g. of methanol, and 7.95 g. of acetone was divided into three parts. One part was retained as a control. To another part was added 0.067 g. of nitriloacetonitrile (HS-3) and to the third part was added 0.069 g. of phenyl-l,2-ethanediol (HS-2). The three dopes were then coated onto a poly(ethylene terephthalate) film base with a 100 micron coating blade at 22C and exposed and processed as in Example 7. In each instance a red image was obtained on a clear background. In Example 14, 4 steps were visible; in Example 15, 5 steps; and in Example 16, 6 steps.

EXAMPLES 17 AND 18 Examples 1 and 2 were repeated, except that 0.44 g. of 3 4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H- tetrazolium bromide (T-l 10) was substituted for 2,3,5- triphenyl-ZH-tetrazolium chloride (T-l). Coatings on paper and film base both gave dark greenish-brown positive images on a light yellow background.

EXAMPLES 19 THROUGH 83 Each coating was made up by mixing 1.00 millimole of the tetrazolium salt with 1.00 millimole of the photoreductant and 0.660 g. of cellulose acetate butyrate binder. While the binder was capable of functioning to a limited degree as an external hydrogen source or hydrogen donor, the binder is not designated as a hydrogen source in Table IX, except where no other hydrogen source was available. In some of the coatings, as designated in Table IX, the highly efficient external hydrogen source (HS-2) was incorporated in a concentration of 1.00 millimole. In others of the coatings an internal hydrogen source photoreductant was employed. This is designated in Table IX by the designation Internal. In each instance the radiation-sensitive layer was coated onto a support from a solution formed with 11.5 cc. of a solvent. Two solvent systems were used. One solvent system was a mixture of 1.4 parts by vol-I ume ethylene chloride per part by volume of methanol. I In the other solvent system 3.6 parts of acetone were present per part by volume of methanol. The radiation-' sensitive coatings were in each instance 100 microns in thickness as coated.

Processing was accomplished by a 30-second exposure through a neutral density step tablet in an exposing unit of the type commercially available under the trademark Filmsort Uniprinter 086. Immediately after exposure the photographic elements were given three passes through a Keuffel and Esser Mercury Ammonia Chamber.

In Examples 26, 27 and 53 the fully processed photographic elements were uniformly re-exposed to actinic radiation in the exposure unit and then viewed for background printout. No background printout was visible to the eye.

TABLE IX Exemplary Image and Background'Qualities Produced by Various Photoreductants and Hydrogen Sources Photo- Green Density Ex. No. T-Salt Reductant Hydrogen Donor Max. Min.

3 T-74 PR-102 Internal only 1.77 N.R. 7 T-l PR-66 HS-2 1.02 0.08 8 T-1 PR-70 HS-2 N.R. N.R. 9 T-l PR-63 HS-2 N.R. N.R. 10 T-l PR- HS-2 0.32 0.08 11 T-1 PR-69 HS-2 0.39 0.08 12 T1 PR-62 HS-2 0.39 0.08 13 T-l PR- HS-2 0.70 0.08 19 T-74 PR-60 Binder 0.42 0.06 20 T-74 PR-61 Binder 0.48 0.09 21 T-74 PR-62 Binder 0.32 0.06 22 T-74 PR-63 Binder 0.78 0.06 23 T 74 PR- Binder 0.40 0.06 24 T-74 PR-67 Binder 1.06 0.46 25 T-74 PR-68 Binder 0.65 0.05 26 T-l PR-68 Binder 0.55 0.06 27 T-l PR-68 HS-2 1.02 0.06 28 T-74 PR-69 Binder 0.29 0.05 29 T-] PR-7l Binder 0.37 0.07 30 T-l PR- Binder 0.75 0.40 31 T-l PR-77 Internal 1.60 0.62 32 T-l PR-78 Internal 1.05 0.95 33 T1 PR-79 Internal 1.07 0.06 34 T-74 PR-79 Internal 1.60 0.06 35 T-l PR-83 lntcrnal 1.01 0.04 36 T- 1 PR-86 Internal 0.92 0.04

TABLE lX-Continued Exemplary Image and Background Qualities Produced by Various Photoreductants and Hydrogen Sources Photo- Green Density Ex. No. T-Sult Rcductant Hydrogen Donor Max. Min.

37 T- 1 PR-87 Internal 1.50 0.05 38 T-l PR-87 HS-2/lnt. 1.54 NR. 39 T-l PR 88 lntcrnal 1.01 0.08 40 T-l PR-90 lntcrnal 1.48 0.06 41 T1 PR-91 Internal 1.40 0.07 42 T-l PR-92 HS-2/lnt. 1.77 N.R. 43 T1 PR-92 lntcrnal 1.82 0.08 44 T74 PR-92 Internal 2.63 0.05 45 T-l PR-94 lnternal 1.90 0.06 46 T-74 PR-95 Internal 1.00 0.12 47 T-74 PR-96 Internal 0.70 0.05 48 T-74 PR-97 Internal 3.97 0.51 49 T-l PR-98 Internal 1.01 0.05 50 T-74 PR-98 Internal 3.00 0.04 51 T74 PR-99 Internal 2.51 0.34 52 T-74 PR-101 Internal 2.59 0.06 53 T-74 PR-102 Internal 3.42 0.13 54 T-74 PR-103 Internal 3.22 0.10 55 T-74 PR-104 lnternal 1.87 0.17 56 T-74 PR-105 lntemal 1.86 0.06 57 "L74 PR- 107 Internal 2.66 0.10 58 T-74 PR-l08 Internal 2.12 0.06 59 T-74 PR- 109 lntcmal 1.86 0.00 60 T-74 PR1 1 1 lnternal 1.66 0.05 61 T1 PR-l 14 Internal 0.90 0.06 62 T1 PR-l 14 HS-2/lnt. 0.99 0.06 63 T-74 PR'l 17 internal 1.42 0.06 64 T1 PR-l 19 lntemal 1.30 0.06 65 T-l PR-l 19 HS-2/lnt. 1.30 0.06 66 T-l PR-120 lnternal 1.33 0.07 67 T1 PR-122 lntcrnal 1.27 0.06 68 T1 PR-123 Internal 1.04 0.06 69 T-l PR-126 Internal 1.28 0.08 70 T1 PR-128 lntemal 1.44 0.05 71 T-l PR- 1 29 lntemal 1.39 0.05 72 T-l PR-129 HS-2/lnt. 1.44 0.06 73 T-l PR-135 lntemal 1.19 0.07 74 T-l PR- 1 37 Internal 2.67 0.09 75 T1 PR-l38 lntemal 2.00 0.20 76 T1 PR-139 Internal 2.31 0.20 77 T-l PR- 1 40 lntcrnal 2.79 0.09 78 T l PR-141 Internal 3 .07 0.20 79 T-l PR-142 Internal 2.91 0.05 80 T1 PR-143 Internal 3.00 0.10 81 T-l PR-144 lntcmal 3.20 0.13 82 T1 PR- 1 46 lnternal 1.65 0.05 83 T74 PR- 1 46 lnternal 2.40 0.05

NR. No record was kept which could he located for inclusion in this table.

blade onto a 100 micron poly-(ethylene terephthalate) 45 film support. Contact exposure for 8 seconds on an exposure unit commercially available under the trade- EXAMPLES 84 THROUGH 116 TABLE Xl mark IBM Microcopier 11 was followed by development with anhydrous ammonia at 75 psi. At this point the image green densities were measured. These are set out in Table XI.

The developed images were placed on a desk top in a room lighted by two banks of three GE F400W Cool White fluorescent lights six and eight feet from the desk surface. The half-life reported in Table X1 is the time elapsed before the dye had irreversibly faded to destroy one half of the formazan dye initially present.

Exemplary Image Qualities Produced by Various Tetrazolium Salts Photo- Summed Substitucnt lnitiul lma'e H; f-

Ex. No. T-Salt Rcductnnt Sigma Values Green Dens ity (21 m 84 T1 PR-129 0.0 1.7 8 85 T-2 PR-l29 0.13 1.8 10 86 T-3 PR-l29 +0.24 2.1 1" x7 T-4 PR-129 +0.24 1.7 15 88 T-S PR-129 40.30 1.9 9 89 T-8 PR-129 +0.24 1.8 l" 90 T-16 PR-129 +0.24 0.7 21

TABLE XI Continued Exemplary Image Qualities Produced by Various Tctruzolium Salts Photo- Summcd Substituent lnitiul Image Half-life Ex. No. T-Sult Reductant Sigma Values Green Density (days) 91 T-31 PR-102 +0.72 1.) 3 92 T-33 PR-129 +0.71 2.0 NR. 93 T34 PR- 102 40.71 1.5 94 T-34 PR-129 40.71 1.5 95 T- PR-l02 +0.78 0.5 6 96 T-35 PR-129 +0.78 1.5 21 97 T-83 PR-102 +0.48 2.2 90 98 T-7l PR-102 105 231 145 99 T-71 PR-129 105 1.6 150 100 T-84 PR-102 078 1.6 90 101 TM PR-129 078 1.5 102 T- PR-102 102 2.8 80 103 T-85 PR-129 102 2.0 104 T-86 PR-102 +0.95 1.9 80 105 T 86 PR-129 +0.95 1.7 86 106 T-87 PR-102 1.56 N.R. 180 107 T-89 PR-102 0.65 2.7 18 108 T-90 PR-l02 078 3.0 8 109 T-90 PR-129 078 2.2 33 110 T-91 PR-102 1.08 3.7 12 111 T-91 PR-129 108 2.0 NR. 112 T-92 PR-102 102 2.6 17 11% T91 PR-102 1.56 3.9 20 1 l4 T-93 PR-129 1.56 2.0 NR 115 T-94 PR- 102 1.56 2.4 21 116 T-95 PR-102 +1.40 2.5 13

EXAMPLES 117 THROUGH 121 TABLE-XII I 30 In 7 gram portions of a mixture containing 6.6 g. cel- EXemplafy g ggfilg gs Formalfln l l lulose acetate butyrate, 90 cc ethylene chlorlde, 25 ml y methanol and 0.70 g. Of l-(2-pyridyl)-3-phenyl-5-(2,6- Ex. No. Metal Acid Complex A max Fade dimethylphenyl) formazan was dissolved 0.12 millil 17 None 460 8 5 moles of a metal acid complex. ln one portion used as 35 118 Mercury Acetate 485 a control no metal acid complex was dissolved. Since :13 glckel f fi y fg 2g? 8-? opper yco exy utyrate the intention was to compare the fade charactenstlcs of 12 Cobalt cyclohexylbutyme 665 0.0 a formazan dye and tridentate chelates of this dye, it was considered unnecessary to produce the formazan dye in situ by the process of this invention. The forma- 40 zan dye could, of course, have been formed from the EXAMPLES 122 THROUGH 139 tetrazolium salt T-l00 according to the practice of this In each instance a solution was prepared containing invention. 1.25 ml methanol, 4.5 ml ethylene chloride, 0.33 g. of

The mixture was coated at 100 microns wet thickness cellulose acetate butyrate, 0.25 millimoles of a tetrazoonto a support. Since the dye was already formed it was 45 lium salt, 0.28 millimoles of a metal acid complex and unnecessary to expose the elements and then develop 0.10 g. 2-isopropoxy-l ,4-naphthoquinone (PR-129). them. The wavelength of peak adsorption (A max) and This solution was coated with a 100 micron coating the image density were noted for each element. Each blade on a 100 micron poly(ethylene terephthalate) coating was then subjected to 500 foot-candles from a film support. Each element was given a contact expoxenon are for 24 hours. At the end of this period the 50 sure through a 0.05 neutral density filter for 10 seconds image density of the coating was again determined and on a commercial exposure unit sold under the tradecompared to the original image density. This is remark Filmsort Uniprinter 086 followed by developported in Table Xll as the percentage of fade. The ment in a Keuffel and Esser Mercury Ammonia Chammetal acid complexes used for chelating are also set out ber. The resulting blue, green and red image densities in Table Xll. 55 for the various elements are set out in Table Xlll.

TABLE Xlll EXEMPLARY RED, GREEN AND BLUE DENSlTlES FOR CHELATED FORMAZAN DYE IMAGES hutyrate TABLE Xlll Continued EXEMPLARY RED, GREEN AND BLUE DENSlTlES FOR CHELATED FORMAZAN DYE IMAGES EXAMPLES 140 THROUGH 142 In a 5.5 g. portion of a mixture containing g. cellulose acetate butyrate, 70 g. methyl ethyl ketone, g. of methanol and 1.23 g. of 2-( l-hydroxyethyl)-5- methyl-1,4-benzoquinone (PR-102) was dissolved 0.25 millimoles of 2-(4-iodophenyl)-3-(4-nitrophenyl)-5- phenyl tetrazolium tetrafluoroborate and 0.99 g. of copper cyclohexylbutyrate. The mixture was coated with a 150 micron coating blade. The initial neutral density after an 8 second exposure on an exposure unit commercially available under the trademark Microcopier I1 and 1 second ammonia development at 75 psi was 1.62. These results are summarized below in Table XlV. Similar runs with different tetrazolium salts are also set out in Table XlV.

TABLE XlV Exemplary Densities of Elements Incorporating Bidentate Formazans Neutral Ex. No. T-Salt Area Density 140 T-9l lmage 1.62 Background 0.07 141 T-87 mage 1.12 Background 0.07 142 T-93 mage 2.17 Background 0.09

EXAMPLE 143 A coating was prepared as described in Examples 19 through 83 using 2,3,5-triphenyl-2l-l-tetrazolium chloride (T-l) as the tetrazolium salt and 2-nitrobenzyl alcohol (PR-l) as the photoreductant. Contact exposure for 8 seconds on an exposure unit commercially available under the trademark IBM Microcopier 11 was followed by development for one second with anhydrous ammonia at 75 psi. A negative reddish image was produced on a colorless background.

EXAMPLE 144 coating thickness of approximately 150 microns. Contact exposure for 8 seconds on an exposure unit commercially available under the trademark IBM Microcopier 11 was followed by development for one second with anhydrous ammonia at psi. A negative purple image was obtained having a maximum green density of 1.02. The background areas exhibited a green density of 0.10.

EXAMPLE 145 The procedure of Examples 19 through 83 was repeated using 2-(4-tolyl)thiochromanone (PR-41) as a photoreductant and as a tetrazolium salt 2-(4- iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H- tetrazolium chloride (T-74). A reddish negative image was obtained on a colorless background.

EXAMPLE 146 A coating composition was prepared by mixing together 0.58 g of cellulose acetate butyrate, 5.00 grams of acetone, 1.92 grams of methanol, 0.051 grams of phenyl-l,2-ethanediol (HS-2), 0.065 grams of 10- diazoanthrone (PR-33), 0.40 grams of dimethylformamide, and 0.100 grams of 2,3,5-triphenyl-2l-ltetrazolium chloride (T-l). The composition was coated onto a poly(ethylene terephthalate) film support at a microns wet coating thickness. The dried coating was given a 4 minute on-off exposure at a distance of 36 centimeters with a conventional exposure unit using a 2,000 watt mercury lamp commercially available under the trademark Addalux type l406-CI. Upon processing in a conventional diazo ammonia processor. a red negative image was obtained while unexposed areas remained yellow.

EXAMPLE 147 A solution of 100 mg of l-naphthyl-( l-phenethyl) disulfide (PR-l2) and 1.0 grams of tricresyl phosphate was dispersed in 10 grams of a 5 percent by weight aqueous gelatin emulsion. Two drops of 40 percent by weight formalin was added to the emulsion, and the composition was coated on a poly(ethylene terephthalate) film support at a wet thickness of 100 microns.

A section of the dried coating was exposed in a xenon wedge spectrograph for 15 minutes and the developed in a dilute aqueous solution of ammonia and 2-(4- iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2l-ltetrazolium chloride (T-74). A red image was produced on a pale background.

EXAMPLE 148 A mixture was prepared containing 6.6 grams of cellulose acetate butyrate, 90 ml of ethylene chloride and 25 ml methanol. In 7 grams of this mixture were dissolved 0.080 grams of phenyl-l,2-ethanediol (HS-2), 0.103 g of 4-bromonitrobenzene (PR-2) and 0.165 grams of 2,3,5-triphenyl-2H-tetrazolium chloride (T-l This was coated on a transparent poly(ethylene terephthalate) film support at a wet thickness of 100 microns. The film was exposed for 8 seconds on an exposure unit commercially available under the trademark IBM Microcopier II. Exposure was followed by development for one second with anhydrous ammonia at 75 psi. A negative red image was produced on a colorless background.

In each of the foregoing examples, the processed photographic elements were handled in room light without fixing. In no instance did the background density increase to the point that the image was obscured, and, in most instances, no increase in background densities were visibly detectible.

While the foregoing examples are incorporated for the purpose of illustrating the scope of the present invention, it is recognized that the tetrazolium salts of Table II and the internal hydrogen source photoreductants constitute improvements on the present invention which are specifically disclosed and claimed in the above-referenced concurrently filed patent applications. I

The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

What is claimed is:

1. In a photographic element having a support and at least one radiation-sensitive image recording layer, the improvement in which said image recording layer is comprised of a source of labile hydrogen atoms, a tetrazolium salt capable of reduction to a formazan dye and a photo-reductant capable of producing a base activatible reducing agent precursor on exposure to actinic radiation in the presence of said labile hydrogen atoms.

2. In a photographic element according to claim 1 the further improvement in which said photographic element incorporates hydrogen source means external of said photoreductant for supplying the labile hydrogen atoms.

3. In a photographic element according to claim 2 the further improvement in which said external hydrogen source means incorporates a labile hydrogen atom attached to a carbon atom which is also bonded to the oxygen atom of an oxy substituent or the nitrogen atom of an amine substituent.

4. In a photographic element according to claim 2 the further improvement in which said external hydrogen source means is a polymer and also serves as a binder for said image recording layer.

5. In a photographic element according to claim 4 the further improvement in which said polymer binder is a cellulosic compound.

6. In a photographic element according to claim 5 the further improvement in which said polymer binder is cellulose acetate butyrate.

7. In a photographic element according to claim 4 the further improvement in which said polymer binder is a poly(vinyl acetal).

8. In a photographic element according to claim 7 the further improvement in which said polymer binder is poly( vinyl butyral).

9. In a photographic element according to claim 2 the further improvement in which said external hydrogen source means is nitrilotriacetonitrile.

10. In a photographic element according to claim 2 the further improvement in which said external hydrogen source means is phenyl-l ,Z-ethanediol.

11. In a photographic element according to claim 2 the further improvement in which said external hydrogen source means is a poly(alkylene glycol).

12. In a photographic element according to claim 11 the further improvement in which said external hydrogen source means is poly(ethylene glycol).

13. In a photographic element according to claim 1 the further improvement in which said photoreductant is a nitroarene.

14. In a photographic element according to claim 13 the further improvement in which said photoreductant is a halonitroarene.

15. In a photographic element according to claim 14 the further improvement in which said photoreductant is a halonitrobenzene.

16. In a photographic element according to claim 15 the further improvement in which said photoreductant is a 4-halonitrobenzene.

17. In a photographic element according to claim 16 the further improvement in which said photoreductant is 4-bromonitrobenzene.

18. In a photographic element according to claim 1 the further improvement in which said photoreductant is a phenazinium salt.

19. In a photographic element according to claim 18 the further improvement in which said phenazinium salt is phenazinium 4-toluenesulfonate.

20. In a photographic element according to claim 1 the further improvement in which said photoreductant is a disulfide.

21. In a photographic element according to claim 20 the further improvement in which said photoreductant is an aryl disulfide capable of being cleaved at the S-S bond by actinic radiation to form a mercaptan.

22. In a photographic element according to claim 21 the further improvement in which said photoreductant is l-naphthyl-l '-phenethyl disulfide.

23. In a photographic element according to claim 1 the further improvement in which said photoreductant is a diazoanthrone.

24. In a photographic element according to claim 23 the further improvement in which said diazoanthrone is a lO-diazoanthrone.

25. In a photographic element according to claim 1 the further improvement in which said photoreductant is a beta-ketosulfide.

26. In a photographic element according to claim 25 the further improvement in which said photoreductant is a thiochromanone.

27. In a photographic element according to claim 26 the further improvement in which said photoreductant is 2-( 4-tolyl)thiochromanone.

28. In a photographic element according to claim 1 the further improvement in which said photoreductant is a quinone, a disulfide, a phenazinium salt, a betaketosulfide, a nitroarene, a diazoanthrone, or a mixture of two or more of these.

29. In a photographic element according to claim 1 the further improvement in which said tetrazolium salt is a 2,3-diaryl-2l-l-tetrazolium salt.

30. In a photographic element according to claim 29 the further improvement in which said tetrazolium salt is a triaryI-ZI-I-tetrazolium salt.

31. In a photographic element according to claim 30 the further improvement in which said tetrazolium salt is a 2,3,5-triphenyl2I-I-tetrazolium salt.

32. In a photographic element according to claim 31 the further improvement in which said tetrazolium salt is 2,3,5-triphenyl-ZI-I-tetrazolium halide.

33. In a photographic element according to claim 31 the further improvement in which said tetrazolium salt incorporates at least one alkyl, alkoxy, halo or nitro substituent.

34. In a photographic element according to claim 31 the further improvement in which said tetrazolium salt is 2,3,5-triphenyl-2I-I-tetrazolium chloride, 2-( 2- methylphenyl)-3,5-diphenyl-2H-tetrazolium tetrafluoroborate, 2-(4-chlorophenyl)-3,5-diphenyl-2I-I- tetrazolium tetrafluoroborate, 2-(4-iodophenyl)-3,5- diphenyl-2l'I-tetrazolium tetrafluoroborate, 2-(2- methoxyphenyl)-3,5-diphenyl-2I-I-tetrazolium tetrafluoroborate, 2,3-diphenyl--(2-chlorophenyl)-2l-I- tetrazolium iodide, 2-(2,4,6-trichlorophenyl)-3,5- diphenyl-2I-I-tetrazolium tetrafluoroborate, 2-(3- nitrophenyl-3,5-diphenyl-2I-I-tetrazolium tetrafluoroborate, or 2,3-diphenyl-5-(4-nitrophenyl)-2l-I- tetrazolium tetrafluoroborate.

35. In a photographic element according to claim 1 the further improvement in which said tetrazolium salt is a tetrafluoroborate or a hexafluorophosphate.

36. In a photographic element according to claim 1 the further improvement in which said tetrazolium salt contains at least one pyridyl or azolyl tetrazole ring substituent.

37. In a photographic element according to claim 36 the further improvement in which said tetrazolium salt contains at least one 2-pyridyl or 2-azolyl tetrazole nucleus substituent in the 2 or 3 position capable of forming a tridentate chelate.

38. In a photographic element according to claim 37 the further improvement in which said tetrazolium salt is 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2I-I- tetrazolium bromide; 2-( 2-pyridyl )-3-( 2,6- dimethylphenyl)-S-phenyI-ZI-I-tetrazolium hexafluorophosphate; 2-(2-pyridyl)-3-phenyl-5-n-hexyl-2I-I- tetrazolium tetrafluoroborate; 2-(2-pyridyl)-3,5- diphenyl-ZI-I-tetrazolium bromide, 2-(benzothiazol-2- yl)-3,5-diphenyl-2I-I-tetrazolium bromide or 2-(2- pyridyl 3 ,5 -diphenyl-2I-I-tetrazolium tetrafluoroborate.

39. In a photographic element according to claim 1 the further improvement additionally including means incorporated within said image recording layer capable of interacting with a formazan dye to form a chelate.

40. In a photographic element according to claim 39 the further improvement in which said chelating means is chosen from the class consisting of copper, zinc, mercury, cadmium, cobalt and nickel salts.

41. In a photographic element according to claim 39 the further improvement in which said chelating means is a metal carboxylate.

42. In a photographic element according to claim 1 the further improvement in which from 0.1 to 10 moles of tetrazolium salt are present per mole of photoreductant.

43. In a photographic element according to claim 2 the further improvement in which said external hydrogen source means is present in a concentration of at least 0.5 moles per mole of said photoreductant.

44. In a photographic element according to claim 1 the further improvement in which said photographic element incorporates a binder in said image recording layer in a concentration of up to 99 percent by weight.

45. In a photographic element according to claim 44 the further improvement in which said photographic element incorporates a binder in said image recording layer in a concentration of from 50 to percent by weight.

46. In a photographic element according to claim 42 the further improvement in which said photoreductant and said tetrazolium salt are present in substantially equal molar proportions.

47. In a photographic element having a support and at least one radiation-sensitive layer, the improvement in which said image recording layer is comprised of a source of labile hydrogen atoms, a tetrazolium salt capable of reduction to a formazan dye and a photoreductant capable of producing a base activatible reducing agent precursor on exposure to actinic radiation in the presence of said labile hydrogen atoms, said'photoreductant being a quinone.

48. In a photographic element according to claim 47 the further improvement in which said quinone incorporates at least one alkyl, alkenyl, alkynyl, aryl, alkoxy, aryloxy, alkaryloxy, hydroxyalkyl, alkylcarbonyl, carboxyl, amino, aminoalkyl, amidoalkyl, anilino, piperidino, pyrrolidino, morpholino, nitro or halide substituent.

49. In a photographic element according to claim 48 the further improvement in which said quinone incorporates at least one phenyl or phenoxy substituent.

50. In a photographic element according to claim 48 the further improvement in which each of said alkyl, alkenyl and alkynyl substituents, whether present as separate substituents or in combination with other substituents, incorporate twenty or fewer carbon atoms.

51. In a photographic element according to claim 50 the further improvement in which each of said alkyl, alkenyl and alkynyl substituents, whether present as separate substituents or in combination with other substituents, incorporate six or fewer carbon atoms.

52. In a photographic element according to claim 47 the further improvement in which said quinone is a benzoquinone.

53. In a photographic element according to claim 52 the further improvement in which said benzoquinone is a l,4-benzoquinone.

54. In a photographic element according to claim 48 the further improvement in which said 1,4- benzoquinone is 2,5-dimethyl-l,4-benzoquinone; duroquinone; 2,5-di-t-butyl-l,4-benzoquinone; 2,3,5- trimethyl-6-bromol ,4-benzoquinone; or 2-phenyl-l ,4- benzoquinone.

55. In a photographic element according to claim 47 the further improvement in which said quinone is a naphthoquinone.

56. In a photographic element according to claim 55 the further improvement in which said naphthoquinone is a l,4-naphthoquinone.

57. In a photographic element according to claim 56 the further improvement in which said 1,4-

activating the precursor with a base to form a reduc-' ing agent and reducing tetrazolium salt present within the selected areal portions containing the reducing agent to formazan dye. 61. An image recording process according to claim 60 comprising utilizing the base in the gaseous phase.

62. An image recording process according to claim 60 in which the precursor is activated by ammonia.

63. An image recording process according to claim 60 comprising chelating the formazan dye.

64. An image recording process according to claim 60 in which the radiation-sensitive layer of the photographic element is exposed to visible light.

65. An image recording process according to claim 60 in which the radiation-sensitive layer of the photographic element is exposed to ultra-violet radiation.

66. An image recording process comprising imagewise exposing a radiation-sensitive layer of a photographic element containing a quinone photoreductant, a tetrazolium salt, and a source of labile hydrogen atoms,

activating the radition-struck quinone photoreductant with a base and reducing the tetrazolium salt adjacent the activated radiation-struck quinone photoreductant to formazan dye.

67. An image recording process according to claim 66 in which a binder is provided to act as a source of labile hydrogen atoms and transferring a portion of these labile hydrogen atoms from the binder to the radiation-struck quinone to form a reducing agent precursor.

O UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT N0. 13,887,37M

Q DATED IJune 3 lNVENT0R(5) R. T. Brongo, J. C. Fleming and J. W. Manthey It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 5, line 68, "quinolinyl pyrlo'lyl should read 3 -quinolinyl, pyridyl-.

Column 2%, line 44, ooly-(ethylene should read --poly(ethylene--.

Column 29, line Mr, photo-reductant" should read ---photoreductant-.

Signed and Sealed this Twenty-seventh Day of July 1976 i [SEAL] Arrest:

RUTH c. MASON c. MARSHALL DANN a Arresting Officer (mnmr'ssr'uner oj'Parenrs and Trademarks UNITED STATES PATENT AND TRADEMARK OFFICE QE TIFICATE 0F CORECTI PATENT NO. 3,887,37 i

DATED June 1975 |NVENTOR(S) R.T. Brongo, J.C. Fleming; and J.w. Manthey It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Line [5h] of the title page, "ALT" should read -SALT-.

Col. 1, line 1, "ALT" should read SALT-.

Col. 13, line 5h, after "alkaryloxy" should be -and aralkoXy-.

Col. 16, line 8, "5,6" should read --5,8--; line 22, ,5de" should read -2,5di--.

Col. 17, line il, "each" should read ease--; line 56, "celulose" should read --cellulose--.

Col. 19, line 12, "[Product Licensing Index" should read -Product Licensing IndeX.

Col. 20, line il, "methyllJi" should read -methyl-l, i-.

eighteenth of May 1976 igned and rs m Arrest:

RUTH C. MASON C. MARSHALL DANN (testing Officer Commissioner nj'Palems and Trademarks

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3278366 *30 Abr 196211 Oct 1966Telefunken PatentStorage device
US3642478 *25 Feb 197015 Feb 1972Eastman Kodak CoProcesses and compositions for converting zero valent metals photographic images to formazan dye images
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US4106939 *3 Oct 197715 Ago 1978Energy Conversion Devices, Inc.Imaging and recording of information utilizing a tellurium tetrahalide complex of an aromatic amine
US4195998 *27 Oct 19771 Abr 1980Eastman Kodak CompanyNonsilver photographic films; disulfide, diazoanthrone, diazophenanthrone, aromatic azide, quinone or carbazide photoreductant
US4201588 *7 Sep 19766 May 1980Eastman Kodak CompanyRadiation sensitive co(III)complex photoreduction element with image recording layer
US4284704 *29 Sep 197818 Ago 1981Eastman Kodak CompanyPhotographic elements with incorporated hydrogen source photoreductant and tetrazolium salt
US4314019 *2 Ago 19792 Feb 1982Eastman Kodak CompanyTransition metal photoreduction systems and processes
US4324852 *7 Jun 197913 Abr 1982Eastman Kodak CompanyRedox couples
US5049477 *14 Abr 198917 Sep 1991Fuji Photo Film Co., Ltd.Radiation responsive composition
US5116732 *11 Sep 198926 May 1992Fisher Scientific Co.Chromagens for Histological Staining
US5637440 *22 Dic 199410 Jun 1997Mitsubishi Materials CorporationHydrolysis of an organometallic compound under the effect of radiation
US5824456 *16 Ene 199720 Oct 1998Mitsubishi Materials CorporationComposition for forming metal oxide thin film pattern and method for forming metal oxide thin film pattern
US8691135 *6 Jun 20118 Abr 2014King Abdulaziz City for Science and Technology (KACST)Method of forming a film of novel composition for a dosimeter
US20110233815 *6 Jun 201129 Sep 2011King Abdulaziz City for Science and Technology (KACST)Novel composition and film used for irradiation measurement
US20110300360 *8 Jun 20108 Dic 2011King Abdulaziz City Science And TechnologyHigh dose film dosimeter based on nitro blue tetrazolium and polyvinyl butyral for radiation processing
EP2395045A1 *24 Ene 201114 Dic 2011King Abdulaziz City for Science & Technology (KACST)High dose film dosimeter based on nitro blue tetrazolium and polyvinyl butyral for radiation processing
Clasificaciones
Clasificación de EE.UU.430/147, 430/344, 430/340, 430/332, 430/374, 430/343, 430/342, 430/541, 430/170
Clasificación internacionalG03C1/73
Clasificación cooperativaG03C1/73
Clasificación europeaG03C1/73