US3889501A - Combination electrical and mechanical lock system - Google Patents

Combination electrical and mechanical lock system Download PDF

Info

Publication number
US3889501A
US3889501A US388094A US38809473A US3889501A US 3889501 A US3889501 A US 3889501A US 388094 A US388094 A US 388094A US 38809473 A US38809473 A US 38809473A US 3889501 A US3889501 A US 3889501A
Authority
US
United States
Prior art keywords
key
lock
slug
pin
apertures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US388094A
Inventor
Charles P Fort
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US388094A priority Critical patent/US3889501A/en
Application granted granted Critical
Publication of US3889501A publication Critical patent/US3889501A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/06Controlling mechanically-operated bolts by electro-magnetically-operated detents
    • E05B47/0611Cylinder locks with electromagnetic control
    • E05B47/0619Cylinder locks with electromagnetic control by blocking the rotor
    • E05B47/0626Cylinder locks with electromagnetic control by blocking the rotor radially
    • E05B47/063Cylinder locks with electromagnetic control by blocking the rotor radially with a rectilinearly moveable blocking element
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B49/00Electric permutation locks; Circuits therefor ; Mechanical aspects of electronic locks; Mechanical keys therefor
    • E05B49/002Keys with mechanical characteristics, e.g. notches, perforations, opaque marks
    • E05B49/006Keys with mechanical characteristics, e.g. notches, perforations, opaque marks actuating opto-electronic devices
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00896Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys specially adapted for particular uses
    • G07C9/00904Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys specially adapted for particular uses for hotels, motels, office buildings or the like
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/0001Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof
    • E05B47/0002Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with electromagnets
    • E05B2047/0007Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with electromagnets with two or more electromagnets
    • E05B2047/0008Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with electromagnets with two or more electromagnets having different functions
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/0001Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof
    • E05B47/0002Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with electromagnets
    • E05B47/0003Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with electromagnets having a movable core
    • E05B47/0004Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with electromagnets having a movable core said core being linearly movable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S70/00Locks
    • Y10S70/51Light sensitive control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T70/00Locks
    • Y10T70/70Operating mechanism
    • Y10T70/7051Using a powered device [e.g., motor]
    • Y10T70/7062Electrical type [e.g., solenoid]
    • Y10T70/713Dogging manual operator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T70/00Locks
    • Y10T70/70Operating mechanism
    • Y10T70/7441Key
    • Y10T70/7446Multiple keys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T70/00Locks
    • Y10T70/70Operating mechanism
    • Y10T70/7441Key
    • Y10T70/778Operating elements
    • Y10T70/7791Keys
    • Y10T70/7842Single shank or stem
    • Y10T70/7859Flat rigid

Definitions

  • ABSTRACT The specification discloses a combination electrical and mechanical lock system which includes a lock having a fixed lock cylinder and a rotatable key slug having a key aperture therethrough.
  • a first solenoid is mounted in the lock cylinder and includes a lock pin which is normally extended to prevent rotation of the key slug.
  • a pair of light sources and a pair of light detectors are mounted in the lock for generating electri cal signals when a key having coded apertures therethrough is inserted into the key slug.
  • Circuitry is responsive to predetermined characteristics of the electrical signals for operating the first solenoid to retract the lock pin to allow rotation of the key slug.
  • a second solenoid is mounted in the lock cylinder and includes a latch pin operable to be extended in response to an electrical power failure in the system. When the latch pin is extended and a proper mechanical key is inserted and rotated, extension of the lock pin is prevented.
  • a plurality of spring loaded pin tumblers are mounted in the lock cylinder and are operable to be moved away from the key slug upon insertion of a proper mechanical key to enable rotation of the key slug during an electrical power failure.
  • Such a security system must be easy to operate and to change the keys which operate the system, and yet must be able to be operated continuously even during the event of electrical power failures.
  • a lock which includes a key having coded areas therein.
  • a lock receives the key and includes structure for sensing the positions of the coded areas and for generating electrical signals in response thereto.
  • Circuitry is responsive to a predetermined electrical signal for enabling the lock to be opened by rotation of the key.
  • a lock system in accordance with another aspect of the invention, includes a key having first and second series of apertures formed therethrough.
  • a lock has a device for transmitting light through the series of apertures and further includes devices for generating first and second electrical signals in response to light received through the series of apertures.
  • Circuitry samples the first electrical signals in response to portions of the second electrical signals. Circuitry is responsive to a predetermined sampled sequence of the first electrical signals for enabling the lock to be opened by manual rotation of the key.
  • a lock system which includes a lock cylinder and a key slug rotatable within the cylinder.
  • a device is provided for normally preventing rotation of the key slug.
  • a key is dimensioned to be received within the key slug and includes a first series of apertures along the length thereof and further includes a second series of apertures located below the first series.
  • a light source is mounted in the lock for transmitting light through the apertures as the key is inserted into the key slug.
  • a first light sensitive device generates electrical data signals representative of light transmitted through the series of apertures.
  • a second light sensitive device generates an electrical clock signal representative of light transmitted through the other of the series of apertures.
  • Circuitry samples the data signal in response to the clock signal and generates an enable signal upon detection of a predetermined sampled data signal sequence. Structure is provided to unlock the rotation preventing means in response to the enable signal to allow the key to rotate the key slug.
  • a lock system in accordance with another aspect of the invention, includes a first key havng coded apertures therethrough and a second key having a coded series of lands and grooves along one edge.
  • a lock includes a rotatable key slug with a key aperture for receiving either of the first or second keys.
  • Electrical circuitry is responsive to the coded apertures when the first key is inserted into the lock for enabling the key slug to be rotated to an unlocked position.
  • a mechanical device is operable only when the electrical circuitry is cleenergized for enabling the second key to be inserted in the end of the key slug and the key slug to be rotated to the unlocked position.
  • a combination electrical and mechanical lock system includes a lock having a fixed lock cylinder and a rotatable key slug having a key aperture therethroughv
  • a first solenoid is mounted in the lock cylinder and includes a lock pin engaged to normally prevent rotation of the key slug.
  • a light source and a light detector are mounted in the lock for generating electrical signals when a key having coded apertures is inserted into the key slug.
  • Circuitry is responsive to predetermined characteristics of the electrical signals for operating the first solenoid to disengage the lock pin to allow rotation of the key slug.
  • a second solenoid is mounted in the lock cylinder and has a latch pin operable to be extended in response to an electrical power failure.
  • the latch pin when extended, prevents engagement of the lock pin with the key slug.
  • a plurality of spring-loaded pin tumblers are mounted in the lock cylinder and are operable to be moved away from the key slug upon insertion of a key having coded grooves and lands to enable rotation of the key slug during an electrical power failure.
  • FIG. 1 is a diagrammatic block diagram of a portion of the present lock system
  • FIG. 2 is a front view of a lock used in the present system
  • FIG. 3 is a perspective view of a key having coded apertures according to the invention.
  • FIG. 4 is a section view taken generally along the section lines 44 shown in FIG. 2;
  • FIG. 5 illustrates a side view, partially sectioned, of the key shown in FIG. 3 when inserted into the present lock
  • FIG. 6 is a section view taken generally along the section lines 66 in FIG. 2;
  • FIGS. 7a-b illustrates the data and clock waveforms generated by the present lock
  • FIG. 8 is a sectional view of the present lock when the lock pin prevents clockwise rotation of the key slug
  • FIG. 9 is a sectional view corresponding with FIG. 9 illustrating how the lock pin is cammed upwardly by counter clockwise rotation of the key slug by the mechanical key;
  • FIG. 10 is a sectional view of the lock illustrating operation of the spring loaded pin tumblers when the lock is in the mechanical mode of operation;
  • FIG. 11 illustrates a side view of the mechanical key inserted into the lock sectioned generally along the section line l1ll in FIG. 10;
  • FIG. 12 illustrates the line termination logic circuitry logic of the invention
  • FIG. 13 illustrates the line termination unit selection logic
  • FIG. 14 illustrates the memory accessing and test data compare logic
  • FIG. 15 illustrates the key assignment console interface circuitry.
  • FIG. 1 illustrates a block diagram of the present security system which includes a desk console 10 having a keyboard array 12 which may comprise for example a standard ASCII typewriter keyboard.
  • the console 10 includes a key slot 14 for insertion of electronic keys according to the invention.
  • the console further includes a display 16 whereby information input into the system by operation of the keyboard 12 may be displayed.
  • the console 10 is connected through interface logic 18 to a central processor 20 which may include a memory 22.
  • the interface logic 18 is connected through an electrical conductor 24 to the region of a door 26.
  • the conductor 24 is connected to a circuit box 27 which is connected via an electrical lead 28 to a lock 30 constructed in accordance with the present invention.
  • a plurality of similar locks installed in additional doors in the area are connected to the interface logic 18 in a similar manner.
  • a plurality of coded keys are normally maintained under the control of the operator of the console 10. Assuming that the present security system is utilized in a hotel, when a guest checks in, one of the coded keys is inserted into the key slot 14 entering the key number into the console, and the guests name and the assigned room number are entered into the keyboard 12 and all are displayed on the display 16. The information thus entered is also applied through the interface logic 18 to the central processor 20 for storage therein. This assigns the inserted key to the assigned room number. Thereafter, the lock 30 may be actuated only by the particular coded key assigned to the guests room.
  • a plurality of conventional mechanical keys are also provided for use in case of a power failure which renders the electronic system shown in Flg. 1 inoperative.
  • one of the mechanical keys may be utilized to operate the lock 30.
  • the lock 30 automatically reverts to the electronic mode and cannot be operated by the mechanical key.
  • the assigned coded key is released from assignment by operation of the keyboard 12 and thereafter the coded key will not open the lock 30.
  • any one of the plurality of coded keys may be assigned to operate any of the locks in the system by proper insertion of the key in the key slot 14 and by operation of the keyboard 12. If one of the coded keys is thus stolen or duplicated. the single coded key could not be utilized to operate any of the door locks, as the coded key assigned to a particular lock will be periodically changed each time a guest departs from the room.
  • Maids and other members of the hotel staff whose duties require guestroom entry may be issued a coded key which is assigned to a group of rooms by proper operation of the keyboard 12.
  • the system may be operated so that a maids coded key may be used only once per door lock and may be used only during a specified period of the day.
  • a much larger number of coded keys may be provided than the num ber of door locks in the hotel, thereby allowing assignment of a large number of different keys to the various door locks.
  • the system may be operated to sound an alarm in case a particular coded key which has been stolen is inserted into any of the door locks in the system.
  • FIG. 2 illustrates a front view of the door lock 30 shown in FIG. 1.
  • the lock includes a lock cylinder 32 which is rigidly mounted within the door 26 in the con ventional manner.
  • a rotatable key slug 34 is mounted within the lock cylinder 32 and includes a key aperture 36. Rotation of the key slug 34 in the clockwise direction causes operation of a door bolt in the well known manner.
  • the key aperture 36 is dimensioned to receive either the coded key shown in FIG. 3 or the conventional mechanical key shown in FIG. 11. When the lock is in the electronic mode, only the coded key may be rotated to operate the lock. while when electrical power is disabled, only the mechanical key may be operated to operate the lock.
  • a first solenoid 38 is mounted within the lock cylinder and includes a movable lock pin 40.
  • the second solenoid 42 is mounted within the lock cylinder at a right angle to the solenoid 38 and also includes a movable latch pin 44 which places the system in the mechanical mode upon a power failure, as will subsequently be described.
  • a pair of light emitting diodes 46 and 48 are laterally and vertically offset from one another on one side of the lock cylinder 32 and emit rays of light which pass through apertures in the coded key. the light transmitted through the key is detected by a pair of phototransistors 50 and 52 which are likewise laterally and vertically offset from one another.
  • a first set of tumbler pins are mounted in front of and behind the locking pin 40 of the solenoid 38.
  • a second set of spring biased tumbler pins 54 are mounted at a 45 angle from the first set and are utilized in the mechanical mode of operation of the system as will be subsequently described.
  • FIG. 3 illustrates a perspective view of the preferred coded key 60 of the invention.
  • the key includes a conventional handle 62 and an elongated key portion 64.
  • An upwardly extending projection 66 is formed on the forward end of the key to prevent the key from being withdrawn from the lock once inserted and rotated.
  • first series of apertures 68 are spaced along the upper portion of the key according to a predetermined binary coded configuration.
  • a second series of spaced apart apertures 70 are spaced apart below the first series of apertures.
  • the series of apertures 68 is formed by rectangular vertical slots in one side of the key in order to define apertures 72 which extend completely through the width of the key.
  • the second series of apertures 70 is formed by vertical slots made in the opposite side of the key in order to form the apertures 74 which extend completely through the side of the key.
  • the apertures 72 are spaced apart according to a predetermined binary coded configuration. Each of the keys utilized with the system have a different binary coded configuration of apertures.
  • the array of apertures 70 comprises a series of apertures 74 which are evenly apart in order to generate clock pulses to enable sampling of the signals generated by the coded series.
  • coded key uses coded apertures
  • other discrete coded areas could be formed on the key and detected.
  • magnetic particles could be spaced along the length of the key to form a coded data array and a clock array, and magnetic sensors could detect the passage of the magnetic particles to generate electrical data and clock signals.
  • the coded apertures in the key as shown in FIG. 3 could alternatively be sensed by metal fingers which complete an electrical circuit upon the occurrence of an aperture.
  • Other techniques for sensing coded apertures or other types of discrete coded areas on the key are intended to be encompassed by the present invention.
  • FIG. 4 is a section view taken along the section lines 4-4 in FIG. 2.
  • the solenoid 38 includes a solenoid winding 80 which may be energized by electrical signals to move the solenoid pin 82 and lock pin 40 upwardly.
  • a spring 84 normally biases the lock pin 40 in the illustrated downward position when solenoid 38 is deenergized in order to lock the key slug 34 to prevent clockwise rotation.
  • the key slug 34 must be rotated in the clockwise method in order to open the locked door.
  • An aperture 86 is formed through the side walls of the key slot 36 to emit light from the light emitting diode 46, while an aperture 88 is formed to emit light from the light emitting diode 48.
  • a plurality of vertical pin apertures 900-6 are formed in the lock cylinder 32 and are adapted to mate with corresponding apertures formed in the key slug 34 as illustrated in FIG. 11.
  • Tumbler pins 92a-e are adapted to slidably move vertically within the apertures in the key slug and in apertures 90a-e. If a mechanical key having a wrong shape is inserted into the key slot 36, the pins 92a-e will be raised into apertures 90a@ in order to prevent the rotation of the key slug 34.
  • FIG. 5 illustrates the insertion of the coded key 60 into the key slot 36.
  • the projection 66 causes each of the tumbler pins 92ae to be initially moved upwardly into apertures 90a-e and then the tumbler pins 92a-e fall downwardly behind the projection 66.
  • the tumbler pin 92e prevents withdrawal of the key 60, as pin 92e is no longer aligned under apertures 90e.
  • key 60 may be removed from the lock.
  • FIG. 6 illustrates a sectional view taken generally along the section line 6-6 of FIG. 2 and illustrates the second set of tumbler pins 54a-e which are spring loaded within apertures set in the lock cylinder at 45 from the vertical.
  • the tumbler pins 54a-e bear against the outer edge of the key slug 34 and are maintained in the illustrated upward position.
  • the pins 54ae rest on top of the pins 92ae to enable proper operation of the lock in the manner to be subsequently described. If an improper mechanical key is inserted into the key slug 34 and rotated, one or more of the pins 54a-e will move into the apertures in the key slug and will prevent further rotation of the key slug.
  • the outputs of the phototransistors comprise squarewave signals representative of the light received due to the passage of the key into the key slot 36.
  • Typical output signals from the phototransistors 50 and 52 are illustrated in FIGS. 7ab.
  • the output of the phototransistor 52 comprises a periodic wavetrain shown in FIG. 7a which serves as the clock signal ofthe ivention.
  • the output of the phototransistor 50 comprises a plurality of square pulses such as shown in FIG. 7b which are apaced apart relative to FIG. 70 by varying amounts in accordance with the coded spacing of the apertures 72.
  • Electronic circuitry receives the waveforms shown in FIGs. 7a-b and samples the transmitted identification data signals shown in FIG. 7b upon each positive going transition ofthe clock pulse shown in FIG. 70.
  • the waveform of FIG. 7b is sampled at time t, as a logic l and is sampled at time as a logic 0".
  • the resulting binary code output detected by the comparator circuitry of the invention is then compared against the stored binary code input into the central processor 20 as the correct code for that particular lock. If the detected code matches the stored code, an energizing signal is applied to the solenoid 38 and the solenoid pin 82 is moved upwardly in order to remove the lock pin 40 from contract with the abutment wall 96.
  • the lock slug 34 may then be rotated clockwsie by the key 60 in order to operate the door bolt in the conventional manner.
  • the present invention could be operated using only a single set of key apertures in a spaced apart coded configuration and a plurality of light sources and light detectors each corresponding to a different key aperture, the use of the clock signal enables the code to be detected with only two light sources and two detectors irrespective of the speed in which the key is inserted into the key slot.
  • the solenoid 42 is maintained in the energized position and thus the latch pin 44 is withdrawn from engagement with the lock pin 40.
  • the electronic mode of operation of the system is not possible.
  • the solenoid 42 is deencrgized and the latch pin 44 is moved outwardly from the solenoid 42 by operation of a spring 100.
  • a mechanical key which includes coded lands and grooves may then be inserted into the key slot 36 and the key slug 34 rotated counterclockwise
  • the mechanicl key must include coded lands and gooves which interfit with the tumbler pins 92a-e in such manner as shown in FIG. 11 in order to enable counterclockwise rotation of the key slug 34 and to establish the mechanical mode.
  • Rotation of the key slug 34 in the counterclockwise manner causes the lock pin 40 to be moved upwardly due to the cam surface 98.
  • the lock pin 40 reaches an upper position such the the latch pin 44 abuts with the annular surface 104 of the lock pin 40 and prevents the lock pin 40 from being moved clown wardly.
  • the system is now in the mechanical mode and cannot be operated by any of the coded keys 60.
  • Fig. illustrates the proper alignment of pin 92a with the pin tumbler 54a in order to allow rotation of the key slug.
  • the lands and grooves of the mechanical key are such that the pins 92ae mate with the tumbler pins 54ae at the periphery of the key slug 34 to enable clockwise movement of the key slug 34 to enable operation of the door bolt in the conventional manner. If the proper machanical key has not been inserted, the tumbler pins S4a-e will project downwardly into the key slug 34 and prevent further rotation.
  • FIG. 11 illustrates a sectional view taken generally along section lines ll-11 in FIG. 10 illustrating the proper operation of the mechanical key 110.
  • the mechanical key 110 includes lands and grooves such that the tumbler pins 92u-e contact the tumbler pins 5411-1 at the outer periphery of the key slug 34.
  • the solenoid 42 When the electrical power again comes on, the solenoid 42 is re'energized and the latch pin 44 is withdrawn, thereby allowing the lock pin 40 to be pushed downwardly by operation of the spring 84.
  • the key slug 34 is then again locked against clockwise rotation by the lock pin 40 and the mechanical key 110 will not work to rotate the key slug 34 in the clockwise position beyond the vertical position.
  • the coded key 60 must then be used to open the lock in the manner previously described.
  • FIGS. 12-15 illustrate the circuitry for determining the validity ofa particular coded key and for assigning coded keys to various rooms as desired.
  • the transmitted clock (TC) signal shown in FIG. 7a and the transmitted key ID signal shown in FIG. 7a are transmitted to the circuitry shown in FIG. 12.
  • the ID line terminates in a line receiver 101 which outputs to the data input of serial in/parallel out shift register 104.
  • the TC line terminates in line receiver 102 which outputs to the clock input of shift register 104 and to the reset input of flipflop 106.
  • the coded key is inserted into the key slot of FIG. 4, the light beam through aperture 88 is interrupted by slots 74 of Flg. 3, producing the TC signal.
  • the light beam through aperture 86 is inter- S rupted by slots 72 of FIG. 3, producing the signal pattern of FIG. 7b.
  • the slots 72 of FIG. 3 represent a binary code and are unique to each key of the system.
  • the clock signal causes the binary data then present on the ID signal, a logical l to be shifted into the shift register 104 of Flg. 12.
  • a lgical 0" is shifted into the shift register 104.
  • the clocking continues as the key progresses into the key slot, until l6 data bits have been loaded into the shift register 104.
  • This condition is signaled by the DATA READY output of shift register 104 going to a logical l causing a service request to be made to selection logic 201 shown in FIG. 13.
  • Logic 201 comprises logic to generate a memory address corresponding to the particular data ready signal line or lines requesting service and logic to queue and select one of a plurality of lines requesting service for servicing.
  • the memory address lines are gated by gates 205 in response to the address enable strobe from the memory timing and control logic.
  • the address of the selected line termination unit is also routed to the data enable selector 202, the unlock strobe selector 203. and to the reset strobe selector 204.
  • memory timing and control 301 activates ADDRESS ENABLE which causes gates 205 to apply the state of the memory address lines from logic 201 to the address bus and to generate the read request signal received by control 301.
  • Control 301 then causes the memory 302 to begin a read access of the location specified by the address appearing on the address bus.
  • control 301 activates the data enable strobe to data enable selector 202 (FIG. 13). If line termination logic LTL No. I, corresponding to a particular lock, is selected for service, for example, selector 202 issues a data enable to gates 105, thereby ap plying the contents of shift register 104 to the memory test data compare bus received by comparator 303.
  • control 301 issues a start compare strobe to comparator 303. If the data on the memory read data bus is logically equal to the data on the test data compare bus, the comparator 303 activates the equal compare strobe received by unlock strobe selector 203 and the OR gate 304. Since the address input to selector 203 corresponds to LTL No. I, an unlock strobe is issued to flipflop 106, clocking it to the set condition. The output Q of flipflop 106 received by line driver 103 causes an ulock pulse to be transmitted to the unlock solenod of FIG. 4, causing the lock pin 82 to be withdrawn. The key slug 36 is thus enabled to be ro tated clockwise by the key operator, unlatching the lock mechanism.
  • comparator 303 activates the unequal compare strobe received by reset strobe selector 204, through OR gate 304. Since LTL No. I is selected by the memory address received by 204, the reset line toshift register 104 is activated, clearing the register 104. Clearing register 104 removes its DATA READY singnal from logic 201. Logic 201 then services the next queued LTL requesting service and repeats the key validation cycle.
  • console 10 of FIG. 1 The assignment of persons to keys and keys to rooms is accomplished using console 10 of FIG. 1.
  • the console consists of an alpha/numeric keyboard 401 for entering information manually into refresh memory 403 and a key reader similar to FIG. 2 for entering the key lD into memory 403.
  • the contents of memory 403 are stored in memory 302 of FIG. 14 by operation of an ENTER BUTTON on keyboard 401.
  • Terminal interface logic 406 operates to transfer the contents of memory 403 to memory 302, beginning at a location corresponding to the room ID, The key lD is stored in this first location, the keyholders name and other information in following location, Writing to memory is accomplished in a manner similar to read ing, but in a different mode.
  • a lock system comprising:
  • a lock having a lock cylinder and a key slug rotatable within said cylinder
  • a key having first and second series of discrete coded portions formed therein, said first series being lat' erally offset relative to said second series,
  • said first electrical signals comprising a series of data pulses spaced apart according to a predetermined configuration and said second electrical signals comprising a series of clock pulses spaced apart by a common interval, one edge of said clock pulses occurring concurrently with ones of said data pulses,
  • said coded portions comprise series of apertures formed through said key, said apertures in said first series being spaced apart in a predetermined coded configuration relative to said apertures in said second series,
  • a second key having coded lands and grooves and operable to open said lock only when the electrical power supply for said lock is inoperative.
  • a lock system comprising:
  • a lock having a lock cylinder and a key slug rotatable within said cylinder either in a first or second direction wherein the lock system may be opened by rotation said key slug in said first direction,
  • a key for being received by said key slug and having s first series of apertures along the length thereof and further including a second series of apertures located below said first series,
  • first light sensitive means for generating an electrical data signal representative of light transmitted through one of said series of apertures
  • second light sensitive means for generating an electrical clock signal representative of light transmitted through the other of said series of apertures
  • circuitry for sampling said data signal in response to said clock signal and for generating an enable signal upon detection of a predetermined sampled signal sequence
  • a second key having coded lands and grooves thereon for positioning said second set of tumbler pins in said key slug at the interface between said key slug and said lock cylinder thereby maintaining said second set of tumbler pins at said interface during rotation of said key slug within said lock cylinder so that said key slug may be rotated in said second direction
  • a cam surface on said key slug for camming said pin away from said surface on said key slug when said key slug is rotated in said second directiom and means for maintaining said pin away from said surface on said key slug to allow rotation of said key slug in said first direction thereby opening the locking system.
  • a lock system comprising:
  • first key having coded discrete portions therein and a second key having a coded series of lands and grooves along one edge
  • a lock having a rotatable key slug with a key aperture for receiving either of said first or second keys, electrical circuitry responsive to said coded discrete portions when said first key is inserted into said lock for enabling said key slug to be rotated to an unlocked position,
  • a combination electrical and mechanical lock system comprising:
  • a first solenoid mounted in said lock cylinder and having a lock pin engaged to normally prevent rotation of said key slug to an unlocked position
  • a light source and a light detector mounted in said lock for generating electrical signals when said first key having coded apertures is inserted into said key slug
  • circuitry responsive to predetermined characteristics of said electrical signals for operating said first solenoid to disengage said lock pin to allow rotation of said key slug to an unlocked position
  • a second key for insertion into said key aperture and having coded lands and grooves adapted to posi tion said pin tumblers to allow rotation of said key slug to actuate said means for withdrawing said lock pin
  • a second solenoid mounted in said lock cylinder and having a latch pin operable to be extended in response to an electrical power failure to prevent the return of said lock pin to its normally locking position thereby allowing rotation of said key slug to an unlocked position during an electrical power failure.
  • a lock system comprising:
  • a lock having a lock cylinder and a key slug rotatable within said cylinder in either a first or second direction wherein the lock system may be opened by rotating said key slug in said first direction
  • a first key for being received by said key slug and having a series of apertures disposed along the length thereof
  • a light source mounted in said lock for transmitting light through said apertures as said key is inserted into said key slug
  • circuitry for detecting said data signals and for generating an enable signal upon detection of a predetermined sample signal sequence.
  • a second key having coded lands and grooves thereon for positioning said second set of tumbler pins in said key slug at the interface between said key slug and said lock cylinder thereby maintaining said second set of tumbler pins at said interface during rotation of said key slug within said lock cylinder so that said key slug may be rotated in said second direction
  • Col. 1 line 5, invenetion” should be invention.
  • Col. 5 line 17, immediately following “evenly” insert --spaced-.
  • Col. 6 line 57, "clockwsie” should be clockwise.
  • Col. 8 line 51, solenod 80" should be solenoid 80-;

Abstract

The specification discloses a combination electrical and mechanical lock system which includes a lock having a fixed lock cylinder and a rotatable key slug having a key aperture therethrough. A first solenoid is mounted in the lock cylinder and includes a lock pin which is normally extended to prevent rotation of the key slug. A pair of light sources and a pair of light detectors are mounted in the lock for generating electrical signals when a key having coded apertures therethrough is inserted into the key slug. Circuitry is responsive to predetermined characteristics of the electrical signals for operating the first solenoid to retract the lock pin to allow rotation of the key slug. A second solenoid is mounted in the lock cylinder and includes a latch pin operable to be extended in response to an electrical power failure in the system. When the latch pin is extended and a proper mechanical key is inserted and rotated, extension of the lock pin is prevented. A plurality of spring loaded pin tumblers are mounted in the lock cylinder and are operable to be moved away from the key slug upon insertion of a proper mechanical key to enable rotation of the key slug during an electrical power failure.

Description

United States Patent [191 Fort [ June 17, 1975 COMBINATION ELECTRICAL AND MECHANICAL LOCK SYSTEM Charles P. Fort, PO. Box 38547, Dallas, Tex. 75238 22 Filed: Aug. 14, 1973 211 Appl. No.: 388,094
[76] Inventor:
Primary ExaminerAlbert G. Craig, Jr. Attorney, Agent, or FirmRichards, Harris 8L Medlock [57] ABSTRACT The specification discloses a combination electrical and mechanical lock system which includes a lock having a fixed lock cylinder and a rotatable key slug having a key aperture therethrough. A first solenoid is mounted in the lock cylinder and includes a lock pin which is normally extended to prevent rotation of the key slug. A pair of light sources and a pair of light detectors are mounted in the lock for generating electri cal signals when a key having coded apertures therethrough is inserted into the key slug. Circuitry is responsive to predetermined characteristics of the electrical signals for operating the first solenoid to retract the lock pin to allow rotation of the key slug. A second solenoid is mounted in the lock cylinder and includes a latch pin operable to be extended in response to an electrical power failure in the system. When the latch pin is extended and a proper mechanical key is inserted and rotated, extension of the lock pin is prevented. A plurality of spring loaded pin tumblers are mounted in the lock cylinder and are operable to be moved away from the key slug upon insertion of a proper mechanical key to enable rotation of the key slug during an electrical power failure.
ll Claims, 15 Drawing Figures PATENTED JUN 1 7 I975 SHEET KEY HOLDER'S NAME ROOM KEY MEMORY PROCESSOR INTERFACE LOGIC TO OTHER LOCKS FIG.
FIG. 4
SHEET PATENTEUJUN 1 7 I975 FIG. 5
PATENTED 17 TRANSMITTED CLOCK SIGNAL 0 TRANSMITTED ID SIGNAL l I I f7- K I 92c 92d 92a 1 AME lid Z 920 PATENTEDJUN I 7 I975 STROBE FROM 303 I0! 104) ID DATA LINE )0 'fg SHIFT DATA READY REGISTER RESET I05 B TO DECODE CLOCK LINE I GATES A. DATA ENABLE an/ SELEcTION [03 TO MEMORY (PROCESSOR) UNLOCK ZSI IPABE EUS Dovcc S'GNAL c UNLOCK STROBE \IOG Y DATA READY FROM 205 SINCE 7 *$55I DATA READY FROM OTHER SHIFT REGISTERS 2 EE E Q I2 MEMORY ADDRESS LINES GATES ADDRESS I. L C BUS T0 302 SERvIcE REOuEST FROM ASSIGNMENT TERMINAL 202 ADDRESS 82%fi% STROBE I DATA FROM 30] OTHER GATES I SELECTOR I ENABLE STROBE FROM MEMORY cONTROL 30] UNLOCK STROBE TO FLIP FLOP I06 203 T UNLOCK 2 UNLOCK STROBES TO I STROBE OTHER FLIP FLOPS SELECTOR EOuAL cOMPARE STROBE FROM 303 RESET TO SHIFT REGISTER I04 204 f ARIEL RESET To OTHER SHIFT REGISTERS E SELECTOR uNEOuAL COMPARE F G 3 Cl FT 5 I PATENTEDJIIII I 7 [975 0 a J 01 SHEET 5 301 wRITE DATA )ATA ENABLE STROBE BUS FROM 406 F0 202 a 406 MEMORY/ 30a AEMORY SERvICE IEOuEST FROM 2OI {W MEMORY START CONTROL MEMORY QQQEE E QEE MEMORY R/w MEMORY AOORESS CYCLE COMPLETE BUS IEAO REQUEST -'ROM 204 vRITE REQUEST [START COMPARE STROBE SE 9 ROM 406 TO 406 vRITE cYcLE COMPLETE T0406 m 203: EQUAL COMPARE STROBE UNEQUAL COMPARE STROBE 'f fisos TO 204 TEST DATA COMPARE [3/6 [4 BUS FROM I05 AND OTHER GATES 405 405 DISPLAY ALPHA/ REFRESH NuMERIC MEMORY DISPLAY 401\ I KEY MEMORY REQUEST TO 201 KEYBOARD ASSIONMENT INTERFACE OATA ENABLE (SELECT) FROM 202 gggygf LOG'C I2 MEMORY AOORESS LINES T0 302 LOG; READ/WR|TE REQUEST TO 301 KEY I6 wRITE DATA LINES TO 302 RE DER :I6 REAO OATA LINES FROM 302 j -wRITE CYCLE COMPLETE FROM 30] 402 404 406 START COMPARE STROBE (READ cYcLE COMPLETE) FROM 30:
1 COMBINATION ELECTRICAL AND MECHANICAL LOCK SYSTEM FIELD OF THE INVENTION This invenetion relates to security systems. and more particularly relates to a lock system which is normally operated by an electrical circuit which senses a key having discrete coded portions therein, but which may be alternatively operated by a conventional mechanical key upon electrical failure.
THE PRIOR ART A wide number of different types of security systems have been heretofore developed for use when security must be provided for a large number of doors and when large numbers of people are involved. For example, hotels and motels have a large number of different rooms, each of which is assigned to a different key to allow access to a particular room only by a designated guest. Substantial problems occur with the use of ordinary mechanical keys, not the least of which is the ease with which such mechanical keys may be duplicated or stolen. When such mechanical keys are lost, the entire lock must generally be replaced in order to maintain security. Due to the expense and complexity of changing locks. it is difficult to maintain security in such a system over a long period of time. A need has thus arisen for a security system in which security may be continuously provided to a large number of areas, such that access is available only when a person has a specific key, the system yet having the capability to enable selective changing of the key which opens a designated room in order to maintain the security of the entire system over a long period of time. Such a security system must be easy to operate and to change the keys which operate the system, and yet must be able to be operated continuously even during the event of electrical power failures.
SUMMARY OF THE INVENTION In accordance with the present invention, a lock is provided which includes a key having coded areas therein. A lock receives the key and includes structure for sensing the positions of the coded areas and for generating electrical signals in response thereto. Circuitry is responsive to a predetermined electrical signal for enabling the lock to be opened by rotation of the key.
In accordance with another aspect of the invention, a lock system includes a key having first and second series of apertures formed therethrough. A lock has a device for transmitting light through the series of apertures and further includes devices for generating first and second electrical signals in response to light received through the series of apertures. Circuitry samples the first electrical signals in response to portions of the second electrical signals. Circuitry is responsive to a predetermined sampled sequence of the first electrical signals for enabling the lock to be opened by manual rotation of the key.
In accordance with another aspect of the invention, a lock system is provided which includes a lock cylinder and a key slug rotatable within the cylinder. A device is provided for normally preventing rotation of the key slug. A key is dimensioned to be received within the key slug and includes a first series of apertures along the length thereof and further includes a second series of apertures located below the first series. A light source is mounted in the lock for transmitting light through the apertures as the key is inserted into the key slug. A first light sensitive device generates electrical data signals representative of light transmitted through the series of apertures. A second light sensitive device generates an electrical clock signal representative of light transmitted through the other of the series of apertures. Circuitry samples the data signal in response to the clock signal and generates an enable signal upon detection of a predetermined sampled data signal sequence. Structure is provided to unlock the rotation preventing means in response to the enable signal to allow the key to rotate the key slug.
In accordance with another aspect of the invention, a lock system includes a first key havng coded apertures therethrough and a second key having a coded series of lands and grooves along one edge. A lock includes a rotatable key slug with a key aperture for receiving either of the first or second keys. Electrical circuitry is responsive to the coded apertures when the first key is inserted into the lock for enabling the key slug to be rotated to an unlocked position. A mechanical device is operable only when the electrical circuitry is cleenergized for enabling the second key to be inserted in the end of the key slug and the key slug to be rotated to the unlocked position.
In accordance with yet another specific aspect of the invention, a combination electrical and mechanical lock system includes a lock having a fixed lock cylinder and a rotatable key slug having a key aperture therethroughv A first solenoid is mounted in the lock cylinder and includes a lock pin engaged to normally prevent rotation of the key slug. A light source and a light detector are mounted in the lock for generating electrical signals when a key having coded apertures is inserted into the key slug. Circuitry is responsive to predetermined characteristics of the electrical signals for operating the first solenoid to disengage the lock pin to allow rotation of the key slug. A second solenoid is mounted in the lock cylinder and has a latch pin operable to be extended in response to an electrical power failure. The latch pin, when extended, prevents engagement of the lock pin with the key slug. A plurality of spring-loaded pin tumblers are mounted in the lock cylinder and are operable to be moved away from the key slug upon insertion of a key having coded grooves and lands to enable rotation of the key slug during an electrical power failure.
DESCRIPTION OF THE DRAWINGS For a more complete understanding of the present invention and for further objects and advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a diagrammatic block diagram of a portion of the present lock system;
FIG. 2 is a front view of a lock used in the present system;
FIG. 3 is a perspective view of a key having coded apertures according to the invention;
FIG. 4 is a section view taken generally along the section lines 44 shown in FIG. 2;
FIG. 5 illustrates a side view, partially sectioned, of the key shown in FIG. 3 when inserted into the present lock;
FIG. 6 is a section view taken generally along the section lines 66 in FIG. 2;
FIGS. 7a-b illustrates the data and clock waveforms generated by the present lock;
FIG. 8 is a sectional view of the present lock when the lock pin prevents clockwise rotation of the key slug;
FIG. 9 is a sectional view corresponding with FIG. 9 illustrating how the lock pin is cammed upwardly by counter clockwise rotation of the key slug by the mechanical key;
FIG. 10 is a sectional view of the lock illustrating operation of the spring loaded pin tumblers when the lock is in the mechanical mode of operation;
FIG. 11 illustrates a side view of the mechanical key inserted into the lock sectioned generally along the section line l1ll in FIG. 10;
FIG. 12 illustrates the line termination logic circuitry logic of the invention;
FIG. 13 illustrates the line termination unit selection logic;
FIG. 14 illustrates the memory accessing and test data compare logic; and
FIG. 15 illustrates the key assignment console interface circuitry.
DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 illustrates a block diagram of the present security system which includes a desk console 10 having a keyboard array 12 which may comprise for example a standard ASCII typewriter keyboard. The console 10 includes a key slot 14 for insertion of electronic keys according to the invention. The console further includes a display 16 whereby information input into the system by operation of the keyboard 12 may be displayed. The console 10 is connected through interface logic 18 to a central processor 20 which may include a memory 22. The interface logic 18 is connected through an electrical conductor 24 to the region of a door 26. The conductor 24 is connected to a circuit box 27 which is connected via an electrical lead 28 to a lock 30 constructed in accordance with the present invention. A plurality of similar locks installed in additional doors in the area are connected to the interface logic 18 in a similar manner.
In operation of the present system, a plurality of coded keys are normally maintained under the control of the operator of the console 10. Assuming that the present security system is utilized in a hotel, when a guest checks in, one of the coded keys is inserted into the key slot 14 entering the key number into the console, and the guests name and the assigned room number are entered into the keyboard 12 and all are displayed on the display 16. The information thus entered is also applied through the interface logic 18 to the central processor 20 for storage therein. This assigns the inserted key to the assigned room number. Thereafter, the lock 30 may be actuated only by the particular coded key assigned to the guests room. A plurality of conventional mechanical keys are also provided for use in case of a power failure which renders the electronic system shown in Flg. 1 inoperative. Upon the occurrence of a power failure, one of the mechanical keys may be utilized to operate the lock 30. When the power to the system is restored, the lock 30 automatically reverts to the electronic mode and cannot be operated by the mechanical key. When the guest checks out, the assigned coded key is released from assignment by operation of the keyboard 12 and thereafter the coded key will not open the lock 30.
An important aspect of the present security system is that any one of the plurality of coded keys may be assigned to operate any of the locks in the system by proper insertion of the key in the key slot 14 and by operation of the keyboard 12. If one of the coded keys is thus stolen or duplicated. the single coded key could not be utilized to operate any of the door locks, as the coded key assigned to a particular lock will be periodically changed each time a guest departs from the room.
Maids and other members of the hotel staff whose duties require guestroom entry may be issued a coded key which is assigned to a group of rooms by proper operation of the keyboard 12. If desired, the system may be operated so that a maids coded key may be used only once per door lock and may be used only during a specified period of the day. In order to increase the security provided by the present system, a much larger number of coded keys may be provided than the num ber of door locks in the hotel, thereby allowing assignment of a large number of different keys to the various door locks. If desired, the system may be operated to sound an alarm in case a particular coded key which has been stolen is inserted into any of the door locks in the system.
FIG. 2 illustrates a front view of the door lock 30 shown in FIG. 1. The lock includes a lock cylinder 32 which is rigidly mounted within the door 26 in the con ventional manner. A rotatable key slug 34 is mounted within the lock cylinder 32 and includes a key aperture 36. Rotation of the key slug 34 in the clockwise direction causes operation of a door bolt in the well known manner. The key aperture 36 is dimensioned to receive either the coded key shown in FIG. 3 or the conventional mechanical key shown in FIG. 11. When the lock is in the electronic mode, only the coded key may be rotated to operate the lock. while when electrical power is disabled, only the mechanical key may be operated to operate the lock.
A first solenoid 38 is mounted within the lock cylinder and includes a movable lock pin 40. The second solenoid 42 is mounted within the lock cylinder at a right angle to the solenoid 38 and also includes a movable latch pin 44 which places the system in the mechanical mode upon a power failure, as will subsequently be described.
A pair of light emitting diodes 46 and 48 are laterally and vertically offset from one another on one side of the lock cylinder 32 and emit rays of light which pass through apertures in the coded key. the light transmitted through the key is detected by a pair of phototransistors 50 and 52 which are likewise laterally and vertically offset from one another. A first set of tumbler pins, not shown in FIG. 2, are mounted in front of and behind the locking pin 40 of the solenoid 38. A second set of spring biased tumbler pins 54 are mounted at a 45 angle from the first set and are utilized in the mechanical mode of operation of the system as will be subsequently described.
FIG. 3 illustrates a perspective view of the preferred coded key 60 of the invention. The key includes a conventional handle 62 and an elongated key portion 64. An upwardly extending projection 66 is formed on the forward end of the key to prevent the key from being withdrawn from the lock once inserted and rotated. A
first series of apertures 68 are spaced along the upper portion of the key according to a predetermined binary coded configuration. A second series of spaced apart apertures 70 are spaced apart below the first series of apertures. The series of apertures 68 is formed by rectangular vertical slots in one side of the key in order to define apertures 72 which extend completely through the width of the key. The second series of apertures 70 is formed by vertical slots made in the opposite side of the key in order to form the apertures 74 which extend completely through the side of the key.
The apertures 72 are spaced apart according to a predetermined binary coded configuration. Each of the keys utilized with the system have a different binary coded configuration of apertures. The array of apertures 70 comprises a series of apertures 74 which are evenly apart in order to generate clock pulses to enable sampling of the signals generated by the coded series.
As previously noted, light from diodes 46 and 48 is transmitted through the series of apertures 68 and 70 and is detected by phototransistors 50 and 52 to generate data and clock signals. While the preferred embodiment of the coded key uses coded apertures, it will be understood that other discrete coded areas could be formed on the key and detected. For example, magnetic particles could be spaced along the length of the key to form a coded data array and a clock array, and magnetic sensors could detect the passage of the magnetic particles to generate electrical data and clock signals. Similarly, the coded apertures in the key as shown in FIG. 3 could alternatively be sensed by metal fingers which complete an electrical circuit upon the occurrence of an aperture. Other techniques for sensing coded apertures or other types of discrete coded areas on the key are intended to be encompassed by the present invention.
FIG. 4 is a section view taken along the section lines 4-4 in FIG. 2. The solenoid 38 includes a solenoid winding 80 which may be energized by electrical signals to move the solenoid pin 82 and lock pin 40 upwardly. A spring 84 normally biases the lock pin 40 in the illustrated downward position when solenoid 38 is deenergized in order to lock the key slug 34 to prevent clockwise rotation. The key slug 34 must be rotated in the clockwise method in order to open the locked door. An aperture 86 is formed through the side walls of the key slot 36 to emit light from the light emitting diode 46, while an aperture 88 is formed to emit light from the light emitting diode 48.
A plurality of vertical pin apertures 900-6 are formed in the lock cylinder 32 and are adapted to mate with corresponding apertures formed in the key slug 34 as illustrated in FIG. 11. Tumbler pins 92a-e are adapted to slidably move vertically within the apertures in the key slug and in apertures 90a-e. If a mechanical key having a wrong shape is inserted into the key slot 36, the pins 92a-e will be raised into apertures 90a@ in order to prevent the rotation of the key slug 34.
FIG. 5 illustrates the insertion of the coded key 60 into the key slot 36. Upon insertion, the projection 66 causes each of the tumbler pins 92ae to be initially moved upwardly into apertures 90a-e and then the tumbler pins 92a-e fall downwardly behind the projection 66. When the key slug 34 is rotated by the key 60, the tumbler pin 92e prevents withdrawal of the key 60, as pin 92e is no longer aligned under apertures 90e. When the key slug 34 is again vertically aligned with the openings 90a-e, key 60 may be removed from the lock.
FIG. 6 illustrates a sectional view taken generally along the section line 6-6 of FIG. 2 and illustrates the second set of tumbler pins 54a-e which are spring loaded within apertures set in the lock cylinder at 45 from the vertical. When the key slug 34 is in the vertical position, as shown in FIG. 6, the tumbler pins 54a-e bear against the outer edge of the key slug 34 and are maintained in the illustrated upward position. When the key slug 34 is rotated by the proper mechanical key, the pins 54ae rest on top of the pins 92ae to enable proper operation of the lock in the manner to be subsequently described. If an improper mechanical key is inserted into the key slug 34 and rotated, one or more of the pins 54a-e will move into the apertures in the key slug and will prevent further rotation of the key slug.
Operation of the lock when in the electronic mode will now be described with reference to FIGS. 7 and 8. When the electrical power is on. the solenoid 38 is normally deenergized and the solenoid pin 82 is forced downwardly by spring 84 into a cammed recess formed within the lock slug 34 as illustrated in FIG. 8. The cam recess includes an abutment wall 96 and a cam surface 98.
As the coded key shown in FIG. 3 is inserted into the key slot 36, light rays are transmitted from the light emitting diodes 46 and 48 through the series of apertures 68 and 70 and are detected by the phototransistors 50 and 52. The outputs of the phototransistors comprise squarewave signals representative of the light received due to the passage of the key into the key slot 36. Typical output signals from the phototransistors 50 and 52 are illustrated in FIGS. 7ab. The output of the phototransistor 52 comprises a periodic wavetrain shown in FIG. 7a which serves as the clock signal ofthe ivention. The output of the phototransistor 50 comprises a plurality of square pulses such as shown in FIG. 7b which are apaced apart relative to FIG. 70 by varying amounts in accordance with the coded spacing of the apertures 72.
Electronic circuitry, to be subsequently described, receives the waveforms shown in FIGs. 7a-b and samples the transmitted identification data signals shown in FIG. 7b upon each positive going transition ofthe clock pulse shown in FIG. 70. Thus, the waveform of FIG. 7b is sampled at time t, as a logic l and is sampled at time as a logic 0". The resulting binary code output detected by the comparator circuitry of the invention is then compared against the stored binary code input into the central processor 20 as the correct code for that particular lock. If the detected code matches the stored code, an energizing signal is applied to the solenoid 38 and the solenoid pin 82 is moved upwardly in order to remove the lock pin 40 from contract with the abutment wall 96. The lock slug 34 may then be rotated clockwsie by the key 60 in order to operate the door bolt in the conventional manner.
While the present invention could be operated using only a single set of key apertures in a spaced apart coded configuration and a plurality of light sources and light detectors each corresponding to a different key aperture, the use of the clock signal enables the code to be detected with only two light sources and two detectors irrespective of the speed in which the key is inserted into the key slot. In normal operation of the system in the electronic mode, the solenoid 42 is maintained in the energized position and thus the latch pin 44 is withdrawn from engagement with the lock pin 40.
However, in case of a power failure, the electronic mode of operation of the system is not possible. Thus, when the electrical power fails, the solenoid 42 is deencrgized and the latch pin 44 is moved outwardly from the solenoid 42 by operation of a spring 100. A mechanical key which includes coded lands and grooves may then be inserted into the key slot 36 and the key slug 34 rotated counterclockwise The mechanicl key must include coded lands and gooves which interfit with the tumbler pins 92a-e in such manner as shown in FIG. 11 in order to enable counterclockwise rotation of the key slug 34 and to establish the mechanical mode.
Rotation of the key slug 34 in the counterclockwise manner causes the lock pin 40 to be moved upwardly due to the cam surface 98. When the key slug 34 reaches the position shown in FIG. 9, the lock pin 40 reaches an upper position such the the latch pin 44 abuts with the annular surface 104 of the lock pin 40 and prevents the lock pin 40 from being moved clown wardly. The system is now in the mechanical mode and cannot be operated by any of the coded keys 60.
Once the lock pin 40 is latched as shown in FIG. 9, the key is then rotated clockwise in order to operate the door bolt. Fig. illustrates the proper alignment of pin 92a with the pin tumbler 54a in order to allow rotation of the key slug. The lands and grooves of the mechanical key are such that the pins 92ae mate with the tumbler pins 54ae at the periphery of the key slug 34 to enable clockwise movement of the key slug 34 to enable operation of the door bolt in the conventional manner. If the proper machanical key has not been inserted, the tumbler pins S4a-e will project downwardly into the key slug 34 and prevent further rotation.
FIG. 11 illustrates a sectional view taken generally along section lines ll-11 in FIG. 10 illustrating the proper operation of the mechanical key 110. As illustrated, the mechanical key 110 includes lands and grooves such that the tumbler pins 92u-e contact the tumbler pins 5411-1 at the outer periphery of the key slug 34.
When the electrical power again comes on, the solenoid 42 is re'energized and the latch pin 44 is withdrawn, thereby allowing the lock pin 40 to be pushed downwardly by operation of the spring 84. The key slug 34 is then again locked against clockwise rotation by the lock pin 40 and the mechanical key 110 will not work to rotate the key slug 34 in the clockwise position beyond the vertical position. The coded key 60 must then be used to open the lock in the manner previously described.
FIGS. 12-15 illustrate the circuitry for determining the validity ofa particular coded key and for assigning coded keys to various rooms as desired. The transmitted clock (TC) signal shown in FIG. 7a and the transmitted key ID signal shown in FIG. 7a are transmitted to the circuitry shown in FIG. 12. The ID line terminates in a line receiver 101 which outputs to the data input of serial in/parallel out shift register 104. The TC line terminates in line receiver 102 which outputs to the clock input of shift register 104 and to the reset input of flipflop 106. As the coded key is inserted into the key slot of FIG. 4, the light beam through aperture 88 is interrupted by slots 74 of Flg. 3, producing the TC signal. The light beam through aperture 86 is inter- S rupted by slots 72 of FIG. 3, producing the signal pattern of FIG. 7b. The slots 72 of FIG. 3 represent a binary code and are unique to each key of the system.
At the time i, of FIG. 7, the clock signal causes the binary data then present on the ID signal, a logical l to be shifted into the shift register 104 of Flg. 12. At time t a lgical 0" is shifted into the shift register 104. The clocking continues as the key progresses into the key slot, until l6 data bits have been loaded into the shift register 104. This condition is signaled by the DATA READY output of shift register 104 going to a logical l causing a service request to be made to selection logic 201 shown in FIG. 13. Logic 201 comprises logic to generate a memory address corresponding to the particular data ready signal line or lines requesting service and logic to queue and select one of a plurality of lines requesting service for servicing. The memory address lines are gated by gates 205 in response to the address enable strobe from the memory timing and control logic. The address of the selected line termination unit is also routed to the data enable selector 202, the unlock strobe selector 203. and to the reset strobe selector 204.
Following receipt of the memory service request signal from 201, memory timing and control 301 (MTC), shown in FIG. 14, activates ADDRESS ENABLE which causes gates 205 to apply the state of the memory address lines from logic 201 to the address bus and to generate the read request signal received by control 301. Control 301 then causes the memory 302 to begin a read access of the location specified by the address appearing on the address bus. Concurrent with the address enable strobe, control 301 activates the data enable strobe to data enable selector 202 (FIG. 13). If line termination logic LTL No. I, corresponding to a particular lock, is selected for service, for example, selector 202 issues a data enable to gates 105, thereby ap plying the contents of shift register 104 to the memory test data compare bus received by comparator 303.
Following receipt of cycle complete from the memory 302, control 301 issues a start compare strobe to comparator 303. If the data on the memory read data bus is logically equal to the data on the test data compare bus, the comparator 303 activates the equal compare strobe received by unlock strobe selector 203 and the OR gate 304. Since the address input to selector 203 corresponds to LTL No. I, an unlock strobe is issued to flipflop 106, clocking it to the set condition. The output Q of flipflop 106 received by line driver 103 causes an ulock pulse to be transmitted to the unlock solenod of FIG. 4, causing the lock pin 82 to be withdrawn. The key slug 36 is thus enabled to be ro tated clockwise by the key operator, unlatching the lock mechanism.
If the data on the memory read data bus received by comparator 303 is logically unequal to the data on the test data compare bus, comparator 303 activates the unequal compare strobe received by reset strobe selector 204, through OR gate 304. Since LTL No. I is selected by the memory address received by 204, the reset line toshift register 104 is activated, clearing the register 104. Clearing register 104 removes its DATA READY singnal from logic 201. Logic 201 then services the next queued LTL requesting service and repeats the key validation cycle.
The assignment of persons to keys and keys to rooms is accomplished using console 10 of FIG. 1. Referring to FIG. 15, the console consists of an alpha/numeric keyboard 401 for entering information manually into refresh memory 403 and a key reader similar to FIG. 2 for entering the key lD into memory 403. The contents of memory 403 are stored in memory 302 of FIG. 14 by operation of an ENTER BUTTON on keyboard 401. Terminal interface logic 406 operates to transfer the contents of memory 403 to memory 302, beginning at a location corresponding to the room ID, The key lD is stored in this first location, the keyholders name and other information in following location, Writing to memory is accomplished in a manner similar to read ing, but in a different mode.
Whereas the present invention has been described with respect to specific embodiments thereof, it will be understood that various changes and modifications will be suggested to one skilled in the art, and it is intened to encompass such changes and modifications as fall within the scope of the appended claims.
What is claimed is:
l. A lock system comprising:
a lock having a lock cylinder and a key slug rotatable within said cylinder,
a pin contacting a surface on said key slug for normally preventing said lock from being opened, electrical means adapted for movement of said pin,
a key having first and second series of discrete coded portions formed therein, said first series being lat' erally offset relative to said second series,
means in said lock, for detecting the passage of said coded portions upon insertion of said key and for generating first and second electrical signals in response thereto,
said first electrical signals comprising a series of data pulses spaced apart according to a predetermined configuration and said second electrical signals comprising a series of clock pulses spaced apart by a common interval, one edge of said clock pulses occurring concurrently with ones of said data pulses,
means for sampling said data pulses in response to said one edge of said clock pulses, and
means responsive to a predetermined sampled sequence of said data pulses for activating said electrical means for movement of said pin to permit opening said lock.
2. The lock system of claim 1 wherein said coded portions comprise series of apertures formed through said key, said apertures in said first series being spaced apart in a predetermined coded configuration relative to said apertures in said second series,
means for transmitting light through said apertures,
and
means for detecting light passed through said apertures.
3. The lock system of claim 1 and further comprising:
a second key having coded lands and grooves and operable to open said lock only when the electrical power supply for said lock is inoperative.
4. The lock system ofclaim l and further comprising:
means within said lock for permitting insertion of said key when said lock is in the locking position, and
means for preventing removal of said key from said lock when said lock is not in the locking position.
5. A lock system comprising:
a lock having a lock cylinder and a key slug rotatable within said cylinder either in a first or second direction wherein the lock system may be opened by rotation said key slug in said first direction,
a pin contacting a surface on said key slug for normally preventing rotation of said key slug in said first direction,
a key for being received by said key slug and having s first series of apertures along the length thereof and further including a second series of apertures located below said first series,
light source means mounted in said lock for transmitting light through said apertures as said key is inserted into said key slug,
first light sensitive means for generating an electrical data signal representative of light transmitted through one of said series of apertures,
second light sensitive means for generating an electrical clock signal representative of light transmitted through the other of said series of apertures,
circuitry for sampling said data signal in response to said clock signal and for generating an enable signal upon detection ofa predetermined sampled signal sequence, and
means for moving said pin in response to said enable signal to allow said key to rotate said key slug in said first direction to open the lock system.
6. The lock system of claim 5 and further comprising:
a first set of tumbler pins in said lock cylinder,
a second set of tumbler pins in said key slug alignable with said first set of tumbler pins upon rotation of said key slug in said lock cylinder,
a second key having coded lands and grooves thereon for positioning said second set of tumbler pins in said key slug at the interface between said key slug and said lock cylinder thereby maintaining said second set of tumbler pins at said interface during rotation of said key slug within said lock cylinder so that said key slug may be rotated in said second direction,
a cam surface on said key slug for camming said pin away from said surface on said key slug when said key slug is rotated in said second directiom and means for maintaining said pin away from said surface on said key slug to allow rotation of said key slug in said first direction thereby opening the locking system.
7. The lock system of claim 5 wherein said moving means comprises a solenoid for moving said pin in response to said enable signal.
8. A lock system comprising:
a first key having coded discrete portions therein and a second key having a coded series of lands and grooves along one edge,
a lock having a rotatable key slug with a key aperture for receiving either of said first or second keys, electrical circuitry responsive to said coded discrete portions when said first key is inserted into said lock for enabling said key slug to be rotated to an unlocked position,
mechanical means operable only when said electrical circuitry is deenergized for enabling said second key to be inserted into said key slug and said key slug to be rotated to an unlocked position, and
means for preventing said key slug from being rotated to an unlocked position by said second key when electrical power is available to said lock system 9. The lock system of claim 8 wherein said discrete portions comprise apertures formed through said key and further comprising:
means for transmitting light through said coded aper tures,
means for generating electrical signals in response to light transmitted through said apertures, said electricai circuitry responsive to said electrical signals for enabling said key slug,
10. A combination electrical and mechanical lock system comprising:
a lock having a fixed lock cylinder and a rotatable key slug having a key aperture therethrough,
a first solenoid mounted in said lock cylinder and having a lock pin engaged to normally prevent rotation of said key slug to an unlocked position,
a first key having coded apertures therethrough.
a light source and a light detector mounted in said lock for generating electrical signals when said first key having coded apertures is inserted into said key slug,
circuitry responsive to predetermined characteristics of said electrical signals for operating said first solenoid to disengage said lock pin to allow rotation of said key slug to an unlocked position,
means actuated by rotation of said key slug to withdraw said lock pin from its normally locking posi tion,
a plurality of spring loaded pin tumblers mounted in said lock cylinder at an angle to vertical,
a second key for insertion into said key aperture and having coded lands and grooves adapted to posi tion said pin tumblers to allow rotation of said key slug to actuate said means for withdrawing said lock pin, and
a second solenoid mounted in said lock cylinder and having a latch pin operable to be extended in response to an electrical power failure to prevent the return of said lock pin to its normally locking position thereby allowing rotation of said key slug to an unlocked position during an electrical power failure.
11. A lock system comprising:
a lock having a lock cylinder and a key slug rotatable within said cylinder in either a first or second direction wherein the lock system may be opened by rotating said key slug in said first direction,
a first set of tumbler pin holes in said lock cylinder at an angle to vertical first tumbler pins carried in said first set of pin holes,
a second set of vertical tumbler pin holes in said key slug, said second pin holes being alignable with said first pin holes,
second tumbler pins carried in said second set of pln holes,
means for normally preventing rotation of said key slug in said first direction,
a first key for being received by said key slug and having a series of apertures disposed along the length thereof,
a light source mounted in said lock for transmitting light through said apertures as said key is inserted into said key slug,
light sensitive means for generating electrical data signals representative of the light transmitted through said series of apertures,
circuitry for detecting said data signals and for generating an enable signal upon detection of a predetermined sample signal sequence.
means for withdrawing said rotation preventing means in response to said enable signal to allow said key to rotate said key slug in said first direction to open said lock system,
a second key having coded lands and grooves thereon for positioning said second set of tumbler pins in said key slug at the interface between said key slug and said lock cylinder thereby maintaining said second set of tumbler pins at said interface during rotation of said key slug within said lock cylinder so that said key slug may be rotated in said second direction,
means associated with said key slug for withdrawing said rotation preventing means as said key slug is rotated in said second direction,
means actuated by an electrical power failure to the system for securing said rotation prevention means in the withdrawn position to allow rotation of said key slug in the first direction to unlock the locking UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTIQN Patent No. 3 889 50l Dated June 17, 1975 Inventor(s) Charles P. Fort It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Col. 1, line 5, invenetion" should be invention. Col. 5, line 17, immediately following "evenly" insert --spaced-. Col. 6, line 57, "clockwsie" should be clockwise. Col. 8, line 51, solenod 80" should be solenoid 80-;
line 61, "toshift register 104" should be to shift register lO4-; line 63, "READY singnal" should be READY signal--. Col. 9, line 17, "and it is intened" should be and it is intended. Col. 10, line 9, "s first series" should be a first series.
Signed and Scaled this seventh Day of October1975 [SEAL] Arrest.
RUTH C. MASON C. MARSHALL DANN Allisling ()jfirer (mnmissimwr n1 Parenls and Trademarks

Claims (11)

1. A lock system comprising: a lock having a lock cylinder and a key slug rotatable within said cylinder, a pin contacting a surface on said key slug for normally preventing said lock from being opened, electrical means adapted for movement of said pin, a key having first and second series of discrete coded portions formed therein, said first series being laterally offset relative to said second series, means in said lock, for detecting the passage of said coded portions upon insertion of said key and for generating first and second electrical signals in response thereto, said first electrical signals comprising a series of data pulses spaced apart according to a predetermined configuration and said second electrical signals comprising a series of clock pulses spaced apart by a common interval, one edge of said clock pulses occurring concurrently with ones of said data pulses, means for sampling said data pulses in response to said one edge of said clock pulses, and means responsive to a predetermined sampled sequence of said data pulses for activating said electrical means for movement of said pin to permit opening said lock.
2. The lock system of claim 1 wherein said coded portions comprise series of apertures formed through said key, said apertures in said first series being spaced apart in a predetermined coded configuration relative to said apertures in said second series, means for transmitting light through said apertures, and means fOr detecting light passed through said apertures.
3. The lock system of claim 1 and further comprising: a second key having coded lands and grooves and operable to open said lock only when the electrical power supply for said lock is inoperative.
4. The lock system of claim 1 and further comprising: means within said lock for permitting insertion of said key when said lock is in the locking position, and means for preventing removal of said key from said lock when said lock is not in the locking position.
5. A lock system comprising: a lock having a lock cylinder and a key slug rotatable within said cylinder either in a first or second direction wherein the lock system may be opened by rotation said key slug in said first direction, a pin contacting a surface on said key slug for normally preventing rotation of said key slug in said first direction, a key for being received by said key slug and having s first series of apertures along the length thereof and further including a second series of apertures located below said first series, light source means mounted in said lock for transmitting light through said apertures as said key is inserted into said key slug, first light sensitive means for generating an electrical data signal representative of light transmitted through one of said series of apertures, second light sensitive means for generating an electrical clock signal representative of light transmitted through the other of said series of apertures, circuitry for sampling said data signal in response to said clock signal and for generating an enable signal upon detection of a predetermined sampled signal sequence, and means for moving said pin in response to said enable signal to allow said key to rotate said key slug in said first direction to open the lock system.
6. The lock system of claim 5 and further comprising: a first set of tumbler pins in said lock cylinder, a second set of tumbler pins in said key slug alignable with said first set of tumbler pins upon rotation of said key slug in said lock cylinder, a second key having coded lands and grooves thereon for positioning said second set of tumbler pins in said key slug at the interface between said key slug and said lock cylinder thereby maintaining said second set of tumbler pins at said interface during rotation of said key slug within said lock cylinder so that said key slug may be rotated in said second direction, a cam surface on said key slug for camming said pin away from said surface on said key slug when said key slug is rotated in said second direction, and means for maintaining said pin away from said surface on said key slug to allow rotation of said key slug in said first direction thereby opening the locking system.
7. The lock system of claim 5 wherein said moving means comprises a solenoid for moving said pin in response to said enable signal.
8. A lock system comprising: a first key having coded discrete portions therein and a second key having a coded series of lands and grooves along one edge, a lock having a rotatable key slug with a key aperture for receiving either of said first or second keys, electrical circuitry responsive to said coded discrete portions when said first key is inserted into said lock for enabling said key slug to be rotated to an unlocked position, mechanical means operable only when said electrical circuitry is deenergized for enabling said second key to be inserted into said key slug and said key slug to be rotated to an unlocked position, and means for preventing said key slug from being rotated to an unlocked position by said second key when electrical power is available to said lock system.
9. The lock system of claim 8 wherein said discrete portions comprise apertures formed through said key and further comprising: means for transmitting light through said coded apertures, means for generating electrical siGnals in response to light transmitted through said apertures, said electrical circuitry responsive to said electrical signals for enabling said key slug.
10. A combination electrical and mechanical lock system comprising: a lock having a fixed lock cylinder and a rotatable key slug having a key aperture therethrough, a first solenoid mounted in said lock cylinder and having a lock pin engaged to normally prevent rotation of said key slug to an unlocked position, a first key having coded apertures therethrough, a light source and a light detector mounted in said lock for generating electrical signals when said first key having coded apertures is inserted into said key slug, circuitry responsive to predetermined characteristics of said electrical signals for operating said first solenoid to disengage said lock pin to allow rotation of said key slug to an unlocked position, means actuated by rotation of said key slug to withdraw said lock pin from its normally locking position, a plurality of spring loaded pin tumblers mounted in said lock cylinder at an angle to vertical, a second key for insertion into said key aperture and having coded lands and grooves adapted to position said pin tumblers to allow rotation of said key slug to actuate said means for withdrawing said lock pin, and a second solenoid mounted in said lock cylinder and having a latch pin operable to be extended in response to an electrical power failure to prevent the return of said lock pin to its normally locking position thereby allowing rotation of said key slug to an unlocked position during an electrical power failure.
11. A lock system comprising: a lock having a lock cylinder and a key slug rotatable within said cylinder in either a first or second direction wherein the lock system may be opened by rotating said key slug in said first direction, a first set of tumbler pin holes in said lock cylinder at an angle to vertical, first tumbler pins carried in said first set of pin holes, a second set of vertical tumbler pin holes in said key slug, said second pin holes being alignable with said first pin holes, second tumbler pins carried in said second set of pin holes, means for normally preventing rotation of said key slug in said first direction, a first key for being received by said key slug and having a series of apertures disposed along the length thereof, a light source mounted in said lock for transmitting light through said apertures as said key is inserted into said key slug, light sensitive means for generating electrical data signals representative of the light transmitted through said series of apertures, circuitry for detecting said data signals and for generating an enable signal upon detection of a predetermined sample signal sequence, means for withdrawing said rotation preventing means in response to said enable signal to allow said key to rotate said key slug in said first direction to open said lock system, a second key having coded lands and grooves thereon for positioning said second set of tumbler pins in said key slug at the interface between said key slug and said lock cylinder thereby maintaining said second set of tumbler pins at said interface during rotation of said key slug within said lock cylinder so that said key slug may be rotated in said second direction, means associated with said key slug for withdrawing said rotation preventing means as said key slug is rotated in said second direction, means actuated by an electrical power failure to the system for securing said rotation prevention means in the withdrawn position to allow rotation of said key slug in the first direction to unlock the locking system.
US388094A 1973-08-14 1973-08-14 Combination electrical and mechanical lock system Expired - Lifetime US3889501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US388094A US3889501A (en) 1973-08-14 1973-08-14 Combination electrical and mechanical lock system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US388094A US3889501A (en) 1973-08-14 1973-08-14 Combination electrical and mechanical lock system

Publications (1)

Publication Number Publication Date
US3889501A true US3889501A (en) 1975-06-17

Family

ID=23532661

Family Applications (1)

Application Number Title Priority Date Filing Date
US388094A Expired - Lifetime US3889501A (en) 1973-08-14 1973-08-14 Combination electrical and mechanical lock system

Country Status (1)

Country Link
US (1) US3889501A (en)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079605A (en) * 1976-05-03 1978-03-21 Schlage Lock Company Optical key reader for door locks
US4100778A (en) * 1976-05-20 1978-07-18 Bauer Kaba Ag Sicherheits-Schliessyteme Key with transverse slots and method of making same
US4286305A (en) * 1979-04-10 1981-08-25 Pilat Eugene R Electronic security device and method
US4289002A (en) * 1975-09-11 1981-09-15 Bauer Kaba Ag Sicherheits-Schliessyteme Key for a cylinder lock and method for making same
US4297569A (en) * 1979-06-28 1981-10-27 Datakey, Inc. Microelectronic memory key with receptacle and systems therefor
US4326125A (en) * 1980-06-26 1982-04-20 Datakey, Inc. Microelectronic memory key with receptacle and systems therefor
US4340925A (en) * 1980-01-25 1982-07-20 Jacques Lewiner Safety locks
US4379966A (en) * 1981-07-23 1983-04-12 Datakey, Inc. Receptacle for electronic information key
US4415893A (en) * 1978-06-27 1983-11-15 All-Lock Electronics, Inc. Door control system
FR2554492A2 (en) * 1983-11-04 1985-05-10 Castanet Raymond Door closing method and device
EP0143155A2 (en) * 1983-09-20 1985-06-05 Takigen Seizou Co., Ltd. Photoelectric key switch device
US4549076A (en) * 1983-03-24 1985-10-22 Datakey, Inc. Orientation guide arrangement for electronic key and receptacle combination
US4583148A (en) * 1981-09-22 1986-04-15 Neiman S.A. Ignition lock for motor vehicles with electromagnetic locking
US4637235A (en) * 1984-12-10 1987-01-20 Edward Conner Opto electric combination lock
WO1987002735A1 (en) * 1985-10-25 1987-05-07 Lowe & Fletcher Limited Security device, especially electrically operated lock
US4691201A (en) * 1983-12-07 1987-09-01 Kabushiki Kaisha Tokai Rika Denki Seisakusho Encoded signal device with self-contained clock generation
EP0238360A2 (en) * 1986-03-21 1987-09-23 Emhart Industries, Inc. Electrically operated lock
US4752679A (en) * 1987-03-02 1988-06-21 Datakey, Inc. Receptacle device
WO1988005106A2 (en) * 1986-12-29 1988-07-14 Joseph Ferraye Blocking systems and code locks
EP0290330A1 (en) * 1987-04-29 1988-11-09 Raoul Parienti Electronic lock
US4789859A (en) * 1986-03-21 1988-12-06 Emhart Industries, Inc. Electronic locking system and key therefor
US4810861A (en) * 1985-10-25 1989-03-07 Lowe & Fletcher Limited Information carrier and reader
GB2208678A (en) * 1985-10-25 1989-04-12 Lowe & Fletcher Ltd Combined electrical and mechanical lock
US4848115A (en) * 1986-03-21 1989-07-18 Emhart Industries, Inc. Electronic locking system and key therefor
US4909053A (en) * 1988-05-17 1990-03-20 Liberty Telephone Communications, Inc. High security door locking device
US4972182A (en) * 1987-10-27 1990-11-20 A. A. Computerized Security Doors 1989 Ltd. Electronic security lock
US4982587A (en) * 1990-04-11 1991-01-08 Tzou Kae M Electronically self-latching cylinder lock
FR2661446A1 (en) * 1990-04-27 1991-10-31 Pieddeloup Georges Mechanical lock selected, programmed, and controlled remotely by means of access management devices, with the standard, optical-code keys which are intended for it
US5132661A (en) * 1987-10-02 1992-07-21 Universal Photonix, Inc. Security system employing optical key shape reader
WO1993012010A1 (en) * 1991-12-13 1993-06-24 Carter Ronald L Lock with key identifying apparatus and method
GB2273124A (en) * 1992-12-05 1994-06-08 Rover Group A vehicle security system
US5373282A (en) * 1992-02-04 1994-12-13 Carter; Ronald L. Dealer information and security apparatus and method
DE4404914A1 (en) * 1994-02-16 1995-08-17 Winkhaus Fa August Lock mechanism for a lock
US5552587A (en) * 1994-07-21 1996-09-03 Moorhouse; John H. Multi-light coded electronic security lock
WO1997011245A1 (en) * 1995-09-19 1997-03-27 Medeco Security Locks, Inc. Improved keys for cylinder locks
US5628217A (en) * 1994-11-18 1997-05-13 Azbe B. Zubia S.A. Electronic-mechanical locking cylinders
US5839305A (en) * 1994-09-03 1998-11-24 Yale Security Products Limited Electrically operable cylinder lock
WO2000016275A1 (en) * 1998-09-16 2000-03-23 S.D.S. Smart Data & Security Systems Ltd. Electronic lock system
US6046558A (en) * 1996-01-12 2000-04-04 Slc Technologies, Inc. Electronic padlock
US6047575A (en) * 1995-05-19 2000-04-11 Slc Technologies, Inc. Electronic padlock
US6442986B1 (en) 1998-04-07 2002-09-03 Best Lock Corporation Electronic token and lock core
US6499660B1 (en) 2002-01-24 2002-12-31 John H. Moorhouse Optical security system
US6564601B2 (en) 1995-09-29 2003-05-20 Hyatt Jr Richard G Electromechanical cylinder plug
US20030094024A1 (en) * 1999-03-05 2003-05-22 Strattec Security Corporation Electronic latch apparatus and method
US6575505B1 (en) 2000-10-25 2003-06-10 Strattec Security Corporation Latch apparatus and method
US20040016273A1 (en) * 2002-07-24 2004-01-29 Ernst Keller Safety key and locking cylinder, and locking system with such safety keys and locking cylinders
US6705140B1 (en) 1999-03-05 2004-03-16 Stratec Security Corporation Latch apparatus and method
US6776442B2 (en) 2001-01-09 2004-08-17 Strattec Security Corporation Latch apparatus and method
US6786070B1 (en) 1999-03-05 2004-09-07 Sirattec Security Corporation Latch apparatus and method
US20040256461A1 (en) * 2002-01-24 2004-12-23 Moorhouse John H. Optical security system
US20050205657A1 (en) * 2002-01-24 2005-09-22 Moorhouse John H Optical security system
US20050206499A1 (en) * 2004-03-19 2005-09-22 Fisher Scott R Electronic lock box with multiple modes and security states
US20050235714A1 (en) * 2002-04-11 2005-10-27 Erik Lindstrom Electro-mechanical cylinder lock-key combination with optical code
US7086258B2 (en) 2004-03-19 2006-08-08 Sentrilock, Inc. Electronic lock box with single linear actuator operating two different latching mechanisms
US20060230797A1 (en) * 2004-12-14 2006-10-19 Robert Strong Key core
US20070188302A1 (en) * 2002-03-29 2007-08-16 Datakey Electronics, Inc. Electronic Key System and Method
US20080053175A1 (en) * 2006-09-03 2008-03-06 Haim Amir Electronic Cylinder Internal Key Apparatus And Method
US20080053174A1 (en) * 2006-09-03 2008-03-06 Haim Amir Electronic Cylinder Lock Apparatus And Methods
US20080223093A1 (en) * 2007-03-14 2008-09-18 Haim Amir Self Adjusting Lock System And Method
US20090049878A1 (en) * 2007-08-21 2009-02-26 Haim Amir Lock cylinder opening system and method
US20090140837A1 (en) * 2007-07-19 2009-06-04 Glen Eric Jennings RF Token and Receptacle System and Method
US20090293562A1 (en) * 2008-05-28 2009-12-03 Fisher Scott R Electronic lock box with mechanism immobilizer features
EP2141663A2 (en) 2008-06-30 2010-01-06 Trell, Anders Edvard Method for credentialing mechanical keys and associated devices
US20100264218A1 (en) * 2007-08-29 2010-10-21 Datakey Electronics, Inc Data carrier system and method
USD649486S1 (en) 2009-07-09 2011-11-29 ATEK Products , LLC Electronic token and data carrier
USD649895S1 (en) 2009-01-30 2011-12-06 Atek Products, Llc Electronic token and data carrier
USD649896S1 (en) 2009-01-30 2011-12-06 Atek Products, Llc Electronic token and data carrier receptacle
USD649894S1 (en) 2008-12-30 2011-12-06 Atek Products, Llc Electronic token and data carrier
US8573500B2 (en) 2009-01-30 2013-11-05 ATEK Products, LLC. Data carrier system having a compact footprint and methods of manufacturing the same
WO2014127194A2 (en) * 2013-02-15 2014-08-21 Rosenblatt Yechiel Computer access control apparatus and method
US20150300043A1 (en) * 2012-12-23 2015-10-22 T.E.L. Mulder Cylinder Lock and Combination of Such a Lock and Key
US20160145896A1 (en) * 2014-11-10 2016-05-26 ABUS August Bremicker Söhne KG Locking System, Key and Key Blank
US10400475B2 (en) 2015-12-01 2019-09-03 Schlage Lock Company Llc Systems and methods for key recognition
EP2665045B1 (en) * 2012-05-16 2019-10-16 Nemesy S.R.L.C.R. Lock cylinder for driving a lock latch
US11127233B2 (en) * 2018-09-26 2021-09-21 United States Postal Service Locking system
US11151824B2 (en) 2017-06-13 2021-10-19 United States Postal Service Mobile device for safe, secure, and accurate delivery of items
US11313152B2 (en) 2018-05-15 2022-04-26 United States Postal Service Electronic lock

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500326A (en) * 1965-08-17 1970-03-10 Bowles Benford Mechanically programmed encoder system
US3670538A (en) * 1970-11-12 1972-06-20 Robert E Curry Controllable key lock
US3733862A (en) * 1971-06-22 1973-05-22 Mears E Combined mechanical and photoelectric lock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500326A (en) * 1965-08-17 1970-03-10 Bowles Benford Mechanically programmed encoder system
US3670538A (en) * 1970-11-12 1972-06-20 Robert E Curry Controllable key lock
US3733862A (en) * 1971-06-22 1973-05-22 Mears E Combined mechanical and photoelectric lock

Cited By (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289002A (en) * 1975-09-11 1981-09-15 Bauer Kaba Ag Sicherheits-Schliessyteme Key for a cylinder lock and method for making same
US4079605A (en) * 1976-05-03 1978-03-21 Schlage Lock Company Optical key reader for door locks
US4100778A (en) * 1976-05-20 1978-07-18 Bauer Kaba Ag Sicherheits-Schliessyteme Key with transverse slots and method of making same
US4415893A (en) * 1978-06-27 1983-11-15 All-Lock Electronics, Inc. Door control system
US4286305A (en) * 1979-04-10 1981-08-25 Pilat Eugene R Electronic security device and method
US4297569A (en) * 1979-06-28 1981-10-27 Datakey, Inc. Microelectronic memory key with receptacle and systems therefor
US4340925A (en) * 1980-01-25 1982-07-20 Jacques Lewiner Safety locks
US4326125A (en) * 1980-06-26 1982-04-20 Datakey, Inc. Microelectronic memory key with receptacle and systems therefor
US4379966A (en) * 1981-07-23 1983-04-12 Datakey, Inc. Receptacle for electronic information key
US4583148A (en) * 1981-09-22 1986-04-15 Neiman S.A. Ignition lock for motor vehicles with electromagnetic locking
US4549076A (en) * 1983-03-24 1985-10-22 Datakey, Inc. Orientation guide arrangement for electronic key and receptacle combination
EP0143155A2 (en) * 1983-09-20 1985-06-05 Takigen Seizou Co., Ltd. Photoelectric key switch device
EP0143155A3 (en) * 1983-09-20 1986-01-22 Takigen Seizou Co., Ltd. Photoelectric key switch device
US4594505A (en) * 1983-09-20 1986-06-10 Takigen Seizou Co. Ltd. Photoelectric key switch device with notched rotor
FR2554492A2 (en) * 1983-11-04 1985-05-10 Castanet Raymond Door closing method and device
US4691201A (en) * 1983-12-07 1987-09-01 Kabushiki Kaisha Tokai Rika Denki Seisakusho Encoded signal device with self-contained clock generation
US4637235A (en) * 1984-12-10 1987-01-20 Edward Conner Opto electric combination lock
US4810861A (en) * 1985-10-25 1989-03-07 Lowe & Fletcher Limited Information carrier and reader
GB2208678A (en) * 1985-10-25 1989-04-12 Lowe & Fletcher Ltd Combined electrical and mechanical lock
GB2190424A (en) * 1985-10-25 1987-11-18 Lowe & Fletcher Ltd Security device, especially electrically operated lock
GB2208678B (en) * 1985-10-25 1990-06-13 Lowe & Fletcher Ltd Security device and method
US4916927A (en) * 1985-10-25 1990-04-17 Connell John O Lock and method of securing and releasing a member
WO1987002735A1 (en) * 1985-10-25 1987-05-07 Lowe & Fletcher Limited Security device, especially electrically operated lock
US4854146A (en) * 1985-10-25 1989-08-08 Lowe And Fletcher Limited Security device and method
EP0312123A1 (en) * 1985-10-25 1989-04-19 Lowe & Fletcher Limited Security device, especially an electrically operated lock
US4848115A (en) * 1986-03-21 1989-07-18 Emhart Industries, Inc. Electronic locking system and key therefor
US4789859A (en) * 1986-03-21 1988-12-06 Emhart Industries, Inc. Electronic locking system and key therefor
EP0238360A3 (en) * 1986-03-21 1988-11-23 Emhart Industries, Inc. Electrically operated lock
EP0238360A2 (en) * 1986-03-21 1987-09-23 Emhart Industries, Inc. Electrically operated lock
US4712398A (en) * 1986-03-21 1987-12-15 Emhart Industries, Inc. Electronic locking system and key therefor
EP0388997A1 (en) * 1986-03-21 1990-09-26 Emhart Industries, Inc. Electronic locking system
WO1988005106A3 (en) * 1986-12-29 1988-08-25 Joseph Ferraye Blocking systems and code locks
WO1988005106A2 (en) * 1986-12-29 1988-07-14 Joseph Ferraye Blocking systems and code locks
US4752679A (en) * 1987-03-02 1988-06-21 Datakey, Inc. Receptacle device
EP0290330A1 (en) * 1987-04-29 1988-11-09 Raoul Parienti Electronic lock
US5132661A (en) * 1987-10-02 1992-07-21 Universal Photonix, Inc. Security system employing optical key shape reader
US4972182A (en) * 1987-10-27 1990-11-20 A. A. Computerized Security Doors 1989 Ltd. Electronic security lock
US4909053A (en) * 1988-05-17 1990-03-20 Liberty Telephone Communications, Inc. High security door locking device
US4982587A (en) * 1990-04-11 1991-01-08 Tzou Kae M Electronically self-latching cylinder lock
FR2661446A1 (en) * 1990-04-27 1991-10-31 Pieddeloup Georges Mechanical lock selected, programmed, and controlled remotely by means of access management devices, with the standard, optical-code keys which are intended for it
WO1993012010A1 (en) * 1991-12-13 1993-06-24 Carter Ronald L Lock with key identifying apparatus and method
US5373282A (en) * 1992-02-04 1994-12-13 Carter; Ronald L. Dealer information and security apparatus and method
US5563579A (en) * 1992-02-04 1996-10-08 Carter; Ronald L. Dealer information and security apparatus and method
GB2273124B (en) * 1992-12-05 1995-10-18 Rover Group A vehicle security system
GB2273124A (en) * 1992-12-05 1994-06-08 Rover Group A vehicle security system
DE4404914A1 (en) * 1994-02-16 1995-08-17 Winkhaus Fa August Lock mechanism for a lock
EP0668422A1 (en) * 1994-02-16 1995-08-23 Aug. Winkhaus GmbH & Co. KG Locking mechanism for a lock
US5552587A (en) * 1994-07-21 1996-09-03 Moorhouse; John H. Multi-light coded electronic security lock
US5839305A (en) * 1994-09-03 1998-11-24 Yale Security Products Limited Electrically operable cylinder lock
US5628217A (en) * 1994-11-18 1997-05-13 Azbe B. Zubia S.A. Electronic-mechanical locking cylinders
US6047575A (en) * 1995-05-19 2000-04-11 Slc Technologies, Inc. Electronic padlock
US6023954A (en) * 1995-09-19 2000-02-15 Medeco Security Locks, Inc. Keys for cylinder locks
WO1997011245A1 (en) * 1995-09-19 1997-03-27 Medeco Security Locks, Inc. Improved keys for cylinder locks
US5615565A (en) * 1995-09-19 1997-04-01 Medeco Security Locks, Inc. Keys for cylinder locks
US8141399B2 (en) 1995-09-29 2012-03-27 Hyatt Jr Richard G Electromechanical cylinder plug
US6564601B2 (en) 1995-09-29 2003-05-20 Hyatt Jr Richard G Electromechanical cylinder plug
US20070289346A1 (en) * 1995-09-29 2007-12-20 Hyatt Richard G Jr Electromechanical cylinder plug
US8122746B2 (en) 1995-09-29 2012-02-28 Hyatt Jr Richard G Electromechanical cylinder plug
US6046558A (en) * 1996-01-12 2000-04-04 Slc Technologies, Inc. Electronic padlock
US6668606B1 (en) 1998-04-07 2003-12-30 Best Access Systems Electronic token lock core
US6840072B2 (en) 1998-04-07 2005-01-11 Stanley Security Solutions, Inc. Electronic token and lock core
US6442986B1 (en) 1998-04-07 2002-09-03 Best Lock Corporation Electronic token and lock core
US7316140B2 (en) 1998-04-07 2008-01-08 Stanley Security Solutions, Inc. Electronic token and lock core
US6147622A (en) * 1998-09-16 2000-11-14 S.D.S. Smart Data & Security Systems Ltd. Electronic lock system
WO2000016275A1 (en) * 1998-09-16 2000-03-23 S.D.S. Smart Data & Security Systems Ltd. Electronic lock system
US7363788B2 (en) 1999-03-05 2008-04-29 Strattec Security Corporation Latch apparatus and method
US6705140B1 (en) 1999-03-05 2004-03-16 Stratec Security Corporation Latch apparatus and method
US20050092045A1 (en) * 1999-03-05 2005-05-05 Strattec Security Corporation Latch apparatus and method
US20040154364A1 (en) * 1999-03-05 2004-08-12 Strattec Security Corporation Modular latch apparatus and method
US20030094024A1 (en) * 1999-03-05 2003-05-22 Strattec Security Corporation Electronic latch apparatus and method
US6786070B1 (en) 1999-03-05 2004-09-07 Sirattec Security Corporation Latch apparatus and method
US20050127687A1 (en) * 1999-03-05 2005-06-16 Strattec Security Corporation Electronic latch apparatus and method
US6848286B2 (en) 1999-03-05 2005-02-01 Strattec Security Corporation Electronic latch apparatus and method
US6575505B1 (en) 2000-10-25 2003-06-10 Strattec Security Corporation Latch apparatus and method
US6776442B2 (en) 2001-01-09 2004-08-17 Strattec Security Corporation Latch apparatus and method
US20040256461A1 (en) * 2002-01-24 2004-12-23 Moorhouse John H. Optical security system
US20050205657A1 (en) * 2002-01-24 2005-09-22 Moorhouse John H Optical security system
US6499660B1 (en) 2002-01-24 2002-12-31 John H. Moorhouse Optical security system
US6764007B2 (en) 2002-01-24 2004-07-20 John H. Moorhouse Optical security system
US20060237522A1 (en) * 2002-01-24 2006-10-26 John Moorhouse Optical security system
US7073708B2 (en) 2002-01-24 2006-07-11 John H. Moorhouse Optical security system
US20030136838A1 (en) * 2002-01-24 2003-07-24 John H. Moorhouse Optical security system
US7108182B2 (en) * 2002-01-24 2006-09-19 John H. Moorhouse Optical security system
US20070188302A1 (en) * 2002-03-29 2007-08-16 Datakey Electronics, Inc. Electronic Key System and Method
US7140214B2 (en) * 2002-04-11 2006-11-28 Ruko A/S Electro-mechanical cylinder lock-key combination with optical code
US20050235714A1 (en) * 2002-04-11 2005-10-27 Erik Lindstrom Electro-mechanical cylinder lock-key combination with optical code
US20060086164A1 (en) * 2002-07-24 2006-04-27 Ernest Keller Safety key and locking cylinder, and locking system with such safety keys and locking cylinders
US20040016273A1 (en) * 2002-07-24 2004-01-29 Ernst Keller Safety key and locking cylinder, and locking system with such safety keys and locking cylinders
US6973814B2 (en) * 2002-07-24 2005-12-13 Ernst Keller Safety key and locking cylinder, and locking system with such safety keys and locking cylinders
US7370503B2 (en) 2002-07-24 2008-05-13 Ernest Keller Safety key and locking cylinder, and locking system with such safety keys and locking cylinders
US7086258B2 (en) 2004-03-19 2006-08-08 Sentrilock, Inc. Electronic lock box with single linear actuator operating two different latching mechanisms
US7420456B2 (en) 2004-03-19 2008-09-02 Sentri Lock, Inc. Electronic lock box with multiple modes and security states
US20050206499A1 (en) * 2004-03-19 2005-09-22 Fisher Scott R Electronic lock box with multiple modes and security states
US20060230797A1 (en) * 2004-12-14 2006-10-19 Robert Strong Key core
US20080053174A1 (en) * 2006-09-03 2008-03-06 Haim Amir Electronic Cylinder Lock Apparatus And Methods
US20080053175A1 (en) * 2006-09-03 2008-03-06 Haim Amir Electronic Cylinder Internal Key Apparatus And Method
US7637131B2 (en) 2006-09-03 2009-12-29 Essence Security International Ltd. Electronic cylinder internal key apparatus and method
US8028554B2 (en) 2006-09-03 2011-10-04 Essence Security International Ltd. Electronic cylinder lock apparatus and methods
US20080223093A1 (en) * 2007-03-14 2008-09-18 Haim Amir Self Adjusting Lock System And Method
US20090140837A1 (en) * 2007-07-19 2009-06-04 Glen Eric Jennings RF Token and Receptacle System and Method
US20090049878A1 (en) * 2007-08-21 2009-02-26 Haim Amir Lock cylinder opening system and method
US7721576B2 (en) 2007-08-21 2010-05-25 Essence Security International Ltd Lock cylinder opening system and method
US20100264218A1 (en) * 2007-08-29 2010-10-21 Datakey Electronics, Inc Data carrier system and method
US20090293562A1 (en) * 2008-05-28 2009-12-03 Fisher Scott R Electronic lock box with mechanism immobilizer features
US8151608B2 (en) 2008-05-28 2012-04-10 Sentrilock, Llc Electronic lock box with mechanism immobilizer features
EP2141663A2 (en) 2008-06-30 2010-01-06 Trell, Anders Edvard Method for credentialing mechanical keys and associated devices
USD649894S1 (en) 2008-12-30 2011-12-06 Atek Products, Llc Electronic token and data carrier
USD649896S1 (en) 2009-01-30 2011-12-06 Atek Products, Llc Electronic token and data carrier receptacle
US8573500B2 (en) 2009-01-30 2013-11-05 ATEK Products, LLC. Data carrier system having a compact footprint and methods of manufacturing the same
USD649895S1 (en) 2009-01-30 2011-12-06 Atek Products, Llc Electronic token and data carrier
USD649486S1 (en) 2009-07-09 2011-11-29 ATEK Products , LLC Electronic token and data carrier
EP2665045B1 (en) * 2012-05-16 2019-10-16 Nemesy S.R.L.C.R. Lock cylinder for driving a lock latch
US20150300043A1 (en) * 2012-12-23 2015-10-22 T.E.L. Mulder Cylinder Lock and Combination of Such a Lock and Key
US10066419B2 (en) * 2012-12-23 2018-09-04 Almotec B.V. Cylinder lock and combination of such a lock and key
WO2014127194A2 (en) * 2013-02-15 2014-08-21 Rosenblatt Yechiel Computer access control apparatus and method
WO2014127194A3 (en) * 2013-02-15 2014-10-23 Rosenblatt Yechiel Computer access control apparatus and method
US20160145896A1 (en) * 2014-11-10 2016-05-26 ABUS August Bremicker Söhne KG Locking System, Key and Key Blank
US10316547B2 (en) * 2014-11-10 2019-06-11 ABUS August Bremicker Söhne KG Locking system, key and key blank
US10400475B2 (en) 2015-12-01 2019-09-03 Schlage Lock Company Llc Systems and methods for key recognition
US11151824B2 (en) 2017-06-13 2021-10-19 United States Postal Service Mobile device for safe, secure, and accurate delivery of items
US11710360B2 (en) 2017-06-13 2023-07-25 United States Postal Service Mobile device for safe, secure, and accurate delivery of items
US11313152B2 (en) 2018-05-15 2022-04-26 United States Postal Service Electronic lock
US11732506B2 (en) 2018-05-15 2023-08-22 United States Postal Service Electronic lock
US11127233B2 (en) * 2018-09-26 2021-09-21 United States Postal Service Locking system
US11804085B2 (en) 2018-09-26 2023-10-31 United States Postal Service Locking system

Similar Documents

Publication Publication Date Title
US3889501A (en) Combination electrical and mechanical lock system
US3694810A (en) Electronic security systems for multi-roomed buildings
US4760393A (en) Security entry system
US4415893A (en) Door control system
US3866173A (en) Access control system for restricted area
EP0229141B1 (en) Method of operating a security device
US4079605A (en) Optical key reader for door locks
US4209782A (en) Method and circuit arrangement for the electronically controlled release of door, safe and function locks using electronically coded keys
US3821704A (en) Self re keying security device with coded key
US5184491A (en) Combination lock with motor-driven tumblers
US6255957B1 (en) Process and device for controlling the closure of locks
US5974367A (en) Electronic lock system and use thereof
US4519228A (en) Electronic recodeable lock
USRE29259E (en) Self re-keying security device
US4901057A (en) Device for securing a combination dial lock
US3415087A (en) Electromechanical lock
GB2024922A (en) Electronic locks
US3786471A (en) Security maintenance system
JPS627346B2 (en)
US4142097A (en) Programmable keyboard sequencing for a security system
US3590333A (en) Identification system
JPS5921423B2 (en) Unlocking equipment using a card
KR100236407B1 (en) Locker and recording apparatus therewith
US3103806A (en) Safety deposit box lock
GB2158867A (en) Electronic locking system