Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3889685 A
Tipo de publicaciónConcesión
Fecha de publicación17 Jun 1975
Fecha de presentación2 Nov 1973
Fecha de prioridad2 Nov 1973
También publicado comoCA1033251A1, DE2450877A1, DE2450877B2, DE2450877C3
Número de publicaciónUS 3889685 A, US 3889685A, US-A-3889685, US3889685 A, US3889685A
InventoresJr George E Miller, Paul Kahn, William C Dabney
Cesionario originalCutter Lab
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Tubular unit with vessel engaging cuff structure
US 3889685 A
Resumen
The tubular unit with vessel engaging cuff structure is a unitary unit including a tube having a compressible cuff surrounding the outer surface thereof. The cuff includes a resilient, porous inner material surrounding the tube and an outer liquid impervious layer which may be bonded to or integrally formed with the inner material. The tube may include means to evacuate fluid from the cuff or, alternatively, separate means are directly connected to the cuff to accomplish such evacuation and contraction of the cuff. Vessel engaging appendages may be incorporated on the cuff.
Imágenes(2)
Previous page
Next page
Descripción  (El texto procesado por OCR puede contener errores)

United States Patent 91 Miller, Jr. et al.

[ 1 TUBULAR UNIT WITH VESSEL ENGAGING CUFF STRUCTURE [75] Inventors: George E. Miller, Jr., Sacramento;

Paul Kahn, San Francisco; William C. Dabney, Oakland. all of Calif.

[73] Assignee: Cutter Laboratories, Inc., Berkeley,

Calif.

22 Filed: Nov. 2, 1973 [21] Appl.No.:4l2,355

[52] US. Cl 128/348; 128/334 R; 128/344; 128/349 B [51] Int. Cl A61m 25/00 [581 Field of Search 128/334 R, 348 B, 348, 128/344, 328, 325

[56] References Cited UNITED STATES PATENTS 3,435,826 Fogarty 128/348 In I:

1 1 June 17, 1975 3,635,223 l/1972 Klieman 128/348 3,640,282 2/1972 Kamen ct a1v 128/349 B X 3,799,173 3/1974 Kamcn 128/349 B X Primary E.raminer-Dalton L. Truluck Attorney, Agent, or Firm-Gardiver. Sixbey, Bradford & Carlson 1 1 ABSTRACT 7 Claims, 4 Drawing Figures fiZQL-Qil k PATENTEDJUH 17 [315 3,889,685

SHEEI 1 FIG 2 TUBULAR UNIT WITH VESSEL ENGAGING CUFF STRUCTURE BACKGROUND OF THE INVENTION The present invention relates to novel devices for effective operation within a blood vessel or other tubular structure of the body involved in the conveyance of a liquid which effectively operates to occlude a space between the inner walls of the vessel and the outer surface of a catheter or similar substantially tubular instrument. Such devices are useful in any liquid conducting vessel of the body such as blood vessels, urinary tracts, the esophagus or the intestine.

There have been developed a number of catheters for embolectomy or thrombectomy which include an inflatable balloon section or other assemblies adapted for positive expansion into engagement with the inner walls of a blood vessel. Such catheters are disclosed in U.S. Pat. Nos. 3,435,826, 3,467,101, 3,467,102 and 3,472,230 to T. J. Fogarty and in U.S. Pat. No. 3,635,223 to C. H. Klieman. These devices are inserted in a deflated or contracted condition into a blood vessel and subsequently inflated under the influence of positive pressure to expand a section thereof into engagement with the inner walls of the blood vessel. This application of a positive pressure to the walls of the blood vessel is often injurious to tissue causing resultant irritation and also can distort the vessel wall and result in the breaking off of arterial plaque or other deposits. It is virtually impossible to control with any degree of accuracy the size of the balloon portion of a balloon catheter which is inflated by positive pressure once the catheter is inserted within a blood vessel, and over inflation may result in serious damage to the vessel. The same may be true of other devices having sections which are positively expanded such as the Arterial Bypass disclosed in U.S. Pat. No. 3,516,408 to V. L. Montanti.

ln tracheal tubes employing an expanded balloon cuff, attempts have been made to eliminate irritation or damage to the trachea caused by balloon cuffs which have been expanded in response to positive pressure. As an alternative, cuffs for tracheal tubes have been formed with an elastic cover which is filled with a sponge-like resilient material. This resilient material may be collapsed in response to a vacuum, and to prevent wrinkles in the cuff, the liner or outer surface thereof is formed of elastic material such as latex rubber. A cuff of this type for a tracheal tube is disclosed in U.S. Pat. No. 3,640,282 to .l. M. Kamen.

The tracheal tube cuffs having a filling of resilient material which are known to the prior art are intended to provide a substantially air tight seal in the trachea, but such cuffs would have inherent disadvantages if they were to be used in blood vessels. In the sealing of blood vessels, a sealing cuff must provide a liquid tight seal with the vessel wall, and normally the seal will be subjected to liquid pressure. Therefore, in many instances the outside diameter of the cuff member in its normally expanded form should be slightly larger than the inside diameter of the surrounding vessel in the area where the cuff is positioned. In these instances, there should be a slight but untraumatizing pressure exerted by the cuff against the interior vessel walls.

In cases where positive pressure extended into the cuff might result in vessel injury if not carefully controlled, it is preferable to form the outer surface of the cuff integral with or bonded to the tiller material within the cuff so that no space can be formed between the two. Such spaces present a low resistance to fluid pressure and result in pockets between the tiller material and the outer surface which might result in excessive pressure being applied to some portions of the vessel wall. Also, by bonding the filler material to the outer surface of the cuff, the expansion of the cuff can be limited by the expansion of the filler material and thus closely controlled. This unitary construction is useful but not essential in devices for removing thrombi.

It is the primary object of the present invention to provide a novel and improved tubular unit with vessel engaging cuff structure for the use within liquid conveying vessels of the body. The cuff structure includes an outer vessel engaging surface which may be bonded or otherwise integrally formed with an inner filler material having a number of fluid receiving interstices formed therein. The withdrawal of fluid from this inner filler material causes the outer surface of the cuff structure and the filler material to contract when fluid is withdrawn from the interstices thereof and to expand when fluid is readmitted.

Another object of the present invention is to provide a novel and improved tubular unit with vessel engaging cuff structure for use within liquid conveying vessels of the body wherein the outer cuff configuration may be formed to a particular shape and a cuff is constructed to always return to this expanded shape when unrestrained. The cuff may be formed so as to prevent expansion under pressure beyond the confines of the pre formed cuff shape.

A still further object of the present invention is to provide a novel and improved tubular unit with vessel engaging cufl structure for use within liquid conveying vessels of the body wherein engagement of the outer surface of the cuff structure with a vessel wall is accomplished by the normal expansion of an internal filler material to a predetermined shape when fluid previously withdrawn therefrom is reintroduced. The expansion and contraction of this filler material is also employed to some extent to control the contact between the vessel wall and other wall contacting devices formed integral with the outer layer of the vessel engaging cuff structure.

These and other objects of the present invention will readily be apparent upon consideration of the following specification and claims taken in conjunction with the accompanying drawings in which:

FIG. 1 is a sectional view of the tubular unit with vessel engaging cuff structure of the present invention for use in the repair of an aneurism',

FIG. 2 is a sectional view of a second embodiment of the tubular unit with vessel engaging cuff structure of the present invention for the use as an occluder in the resection of an artery;

vessel 12 for use in the repair of an aneurism 14 in the wall of the blood vessel. Aneurisms can occur anywhere in the arterial system of the body and the most dangerous and difficult to repair are those in the major vessel such as the aorta or the iliac artery. The unit in FIG. 1 may be used in those cases where the aneurism is susceptible to repair rather than replacement. It will be noted that the unit 10 includes an open ended tube 16 which is preferably formed of flexible material compatible with blood. For example, the tube 16 may be formed of silicone rubber, polyethylene, polypropylene, polyurethane, polyvinyl chloride or the like. Mounted upon the tube 16 are spaced cuffs 18 which are positioned to engage the walls of the blood vessel 12 on either side of the aneurism 14. The cuffs 18 are of identical structure. and each has a generally cylindri cal shape, although other vessel wall engaging shapes may also be achieved with the cuff structure of the present invention. Each cuff includes an outer surface layer 20 which is impervious to gases or liquids and a resilient sponge-like, reticulated filler material 22 which fills the space between the tube l6 and the surface layer 20. The flller material 22 includes pores or voids which are interconnected so that any fluid, be it gaseous or liquid, can be made to flow into or from the pores. Some of the material suitable for this reticulated structure are polyurethane, silicone elastomer, rubber and polyvinyl alcohol and other similar foamed plastic materials. The same materials may be employed to form the outer surface layer 20, but the outer surface layer will not contain pores or voids. It is preferred that the outer surface layer be unitary with the filler material 22, and this may be achieved by bonding the outer surface layer to the filler material along the adjoining surface 24 therebetween. The outer surface layer may be adhered to the filler material by use of adhesive, but ideally the outer surface is formed by spray ng or spreading surface material over the outer surface of the filler material. This causes the outer surface material to extend into some of the pores in the filler material, thereby enhancing the bond. Also, the outer surface layer 20 may be formed integrally at the time the spongy filler material is formed so that an impervious skin is generated over the spongy material. Known molding methods may be employed to form this outer skin surface during the molding of the filler material.

The filler material 22 may be bonded to the tube 16 along the extent of the surface 26 therebetweenv Thus the portions of the cuff 18 including the outer surface layer 20 and the filler material 22 form a unitary unit with the tube 16. By providing such a unitary unit, there is no space between the tube 16 and the filler material 22 or between the filler material 22 and the outer surface 20 in which fluid can collect, and fluid may only flow through the pores in the filler material.

To facilitate the introduction and withdrawal of fluid from the interior of the cuff 18, each cuff is provided with a control conduit 28. The control conduit is a small diameter flexible tube having an end portion 30 which extends through the outer surface 20 of the cuff into the filler material 22. The outer surface of the cuff is sealed to the control conduit so that no fluid may escape from the interior of the cuff at the point of entry of the control conduit. Preferably, the end 30 of each control conduit within the cuff is perforated at several points 32 to provide enhanced communication with the fluid within the pores of the filler material 22.

The outer end of each control conduit 28 is provided with a connector 34 which is adapted to connect the control conduit to a suction system. For example. each connector 34 may be a female Luer connector into which the Luer tip of a syringe may be placed In FIG. 1, the tubular unit with vessel engaging cuff structure 10 is shown with separate connectors 34 on the ends of two separate control conduits 28. It is obvious, however, that the two control conduits might merge at a single outlet having a single connector 34 which would be connected to a suction system for simultaneously withdrawing fluid from both cuffs of the unit.

In using the tubular unit with vessel engaging cuff structure 10 of FIG. 1 in the repair of the aneurism l4, clamps are applied upstream and downstream from the aneurism at points where the artery appears healthy. A slit is then made in the arterial wall at the site of the aneurism 14, and sufficient fluid is withdrawn from cuffs 18 by suction to cause cuff contraction. This may be accomplished by syringes attached to the connectors 34 which operate through the control conduits 28 to withdraw fluid from the interstices of the filler material 22. This withdrawal of fluid causes the sponge like filler material to contract due to the exterior atmospheric or liquid pressure which presses against the outer surface layer 24 of the cuff and is sufficient to overcome the force of elasticity of the filler material. The resultant contraction of the cuff permits the unit 10 to be easily inserted through the slit in aneurism 14 and positioned within the artery with a cuff on either side of the aneurism. Fluid is now permitted to flow back through the control conduits 28 into the interstices of the filler material 22, so that the cuffs return toward normal size and engage the inner walls of the artery. Since positive fluid pressure is normally not supplied through the conduits 28, the normal expansion of the resilient. sponge like filler material 22 causes each cuff to provide a seal which is less injurious to the tissues of the artery. In fact, in some instances, it is preferable to form the outer surface layer 20 of flexible but inelastic material so that the expansion of the cuff 18 will be limited even if positive pressure is inadvertently applied through the control conduit 28. With an inelastic surface, the cuff will expand from a contracted configuration back to a normal expanded configuration, and at this point, further expansion will be prevented by the inelastic outer surface 20 even if positive pressure is applied to the filler material 22.

Once the tubular unit with vessel engaging cuff structure 10 is in place within the artery 12 and the cuffs 18 are expanded against the artery wall, the clamps previously placed on the artery are released so that blood flows freely through the tube 16. Circulation within the artery now remains uninterrupted while the surgeon conducts the necessary repair of the weakened wall of the artery. After the repair is completed, clamps are again applied to the artery, the cuffs 18 are contracted, and the unit 10 is withdrawn through the small remaining slit in the arterial wall. The slit is then sutured and the clamps are released.

FIGS. 2-4 disclose other embodiments of the tubular unit with vessel engaging cuff structure of the present invention, and in these embodiments, the cuff structure is generally identical to that disclosed at 18 in FIG. 1. Therefore, the reference numerals of FIG. 1 will be applied to corresponding structures found in FIGS. 2-4.

Referring to FIG. 2, there is disclosed an occluder 36 for use during the resection of an artery and the replacement of a damaged section with an arterial graft. There are situations where a damaged artery must be resected and an arterial graft installed to replace the resected portion. For example, an aneurism usually is not susceptible to repair so that the damaged artery must be resected and an arterial graft installed to replace the resected portion, or a coarctation may occur which requires resection and an arterial graft replacement. To install a replacement, the surgeon must have resected ends to work with unencumbered with any device, and therefore the occluder 36 of FIG. 2 becomes necessary. This occluder consists of a tube or conduit 38 having a closed end 40 and an open end 42. A suit able connector, such as the connector 34 of FIG. 1, may be attached to the open end 42 so that suction may be applied to the tube 36.

The closed end 40 of the tube 46 is preferably rounded to provide an insertion tip and a cuff 18 is bonded to the tube adjacent the closed end thereof. This cuff is identical in construction to the cuff of FIG. 1, but in the occluder 36, the tube 38 is provided with apertures or perforations 44 which communicate with the filler material 22 within the cuff. Thus contraction of the cuff may be accomplished by attaching the suction device to the connector 34 and drawing fluid from the filler material 22 through the apertures 44.

To use the occluder 36, the artery is clamped in an area of healthy tissue upstream of the damaged section. A slit large enough to accommodate the occluder is made adjacent to and downstream from the area of the vessel to be resected. The cuff 18 of the occluder is contracted so that the occluder may be introduced into the artery downstream from the slit, and the cuff is then allowed to return toward its original size to engage the arterial wall. The damaged portion of the artery is then resected. Optionally, a second occluder may be inserted into the artery at the resected end near the clamp, and the clamp removed.

Referring again to FIG. 2, the second occluder preferably will include an umbrella like appendage 46 which is attached at the end of the cuff 18 adjacent to the closed end 40 thereof. This appendage is somewhat cup shaped in configuration with the base portion thereof attached to the outer layer at the curved end of the cuff l8, and with the open edge portion extending forwardly of the closed end of the tube 38. The base wall 48 of this appendage is quite thick with relation to the terminal edge of the side wall 50 thereof which is extremely thin. The appendage 46 is formed of flexible material, and therefore the side wall 50, particularly in the area adjacent the outer edge forward of the closed end of the tube. is extremely flexible. The diameter of the appendage may be approximately the same as the diameter of the cuff in the expanded position, and the attachment of the appendage to the outer layer 20 of the cuff insures that the appendage will collapse with the cuff and not impede the insertion of the occluder into a vessel.

When the second occluder is inserted into the artery, the pressures against the second occluder in certain procedures may reach as much as 250 to 350 mm Hg, and at the height of pulsation, the arterial wall may expand sufficiently to cause blood to creep around the cuff of the occluder. The elastic appendage 46 is designed to prevent such blood seepage, for the blood pushes against the appendage and forces the thin side wall 50 thereof into contact with the arterial wall. This reduces the blood pressure on the cuff l8 and prevents seepage between the cuff and the arterial wall. Obviously, the thin sidewall of the appendage facilitates insertion and withdrawal of the appendage without damage to the arterial wall. particularly since the terminal edge thereof is extremely thin and flexible.

The arterial graft is sutured to the resected ends of the vessel except for about a quarter to one half inch at the point where the open ends of the tubes 38 of each occluder protrude. At this point, a loose stitch, such as a purse string stitch is made, and then each occluder cuff 18 is in turn contracted, the occluder is withdrawn, and the loose stitch is tightened and tied to complete the arterial graft.

The use of the occluder 36 is superior to the previously known techniques of clamping off an artery with a vascular clamp, for the occluder is less injurious to the arterial tissue. Similar techniques are also used in the repair of venous blood vessels.

An appendage having a construction similar to that of the appendage 46 may also be used with the tubular unit 10 of FIG. 1 as indicated at 35. The appendage 35 is identical to the appendage 46 with the exception that the closed end 40 is not provided on the tube 16.

FIG. 3 discloses a coronary catheter with retaining cuff indicated generally at 52 for use in open heart surgery. In open heart surgery there frequently is a need to supply blood to the heart muscle via the coronaries to prevent the heart muscle from dying. A coronary catheter for this purpose preferably should have an angled extremity to fit the coronary vessel and be removed from the operating site, and thus the coronary catheter 52 includes an angled, open ended tube 54. This tube is flexible and shaped adjacent one open end thereof to provide a hook-like configuration. A cuff 18 is secured to the tube near the angled portion thereof. This cuff is formed identically to the cuffs of FIGS. 1 and 2 with the exception that the cuff is preferably spherical or ovate and is shorter in length. Also, the cuff 18 of the coronary catheter should be somewhat softer and more resilient than the cuff 18 in FIGS. 1 and 2, but basically, the coronary catheter S2 constitutes one half of the unit 10 of FIG. 1. The open end of the coronary catheter opposite to the cuff is provided with a connection 56 connectable to a blood supply which is to be pumped into the coronary artery into which the catheter has been secured.

A catheter 58 for use in thromboembolectomy is disclosed in FIG. 4. This catheter is similar to the occluder of FIG. 2 and includes tube 38 having a connector 34 at the open end thereof and perforations 44 for communication with the interior of the cuff 18. The closed end of the catheter 58 includes a forward tip 60 which is somewhat firmer than the closed forward end 40 of the catheter 36, for the tip 60 assists in the penetration of a thrombus. Also, it will be noted that the outer layer 20 of the cuff 18 is thickened at 62 to provide a stiffened rear wall 64 on the cuff. This rear wall does not have a round surface similar to that of the front wall of the cuff which is inclined with respect to the surface of the tube 38, but instead has a relatively flat surface which extends outwardly from the surface of the cuff. This rear wall 64 is stiff enough due to the thickened portion 62 of the outer layer 20 to act as a retaining wall for the thrombus as the catheter and cuff are drawn backward through the vessel after penetration of the thrombus. Thus the thrombus will be prevented from slipping around the cuff as it is withdrawn. Since only the rear wall of the cuff is thickened for added stiffness, the remainder of the outer layer 20 which contacts the vessel wall is yielding and flexible so that the cuff will not scrape against plaque adhering to the vessel wall. To insure that plaque will not be engaged and torn from the vessel wall during withdrawal of the cuff, the rear wall 64 is thick adjacent the tube 38 and tapers upwardly so that the outer extremities of the rear wall are thinner and much more flexible than the portions adjacent the tube.

In the use of the device 58 of FIG. 4, an artery or vein is entered above or below a thrombus by means of an incision. Suction is applied to the connector 34 to remove fluid through the perforations 44, thereby constricting the filler material 22 and the outer surface 20 bonded thereto. The catheter 58 with the constricted cuff 18 is then introduced through the slit into the blood vessel. Once the cuff section has passed through the thrombus, the cuff is then allowed to return to normal size. Device 58 is withdrawn, and the cuff retains the thrombus and carries it forward to the exit slit. After the removal of the thrombus and the device 58, the slit is sutured. It should be noted that the cuff section exerts little or no pressure on the vessel wall, only that which results from the natural return of these SU'UCtUfS from a contracted state.

For use in blood vessels, it is generally more advantageous to fill the interstices of the filler material 22 of the cuff 18 with liquid, such as water, since the liquid is less compressible than gas and the volume of the cuff will be less subject to change. However, air or other gas can be used to fill the interstices, particularly when the outer surface 20 of the cuff is formed of flexible but nonelastic material to positively limit cuff expansion.

It will be readily apparent to those skilled in the art that the present invention provides a novel tubular unit with vessel engaging cuff structure which is particularly well adapted for use in the liquid conveying vessels of the body. This device is readily adaptable for uses other than those specifically described, and for example may be employed as a sail to carry a pressure sensor to a desired position in the cardiovascular system. For this use, the device of FIG. 2, without the appendage 46, may be attached to a pressure sensor. The cuff 18 can then be expanded as a sail to carry the sensor into the cardiovascular system, and the size of the cuffin the expanded position would be less than the diameter of the walls of the blood vessel through which it is traveling.

We claim:

l. A tubular unit with vessel engaging cuff structure for use within liquid conveying vessels ofthe body comprising a tube having an open end and a closed end, a compressible cuff surrounding said tube and mounted on said tube adjacent the closed end thereof, the tube being completely closed between said closed end thereof and a front wall of said cuff to preclude liquid from passing from said vessel into said tube and fluid from passing from said tube into said vessel, said cuff including a resilient, reticulated filler material having a network of fluid receiving interstices and a vessel engaging, flexible outer surface layer enclosing said filler material that is formed of a material which is impervious to liquids and gasses, the cuff also having a front wall adjacent the closed end of said tube which is inclined outwardly from said tube away from the closed end thereof, and a rear wall spaced from said front wall and having a substantially flat surface extending laterally from said tube, and conducting means communicating with said filler material to facilitate the withdrawal of fluid therefrom to contract said cuff inwardly toward said tube from a normal expanded configuration assumed by said cuff when said fluid receiving interstices are filled with fluid.

2. The tubular unit of claim 1 wherein said conducting means includes at least one aperture formed in said tube to connect the interior of said tube with said filler material.

3. The tubular unit of claim 1 wherein the rear wall of said cuff is substantially normal to the outer surface of said tube in the portion thereof surrounded by said cuff.

4. The tubular unit of claim 1 wherein the outer sur face layer of said cuff forming said rear wall is of increased thickness adjacent said tube and decreases in thickness toward the outer extremities of said rear wall to impart greater stiffness to said rear wall in the area adjacent said tube.

5. The tubular unit of claim 1 wherein connector means are mounted on the open end of said tube to connect the tube to a suction source, said conducting means including a plurality of apertures formed in said tube to connect the interior of said tube with the filler material.

6. The tubular unit of claim 1 wherein said flexible outer surface layer is connected to said flller material to form a unitary cuff.

7. The tubular unit of claim 1 wherein said flexible outer surface layer is inelastic to prevent expansion of said cuff beyond a normal expanded configuration defined by said outer surface layer.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3435826 *27 May 19641 Abr 1969Edwards Lab IncEmbolectomy catheter
US3635223 *2 Dic 196918 Ene 1972Us Catheter & Instr CorpEmbolectomy catheter
US3640282 *6 Ago 19708 Feb 1972Carolyn J WilkinsonTracheal tube with normally expanded balloon cuff
US3799173 *24 Mar 197226 Mar 1974J KamenTracheal tubes
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US3971385 *9 Sep 197427 Jul 1976Sherwood Medical Industries Inc.Medical tube with cuff
US4154244 *21 Nov 197715 May 1979Baxter Travenol Laboratories, Inc.Balloon-type catheter
US4168708 *20 Abr 197725 Sep 1979Medical Engineering Corp.Blood vessel occlusion means suitable for use in anastomosis
US4190909 *31 Mar 19784 Mar 1980Ablaza Sariel G GApparatus and method for surgical repair of dissecting thoracic aneurysms and the like
US4230119 *1 Dic 197828 Oct 1980Medical Engineering Corp.Micro-hemostat
US4291687 *8 Feb 198029 Sep 1981Manfred SinnreichInflatable packing for surgical use having auxiliary intestinal supporting member
US4307722 *14 Ago 197929 Dic 1981Evans Joseph MDilators for arterial dilation
US4327736 *20 Nov 19794 May 1982Kanji InoueBalloon catheter
US4503569 *3 Mar 198312 Mar 1985Dotter Charles TFor placement within a body passageway
US4552557 *21 Oct 198312 Nov 1985Avvari RangaswamyInflatable uterine hemostat
US4624657 *15 Nov 198325 Nov 1986Medi-Tech, IncorporatedMedical devices having inflatable portions
US4636195 *4 Abr 198513 Ene 1987Harvey WolinskyMethod and apparatus for removing arterial constriction
US4653514 *29 May 198431 Mar 1987Bivona, Inc.Device for strengthening the vaginal muscles
US4708140 *8 May 198624 Nov 1987Baron Howard CAtraumatic vascular balloon clamp
US4733665 *7 Nov 198529 Mar 1988Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4739762 *3 Nov 198626 Abr 1988Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4776337 *26 Jun 198611 Oct 1988Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4793348 *15 Nov 198627 Dic 1988Palmaz Julio CBalloon expandable vena cava filter to prevent migration of lower extremity venous clots into the pulmonary circulation
US4863426 *18 Ago 19875 Sep 1989Ferragamo Michael CPercutaneous venous catheter
US4944745 *29 Feb 198831 Jul 1990Scimed Life Systems, Inc.Perfusion balloon catheter
US4950226 *11 Sep 198921 Ago 1990Bruce BarronSurgical shunt for liver isolation
US5009639 *22 Abr 198823 Abr 1991Fresenius, AgGastric/duodenal/jejunal catheter for percutaneous enternal feeding
US5116318 *6 Jun 198926 May 1992Cordis CorporationDilatation balloon within an elastic sleeve
US5156595 *23 Dic 199120 Oct 1992Scimed Life Systems, Inc.Dilatation balloon catheter and method of manufacturing
US5195969 *26 Abr 199123 Mar 1993Boston Scientific CorporationCo-extruded medical balloons and catheter using such balloons
US5269770 *13 Mar 199214 Dic 1993Rochester Medical CorporationMicrocidal agent releasing catheter with balloon
US5290306 *29 Nov 19891 Mar 1994Cordis CorporationPuncture resistant balloon catheter
US5295962 *18 Dic 199222 Mar 1994Cardiovascular Dynamics, Inc.Drug delivery and dilatation catheter
US5308325 *28 Ene 19913 May 1994Corpak, Inc.Retention balloon for percutaneous catheter
US5318513 *24 Sep 19927 Jun 1994Leib Martin LCanalicular balloon fixation stent
US5368566 *29 Abr 199229 Nov 1994Cardiovascular Dynamics, Inc.Delivery and temporary stent catheter having a reinforced perfusion lumen
US5370899 *13 Mar 19926 Dic 1994Conway; Anthony J.Outer sleeves that are lubricated so they can slide independently
US5382261 *1 Sep 199217 Ene 1995Expandable Grafts PartnershipMethod and apparatus for occluding vessels
US5421826 *13 Ene 19946 Jun 1995Cardiovascular Dynamics, Inc.Drug delivery and dilatation catheter having a reinforced perfusion lumen
US5439444 *26 Abr 19948 Ago 1995Corpak, Inc.Pre-formed member for percutaneous catheter
US5476476 *15 Ago 199419 Dic 1995Cordis CorporationDilatation balloon assembly
US5478320 *31 Ene 199426 Dic 1995Cordis CorporationPuncture resistant balloon catheter and method of manufacturing
US5482740 *8 Nov 19939 Ene 1996Rochester Medical CorporationCured silicone rubber containing particles of nitrofuran compound; urinary catheters
US5501669 *30 Mar 199526 Mar 1996Rochester Medical CorporationUrinary catheter with reservoir shroud
US5569184 *3 Ago 199529 Oct 1996Cardiovascular Dynamics, Inc.Delivery and balloon dilatation catheter and method of using
US5593718 *2 Ago 199414 Ene 1997Rochester Medical CorporationMethod of making catheter
US5599321 *7 Jun 19954 Feb 1997Rochester Medical CorporationCoating outer surface of tube with mixture of uncured silicone rubber, silicone fluid and and particles of antibacterial agent, then curing, for urinary catheters
US5603698 *23 Ago 199518 Feb 1997Boston Scientific CorporationProsthesis delivery system
US5613979 *1 Nov 199325 Mar 1997Cordis CorporationPuncture resistant balloon catheter
US5620649 *11 Oct 199515 Abr 1997Cordis CorporationPuncture resistant balloon catheter
US5656036 *12 Sep 199412 Ago 1997Expandable Grafts PartnershipApparatus for occluding vessels
US5670111 *2 Ago 199423 Sep 1997Rochester Medical CorporationCoating with bond-preventing agent; forming cavities that may be fluid or gel filled
US5690643 *20 Feb 199625 Nov 1997Leocor, IncorporatedStent delivery system
US5702419 *21 Sep 199430 Dic 1997Wake Forest UniversityExpandable, intraluminal stents
US5797877 *24 May 199625 Ago 1998Boston Scientific CorporationCatheter for insertion into a bodily conduit
US5902333 *21 Ago 199511 May 1999Boston Scientific CorporationProsthesis delivery system with dilating tip
US5971954 *29 Ene 199726 Oct 1999Rochester Medical CorporationMethod of making catheter
US5984964 *31 Oct 199616 Nov 1999Boston Scientific CorporationProthesis delivery system
US5988167 *2 May 199723 Nov 1999Kamen; Jack M.Foam cuff for laryngeal mask airway
US6086556 *4 Ago 199811 Jul 2000Boston Scientific CorporationMedical device balloons containing thermoplastic elastomers
US6110143 *25 Jun 199829 Ago 2000Kamen; Jack M.Inflation/deflation medical device
US6129737 *7 Oct 199610 Oct 2000Boston Scientific CorporationAsymmetric dilatation balloon
US6132824 *6 Ago 199717 Oct 2000Schneider (Usa) Inc.Multilayer catheter balloon
US6136258 *24 Abr 199524 Oct 2000Boston Scientific CorporationCoextrusion a multilayer tube, pressurization and forming a balloon
US624812826 Nov 199719 Jun 2001Wake Forest UniversityExpandable intraluminal stents
US63440535 Abr 19995 Feb 2002Medtronic Ave, Inc.Endovascular support device and method
US638343430 Jun 19997 May 2002Rochester Medical CorporationMethod of shaping structures with an overcoat layer including female urinary catheter
US64823483 Abr 200019 Nov 2002Boston Scientific CorporationMethod of forming a co-extruded balloon for medical purposes
US660754419 Oct 199919 Ago 2003Kyphon Inc.Expandable preformed structures for deployment in interior body regions
US662688826 Sep 199530 Sep 2003Rochester Medical CorporationMethod of shaping structures with an overcoat layer including female urinary catheter
US665621922 Nov 20002 Dic 2003Dominik M. WiktorIntravascular stent
US666366131 Oct 200116 Dic 2003Medtronic Ave, Inc.Endovascular support device and method
US671977319 Jun 200013 Abr 2004Kyphon Inc.Expandable structures for deployment in interior body regions
US67558463 Feb 199829 Jun 2004Angioguard, Inc.Vascular filter
US682773324 Sep 20037 Dic 2004Medtronic Ave, Inc.Endovascular support device and method
US689684224 Abr 200024 May 2005Boston Scientific CorporationMedical device balloons containing thermoplastic elastomers
US692382822 Nov 20002 Ago 2005Medtronic, Inc.Intravascular stent
US69580747 Ene 200225 Oct 2005Cordis CorporationReleasable and retrievable vascular filter system
US697934118 Abr 200127 Dic 2005Kyphon Inc.Expandable preformed structures for deployment in interior body regions
US699164112 Mar 200231 Ene 2006Cordis CorporationLow profile vascular filter system
US706691416 Mar 200527 Jun 2006Bird Products CorporationCatheter having a tip with an elongated collar
US716352326 Feb 200416 Ene 2007Scimed Life Systems, Inc.Balloon catheter
US716609921 Ago 200323 Ene 2007Boston Scientific Scimed, Inc.Multilayer medical devices
US7169163 *30 Sep 200230 Ene 2007Bruce BeckerTransnasal method and catheter for lacrimal system
US722946226 Feb 200212 Jun 2007Angioguard, Inc.Vascular filter system for carotid endarterectomy
US722946326 Feb 200212 Jun 2007Angioguard, Inc.Vascular filter system for cardiopulmonary bypass
US72617207 Oct 200228 Ago 2007Kyphon Inc.Inflatable device for use in surgical protocol relating to fixation of bone
US739930819 Jul 200215 Jul 2008Cordis CorporationVascular filter system
US758528922 Jun 20058 Sep 2009Boston Scientific Scimed, Inc.catheter body carrying co-extruded balloon, having two layers, co-extruded with and bonded to and disposed outside of the first layer of polyamide/polycarbonate copolymer or polyester/polycarbonate copolymer, second extruded layer containing 100% SELAR" or PET and 50% SELAR" blend; high tensile strength
US77000865 Nov 200420 Abr 2010Pluromed, Inc.Internal clamp for surgical procedures
US772262423 Feb 200425 May 2010Kyphon SÀRLExpandable structures for deployment in interior body regions
US77586494 Ago 200620 Jul 2010Integrity Intellect Inc.Reversibly deformable implant
US778103827 May 200424 Ago 2010Boston Scientific Scimed, Inc.Made of polyether glycol/polybutylene terephthalate block copolymer; medical catheter device; abrasion resistant
US781562830 Dic 200819 Oct 2010Boston Scientific Scimed, Inc.Multilayer medical devices
US787503530 Oct 200725 Ene 2011Kyphon SarlExpandable structures for deployment in interior body regions
US795966415 Mar 200614 Jun 2011Medinol, Ltd.Flat process of drug coating for stents
US84916237 Sep 200723 Jul 2013Pluromed, Inc.Atraumatic occlusion balloons and skirts, and methods of use thereof
US882184926 Mar 20102 Sep 2014Genzyme CorporationInternal clamp for surgical procedures
US88280776 May 20119 Sep 2014Medinol Ltd.Flat process of preparing drug eluting stents
WO1980001460A1 *3 Ene 198024 Jul 1980Tesi AbCatheter
WO1991010556A1 *8 Ene 199125 Jul 1991Rochester Medical CorpMethods of making balloon catheters
Clasificaciones
Clasificación de EE.UU.604/8, 604/96.1, 606/192, 604/915
Clasificación internacionalA61F2/958, A61B17/12, A61B17/00, A61M25/00, A61B17/11
Clasificación cooperativaA61B17/1219, A61B17/11, A61M25/10, A61M25/00, A61B17/12109, A61B17/12136, A61B17/00, A61B17/12045, A61B2017/12127
Clasificación europeaA61B17/12P1T2, A61B17/12P5B, A61B17/12P7B, A61B17/12P7Z3, A61B17/11, A61M25/00, A61B17/00, A61M25/10