US3890107A - Materials useful for prosthetic devices and the like - Google Patents

Materials useful for prosthetic devices and the like Download PDF

Info

Publication number
US3890107A
US3890107A US291547A US29154772A US3890107A US 3890107 A US3890107 A US 3890107A US 291547 A US291547 A US 291547A US 29154772 A US29154772 A US 29154772A US 3890107 A US3890107 A US 3890107A
Authority
US
United States
Prior art keywords
synthetic material
accordance
synthetic
microns
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US291547A
Inventor
Eugene W White
Jon N Weber
Rodney A White
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Corp
Original Assignee
Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Corp filed Critical Research Corp
Priority to US291547A priority Critical patent/US3890107A/en
Priority to CA181,815A priority patent/CA1015917A/en
Application granted granted Critical
Publication of US3890107A publication Critical patent/US3890107A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30957Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using a positive or a negative model, e.g. moulds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00113Silver or Ag-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00119Tin or Sn-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00131Tantalum or Ta-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00149Platinum or Pt-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00155Gold or Au-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00185Ceramics or ceramic-like structures based on metal oxides
    • A61F2310/00203Ceramics or ceramic-like structures based on metal oxides containing alumina or aluminium oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00353Bone cement, e.g. polymethylmethacrylate or PMMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • pore connections between 100 and 200 pom are necessary for the development of Haversian systems and the anastomosing blood supply which is essential for bone nourishment.
  • Optimum pore size for the ingrowth of osteoid cells and fibrous tissue are 40-100 um and 5-l5 ,um, respectively.
  • uniform pore size and permeability are difficult to obtain in synthetic materials, materials which possess a uniform pore size and permeability are fairly common in nature. For example, most echinoderm skeletons are characterized by a pronounced three-dimensional fenestrate structure, see SCIENCE, 166, 1147 (1969). The disclosures of this article are herein incorporated and made part of this disclosure.
  • This article describes the microstructure of echinoderm skeletons which, as indicated hereinabove, are characterized by a pronounced three-dimensional fenestrate structure providing a periodic minimal surface. Such a surface divides space into two interpenetrating regions, each of which is a single multiply connected domain. According to this article the surface which is the interface between the solid calcite phase and the organic matter component provides maximum contact for crystal growth.
  • the described microstructure appears to be unique to echinoderm skeletal materials.
  • porous skeletal materials of marine invertebrate life and investigations of such materials indicate that a considerable variety of microstructures might serve as the basis for the production of synthetic implant materials by structural replication.
  • porous skeletal materials the most promising is the common scleractinian, reef-building colonial coral Porites whose skeleton is constructed of radiating clusters of acicular aragonite crystals (sclerodermites).
  • the small (less than 2 mm) corallites which are closely united without coenosteum, have both perforate skeletal walls and septa with perforations.
  • Still another object of this invention is to provide a process for the manufacture of synthetic biomaterials, such as a synthetic material having the microstructure resembling that of human bone and the like.
  • the microstructure of the porous, permeable animal skeletal material such as the porous, permeable carbonate skeletal material of marine life, such as the porous carbonate skeletal material of marine invertebrates, e.g. echinoid spine calcite and Porites skeletal aragonite, has been precisely copied or replicated, in negative and positive form, in synthetic materials, such as plastic and metal and alumina. These synthetic materials would be useful for the manufacture of prosthetic devices, such as body and bone implants and the like.
  • these materials would also be useful for the fabrication of special filters, catalyst supports, means for the immobilization and/or stabilization of catalytic agents, including enzymes, for carrying out specific chemical reactions, or for the manufacture of mufflers and other devices or structures useful to retime of about 30 hours is satisfactory for the removal of most of the organic matter.
  • the material is rinsed, preferably in deionized water, and dried, such as at about 90C. See also the technique for the removal of organic matter from animal bone as described in SCIENCE, 119, 771 (1954) which might also be employed.
  • the material to be replicated if not already shaped, is then shaped into a desired form or structure. If the material whose microstructure is to be replicated is echinoderm calcite or scleractinian coral aragonite it can be readily shaped by machining into a desired form, such as cylinders, screws, nuts, bolts, pins and the like.
  • negative methacrylate copies of the structure or shape are obtained by vacuum impregnation with and subsequent in situ solidification of the impregnating methacrylate, followed by removal of the original structural material, i.e. the carbonate skeletal material, such as the calcite or aragonite, by leaching with dilute aqueous hydrochloric acid, such as 520% I-ICl.
  • the material whose microstructure is to be replicated is first vacuum impregnated with wax, the original material then removed, such as by leaching with dilute aqueous hydrochloric acid, and the resulting wax negative then vacuum impregnated with methacrylate.
  • the impregnating methacrylate is then solidified in situ and the wax negative removed by melting.
  • Synthetic materials such as the replicas of porous carbonate skeletal materials of marine life, are also obtainable in metal form, such as in the metal alloys Vitallium and Tichonium in accordance with this invention.
  • the porous carbonate skeletal material such as the echinoderm skeletal material or coral skeletal material
  • the porous carbonate skeletal material is first vacuum impregnated with wax and the calcite or aragonite skeletal material removed with dilute aqueous hydrochloric acid.
  • the resulting wax negative is then vacuum impregnated with a refractory material, such as Kerr Cristobalite Investment, manufactured by Kerr Manufacturing Co., Romulus, Michigan, and the metal is cast therein using standard centrifugal casting techniques.
  • Kerr Cristobalite Investment manufactured by Kerr Manufacturing Co., Romulus, Michigan
  • the result is an exact negative reproduction or replicate of the original material in metal. For the replication of a large amount of material vacuum casting would appear to be preferable.
  • Numerous synthetic materials may be employed for the preparation of the special biomaterials in accordance with this invention characterized by having the microstructure corresponding to the desired microstructure found in nature.
  • polymeric materials, metal or ceramics and mixtures thereof may be employed in the preparation of the desired synthetic materials in accordance with this invention.
  • the synthetic materials making up the implant prepared in accordance with this invention would be selected on the bases of histotoxicity, resistance to biodegradation, mechanical strength, wear resistance, fatigue resistance, tissue fixation, sterilizability and the like, including thrombogenicity.
  • Materials which are usefully employed in the preparation of the synthetic materials having the special microstructures in accordance with this invention include 3 16L stainless steel, chrome-cobalt alloys, such as Vitallium, Tichonium, gold, silver, platinum, tin, tantalum, titanium, anti-thrombogenic carbonaceous material, such as the so-called glassy carbon, ceramic materials, such as alumina, polymerized methacrylate, high density polyethylene, polypropylene, silastic and the like.
  • the natural materials whose porous, permeable structure can be replicated to produce the desired biomaterials in accordance with the practices of this invention are vast.
  • the porous carbonate skeletal materials of marine life particularly marine invertebrate skeletal material, such as echinoid spine calcite and Porites skeletal aragonite.
  • the genus Porites is especially useful as providing a source of natural material whose skeletal microstructure can be usefully replicated to produce the synthetic biomaterial of this invention.
  • Porites coral is one of the most successful of the reef-building corals and has a worldwide distribution in the coral reef zone. The colonies grow rapidly with massive forms often exceeding a meter in diameter, thereby providing a large amount of material suitable for replication into substantially any desired and useful shape for prosthetic purposes.
  • marine animals which provide suitable source materials are the Echinodermata, particularly the Heterocentrotus trigonarius and Hezerocentrotus mammillatus, which are lndo-Pacific, shallow water, tropical echinoids providing large spines.
  • Other marine life which provide porous carbonate skeletal materials especially useful for the preparation of synthetic materials in accordance with this invention include the Scleractinian corals, such as Porites spp. which are numerous and exist in large size colonies and in great abundance also the Goniopora sp., the Alvepora sp. which have a pore size greater than that of Porites but a permeability substantially the same as Porites, the Astreopora sp. which have a pore size greater than that of Porites.
  • the marine life such as the Heterocent rotus and the Porites and other corals
  • the organic material may be preserved by immersion of the material in about -40% formaldehyde for a period of -45 minutes or the organic material may be at least partially removed by immersion in 5% aqueous sodium hypochlorite solution or commercial bleach for 1 a suitable period of time, such as from 30 minutes to 3 hours or more.
  • the source material may be shaped into a desired form, such as on a .lather or by means of a band saw and drill. Desirably,
  • the source material after shaping or forming into a desired geometric form the source material is again immersed in a 5% sodium hypochlorite solution for about 24 hours at about room temperature (C.) to remove all of any remaining a soft organic tissue.
  • the thus-treated source material is then rinsed with distilled water to remove all decomposition products and residual hypochlorite so that only the skeletal material calcium carbonate remains.
  • the source material is then dried in an oven at about 90C. for about 4 hours.
  • the surface of the impregnated piece is then lightly sanded to remove remaining excess polymethacrylate and to expose the carbonate skeletal structure on the surfaces.
  • the impregnated piece is then treated to remove the carbonate skeletal material by immersing the piece in a 10% aqueous hydrochloric acid solution. Depending upon the dimensions of the piece the removal of the carbonate material is usually complete within about 8-10 hours, more or less.
  • the removal of the carbonate skeletal material is complete, the piece is removed and rinsed in distilled water and dried, such as at about 60C. There is produced an exact negative methacrylate copy of the thus-treated source material.
  • the source material is vacuum impregnated, this time with wax.
  • the wax impregnated piece is then trimmed to remove excess wax and to expose the exterior surface of the carbonate skeletal structure.
  • the carbonate skeletal structure is then removed by immersion in dilute aqueous hydrochloric acid, such as in Example No. 1.
  • the wax negative is then vacuum impregnated with a thixotropic alumina slurry, the alumina particle size being sufficiently small that the alumina readily enters and moves along the pores of the piece, e.g. the wax negative.
  • the piece is subjected to vibratory motion so as to render the alumina slurry fluid during impregnation.
  • Linde A alumina a commercially available alumina, preferably pre-treated by soaking in concentrated HCl for 48 hours and then washed completely with deionized water and the water decanted, has been found to be especially useful as the alumina material for impregnating the wax negative. After the impregnation of the wax negative with the alumina has been completed excess alumina is removed. The thustreated piece is slowly heated in an air atmosphere from room temperature to about 800C. over about an 8 hour period. This heating or slow firing burns off the wax and imparts some strength to the alumina. The substantially wax-free alumina replica is then fired at an elevated temperature, such as a temperature in the range from about l400l450C. to as high as 1600l 650C.
  • a wax negative of the source material is obtained by vacuum impregnation.
  • the wax negative is then vacuum impregnated with a casting investment, such as Cristobalite, manufactured by Kerr Manufacturing Co., or equivalent material.
  • the wax is then burned off or otherwise removed from the impregnated negative, such as by firing from room temperature to about 1,350F. over a period of time, such as about 8 hours.
  • molten metal is then cast, such as by centrifugal casting, into the piece and upon completion of the casting operation the resulting cast piece is immersed in a pan of water.
  • the thermal shock and action of the resulting generated steam breaks down the investment which is then substantially completely removed in a subsequent vibratory scrubbing operation.
  • a substantially uniform permeable microporous synthetic material useful as a biomaterial such as for the manufacture of prosthetic devices, characterized by a substantially uniform pore volume in the range from about 10 to about 90% and having a microstructure characterized by a pronounced three-dimensional fenestrate structure corresponding to the microstructure of the porous carbonate echinoderm or scleractinian coral skeletal material of marine life and providing a periodic minimal surface, said periodic minimal surface dividing the volume of said material into two interpenetrating regions, each of which is a single, multiply connected domain, said material having a substantially uniform pore size diameter and substantially uniform pore connections or openings in the range from about 5 microns to about 500 microns.
  • a synthetic material in accordance with claim 2 wherein said alloy is an alloy comprising about 65% cobalt, about 35% chromium and about 5% molybdenum.
  • a synthetic material in accordance with claim 1 wherein said synthetic material is 3l6L stainless steel.
  • a synthetic material in accordance with claim 1 having the ratio of pore volume to the volume of the solid of approximately 1 and having cross-sectional diameters of both the pore and the solid phases of about the same dimension, ranging from about 5 microns to about 500 microns.
  • a synthetic material in accordance with claim 1 having a pore size diameter in the range about 40-100 7 crons UNITED STATES PATENT AND TRADEMARK OFFICE (IER'IIFICA'IIC ()F CORRECTION PA'HN'l NO. I 3,890,107

Abstract

A material useful as a biomaterial for the manufacture of prosthetic devices and the like is provided by a synthetic material characterized by having the microstructure corresponding to the microstructure of porous carbonate skeletal material of marine life, such as marine invertebrate skeletal material, e.g. echinoid spine calcite and Porites skeletal aragonite. Such synthetic materials are prepared by producing a replicate in negative or positive form of the microstructure of the aforesaid porous carbonate skeletal material.

Description

United States Patent [191 White et a1.
[ MATERIALS USEFUL FOR PROSTHETIC DEVICES AND THE LIKE [75] Inventors: Eugene W. White; Jon N. Weber,
both of State College, Pa; Rodney A. White, Syracuse, NY.
[73] Assignee: Research Corporation, New York,
22 Filed: Sept. 25, 1972 21 Appl. No.: 291,547
[52] US. Cl 29/183; 29/180 R; 128/92 C;
161/20; 260/25 R [51] Int. Cl B27f 5/00 [58] Field of Search 156/58, 59; 264/44.49,
264/222, 227,221, 226; 32/10 A; 128/92 C, 92 CA; 161/20, 19; 55/526; 210/499; 252/426,477; 106/40 R; 260/25 R; 29/183,
[56] References Cited UNITED STATES PATENTS 2,201,131 5/1940 Jungersen 164/7 2,490,193 12/1949 Barr June 17, 1975 2,860,175 11/1958 Justi 136/120 FC 3,116,170 12/1963 Williams et a1. 136/120 FC X 3,201,282 8/1965 Justi et al 136/120 FC X 3,201,858 8/1965 Valyi 136/120 FC X 3,215,563 11/1965 Clemm 136/120 FC X 3,236,693 2/1966 Caesar 136/120 FC X 3,242,011 3/1966 Witherspoon 136/120 FC Primary Exuminer-L. Dewayne Rutledge Assistant Examiner-O. F. Crutchfield Attorney, Agent, or FirmCooper, Dunham, Clark, Griffin & Moran [5 7] ABSTRACT 19 Claims, No Drawings 1 MATERIALS USEFUL FOR PROSTHETIC DEVICES AND THE LIKE bone or damaged joints has been to fabricate prosthetic implants from materials compatible with body tissue and having acceptable mechanical properties. Screws, pins, nails and other items or shapes fashioned from highly polished alloys, such as Vitallium, a cobaltchromium alloy having the approximate composition 65% Co, 35% Cr and 5% Mo, have been widely used but these implants often cause inflammation and excessive development of fibrous tissue. Corrosion of the metal and inability to induce long term mechanical attachment are further disadvantages. Attempts to increase the degree of tissue attachment by sintering a layer of metal spheres to the outer surface, such as to the outer surface of a Vitallium alloy implant, have been made. Sintered titanium fiber deposits have also been employed. Other potential prosthetic materials include phosphate-containing recrystallized glasses, phosphate-bonded alumina and porous ceramics. The difficulties in controlling pore size, and more important, in controlling the size of the connections between adjacent pores have been major limitations in the production and use of porous ceramics as prosthetic materials. The patent literature describes many materials, and modes of preparation of such materials, proposed for the manufacture of prosthetic devices and anatomical replacements, see for example, U.S. Pat. Nos. 2,688,139, 3,314,420, 3,400,719, 3,526,005, 3,526,906, 3,563,925 and 3,605,123. The disclosures of these patents are herein incorporated and made part of this disclosure.
Studies of implant or prosthetic materials have indicated the pore connections between 100 and 200 pom (microns) are necessary for the development of Haversian systems and the anastomosing blood supply which is essential for bone nourishment. Optimum pore size for the ingrowth of osteoid cells and fibrous tissue are 40-100 um and 5-l5 ,um, respectively. Although uniform pore size and permeability are difficult to obtain in synthetic materials, materials which possess a uniform pore size and permeability are fairly common in nature. For example, most echinoderm skeletons are characterized by a pronounced three-dimensional fenestrate structure, see SCIENCE, 166, 1147 (1969). The disclosures of this article are herein incorporated and made part of this disclosure. This article describes the microstructure of echinoderm skeletons which, as indicated hereinabove, are characterized by a pronounced three-dimensional fenestrate structure providing a periodic minimal surface. Such a surface divides space into two interpenetrating regions, each of which is a single multiply connected domain. According to this article the surface which is the interface between the solid calcite phase and the organic matter component provides maximum contact for crystal growth. The described microstructure appears to be unique to echinoderm skeletal materials.
Other porous skeletal materials of marine invertebrate life and investigations of such materials indicate that a considerable variety of microstructures might serve as the basis for the production of synthetic implant materials by structural replication. Of these other porous skeletal materials the most promising is the common scleractinian, reef-building colonial coral Porites whose skeleton is constructed of radiating clusters of acicular aragonite crystals (sclerodermites). The small (less than 2 mm) corallites, which are closely united without coenosteum, have both perforate skeletal walls and septa with perforations.
Examination of the microstructures of echinoid spine calcite, Porites skeletal aragonite and human bone indicated that except for a greater degree of orientation of the pores in the echinoid spine calcite and the Porites skeletal aragonite, the gross microstructural features of these three materials are similar. In human bone the pore volume ranges from about in regions of low calcification to as low as 10% in the most heavily calcifled areas. It would appear possible, therefore, to select in the animal kingdom a microstructure substantially corresponding to that of the microstructure of human bone. The disadvantages, however, of using naturally occurring skeletal materials directly as bone implants or bone replacements and other prosthetic devices, however, are the low strength and high solubility of the carbonate material, such as calcite and aragonite, which make up the bulk of the aforesaid marine skeletal materials. In the case of the hydroxyapatite of human bone and vertebrates the difficulty and disadvantages reside in the removal therefrom of residual organic matter which elicits adverse immunological reactions.
Accordingly, it is an object of this invention to provide synthetic materials useful as biomaterials, such as for the manufacture of prosthetic devices and the like.
It is another object of this invention to provide a synthetic material having a microstructure substantially corresponding to the microstructure of human bone and the like.
It is yet another object of this invention to provide a synthetic material especially useful as a human bone implant.
Still another object of this invention is to provide a process for the manufacture of synthetic biomaterials, such as a synthetic material having the microstructure resembling that of human bone and the like.
How these and other objects of this invention are achieved will become apparent in the light of the accompanying disclosure. In at least one embodiment of the practice of this invention at least one of the foregoing objects will be achieved.
The microstructure of the porous, permeable animal skeletal material, such as the porous, permeable carbonate skeletal material of marine life, such as the porous carbonate skeletal material of marine invertebrates, e.g. echinoid spine calcite and Porites skeletal aragonite, has been precisely copied or replicated, in negative and positive form, in synthetic materials, such as plastic and metal and alumina. These synthetic materials would be useful for the manufacture of prosthetic devices, such as body and bone implants and the like.
Because of the porosity and permeability of such synthetic materials these materials would also be useful for the fabrication of special filters, catalyst supports, means for the immobilization and/or stabilization of catalytic agents, including enzymes, for carrying out specific chemical reactions, or for the manufacture of mufflers and other devices or structures useful to retime of about 30 hours is satisfactory for the removal of most of the organic matter. Following this oxidation of the soft tissue and organic matter the material is rinsed, preferably in deionized water, and dried, such as at about 90C. See also the technique for the removal of organic matter from animal bone as described in SCIENCE, 119, 771 (1954) which might also be employed. If desired, the material to be replicated, if not already shaped, is then shaped into a desired form or structure. If the material whose microstructure is to be replicated is echinoderm calcite or scleractinian coral aragonite it can be readily shaped by machining into a desired form, such as cylinders, screws, nuts, bolts, pins and the like.
For methacrylate replicas, negative methacrylate copies of the structure or shape are obtained by vacuum impregnation with and subsequent in situ solidification of the impregnating methacrylate, followed by removal of the original structural material, i.e. the carbonate skeletal material, such as the calcite or aragonite, by leaching with dilute aqueous hydrochloric acid, such as 520% I-ICl. To provide positive copies, the material whose microstructure is to be replicated is first vacuum impregnated with wax, the original material then removed, such as by leaching with dilute aqueous hydrochloric acid, and the resulting wax negative then vacuum impregnated with methacrylate. The impregnating methacrylate is then solidified in situ and the wax negative removed by melting.
Synthetic materials, such as the replicas of porous carbonate skeletal materials of marine life, are also obtainable in metal form, such as in the metal alloys Vitallium and Tichonium in accordance with this invention. With respect to the production of Tichonium alloy replicas, the porous carbonate skeletal material, such as the echinoderm skeletal material or coral skeletal material, is first vacuum impregnated with wax and the calcite or aragonite skeletal material removed with dilute aqueous hydrochloric acid. The resulting wax negative is then vacuum impregnated with a refractory material, such as Kerr Cristobalite Investment, manufactured by Kerr Manufacturing Co., Romulus, Michigan, and the metal is cast therein using standard centrifugal casting techniques. The result is an exact negative reproduction or replicate of the original material in metal. For the replication of a large amount of material vacuum casting would appear to be preferable.
Positive reproductions in metal require the manipulation of the intermediate copies so that the sample invested with Kerr Cristobalite is a wax positive. Kerr Ivory Inlay Casting also manufactured by Kerr Manufacturing Co. was employed in these preparations to assure complete removal of the wax and to preserve detail in the resulting replications. Sintered alumina copies are prepared by vacuum impregnating the wax negative with a thixotropic slurry of about 5 pm particle size alpha alumina. The alpha alumina slurry is rendered liquid by vibratory action to facilitate the filling of the pores of the wax negative. After burn-off of the wax at 400C. the alumina is sintered at a temperature of about 1,650C. in air.
The applicability of the practices of this invention for I the production of synthetic materials useful as biomaterials, such as bone implants and the like, is great. The special geometric characteristics of particular natural microstructures which are difficult or impossible to duplicate artificially can be replicated in synthetic materials, such as metals or alumina or the like. This is accomplished in accordance with the practice of this invention by converting the natural source material into a synthetic material having the physical, chemical and mechanical properties necessary for the desired application. Structures made up of a special combination of synthetic materials can be produced in accordance with the practices of this invention. For example, artificial limbs might be permanently attached by means of an implant device embodying the practices of this invention and consisting of a central Vitallium rod (for strength) coated with porous ceramic material (alpha alumina) for firm attachment to living tissue.
Numerous synthetic materials may be employed for the preparation of the special biomaterials in accordance with this invention characterized by having the microstructure corresponding to the desired microstructure found in nature. Depending upon the requirements, polymeric materials, metal or ceramics and mixtures thereof may be employed in the preparation of the desired synthetic materials in accordance with this invention. For use as an implant the synthetic materials making up the implant prepared in accordance with this invention would be selected on the bases of histotoxicity, resistance to biodegradation, mechanical strength, wear resistance, fatigue resistance, tissue fixation, sterilizability and the like, including thrombogenicity. Materials which are usefully employed in the preparation of the synthetic materials having the special microstructures in accordance with this invention include 3 16L stainless steel, chrome-cobalt alloys, such as Vitallium, Tichonium, gold, silver, platinum, tin, tantalum, titanium, anti-thrombogenic carbonaceous material, such as the so-called glassy carbon, ceramic materials, such as alumina, polymerized methacrylate, high density polyethylene, polypropylene, silastic and the like.
The natural materials whose porous, permeable structure can be replicated to produce the desired biomaterials in accordance with the practices of this invention are vast. Of special interest because of their special microstructure are the porous carbonate skeletal materials of marine life, particularly marine invertebrate skeletal material, such as echinoid spine calcite and Porites skeletal aragonite. Of the scleractinian coral the genus Porites is especially useful as providing a source of natural material whose skeletal microstructure can be usefully replicated to produce the synthetic biomaterial of this invention. Porites coral is one of the most successful of the reef-building corals and has a worldwide distribution in the coral reef zone. The colonies grow rapidly with massive forms often exceeding a meter in diameter, thereby providing a large amount of material suitable for replication into substantially any desired and useful shape for prosthetic purposes.
Some of the marine animals which provide suitable source materials are the Echinodermata, particularly the Heterocentrotus trigonarius and Hezerocentrotus mammillatus, which are lndo-Pacific, shallow water, tropical echinoids providing large spines. Other marine life which provide porous carbonate skeletal materials especially useful for the preparation of synthetic materials in accordance with this invention include the Scleractinian corals, such as Porites spp. which are numerous and exist in large size colonies and in great abundance also the Goniopora sp., the Alvepora sp. which have a pore size greater than that of Porites but a permeability substantially the same as Porites, the Astreopora sp. which have a pore size greater than that of Porites.
In the-processing of these materials the marine life, such as the Heterocent rotus and the Porites and other corals, are removed from the reef and the organic matter therein preserved for later removal or the organic material may be removed upon capture from the reef.
The organic material may be preserved by immersion of the material in about -40% formaldehyde for a period of -45 minutes or the organic material may be at least partially removed by immersion in 5% aqueous sodium hypochlorite solution or commercial bleach for 1 a suitable period of time, such as from 30 minutes to 3 hours or more.
After removal of the organic material the source material may be shaped into a desired form, such as on a .lather or by means of a band saw and drill. Desirably,
after shaping or forming into a desired geometric form the source material is again immersed in a 5% sodium hypochlorite solution for about 24 hours at about room temperature (C.) to remove all of any remaining a soft organic tissue. The thus-treated source material is then rinsed with distilled water to remove all decomposition products and residual hypochlorite so that only the skeletal material calcium carbonate remains. The source material is then dried in an oven at about 90C. for about 4 hours.
The following example describes the preparation of methacrylate negative copies of the aforesaid natural source materials.
EXAMPLE NO. 1
time, about 1 hour. The surface of the impregnated piece is then lightly sanded to remove remaining excess polymethacrylate and to expose the carbonate skeletal structure on the surfaces. The impregnated piece is then treated to remove the carbonate skeletal material by immersing the piece in a 10% aqueous hydrochloric acid solution. Depending upon the dimensions of the piece the removal of the carbonate material is usually complete within about 8-10 hours, more or less. When the removal of the carbonate skeletal material is complete, the piece is removed and rinsed in distilled water and dried, such as at about 60C. There is produced an exact negative methacrylate copy of the thus-treated source material.
The following example describes the preparation of an alumina positive 'copy of the aforesaid natural source materials, such as source materials mentioned in Example No. 1.
EXAMPLE NO. 2
As in Example No. l, the source material is vacuum impregnated, this time with wax. The wax impregnated piece is then trimmed to remove excess wax and to expose the exterior surface of the carbonate skeletal structure. The carbonate skeletal structure is then removed by immersion in dilute aqueous hydrochloric acid, such as in Example No. 1. After rinsing and drying the wax negative is then vacuum impregnated with a thixotropic alumina slurry, the alumina particle size being sufficiently small that the alumina readily enters and moves along the pores of the piece, e.g. the wax negative. Preferably the piece is subjected to vibratory motion so as to render the alumina slurry fluid during impregnation. Linde A alumina, a commercially available alumina, preferably pre-treated by soaking in concentrated HCl for 48 hours and then washed completely with deionized water and the water decanted, has been found to be especially useful as the alumina material for impregnating the wax negative. After the impregnation of the wax negative with the alumina has been completed excess alumina is removed. The thustreated piece is slowly heated in an air atmosphere from room temperature to about 800C. over about an 8 hour period. This heating or slow firing burns off the wax and imparts some strength to the alumina. The substantially wax-free alumina replica is then fired at an elevated temperature, such as a temperature in the range from about l400l450C. to as high as 1600l 650C. for a period of time ranging from about 4 days to about 3 hours, respectively, depending upon the temperature. Since some shrinkage of the alumina occurs during firing this shrinkage must be taken into account if an exact positive replica of the piece is desired. By following the practices of this example there is produced an alumina positive copy or replica of the porous permeable source material.
The following example describes the preparation of a metal alloy copy of the aforementioned natural source materials.
EXAMPLE NO. 3
As in Example No. 2, a wax negative of the source material is obtained by vacuum impregnation. The wax negative is then vacuum impregnated with a casting investment, such as Cristobalite, manufactured by Kerr Manufacturing Co., or equivalent material. The wax is then burned off or otherwise removed from the impregnated negative, such as by firing from room temperature to about 1,350F. over a period of time, such as about 8 hours. Upon completion of the wax removal and firing, molten metal is then cast, such as by centrifugal casting, into the piece and upon completion of the casting operation the resulting cast piece is immersed in a pan of water. The thermal shock and action of the resulting generated steam breaks down the investment which is then substantially completely removed in a subsequent vibratory scrubbing operation.
As is evident from the descriptions set forth in the accompanying disclosure and examples, by following the disclosed techniques negative and positive copies of the special naturally occurring porous and the permeable materials can be produced. Once a durable copy or replica, a negative or positive, is produced such a copy can be employed to produce another copy or replica. Additionally, these copies may be employed to produce special replicas wherein, for example, a metal negative replica can be impregnated or filled with a different material, such as a ceramic or plastic material or cermet, such that there is produced a special material, although no longer porous, which possesses unusual physical, chemical and electrical characteristics. Additionally, both negative and positive copies of the natural porous and permeable materials may be provided with surface coatings, such as a coating of catalytic material which further imparts special physical, chemical and/or electrical properties to the resulting material.
As will be apparent to those skilled in the art in the light of the foregoing disclosure, many modifications, alterations and substitutions are possible in the practice of this invention without departing from the spirit or scope thereof.
We claim:
1. A substantially uniform permeable microporous synthetic material useful as a biomaterial, such as for the manufacture of prosthetic devices, characterized by a substantially uniform pore volume in the range from about 10 to about 90% and having a microstructure characterized by a pronounced three-dimensional fenestrate structure corresponding to the microstructure of the porous carbonate echinoderm or scleractinian coral skeletal material of marine life and providing a periodic minimal surface, said periodic minimal surface dividing the volume of said material into two interpenetrating regions, each of which is a single, multiply connected domain, said material having a substantially uniform pore size diameter and substantially uniform pore connections or openings in the range from about 5 microns to about 500 microns.
2. A synthetic material in accordance with claim 1 wherein the synthetic material is a metal alloy.
3. A synthetic material in accordance with claim 2 wherein said alloy is an alloy comprising about 65% cobalt, about 35% chromium and about 5% molybdenum.
4. A synthetic material in accordance with claim 1 wherein the synthetic material is a polymerized methacrylate.
5. A synthetic material in accordance with claim 1 wherein said synthetic material is tin.
6. A synthetic material in accordance with claim 1 wherein said synthetic material is gold.
7. A synthetic material in accordance with claim 1 wherein said synthetic material is silver.
8. A synthetic material in accordance with claim 1 wherein said synthetic material is platinum.
9. A synthetic material in accordance with claim 1 wherein said synthetic material is tantalum.
10. A synthetic material in accordance with claim 1 wherein said synthetic material is a titanium alloy.
11. A synthetic material in accordance with claim 1 wherein said synthetic material is 3l6L stainless steel.
12. A synthetic material in accordance with claim 1 wherein said synthetic material is alpha alumina.
13. A synthetic material in accordance with claim 1 wherein said synthetic material is a ceramic.
14. A synthetic material in accordance with claim 1 wherein said synthetic material is a cermet.
15. A synthetic material in accordance with claim 1 wherein said synthetic material is an anti-thrombogenic carbonaceous material.
16. A synthetic material in accordance with claim 1 having the ratio of pore volume to the volume of the solid of approximately 1 and having cross-sectional diameters of both the pore and the solid phases of about the same dimension, ranging from about 5 microns to about 500 microns.
17. A synthetic material in accordance with claim 1 having a pore size diameter in the range about 40-100 7 crons UNITED STATES PATENT AND TRADEMARK OFFICE (IER'IIFICA'IIC ()F CORRECTION PA'HN'l NO. I 3,890,107
UA'II l) June 17, 1975 INVINIOMS) Eugene W. White, Jon N. Weber and Rodney A. White H is ccrhhod Hml error appears in the uhnvc idcnlilicd pnlcul and lhnl snill Lcllcl's Pnicnl 1m,- humhy um'mclml m; SIIUWII below Title Page, under References Cited, the following Should be added:
U.S. Patents 996,783 7/1911 Moreau 1,020,679 3/1912 Barrows 5 2,129, 304 9/1938 Feinbloom f 2,688,139 9/1954 Jardon 3,102, 337 9/1963 Mintz 3,605,123 9/1971 7 Hahn 3,512,184 5/1970 GIOVO and the publication reference,
Donnay & Pawson "Xray Diffraction Studies of l'rlchinoderm Plates", SCIENCE, Vol. 166, No. 3909, pp. 1147-1152.
Signed and Scaled this I (/(H'HI/l U Nm'cmln'r 75 Rll'l'll MASON MARSIIALI "ANN i l 1 I i UNITED STATES PATENT AND TRADEMARK OFFICE (IICR'IIIHIA'IIC ()F CORRECTION PA'IIN'I NO. 1 3,890,107
. UA'H I) June 17, 1975 INVI N|()R(5) Eugene W. White, Jon N. Weber and Rodney A. White II is urrrlrlrrrrl Hml error appears m Hm :rhnvc irlunlilrcrl pzrlrrnl and lhrrl sxrrrl Lollcrs Pnlrml znr' Irrrlrrhy uurrzclrzrl m; shown Imluw:
' Title Page, under References Cited, the following Should be added:
1 0.5. Patents 996,783 7/1911 Moreau 1,020,679 3/1912 Barrows 2,129,304 9/1938 Fcinbloom 2,688,139 9/1954 Jardon 1 3,102,337 9/1963 Mintz 3,605,123 9/1971 Hahn 3,512,184 5/1970 Grove 1 r i and the publication reference, 3 Donnay & Pawson "X-ray Diffraction Studies of Echinoderm Plates", IENCE, Vol. 166, No. 3909, pp. 1147-1152. 5 5 Signal and Scaled this r g r'lr'l'r'HI/I 0' Nm'r'mln'r I975 [SI-.ALI .lrrvxr: 5
O r i E Ru'm (i MASON r' MARSIIALI [)ANN M (HINT! r'nnrlnrurmn-l ,r/ lrrlr'lrrs' rl/IA/ l'rrrrlr'rrrrnlu' i i i i

Claims (19)

1. A SUBSTANTIALLY UNIFORM PERMEABLE MICROPOROUS SYNTHETIC MATERIAL USEFUL AS A BIOMATERIAL, SUCH AS FOR THE MANUFACTURE OF PROSTHETIC DEVICES, CHARACTERIZED BY A SUBSTANTIALLY UNIFORM PORE VOLUME IN THE RANGE FROM ABOUT 10 TO ABOUT 90% AND HAVING A MICROSTRUCTURE CHARACTERIZED BY A PRONOUNCED THREEDIMENSIONAL FFENESTRATE STRUCTURE CORRESPONDING TO THE MICROSTRUCTURE OF THE POROUS CARBONATE ECHINODERM OR SCLEARACTINIAN CORAL SKELETAL MATERIAL OF MARINE LIFE AND PROVIDING A PERIODIC MINIMAL SURFACE, SAID PERIODIC MINIMALSURFACE DIVIDING THE VOLUME OF SAID MATERIAL INTO TWO INTERPENETRATING REGIONS, EACH OF WHICH IS A SINGLE, MULTIPLY CONNECTED DOMAIN, SAID MATERIAL HAVING A SUBSTANTIALLY UNIFORM PORE SIZE DIAMETER AND SUBSTANTIALLY UNIFORM PORE CONNECTIONS OR OPENINGS IN THE RANGE FROM ABOUT 5 MICRONS TO ABOUT 500 MICRONS.
2. A synthetic material in accordance with claim 1 wherein the synthetic material is a metal alloy.
3. A synthetic material in accordance with claim 2 wherein said alloy is an alloy comprising about 65% cobalt, about 35% chromium and about 5% molybdenum.
4. A synthetic material in accordance with claim 1 wherein the synthetic material is a polymerized methacrylate.
5. A synthetic material in accordance with claim 1 wherein said synthetic material is tin.
6. A synthetic material in accordance with claim 1 wherein said synthetic material is gold.
7. A synthetic material in accordance with claim 1 wherein said synthetic material is silver.
8. A synthetic material in accordance with claim 1 wherein said synthetic material is platinum.
9. A synthetic material in accordance with claim 1 wherein said synthetic material is tantalum.
10. A synthetic material in accordance with claim 1 wherein said synthetic material is a titanium alloy.
11. A synthetic material in accordance with claim 1 wherein said synthetic material is 316L stainless steel.
12. A synthetic material in accordance with claim 1 wherein said synthetic material is alpha alumina.
13. A synthetic material in accordance with claim 1 wherein said synthetic material is a ceramic.
14. A synthetic material in accordance with claim 1 wherein said synthetic material is a cermet.
15. A synthetic material in accordance with claim 1 wherein said synthetic material is an anti-thrombogenic carbonaceous material.
16. A synthetic material in accordance with claim 1 having the ratio of pore volume to the volume of the solid of approximately 1 and having cross-sectional diameters of both the pore and the solid phases of about the same dimension, ranging from about 5 microns to about 500 microns.
17. A synthetic material in accordance with claim 1 having a pore size diameter in the range about 40-100 microns.
18. A synthetic material in accordance with claim 1 having a pore size diameter in the range about 5-15 microns.
19. A microporous synthetic material in accordance with claim 1 wherein said material has pore connections in the range from about 100 to about 200 microns.
US291547A 1972-09-25 1972-09-25 Materials useful for prosthetic devices and the like Expired - Lifetime US3890107A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US291547A US3890107A (en) 1972-09-25 1972-09-25 Materials useful for prosthetic devices and the like
CA181,815A CA1015917A (en) 1972-09-25 1973-09-24 Materials useful for prosthetic devices and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US291547A US3890107A (en) 1972-09-25 1972-09-25 Materials useful for prosthetic devices and the like

Publications (1)

Publication Number Publication Date
US3890107A true US3890107A (en) 1975-06-17

Family

ID=23120752

Family Applications (1)

Application Number Title Priority Date Filing Date
US291547A Expired - Lifetime US3890107A (en) 1972-09-25 1972-09-25 Materials useful for prosthetic devices and the like

Country Status (2)

Country Link
US (1) US3890107A (en)
CA (1) CA1015917A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2735274A1 (en) * 1976-08-10 1978-02-16 Research Corp PERMEABLE MATERIAL WITH LARGE SURFACE AREA AND METHOD FOR MANUFACTURING IT
EP0022724A1 (en) * 1979-07-12 1981-01-21 ANVAR Agence Nationale de Valorisation de la Recherche Biodegradable implant, usable as bone prosthesis
FR2500297A1 (en) * 1981-02-25 1982-08-27 Schuett & Grundei Med Tech IMPLANT USEFUL AS A SPONGY BONE REPAIR COMPONENT, AND METHOD OF MANUFACTURING THE SAME
FR2529078A1 (en) * 1982-06-28 1983-12-30 Schuett & Grundei Med Tech PROCESS FOR THE MANUFACTURE OF AN IMPLANT SERVING AS BONE SUBSTITUTE
US4608052A (en) * 1984-04-25 1986-08-26 Minnesota Mining And Manufacturing Company Implant with attachment surface
EP0217831A1 (en) * 1985-03-28 1987-04-15 Memtec Ltd Reversed phase membranes.
US4673409A (en) * 1984-04-25 1987-06-16 Minnesota Mining And Manufacturing Company Implant with attachment surface
US4722870A (en) * 1985-01-22 1988-02-02 Interpore International Metal-ceramic composite material useful for implant devices
EP0277678A1 (en) * 1987-01-19 1988-08-10 Stichting Science Park Groningen A graft suitable for treatment by reconstructive surgery and having tissue-specific porosity, and a process for making such graft
US4906423A (en) * 1987-10-23 1990-03-06 Dow Corning Wright Methods for forming porous-surfaced polymeric bodies
US5009666A (en) * 1988-09-30 1991-04-23 Syckle Peter B Van Plug and method of use
EP0415872A3 (en) * 1989-08-28 1992-05-06 Eska Medical Luebeck Medizintechnik Gmbh & Co. Method for producing an implant having a surface covered at least partially by a metallic open-cell structure
FR2679250A1 (en) * 1991-07-19 1993-01-22 Inoteb USE OF POROUS CALCIUM CARBONATE AS A SUPPORT MATERIAL FOR THE IN VITRO CULTURE OF EUKARYOTIC CELLS.
WO1993008768A1 (en) * 1991-11-04 1993-05-13 Possis Medical, Inc. Silicone/dacron composite vascular graft
US5330826A (en) * 1990-08-13 1994-07-19 Mcdonnell Douglas Corporation Preparation of ceramic-metal coatings
US5455100A (en) * 1991-01-30 1995-10-03 Interpore International Porous articles and methods for producing same
US5589176A (en) * 1991-10-18 1996-12-31 Seare, Jr.; William J. Methods of making doubly porous device
DE3790291C2 (en) * 1986-06-09 1997-06-26 Ceramed Corp Particles for tissue implantation
FR2743496A1 (en) * 1996-01-15 1997-07-18 Univ Rennes MACROPOROUS COMPOSITE SUPPORT FOR MEDICINAL SUBSTANCE (S) USEFUL AS A MATERIAL FOR BONE RECONSTITUTION AND METHOD OF PREPARATION
US5746200A (en) * 1990-10-19 1998-05-05 Draenert; Klaus Trabecula nasal filter having both macropores and micropores
US5769882A (en) * 1995-09-08 1998-06-23 Medtronic, Inc. Methods and apparatus for conformably sealing prostheses within body lumens
US5993716A (en) * 1990-10-19 1999-11-30 Draenert; Klaus Material and process for its preparation
US6008430A (en) * 1991-01-30 1999-12-28 Interpore Orthopaedics, Inc. Three-dimensional prosthetic articles and methods for producing same
US6033730A (en) * 1997-10-15 2000-03-07 Coral Biotech Kabushiki Kaisha Weathered reef-building coral material
US6306491B1 (en) 1996-12-20 2001-10-23 Gore Enterprise Holdings, Inc. Respiratory aids
US20040078087A1 (en) * 2002-08-30 2004-04-22 Soo-Ryong Kim Porous hydroxy apatite containing silicon and magnesium, and a preparation method thereof
US20060073181A1 (en) * 2002-08-02 2006-04-06 Yoshinori Kuboki Medical material made of titianium fiber
WO2009108935A2 (en) * 2008-02-28 2009-09-03 Osteotherapeutics, L.L.C. Method and apparatus for impregnating porous biomaterials with bioactive agents
US20110185946A1 (en) * 2008-10-09 2011-08-04 Metabiomed. Co. Ltd Porous composite comprising silicon-substituted hydroxyapatite and ß- tricalcium phosphate, and process for preparing the same
US20140227428A1 (en) * 2011-09-29 2014-08-14 Chongqing Runze Pharmaceutical Company Limited Preparation method for medical porous tantalum implant material
WO2018047177A1 (en) * 2016-09-08 2018-03-15 B. G. Negev Technologies And Applications Ltd., At Ben-Gurion University Porous mineral nucleus and a metal shell

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2201131A (en) * 1937-04-28 1940-05-14 Thoger G Jungersen Method for casting jewelry and the like
US2490193A (en) * 1947-08-15 1949-12-06 Roy E Barr Method of molding
US2860175A (en) * 1955-09-05 1958-11-11 Ruhrchemie Ag Homeoporous gas-diffusion electrode for galvanic cells
US3116170A (en) * 1959-06-10 1963-12-31 Shell Oil Co Gaseous fuel cells
US3201282A (en) * 1958-07-19 1965-08-17 Varta Ag Catalyst electrode
US3201858A (en) * 1962-06-14 1965-08-24 Olin Mathieson Method of making a composite porous metal structure
US3215563A (en) * 1962-05-15 1965-11-02 Gen Electric Porous electrode and method of preparing the electrode
US3236693A (en) * 1963-10-11 1966-02-22 Socony Mobil Oil Co Inc Electrode for fuel cells
US3242011A (en) * 1962-11-01 1966-03-22 Union Carbide Corp Method of making fuel cell electrodes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2201131A (en) * 1937-04-28 1940-05-14 Thoger G Jungersen Method for casting jewelry and the like
US2490193A (en) * 1947-08-15 1949-12-06 Roy E Barr Method of molding
US2860175A (en) * 1955-09-05 1958-11-11 Ruhrchemie Ag Homeoporous gas-diffusion electrode for galvanic cells
US3201282A (en) * 1958-07-19 1965-08-17 Varta Ag Catalyst electrode
US3116170A (en) * 1959-06-10 1963-12-31 Shell Oil Co Gaseous fuel cells
US3215563A (en) * 1962-05-15 1965-11-02 Gen Electric Porous electrode and method of preparing the electrode
US3201858A (en) * 1962-06-14 1965-08-24 Olin Mathieson Method of making a composite porous metal structure
US3242011A (en) * 1962-11-01 1966-03-22 Union Carbide Corp Method of making fuel cell electrodes
US3236693A (en) * 1963-10-11 1966-02-22 Socony Mobil Oil Co Inc Electrode for fuel cells

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075092A (en) * 1976-08-10 1978-02-21 Research Corporation High surface area permeable material
FR2361437A1 (en) * 1976-08-10 1978-03-10 Research Corp THREE-DIMENSIONAL PERMEABLE MATERIAL OF EXTENDED SURFACE
DE2735274A1 (en) * 1976-08-10 1978-02-16 Research Corp PERMEABLE MATERIAL WITH LARGE SURFACE AREA AND METHOD FOR MANUFACTURING IT
DK153737B (en) * 1979-07-12 1988-08-29 Anvar BIODEGRADABLE BONE IMPLANT OR PROSTHESIS.
EP0022724A1 (en) * 1979-07-12 1981-01-21 ANVAR Agence Nationale de Valorisation de la Recherche Biodegradable implant, usable as bone prosthesis
FR2500297A1 (en) * 1981-02-25 1982-08-27 Schuett & Grundei Med Tech IMPLANT USEFUL AS A SPONGY BONE REPAIR COMPONENT, AND METHOD OF MANUFACTURING THE SAME
FR2529078A1 (en) * 1982-06-28 1983-12-30 Schuett & Grundei Med Tech PROCESS FOR THE MANUFACTURE OF AN IMPLANT SERVING AS BONE SUBSTITUTE
US4608052A (en) * 1984-04-25 1986-08-26 Minnesota Mining And Manufacturing Company Implant with attachment surface
US4673409A (en) * 1984-04-25 1987-06-16 Minnesota Mining And Manufacturing Company Implant with attachment surface
US4722870A (en) * 1985-01-22 1988-02-02 Interpore International Metal-ceramic composite material useful for implant devices
EP0217831A4 (en) * 1985-03-28 1988-03-22 Memtec Ltd Reversed phase membranes.
EP0217831A1 (en) * 1985-03-28 1987-04-15 Memtec Ltd Reversed phase membranes.
US4909938A (en) * 1985-03-28 1990-03-20 Memtec Limited Reversed phase membranes
DE3790291C2 (en) * 1986-06-09 1997-06-26 Ceramed Corp Particles for tissue implantation
EP0277678A1 (en) * 1987-01-19 1988-08-10 Stichting Science Park Groningen A graft suitable for treatment by reconstructive surgery and having tissue-specific porosity, and a process for making such graft
US4906423A (en) * 1987-10-23 1990-03-06 Dow Corning Wright Methods for forming porous-surfaced polymeric bodies
US5009666A (en) * 1988-09-30 1991-04-23 Syckle Peter B Van Plug and method of use
EP0415872A3 (en) * 1989-08-28 1992-05-06 Eska Medical Luebeck Medizintechnik Gmbh & Co. Method for producing an implant having a surface covered at least partially by a metallic open-cell structure
US5330826A (en) * 1990-08-13 1994-07-19 Mcdonnell Douglas Corporation Preparation of ceramic-metal coatings
US5993716A (en) * 1990-10-19 1999-11-30 Draenert; Klaus Material and process for its preparation
US5746200A (en) * 1990-10-19 1998-05-05 Draenert; Klaus Trabecula nasal filter having both macropores and micropores
US6008430A (en) * 1991-01-30 1999-12-28 Interpore Orthopaedics, Inc. Three-dimensional prosthetic articles and methods for producing same
US5455100A (en) * 1991-01-30 1995-10-03 Interpore International Porous articles and methods for producing same
WO1993002181A1 (en) * 1991-07-19 1993-02-04 Inoteb Use of porous calcium carbonate as a support material for in vitro cell culture
US5480827A (en) * 1991-07-19 1996-01-02 Inoteb Use of porous polycrystalline aragonite as a support material for in vitro culture of cells
FR2679250A1 (en) * 1991-07-19 1993-01-22 Inoteb USE OF POROUS CALCIUM CARBONATE AS A SUPPORT MATERIAL FOR THE IN VITRO CULTURE OF EUKARYOTIC CELLS.
US5605693A (en) * 1991-10-18 1997-02-25 Seare, Jr.; William J. Methods of making a porous device
US5681572A (en) * 1991-10-18 1997-10-28 Seare, Jr.; William J. Porous material product and process
US5624674A (en) * 1991-10-18 1997-04-29 Seare, Jr.; William J. Porous product mold form
US5589176A (en) * 1991-10-18 1996-12-31 Seare, Jr.; William J. Methods of making doubly porous device
US5866217A (en) * 1991-11-04 1999-02-02 Possis Medical, Inc. Silicone composite vascular graft
WO1993008768A1 (en) * 1991-11-04 1993-05-13 Possis Medical, Inc. Silicone/dacron composite vascular graft
US6656214B1 (en) 1995-09-08 2003-12-02 Medtronic Ave, Inc. Methods and apparatus for conformably sealing prostheses within body lumens
US20040098097A1 (en) * 1995-09-08 2004-05-20 Fogarty Thomas J. Methods and apparatus for conformably sealing prostheses within body lumens
US5769882A (en) * 1995-09-08 1998-06-23 Medtronic, Inc. Methods and apparatus for conformably sealing prostheses within body lumens
US6322592B2 (en) 1996-01-15 2001-11-27 Universite De Rennes Macro-porous composite support for medicinal substance(s) that can be used as a bone reconstitution material and a method of producing it
FR2743496A1 (en) * 1996-01-15 1997-07-18 Univ Rennes MACROPOROUS COMPOSITE SUPPORT FOR MEDICINAL SUBSTANCE (S) USEFUL AS A MATERIAL FOR BONE RECONSTITUTION AND METHOD OF PREPARATION
WO1997026024A1 (en) * 1996-01-15 1997-07-24 Universite De Rennes 1 Macroporous composite for carrying one or more medicinal substances and for use as a bone reconstruction material, and method for making same
US6306491B1 (en) 1996-12-20 2001-10-23 Gore Enterprise Holdings, Inc. Respiratory aids
US6033730A (en) * 1997-10-15 2000-03-07 Coral Biotech Kabushiki Kaisha Weathered reef-building coral material
US20060073181A1 (en) * 2002-08-02 2006-04-06 Yoshinori Kuboki Medical material made of titianium fiber
US7419679B2 (en) * 2002-08-02 2008-09-02 Yoshinori Kuboki Medical implant having a layer of titanium or titanium alloy fibers
US20040078087A1 (en) * 2002-08-30 2004-04-22 Soo-Ryong Kim Porous hydroxy apatite containing silicon and magnesium, and a preparation method thereof
US7008450B2 (en) 2002-08-30 2006-03-07 Korea Institute Of Ceramic Engineering And Technology Porous hydroxy apatite containing silicon and magnesium, and a preparation method thereof
WO2009108935A2 (en) * 2008-02-28 2009-09-03 Osteotherapeutics, L.L.C. Method and apparatus for impregnating porous biomaterials with bioactive agents
WO2009108935A3 (en) * 2008-02-28 2009-12-03 Osteotherapeutics, L.L.C. Method and apparatus for impregnating porous biomaterials with bioactive agents
US20110185946A1 (en) * 2008-10-09 2011-08-04 Metabiomed. Co. Ltd Porous composite comprising silicon-substituted hydroxyapatite and ß- tricalcium phosphate, and process for preparing the same
US20140227428A1 (en) * 2011-09-29 2014-08-14 Chongqing Runze Pharmaceutical Company Limited Preparation method for medical porous tantalum implant material
US9072811B2 (en) * 2011-09-29 2015-07-07 Chongqing Runze Pharmaceutical Company Limited Preparation method for medical porous tantalum implant material
WO2018047177A1 (en) * 2016-09-08 2018-03-15 B. G. Negev Technologies And Applications Ltd., At Ben-Gurion University Porous mineral nucleus and a metal shell

Also Published As

Publication number Publication date
CA1015917A (en) 1977-08-23

Similar Documents

Publication Publication Date Title
US3890107A (en) Materials useful for prosthetic devices and the like
Tancred et al. A synthetic bone implant macroscopically identical to cancellous bone
US3929971A (en) Porous biomaterials and method of making same
Tian et al. Preparation of porous hydroxyapatite
JP4101458B2 (en) Bone substitute
Piecuch Extraskeletal of a porous hydroxyapatite ceramic
US4781721A (en) Bone-graft material and method of manufacture
US5478237A (en) Implant and method of making the same
Chu et al. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures
JP3457675B2 (en) Biocompatible materials and bone implants for bone repair and replacement
US5487933A (en) Prosthetic articles and methods for producing same
CN101418392B (en) Bio-medical porous titanium products and preparation method thereof
Cesarano III et al. Customization of load‐bearing hydroxyapatite lattice scaffolds
SE8400567D0 (en) A MULTILAYERED PROTHESIS MATERIAL AND A METHOD OF PRODUCING SAME
EP0395187A2 (en) Coated biomaterials and methods for making same
CN105877874A (en) Bionics design bone-line porous bone product and preparation method and purpose thereof
Abdurrahim et al. Recent progress on the development of porous bioactive calcium phosphate for biomedical applications
Tancred et al. Development of a new synthetic bone graft
Tadic et al. Comparison of different methods for the preparation of porous bone substitution materials and structural investigations by synchrotron μ‐computer tomography
JPH03505050A (en) Implants and methods of making them
JP4649626B2 (en) Living bone induced artificial bone and method for producing the same
Novak et al. TiO 2 foams with poly-(d, l-lactic acid)(PDLLA) and PDLLA/Bioglass® coatings for bone tissue engineering scaffolds
Yang et al. Structure design and manufacturing of layered bioceramic scaffolds for load-bearing bone reconstruction
Garvey et al. A transmission electron microscopy examination of the interface between osteoblasts and metal biomaterials
JPH01151461A (en) Prosthesis material for organism