US3897214A - Diagnostic device - Google Patents

Diagnostic device Download PDF

Info

Publication number
US3897214A
US3897214A US306127A US30612772A US3897214A US 3897214 A US3897214 A US 3897214A US 306127 A US306127 A US 306127A US 30612772 A US30612772 A US 30612772A US 3897214 A US3897214 A US 3897214A
Authority
US
United States
Prior art keywords
diagnostic device
fibers
fleece
felt
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US306127A
Inventor
Hans Lange
Walter Rittersdorf
Hans-Georg Rey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diagnostics GmbH
Original Assignee
Boehringer Mannheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Mannheim GmbH filed Critical Boehringer Mannheim GmbH
Application granted granted Critical
Publication of US3897214A publication Critical patent/US3897214A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/521Single-layer analytical elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/805Test papers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/145555Hetero-N
    • Y10T436/146666Bile pigment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/200833Carbonyl, ether, aldehyde or ketone containing

Definitions

  • the present invention is concerned with diagnostic agents for the detection of components in liquids, especially in body fluids, comprising an absorbent carrier impregnated with reagents.
  • test strips impregnated with suitable reagents have been in use for a long time for detecting components of liquids. pH indicator papers are used very widely but other reagent papers are also employed. In recent years, test papers have achieved great importance for the detection of glucose, protein, nitrite and the like in body fluids, for example in urine and blood, because they enable the physician to carry out a rapid and simple diagnosis of metabolic disturbances outside the laboratory.
  • test reagents include, for example, strongly alkaline, strongly acidic and oxidizing substances and especially reagent mixtures with a high salt content.
  • Tests which are especially important for medical diagnosis but which cannot be carried out or cannot be carried out satisfactorily with the use of test strips include, for example, Legals test for ketonic bodies and Ehrlichs test of pyrrole bodies. Legals test requires, for a satisfactory functioning, a high concentration of a strongly alkaline buffer in the reaction solution and Ehrlichs test requires a high concentration of a weakly acidic compound, for example, oxalic acid or potassium bisulfate.
  • the present invention provides diagnostic agents comprising an absorbent carrier which consists entirely or preponderantly of polyamides. Only these fleeces or felts based on polyamides provide the final test strips with a sufficient degree of stability, without destroying the reactivity and sensitivity of the test reagents.
  • polyamides differ in this manner from other synthetic resins, for example from polyesters and polyvinyl chlorides.
  • the difference is extremely surprising because the reagents are also not embedded or incorporated into the polyamide fibers.
  • polyamides to be used according to the present invention there can be employed not only those of the nylon type, made from dicarboxylic acids and diamines, but also those of the perlon type, made from w-aminocarboxylic acids.
  • polyester fibers As mixture components in mixed felts and fleeces, it is especially preferred to use polyester fibers but fibers of other synthetic resins, for example of polyvinyl chloride and the like, can also be admixed in amounts of up to 50%.
  • the felts and fleeces can be produced not only be wet-depositing but also by dry-depositing, the fibers can be oriented or lie at random and they can be connected thermally or by binding agents or they can be needled.
  • the felt or fleece selecteddepends essentially upon the nature of the reagents to be used for the impregnation thereof. From the large number of commercially available felts and fleeces the best one can easily be determined by a few simple preliminary experiments.
  • the thickness and weight per unit area of the felt or fleece used can be varied. However, very thin or light felts and fleeces take up very little reagent and thus have a poorer reactivity. Thick or voluminous felts and fleeces, on the other hand, take up large amounts of reagents and it is thus more difficult to work them up.
  • the most suitable felt or fleece for any particular case can be easily determined by a few simple preliminary experiments.
  • the felt or fleece can be impregnated in conventional manner. However, in order to improve wettability, it is sometimes desirable either to add a wetting agent to the impregnation solution or first to impregnate the felt or fleece with a wetting agent.
  • the impregnated felt or fleece is then dried in the usual manner. If desired, it can be cut up into narrow strips and used directly or, as still smaller pieces, can either be stuck on to a handle of synthetic resin or, according to German Patent Specification No. 1,546,307, can be sealed between synthetic resin films or, according to German Patent Specification No. P 21 18 455.4, can be sealed between a synthetic resin film and a synthetic resin mesh.
  • Ketonic Body Test The materials set out in the following Table 2 were impregnated with Solution I, dried, impregnated with Solution II and again dried.
  • Solution l trisodium phosphate dodecahydrate disodium hydrogen phosphate dihydrate glycocoll distilled water
  • Solution ll sodium nitroferricyanide dihydrate copolymer (50% solution in ethanol) organic phosphate ester of anionic 38.0 ml 18.5 ml ad 100.0 ml
  • Solution 1 tetrasodium ethylenediaminetetraacetate 38.5 g glycocoll 18.7 g distilled water ad 100.0 ml
  • Table 3 also shows the mechanical properties and the reactions of the test strips with urine which contains increasing amounts of acetoacetate or of acetone.
  • polyester fleece l0 The following Table 4 gives the properties and description of the various carrier materials used in the above Examples:
  • fleece (sample) denberg lactam and transverse- M.W. about ly laid, therm- 20,000 ally strengthened 7 polyamide FT 21 14 C. Freue-caprolongitudinally 0.25 80 fleece denberg lactam and transversely M.W. about laid, thermally 20,000 strengthened 8 polyester- Suprotex Kalle terephthalic longitudinally 1.5 300 polyamide acid-ethylene and transversely fleece glycol M.W. laid, thermally (1:1) about 18,000 strengthened,
  • Diagnostic device for the detection of components contained in liquids, which diagnostic device comprises an absorbent carrier comprising felt or fleece preponderantly consisting of polyamide fibers, wherein said carrier is impregnated with appropriate reagents.
  • said other fiber is at least one member of the group consisting of polyester fibers, polyvinylchloride fibers and cellulose fibers.
  • Diagnostic device as claimed in claim 1 wherein the reagents are strongly alkaline phosphate buffer, sodium nitroferricyanide and glycocoll, for carrying out Legals test for ketonic bodies.
  • Diagnostic device as claimed in claim 1 wherein the reagents are potassium bisulfate and pdimethylaminobenzaldehyde, for carrying out Ehrlichs test for urobilinogen.
  • said absorbent carrier is a mixed felt or fleece also containing polyester fibers.

Abstract

Diagnostic agent for the detection of components contained in liquids, e.g. body fluids, comprising a felt or fleece of preponderantly polyamide fibers and impregnated with appropriate reagents.

Description

United States Patent Lange et a1.
[451 July 29, 1975 DIAGNOSTIC DEVICE Inventors: Hans Lange, Lampertheim; Walter Rittersdorf; Hans-Georg Rey, both of Mannheim-Waldhof, all of Germany Assignee: Boehringer Mannheim GmbH,
Mannheim, Germany Filed: Nov. 13, 1972 Appl. No.: 306,127
Foreign Application Priority Data Nov. 24, 1971 Germany 2158124 References Cited UNITED STATES PATENTS 7/1963 Free 23/253 TP Mast 23/253 TP Rey et a1 23/253 TP OTHER PUBLICATIONS Edelman G. M., Rutishauser U., and Millette C. F.; Cell Fractionation and Arrangement on Fibers, Beads and Surfaces; Proc. Nat. Acad. Sci. USA. Vol. 68, No. 9, pp. 2153-2157, September 1971.
Primary Examiner.1oseph Scovronek Assistant Examiner-Dale Lovercheck Attorney, Agent, or Firm-Burgess, Dinklage & Sprung Diagnostic agent for the detection of components contained in liquids, e.g. body fluids, comprising a felt or fleece of preponderantly polyamide fibers and impregnated with appropriate reagents.
ABSTRACT 17 Claims, No Drawings DIAGNOSTIC DEVICE The present invention is concerned with diagnostic agents for the detection of components in liquids, especially in body fluids, comprising an absorbent carrier impregnated with reagents.
Test strips impregnated with suitable reagents have been in use for a long time for detecting components of liquids. pH indicator papers are used very widely but other reagent papers are also employed. In recent years, test papers have achieved great importance for the detection of glucose, protein, nitrite and the like in body fluids, for example in urine and blood, because they enable the physician to carry out a rapid and simple diagnosis of metabolic disturbances outside the laboratory.
For the various tests, a large number of absorbent carriers has been proposed, for example, wood, asbestos, gypsum, glass fiber felts, synthetic resin fleeces and the like, but in actual practice filter paper is used almost exclusively for the commercially available test strips. The reason for this is that, in addition to the cheapness and ease of working up of paper, the reagents on the cellulose fibers of the paper are especially reactive.
Although filter paper is usually the best carrier material, there are chemical test reactions which cannot be carried out on paper. Quite apart from test reagents which, in a state of fine division, are unstable in air and, therefore, cannot be applied to a carrier by impregnation, there are a number of test reagents which destroy paper fibers and make the paper brittle. Such reagents include, for example, strongly alkaline, strongly acidic and oxidizing substances and especially reagent mixtures with a high salt content.
Tests which are especially important for medical diagnosis but which cannot be carried out or cannot be carried out satisfactorily with the use of test strips include, for example, Legals test for ketonic bodies and Ehrlichs test of pyrrole bodies. Legals test requires, for a satisfactory functioning, a high concentration of a strongly alkaline buffer in the reaction solution and Ehrlichs test requires a high concentration of a weakly acidic compound, for example, oxalic acid or potassium bisulfate.
Filter papers which have been impregnated with the high salt concentrations necessary for these test admittedly show a rapid and sensitive reaction with the substrates in question but are so hard and brittle that they cannot be bent, folded or cut up without breaking and crumbling. Since not only in the production but also in the transport and use of such strips, mechanical stresses constantly occur, the usefulness of such strips is severely limited.
Attempts to make such papers mechanically more stable by laminating on to a synthetic resin film were unsuccessful because the hard paper, upon bending or folding, again separated or crumbled away from the film. Cellulose fleece strengthened with synthetic resin fibers, for example, with polyvinyl chloride or polyester fibers, also have not proved to be advantageous because they still did not possess a sufficient degree of stability.
The obvious complete replacement of cellulose by more stabel synthetic resin fibers, for example by polypropylene fibers, such as has been propsed in German Patent Specification No. 2,007,013 for a bilirubin test,
also do not prove to be successful in the case of the above mentioned tests since these test strips show a sufficient mechanical stability but only showed very weak color changes which, in the lower concentration ranges, could no longer be evaluated as an indication of bilirubin.
Microscopic investigations have shown that the important difference between the cellulose fibers of paper and synthetic resin fibers is that the cellulose fibers swell during the impregnation and a part of the reagents is embedded or incorporated into the fibers, whereas in the case of synthetic resin fibers, the reagents are only deposited on the surfaces of the fibers.
After laborious and fruitless experiments with a very large variety of absorbent materials, especially with various synthetic resin fleeces, we have now, surprisingly, found, that the felts or fleeces of the instant invention differ significantly from all of the other materials tested.
The present invention provides diagnostic agents comprising an absorbent carrier which consists entirely or preponderantly of polyamides. Only these fleeces or felts based on polyamides provide the final test strips with a sufficient degree of stability, without destroying the reactivity and sensitivity of the test reagents.
It is not known why polyamides differ in this manner from other synthetic resins, for example from polyesters and polyvinyl chlorides. The difference is extremely surprising because the reagents are also not embedded or incorporated into the polyamide fibers.
As polyamides to be used according to the present invention, there can be employed not only those of the nylon type, made from dicarboxylic acids and diamines, but also those of the perlon type, made from w-aminocarboxylic acids. As mixture components in mixed felts and fleeces, it is especially preferred to use polyester fibers but fibers of other synthetic resins, for example of polyvinyl chloride and the like, can also be admixed in amounts of up to 50%.
The felts and fleeces can be produced not only be wet-depositing but also by dry-depositing, the fibers can be oriented or lie at random and they can be connected thermally or by binding agents or they can be needled.
The felt or fleece selecteddepends essentially upon the nature of the reagents to be used for the impregnation thereof. From the large number of commercially available felts and fleeces the best one can easily be determined by a few simple preliminary experiments.
Thus, in the case of impregnation with acidic salts, for example with potassium bisulfate in the case of the urobilinogen test, it is recommended to use a mixed felt or fleece containing polyester fibers. On the other hand, in the case of basic salts, such as are used for the ketonic body test, pure polyamide felt or fleece has proved to be the best. In special cases, a mixed felt 0r fleece of polyamide fibers and cellulose fibers can also be used.
The thickness and weight per unit area of the felt or fleece used can be varied. However, very thin or light felts and fleeces take up very little reagent and thus have a poorer reactivity. Thick or voluminous felts and fleeces, on the other hand, take up large amounts of reagents and it is thus more difficult to work them up. Here again, the most suitable felt or fleece for any particular case can be easily determined by a few simple preliminary experiments.
-polyvinylpyrrolidone-vinyl acetate surface-active agent solution The felt or fleece can be impregnated in conventional manner. However, in order to improve wettability, it is sometimes desirable either to add a wetting agent to the impregnation solution or first to impregnate the felt or fleece with a wetting agent.
The impregnated felt or fleece is then dried in the usual manner. If desired, it can be cut up into narrow strips and used directly or, as still smaller pieces, can either be stuck on to a handle of synthetic resin or, according to German Patent Specification No. 1,546,307, can be sealed between synthetic resin films or, according to German Patent Specification No. P 21 18 455.4, can be sealed between a synthetic resin film and a synthetic resin mesh.
The following Examples are given for the purpose of illustrating the present invention, the properties of the fleeces and felts used in the following Examples being summarized in Table 4 given hereinafter.
EXAMPLE 1 Urobilinogen Test The materials set out in the following Table l were impregnated with an aqueous solution containing, per 100 ml, 20 g potassium bisulfate and 0.2 g pdimethylaminobenzaldehyde. The properties of the impregnated test strips, as well as their reactions with urobilinogen-containing urine, were also set out in the following Table 1.
The material numbers are described in Table 4, infra.
EXAMPLE 2.
Ketonic Body Test The materials set out in the following Table 2 were impregnated with Solution I, dried, impregnated with Solution II and again dried.
Solution l trisodium phosphate dodecahydrate disodium hydrogen phosphate dihydrate glycocoll distilled water Solution ll sodium nitroferricyanide dihydrate copolymer (50% solution in ethanol) organic phosphate ester of anionic 38.0 ml 18.5 ml ad 100.0 ml
The properties of the impregnated test strips and the reactions with urine containing increasing amounts of acetoacetate or of acetone were also set out in the following Table 2.
TABLE 2 material and stability reaction material number filter paper (1) very brittle very good uniform polyester fleece (9) stable weak non-unifonn polyamide fleece (5) stable good uniform EXAMPLE 3 Ketone Body Test The materials set out in the following Table 3 were impregnated with Solution I, dried, again impregnated with Solution II and again dried.
Solution 1 tetrasodium ethylenediaminetetraacetate 38.5 g glycocoll 18.7 g distilled water ad 100.0 ml Solution ll sodium nitroferricyanide dihydrate 1.0 g dimethyl formamide 40.0 ml methanol ad 100.0 ml
The following Table 3 also shows the mechanical properties and the reactions of the test strips with urine which contains increasing amounts of acetoacetate or of acetone.
polyester fleece l0) The following Table 4 gives the properties and description of the various carrier materials used in the above Examples:
TABLE 4 material material type producer synthetic working up thickness wt. per No. (in Western resin monin mm. unit Germany) omers and area in average g/m mol. wt.
1 filter paper 23SL Schleicher random, with 0.45 230 8!. Schull wet tear strength agent 2 cellulose- Paratex Lohmann longitudinally 0.2 190 cottonwool Ill/50 KG laid with fleece (7:3) binding agent 3 regenerated VS 446 Binzer vinyl random, with 0.5 100 cellulosechloride binding agent polyvinyl M.W. about chloride 100,000 fleece (95:5) 4 regenerated (sample) Binzer c-caprorandom, with 1.0 150 celluloselactam binding agent polyamide M.W. about fleece (1:1) 22,000 5 polyamide V 27835 C. Freue-caprolongitudinally 0.35 l00 fleece (sample) denberg lactam and transverse- M.W. about ly laid, therm- 20,000 ally strengthened 6 polyamide N 933C C. Freu e-caprolongitudinally 0.5 95
fleece (sample) denberg lactam and transverse- M.W. about ly laid, therm- 20,000 ally strengthened 7 polyamide FT 21 14 C. Freue-caprolongitudinally 0.25 80 fleece denberg lactam and transversely M.W. about laid, thermally 20,000 strengthened 8 polyester- Suprotex Kalle terephthalic longitudinally 1.5 300 polyamide acid-ethylene and transversely fleece glycol M.W. laid, thermally (1:1) about 18,000 strengthened,
adipic acidneedled, without hexamethylenebinding agent diamine, M.W. about 20,000 9 polyester E 5209 Kalle terephthalic needled, therm- 0.35 250 fleece (sample) acid-ethylene ally strengthened glycol M.Wv about 18,000 10 polyester H 1015 C. Freuterephthalic longitudinally 0.25 170 fleece denberg acid-ethylene and transversely glycol M.W. laid, thermally about l8,000 strengthened It will be understood that the specification and examples are illustrative but not limitative of the present invention and that other embodiments within the spirit and scope of the invention will suggest themselves to those skilled in the art.
We claim:
1. Diagnostic device for the detection of components contained in liquids, which diagnostic device comprises an absorbent carrier comprising felt or fleece preponderantly consisting of polyamide fibers, wherein said carrier is impregnated with appropriate reagents.
2. Diagnostic device as claimed in claim 1 wherein said absorbent carrier contains up to 50 percent by weight of fibers other than polyamide fibers.
3. Diagnostic device as claimed in claim 2 wherein said other fiber is at least one member of the group consisting of polyester fibers, polyvinylchloride fibers and cellulose fibers.
4. Diagnostic device as claimed in claim 1 in which the felt or fleece fibers are oriented directionally.
5. Diagnostic device as claimed in claim 1 in which the felt or fleece fibers are randomly disposed.
6. Diagnostic device as claimed in claim 1 wherein the fibers of the felt or fleece are bonded thermally or by means of bonding agents.
7. Diagnostic device as claimed in claim 1 wherein said felt or fleece is a needled felt or fleece.
8. Diagnostic device as claimed in claim 1 wherein said carrier is impregnated with a wetting agent.
9. Diagnostic device as claimed in claim 1 wherein the reagents are strongly alkaline phosphate buffer, sodium nitroferricyanide and glycocoll, for carrying out Legals test for ketonic bodies.
10. Diagnostic device as claimed in claim 1 wherein the reagents are potassium bisulfate and pdimethylaminobenzaldehyde, for carrying out Ehrlichs test for urobilinogen.
11. Diagnostic device as claimed in claim 1 wherein said absorbent composition is in the form of a narrow strip adhered to a synthetic resin backing extending therefrom.
12. Diagnostic device as claimed in claim 1 wherein said absorbent carrier is sealed between two synthetic resin films.
13. Diagnostic device as claimed in claim 1 wherein said absorbent carrier is sealed between a synthetic resin film and a synthetic resin mesh.
14. Diagnostic device as claimed in claim 9 wherein said absorbent carrier consists essentially of pure polyamide felt or fleece.
15. Diagnostic device as claimed in claim 10 wherein said absorbent carrier is a mixed felt or fleece also containing polyester fibers.
16. Diagnostic device as claimed in claim 1 wherein the polyamide is of the nylon type.
17. Diagnostic device as claimed in claim 1 wherein the polyamide is of the perlon type.

Claims (17)

1. DIAGNOSTIC DEVICE FOR THE DETECTION OF COMPONENTS CONTAINED IN LIQUIDS, WHICH DIAGNOSTIC DEVICE COMPRISES AN ABSRBENT CARRIER COMPRISING FELT OR FLEECE PREPONDERANTLY CONSISTING OF POLYAMIDE FIBERS, WHEREIN SAID CARRIER IS IMPREGNATED WITH APPROPRIATE REGENTS.
2. Diagnostic device as claimed in claim 1 wherein said absorbent carrier contains up to 50 percent by weight of fibers other than polyamide fibers.
3. Diagnostic device as claimed in claim 2 wherein said other fiber is at least one member of the group consisting of polyester fibers, polyvinylchloride fibers and cellulose fibers.
4. Diagnostic device as claimed in claim 1 in which the felt or fleece fibers are oriented directionally.
5. Diagnostic device as claimed in claim 1 in which the felt or fleece fibers are randomly disposed.
6. Diagnostic device as claimed in claim 1 wherein the fibers of the felt or fleece are bonded thermally or by means of bonding agenTs.
7. Diagnostic device as claimed in claim 1 wherein said felt or fleece is a needled felt or fleece.
8. Diagnostic device as claimed in claim 1 wherein said carrier is impregnated with a wetting agent.
9. Diagnostic device as claimed in claim 1 wherein the reagents are strongly alkaline phosphate buffer, sodium nitroferricyanide and glycocoll, for carrying out Legal''s test for ketonic bodies.
10. Diagnostic device as claimed in claim 1 wherein the reagents are potassium bisulfate and p-dimethylaminobenzaldehyde, for carrying out Ehrlich''s test for urobilinogen.
11. Diagnostic device as claimed in claim 1 wherein said absorbent composition is in the form of a narrow strip adhered to a synthetic resin backing extending therefrom.
12. Diagnostic device as claimed in claim 1 wherein said absorbent carrier is sealed between two synthetic resin films.
13. Diagnostic device as claimed in claim 1 wherein said absorbent carrier is sealed between a synthetic resin film and a synthetic resin mesh.
14. Diagnostic device as claimed in claim 9 wherein said absorbent carrier consists essentially of pure polyamide felt or fleece.
15. Diagnostic device as claimed in claim 10 wherein said absorbent carrier is a mixed felt or fleece also containing polyester fibers.
16. Diagnostic device as claimed in claim 1 wherein the polyamide is of the nylon type.
17. Diagnostic device as claimed in claim 1 wherein the polyamide is of the perlon type.
US306127A 1971-11-24 1972-11-13 Diagnostic device Expired - Lifetime US3897214A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2158124A DE2158124C3 (en) 1971-11-24 1971-11-24 Use of polyamide fleece or felt as an absorbent carrier for diagnostic agents

Publications (1)

Publication Number Publication Date
US3897214A true US3897214A (en) 1975-07-29

Family

ID=5825931

Family Applications (1)

Application Number Title Priority Date Filing Date
US306127A Expired - Lifetime US3897214A (en) 1971-11-24 1972-11-13 Diagnostic device

Country Status (15)

Country Link
US (1) US3897214A (en)
JP (1) JPS5337758B2 (en)
AT (1) AT318820B (en)
CA (1) CA999809A (en)
CH (1) CH572216A5 (en)
DE (1) DE2158124C3 (en)
ES (1) ES408855A1 (en)
FI (1) FI53509C (en)
FR (1) FR2170397A5 (en)
GB (1) GB1369139A (en)
HK (1) HK6878A (en)
IT (1) IT971111B (en)
NL (1) NL150231B (en)
SE (1) SE401561B (en)
ZA (1) ZA728263B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042335A (en) * 1975-07-23 1977-08-16 Eastman Kodak Company Integral element for analysis of liquids
US4098575A (en) * 1975-06-19 1978-07-04 Zaidan-Hoijin Sugiyama Sangyo Kagaku Kenkyusho Peroxide value determining test for oils and fats
US4594224A (en) * 1981-01-30 1986-06-10 Konishiroku Photo Industry Co., Ltd. Analytical element
US4710458A (en) * 1979-09-17 1987-12-01 R. J. Harvey Instrument Corporation Nylon strips for medical assay
US4783315A (en) * 1980-10-09 1988-11-08 Fuji Photo Film Co., Ltd. Analysis material sheet
US4806478A (en) * 1984-10-17 1989-02-21 Minnesota Mining And Manufacturing Company Dry enzyme formulations containing D-amino acid oxidase
US5426032A (en) * 1986-08-13 1995-06-20 Lifescan, Inc. No-wipe whole blood glucose test strip
US5470752A (en) * 1994-06-29 1995-11-28 Lxn Corporation Multi-layer devices and methods of assaying for fructosamine
US5695949A (en) * 1995-04-07 1997-12-09 Lxn Corp. Combined assay for current glucose level and intermediate or long-term glycemic control
US5910421A (en) * 1995-12-21 1999-06-08 University Of Florida Rapid diagnostic method for distinguishing allergies and infections
US20020137117A1 (en) * 1995-12-21 2002-09-26 Parker Small Rapid diagnostic method for distinguishing allergies and infections and nasal secretion collection unit
US6458326B1 (en) 1999-11-24 2002-10-01 Home Diagnostics, Inc. Protective test strip platform
US6525330B2 (en) 2001-02-28 2003-02-25 Home Diagnostics, Inc. Method of strip insertion detection
US6541266B2 (en) 2001-02-28 2003-04-01 Home Diagnostics, Inc. Method for determining concentration of an analyte in a test strip
US6562625B2 (en) 2001-02-28 2003-05-13 Home Diagnostics, Inc. Distinguishing test types through spectral analysis
US6583722B2 (en) 2000-12-12 2003-06-24 Kimberly-Clark Worldwide, Inc. Wetness signaling device
US6603403B2 (en) 2000-12-12 2003-08-05 Kimberly-Clark Worldwide, Inc. Remote, wetness signaling system
US6770764B2 (en) 2000-05-15 2004-08-03 Bayer Corporation Trypsin substrate and diagnostic device, and method of using same
US6955921B2 (en) 2001-04-30 2005-10-18 Bayer Corporation Trypsin substrate and diagnostic device, and method of using same
US20080274495A1 (en) * 2007-05-04 2008-11-06 Upspring Ltd. Diagnostic Method for Testing Hydration and Other Conditions
US9700286B2 (en) 2012-04-25 2017-07-11 Kph Diagnostics Inc. Fluid sample collection and testing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1065294B (en) * 1976-12-23 1985-02-25 Snam Progetti PROCEDURE FOR THE PREPARATION OF POROUS STRUCTURED FIBERS, POROUS FIBERS OBTAINED AND USES OF THE SAME
US4647430A (en) * 1985-06-20 1987-03-03 Miles Laboratories, Inc. Volume independent test device
DE3543749A1 (en) * 1985-12-11 1987-06-19 Boehringer Mannheim Gmbh METHOD FOR PRODUCING A REAGENT PAPER FOR IMMUNOLOGICAL ANALYSIS
DE3802366A1 (en) * 1988-01-27 1989-08-10 Boehringer Mannheim Gmbh CARRIER TABLES FOR REMOVABLE IMPREGNATED REAGENTS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099605A (en) * 1956-11-07 1963-07-30 Miles Lab Diagnostic composition
US3585004A (en) * 1969-03-21 1971-06-15 Miles Lab Test composition and device for detecting couplable compounds
US3630957A (en) * 1966-11-22 1971-12-28 Boehringer Mannheim Gmbh Diagnostic agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099605A (en) * 1956-11-07 1963-07-30 Miles Lab Diagnostic composition
US3630957A (en) * 1966-11-22 1971-12-28 Boehringer Mannheim Gmbh Diagnostic agent
US3585004A (en) * 1969-03-21 1971-06-15 Miles Lab Test composition and device for detecting couplable compounds

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098575A (en) * 1975-06-19 1978-07-04 Zaidan-Hoijin Sugiyama Sangyo Kagaku Kenkyusho Peroxide value determining test for oils and fats
US4042335A (en) * 1975-07-23 1977-08-16 Eastman Kodak Company Integral element for analysis of liquids
US4710458A (en) * 1979-09-17 1987-12-01 R. J. Harvey Instrument Corporation Nylon strips for medical assay
US4783315A (en) * 1980-10-09 1988-11-08 Fuji Photo Film Co., Ltd. Analysis material sheet
US4594224A (en) * 1981-01-30 1986-06-10 Konishiroku Photo Industry Co., Ltd. Analytical element
US4806478A (en) * 1984-10-17 1989-02-21 Minnesota Mining And Manufacturing Company Dry enzyme formulations containing D-amino acid oxidase
US6821483B2 (en) 1986-08-13 2004-11-23 Lifescan, Inc. Reagents test strip with alignment notch
US5426032A (en) * 1986-08-13 1995-06-20 Lifescan, Inc. No-wipe whole blood glucose test strip
US5563042A (en) * 1986-08-13 1996-10-08 Lifescan, Inc. Whole blood glucose test strip
US5843692A (en) * 1986-08-13 1998-12-01 Lifescan, Inc. Automatic initiation of a time interval for measuring glucose concentration in a sample of whole blood
US6887426B2 (en) 1986-08-13 2005-05-03 Roger Phillips Reagents test strip adapted for receiving an unmeasured sample while in use in an apparatus
US6881550B2 (en) 1986-08-13 2005-04-19 Roger Phillips Method for the determination of glucose employing an apparatus emplaced matrix
US6268162B1 (en) 1986-08-13 2001-07-31 Lifescan, Inc. Reflectance measurement of analyte concentration with automatic initiation of timing
US6858401B2 (en) 1986-08-13 2005-02-22 Lifescan, Inc. Minimum procedure system for the determination of analytes
US5470752A (en) * 1994-06-29 1995-11-28 Lxn Corporation Multi-layer devices and methods of assaying for fructosamine
US5695949A (en) * 1995-04-07 1997-12-09 Lxn Corp. Combined assay for current glucose level and intermediate or long-term glycemic control
US6958129B2 (en) 1995-04-07 2005-10-25 Lifescan, Inc. Combined assay for current glucose level and intermediate or long-term glycemic control
US6027692A (en) * 1995-04-07 2000-02-22 Lxn Corporation Apparatus for combined assay for current glucose level and intermediate or long-term glycemic control
US20040265941A1 (en) * 1995-04-07 2004-12-30 Galen Robert S. Combined assay for current glucose level and intermediate or long-term glycemic control
US6670192B1 (en) 1995-04-07 2003-12-30 Robert S. Galen Apparatus for combined assay for current glucose level and intermediate or long-term glycemic control
US6855491B2 (en) 1995-12-21 2005-02-15 University Of Florida Device for rapidly diagnosing upper respiratory conditions
US6967084B2 (en) 1995-12-21 2005-11-22 University Of Flordia Kit for rapidly diagnosing upper respiratory conditions
US6764849B2 (en) 1995-12-21 2004-07-20 Univeristy Of Florida Rapid diagnostic method for distinguishing allergies and infections and nasal secretion collection unit
US5910421A (en) * 1995-12-21 1999-06-08 University Of Florida Rapid diagnostic method for distinguishing allergies and infections
US20020137117A1 (en) * 1995-12-21 2002-09-26 Parker Small Rapid diagnostic method for distinguishing allergies and infections and nasal secretion collection unit
US6458326B1 (en) 1999-11-24 2002-10-01 Home Diagnostics, Inc. Protective test strip platform
US6979571B2 (en) 1999-11-24 2005-12-27 Home Diagnostics, Inc. Method of using a protective test strip platform for optical meter apparatus
US6770764B2 (en) 2000-05-15 2004-08-03 Bayer Corporation Trypsin substrate and diagnostic device, and method of using same
US6603403B2 (en) 2000-12-12 2003-08-05 Kimberly-Clark Worldwide, Inc. Remote, wetness signaling system
US6583722B2 (en) 2000-12-12 2003-06-24 Kimberly-Clark Worldwide, Inc. Wetness signaling device
US6562625B2 (en) 2001-02-28 2003-05-13 Home Diagnostics, Inc. Distinguishing test types through spectral analysis
US6541266B2 (en) 2001-02-28 2003-04-01 Home Diagnostics, Inc. Method for determining concentration of an analyte in a test strip
US6525330B2 (en) 2001-02-28 2003-02-25 Home Diagnostics, Inc. Method of strip insertion detection
US7390665B2 (en) 2001-02-28 2008-06-24 Gilmour Steven B Distinguishing test types through spectral analysis
US6955921B2 (en) 2001-04-30 2005-10-18 Bayer Corporation Trypsin substrate and diagnostic device, and method of using same
US20080274495A1 (en) * 2007-05-04 2008-11-06 Upspring Ltd. Diagnostic Method for Testing Hydration and Other Conditions
US9700286B2 (en) 2012-04-25 2017-07-11 Kph Diagnostics Inc. Fluid sample collection and testing device

Also Published As

Publication number Publication date
ES408855A1 (en) 1976-04-01
DE2158124A1 (en) 1973-06-07
CH572216A5 (en) 1976-01-30
NL7215725A (en) 1973-05-28
FI53509C (en) 1978-05-10
SE401561B (en) 1978-05-16
CA999809A (en) 1976-11-16
JPS5337758B2 (en) 1978-10-11
FR2170397A5 (en) 1973-09-14
DE2158124C3 (en) 1975-03-13
GB1369139A (en) 1974-10-02
NL150231B (en) 1976-07-15
JPS4858119A (en) 1973-08-15
ZA728263B (en) 1973-08-29
DE2158124B2 (en) 1974-07-11
IT971111B (en) 1974-04-30
HK6878A (en) 1978-02-10
AT318820B (en) 1974-11-25
FI53509B (en) 1978-01-31

Similar Documents

Publication Publication Date Title
US3897214A (en) Diagnostic device
CA1249960A (en) Test strip for coagulation test
US5418143A (en) Test article and method for performing blood coagulation assays
US5055195A (en) Erythrocyte-retention substrates
US5128171A (en) Method of making a test strip having a dialyzed polymer layer
US6048735A (en) Sensor laminates and multi-sectioned fluid delivery devices for detecting by immunoassay target molecules in biological fluids
US4312834A (en) Diagnostic agent for the detection of component materials in liquid and process for producing same
US3993451A (en) Test for a given constituent in a liquid
US5580744A (en) Test article and method for performing blood coagulation assays
US4814142A (en) Test strip having a non-particulate dialyzed polymer layer
US4788152A (en) Apparatus for determining coagulation parameter
US4786603A (en) Method for separating plasma from blood and silanized glass fibres therefor
US4181500A (en) Chemical testing systems
US4861712A (en) Analysis element for determination of a coagulation parameter
GB2087074A (en) Analysis material sheet comprising fabric spreading layer
JPH0374787B2 (en)
JPS60222769A (en) Integral multi-layer analysis element
EP0423784B1 (en) Dry analysis element for quantitative analysis of analyte contained in whole blood
EP0182179A1 (en) Integral multilayer analytical element for use in the measurement of alkaline phosphatase acitivity
EP0156256A2 (en) Reagent test device
GB2065302A (en) Multi-layered analysis sheet for analysis of aqueous liquids
AU634909B2 (en) Testing device
EP0114403B1 (en) Multilayer analytical element
JP2950592B2 (en) Multilayer analytical tool for fructosamine measurement
EP0322882B1 (en) Integral multilayer analytical element