US3899348A - Method for automatically cleaning reusable foodstuff containers with reduced quantities of fresh water and chemicals - Google Patents

Method for automatically cleaning reusable foodstuff containers with reduced quantities of fresh water and chemicals Download PDF

Info

Publication number
US3899348A
US3899348A US299052A US29905272A US3899348A US 3899348 A US3899348 A US 3899348A US 299052 A US299052 A US 299052A US 29905272 A US29905272 A US 29905272A US 3899348 A US3899348 A US 3899348A
Authority
US
United States
Prior art keywords
cleaning
water
evaporator
liquid
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US299052A
Inventor
Erhard Tedden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US299052A priority Critical patent/US3899348A/en
Application granted granted Critical
Publication of US3899348A publication Critical patent/US3899348A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/20Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
    • B08B9/22Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by soaking alone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/17Saline water conversion

Definitions

  • the first rinse water container has two chambers, a second chamber receiving the condensate and storing the excess, and a first chamber receiving overflow from the second chamber.
  • Rinse water from the first chamber comprising condensate and cleaning agent rinsed from the treated foodstuff containers, is returned to the evaporator as feed water for reheating.
  • the progressively concentrated evaporator water is adjustably fed back to the cleaning bath to restore cleaning agent lost or carried away to the rinsing stages on the foodstuff containers.
  • the temperatures, the types of chemical cleaning agents used and their concentration may vary between the different stages.
  • the rinsing stage is usually carried out by rinsing the container stock in clean water.
  • fresh water is principally used for the last rinsing stage in the cleaning process.
  • the fresh water supplied to the cleaning machine after being used in various other individual stages of the cleaning process, is then fed as waste water to a drainage system. While the fresh water is passing through the machine in a direction opposite to the direction of movement of the container stock, dirt is absorbed by the cleaning-agent solution and is admixed with the counter-flowing fresh water.
  • Cleaning machines preferably are designed to be as small as possible and to provide for the highest possible output per hour and thus attain optimal exploitation of the space available for the installation of the machine.
  • softened water is employed to eliminate the risk of precipitation.
  • the salt content of the fresh water is practically unaltered and thus remains in the waste water.
  • the costs of preparation however are particularly high with very hard water.
  • a genuine saving in fresh water has expectation of success only when the container stock to be cleaned, after being cleaned in the cleaning agent solution and after the first of several stages of rinsing, has the degree of cleanliness of the fresh water supplied to the cleaning machine. This presupposes however that, prior to the last washing stage in the cleaning agent and therefore before the addition of fresh water from the mains network, relatively clean water is available. If this is not the case, then a larger quantity of fresh water is required to be supplied from the mains network for rinsing out the preceding relatively dirty water.
  • Objects of the present invention are to provide a method for supplying and circulating liquid in a cleaning machine which results in the saving of fresh water, with a concommitant reduction in waste water quantities, for the improvement of the waste water composition, and for better utilization of the cleaning chemicals.
  • the method and apparatus for supplying and circulating liquid in a cleaning machine of the type having successive cleaning and rinsing stages utilize steam derived from an evaporator and passed to a heat exchanger in the machine to heat washing liquid in the machine. Condensate from the heat exchanger is supplied to a first rinse water container for rinsing the foodstuff containers, and then is fed back to the evaporator as feed water for renewed evaporation. Cleaning agent re-. turned to the evaporator with the rinse water is fed to cleaning stages in the machine to supplant cleaning agent lost or carried on the foodstuff containers.
  • FIGURE of the drawing is a schematic representation of a portion of an automatic cleaning machine for cleaning reusable foodstuff containers, showing various cleaning and rinsing stages and the supply and circulation of liquid therein according to the invention, but omitting the well-known foodstuff container handling, immersing, moving and/or spraying devices found in such machines.
  • the drawing illustrates a cleaning machine 11 in which liquid is supplied and circulated in accordance with the present invention.
  • Foodstuff containers (not shown) travel fromright to left through successive baths or stages in the machine. Taken in the direction of movement of bottles through the cleaning machine 11, these successive baths or stages include: a last cleaning solution container 12, followed by a first rinse water container 6, followed by a second rinse water container 13. Fresh water is fed via the container 14 into the cleaning machine 11; the water running over from the second water container 13 flows through a duct 15 into a drainage system (not shown).
  • An evaporator 1, preferably initially containing condensed or softened water, is heated by the passage of steam or hot water through a coiled heater pipe 2. Steam generated in the evaporator is passed via a duct 3 to a heat exchanger 4 of the cleaning machine 11. Heat liberated from the heat exchanger 4 is used to heat washing liquid which is passed through pipe 24 in the cleaning machine 1].
  • the condensate from the heat exchanger 4 flows via a condensate duct 5 to a chamber 6 in first rinse water container 6. Water flows over a dividing wall 7 into a further chamber 6" in the first rinse water container. While in the first rinse water container 6, the condensate is used to rinse foodstuff containers. From the chamber 6" water flows via a feed water duct 8 back to the evaporator 1.
  • the non-evaporated liquid in the evaporator l which contains cleaning agent rinsed from the foodstuff containers, is selectively fed as described below, via a sediment duct 9, to a main liquid container 10 in the cleaning machine 11 to restore cleaning agent lost or carried away on foodstuff containers.
  • Such residual liquid from the evaporator may be fed to the cleaning stage container 12 in accordance with the quantity of fresh replacement water supplied to the machine.
  • the residual liquid in evaporator l which becomes concentrated with cleaning agent, is fedback to container 10 to replace the cleaning agent solution carried away from container 10 by the foodstuff containers.
  • theresidual liquid in evaporator 1 is fed back to container 10 in an amount equivalent to that quantity of cleaning agent solution carried away'from container 10. Since the residual liquid in evaporator 1 contains cleaning agent, the container 10 regains a portion of the cleaning agent lost through being carried away.
  • The-waste water also occurs in smaller quantity and more favorable composition than in arrangements known hitherto.
  • an evaporator arrangement which on the steam side is heated in a primary circuit and which acts on the cleaning machine 11 in a secondary circuit.
  • the used steam or heating water is thereby not applied directly to the cleaning machine in a primary circuit as hitherto usual, but indirectly via an evaporator in a secondary circuit.
  • the feed water for the evaporator is derived from a quantity of water present in a first rinse water container 6 in the cleaning machine. As stated above, it is preferable to use condensed or softened water for this purpose.
  • This condensation is used as rinsing water for rinsing residual quantities of the cleaning agent and any remaining dirt adhering to the foodstuff container stock to be cleaned.
  • the use of the soft condensate for this purpose prevents the formation of fur which occurs when hard water is used.
  • liquid comprising a mixture of condensate, cleaning agent and dirt is fed back through feed water duct 8 to the evaporator 1 as feed water for renewed evaporation.
  • the water or in the course of the process the mixture of water and cleaning agent present in the first water container 6 is again evaporated in the evaporator and the steam is again fed to the heat exchanger of the cleaning machine for heating the solution contained in the last cleaning container 12.
  • the condensate is again fed back to the first rinse water container 6 of the cleaning machine and is there circulated for rinsing by means of a pump. Accordingly, the solution in the evaporator 1 becomes progressively concentrated. From the progressively concentrated evaporator water, an adjustable quantity is again fed back as concentrate" to the cleaning means bath 10. In this, this quantity must be adjusted in dependence upon quanitites of cleaning agent carried in and carried away, evaporation in the atmosphere and other operational data. Lost quantities of water are restored by being fed from the second water container 13 to the first water container 6.
  • the first rinse water container 6 is divided by volume into first and second chambers 6' and 6", the incoming condensate being fed into the second chamber 6 and circulated therein, while the .ex-
  • the first chamber 6" is arranged after the last container 12 for the cleaning agent and the second chamber 6' after this first separation within the first rinse water container 6.
  • the first chamber 6" is to be divided by volume according to the given relationships; for the second chamber 6, the same quantity should be chosen as it occurs in the condensate, i.e., the quantity of condensate occurring per unit of container stock to be cleaned and unit of time should determine the size by volume of the second chamber 6' of the first rinse water container 6.
  • this second chamber 6' of the first rinse water container 6 is exclusively provided with condensate and the excess quantities are accommodated in the first chamber 6" of first rinse water container 6.
  • condensate or softened water for the initial filling of the first water container, when soft water is not already supplied from the water mains network, in order in case of the use of alkaline solutions, which are carried away, to avoid a hard precipitation and to reduce in the evaporator the formation of sludge or possibility of incrusta tion.
  • a method for supplying and circulating liquid in an automatic cleaning machine for reusable foodstuff containers said machine being of the type containing successive liquid cleaning and rinsing baths or stages for application of cleaning agent and rinse to the foodstuff containers travelling through the machine, said method comprising:
  • a method for supplying and circulating liquid as claimed in claim 1 further comprising the step of:
  • a method for supplying and circulating liquid as claimed in claim 2 further comprising the step of:

Abstract

A method for cleaning reusable foodstuff containers, such as bottles or cans, using successive liquid cleaning and rinsing baths or stages, wherein liquid is supplied and circulated so that less fresh water and cleaning chemicals are required and the waste water composition is improved. Steam derived from an evaporator holding soft water is passed through a heat exchanger to heat washing liquid in the machine. The condensate from the heat exchanger is supplied to a first rinse water tank or container for use as rinsing water immediately following the last cleaning solution stage and before the final fresh water rinse. Preferably the first rinse water container has two chambers, a second chamber receiving the condensate and storing the excess, and a first chamber receiving overflow from the second chamber. Rinse water from the first chamber, comprising condensate and cleaning agent rinsed from the treated foodstuff containers, is returned to the evaporator as feed water for reheating. The progressively concentrated evaporator water is adjustably fed back to the cleaning bath to restore cleaning agent lost or carried away to the rinsing stages on the foodstuff containers.

Description

United States Patent 1191 Tedden 1 1] 3,899,348 1451 Aug. 12, 1975 METHOD FOR AUTOMATICALLY CLEANING REUSABLE FOODSTUFF CONTAINERS WITH REDUCED QUANTITIES OF FRESH WATER AND CHEMICALS Erhard Tedden, D-423 Wesel 13, Am Moorbusch 1, Germany [22] Filed: Oct. 19, 1972 [21] Appl. No.: 299,052
[76] Inventor:
[52] US. Cl. 134/12; 134/32; 134/34; 134/60; 134/105; 134/109; 202/180; 203/12;
. 203/27; 203/DIG. 16 [51] Int. Cl B08!) 3/04; 1308b 7/04; B081) 9/08 [58] Field of Search 134/22 R, 10, 12, 32, 105, 134/108, 109, 11, 34, 60, 107; 203/12, 27,
DIG. 16; 202/180; 68/18 C; 210/167 Primary Examiner-S. Leon Bashore Assistant Examiner-M. Steven Alvo Attorney, Agent, or F irmRoland T. Bryan 57 I ABSTRACT A method for cleaning reusable foodstuff containers, such as bottles or cans, using successive liquid cleaning and rinsing baths or stages, wherein liquid is supplied and circulated so that less fresh water and cleaning chemicals are required and the waste water composition is improved. Steam derived from an evaporator holding soft water is passed through a heat exchanger to heat washing liquid in the machine. The condensate from the heat exchanger is supplied to a first rinse water tank or container for use as rinsing water immediately following the last cleaning solution stage and before the final fresh water rinse. Preferably the first rinse water container has two chambers, a second chamber receiving the condensate and storing the excess, and a first chamber receiving overflow from the second chamber. Rinse water from the first chamber, comprising condensate and cleaning agent rinsed from the treated foodstuff containers, is returned to the evaporator as feed water for reheating. The progressively concentrated evaporator water is adjustably fed back to the cleaning bath to restore cleaning agent lost or carried away to the rinsing stages on the foodstuff containers.
6 Claims, 1 Drawing Figure METHOD FOR AUTOMATICALLY CLEANING REUSABLE FOODSTUFF CONTAINERS WITH REDUCED QUANTITIES OF FRESH WATER AND CHEMICALS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to automatic cleaning machines for cleaning reusable foodstuff containers, and more particularly to a method and apparatus for supplying and circulating liquid in machines of the type having successive liquid cleaning or rinsing baths or stages for application of cleaning agent and rinse to foodstuff containers.
2. Description of the Prior Art For the cleaning of reusable foodstuff containers of all kinds, such as bottles, cans, or other metal parts, automatic cleaning machines are employed. In such machines, the generally cold container stock to be cleaned is treated in several stages and/or baths at selected temperatures and with suitable concentration of cleaning agents. Generally, these stages include a preliminary cleaning stage, a main cleaning stage and a subsequent rinsing stage.
The temperatures, the types of chemical cleaning agents used and their concentration may vary between the different stages. The rinsing stage is usually carried out by rinsing the container stock in clean water. When cleaning containers subsequently to be used for foodstuffs, fresh water is principally used for the last rinsing stage in the cleaning process. The fresh water supplied to the cleaning machine, after being used in various other individual stages of the cleaning process, is then fed as waste water to a drainage system. While the fresh water is passing through the machine in a direction opposite to the direction of movement of the container stock, dirt is absorbed by the cleaning-agent solution and is admixed with the counter-flowing fresh water.
Cleaning machines preferably are designed to be as small as possible and to provide for the highest possible output per hour and thus attain optimal exploitation of the space available for the installation of the machine.
Attempts have been made to reduce the quantity of fresh water and thereby the quantity of waste water used to operate cleaning machines. However, with a reduction of the fresh water quantities on the one hand, but with a faster transit time of the stock to be cleaned on the other hand, there results an increased degree of contamination of the waste water. Moreover, because the use of less water leads to longer persistance of the mixture of cleaning agent and water in the cleaning machine, more time remains for reaction, for example, the precipitation of solids. The equilibrium, which occurs after a certain period of operation of the cleaning machine, between the quantity of fresh water supplied and the quantity of the cleaning agent solution being carried away, necessarily sets itself at a higher level of the salt mass and hence concentration of the mixture, so that the total quantity of the waste water becomes somewhat smaller but its composition less favorable.
When the container stock to be cleaned is transferred from, for example, an alkaline solution in the first water bath, according to experience with the given temperatures and with use of hard water, there occurs a more or less strong petrifaction due to calcification. With inadequate servicing, this fact rapidly leads to faults in the cleaning or rinsing process. It is known that as a result of deposits, heating devices lose their normal facility for heat transmission, vats become encrusted, spray tubes become clogged, and pumps shift in their settings and fall off in performance, etc. All these result in impairment of the cleaning processes.
To prevent or to reduce too extensive precipitation, inhibiting materials, for example complex formers, are frequently added. This procedure, however, does not always successfully achieve operational requirements, when economically tolerable quantities of these chemicals are employed. Moreover, the waste water is thereby additionally contaminated if only to a small extent.
In some cases, softened water is employed to eliminate the risk of precipitation. In this procedure, the salt content of the fresh water is practically unaltered and thus remains in the waste water. The costs of preparation however are particularly high with very hard water.
A genuine saving in fresh water has expectation of success only when the container stock to be cleaned, after being cleaned in the cleaning agent solution and after the first of several stages of rinsing, has the degree of cleanliness of the fresh water supplied to the cleaning machine. This presupposes however that, prior to the last washing stage in the cleaning agent and therefore before the addition of fresh water from the mains network, relatively clean water is available. If this is not the case, then a larger quantity of fresh water is required to be supplied from the mains network for rinsing out the preceding relatively dirty water.
Particularly when the container stock is to be used for foodstuffs, a guaranteed degree of cleanliness in a chemical as well as in a bacteriological respect must be attained. The growth or the possibility of growth of microorganisms can be enhanced with a strong tendency to fur formation, hard precipitation, and formation of sediment in the vats and containers of the cleaning machine, which have water applied to them and also in the only sporadically wetted inner parts of the cleaning machines. This requires additional disinfecting means in the stage concerned to keep the germ count in the water or the mixture of water and cleaning agent as a tolerable level. I
The waste water of the machine, which flows away enriched with materials or more or less strongly contaminated by being mixed with remnants of cleaning means on rinsing, frequently provoke disturbances in the sewage network, because here strong precipitation depending on composition and time can likewise occur and cause constrictions of the cross-section, clogging and sometimes even complete closing up of the drainage pipes,
SUMMARY OF THE INVENTION Objects of the present invention are to provide a method for supplying and circulating liquid in a cleaning machine which results in the saving of fresh water, with a concommitant reduction in waste water quantities, for the improvement of the waste water composition, and for better utilization of the cleaning chemicals.
According to the principal aspects of the invention, the method and apparatus for supplying and circulating liquid in a cleaning machine of the type having successive cleaning and rinsing stages, utilize steam derived from an evaporator and passed to a heat exchanger in the machine to heat washing liquid in the machine. Condensate from the heat exchanger is supplied to a first rinse water container for rinsing the foodstuff containers, and then is fed back to the evaporator as feed water for renewed evaporation. Cleaning agent re-. turned to the evaporator with the rinse water is fed to cleaning stages in the machine to supplant cleaning agent lost or carried on the foodstuff containers. In accordance with the method and apparatus of the present invention, less fresh water is required for thinning the cleaning agent and for carrying out the cleaning operations of the machine, and less waste water, having a more favorable composition, is producedv Other objects, aspects and advantages of the present invention will be pointed out in, or apparent from, the detailed description hereinbelow, considered together with the following drawing.
DESCRIPTION OF THE DRAWING The single FIGURE of the drawing is a schematic representation of a portion of an automatic cleaning machine for cleaning reusable foodstuff containers, showing various cleaning and rinsing stages and the supply and circulation of liquid therein according to the invention, but omitting the well-known foodstuff container handling, immersing, moving and/or spraying devices found in such machines.
DESCRIPTION OF THE PREFERRED EMBODIMENT The drawing illustrates a cleaning machine 11 in which liquid is supplied and circulated in accordance with the present invention. Foodstuff containers (not shown) travel fromright to left through successive baths or stages in the machine. Taken in the direction of movement of bottles through the cleaning machine 11, these successive baths or stages include: a last cleaning solution container 12, followed by a first rinse water container 6, followed by a second rinse water container 13. Fresh water is fed via the container 14 into the cleaning machine 11; the water running over from the second water container 13 flows through a duct 15 into a drainage system (not shown).
An evaporator 1, preferably initially containing condensed or softened water, is heated by the passage of steam or hot water through a coiled heater pipe 2. Steam generated in the evaporator is passed via a duct 3 to a heat exchanger 4 of the cleaning machine 11. Heat liberated from the heat exchanger 4 is used to heat washing liquid which is passed through pipe 24 in the cleaning machine 1]. The condensate from the heat exchanger 4 flows via a condensate duct 5 to a chamber 6 in first rinse water container 6. Water flows over a dividing wall 7 into a further chamber 6" in the first rinse water container. While in the first rinse water container 6, the condensate is used to rinse foodstuff containers. From the chamber 6" water flows via a feed water duct 8 back to the evaporator 1.
The non-evaporated liquid in the evaporator l, which contains cleaning agent rinsed from the foodstuff containers, is selectively fed as described below, via a sediment duct 9, to a main liquid container 10 in the cleaning machine 11 to restore cleaning agent lost or carried away on foodstuff containers. Such residual liquid from the evaporator may be fed to the cleaning stage container 12 in accordance with the quantity of fresh replacement water supplied to the machine.
The residual liquid in evaporator l, which becomes concentrated with cleaning agent, is fedback to container 10 to replace the cleaning agent solution carried away from container 10 by the foodstuff containers. Preferably, theresidual liquid in evaporator 1 is fed back to container 10 in an amount equivalent to that quantity of cleaning agent solution carried away'from container 10. Since the residual liquid in evaporator 1 contains cleaning agent, the container 10 regains a portion of the cleaning agent lost through being carried away. Thus, only quite small quantities of cleaning agent are ultimately carried away from the first rinse water container 6 into the second rinse water container 13 and thus a smaller quantity of fresh water is required from container 14 for thinning and carrying out the cleaning operations of the machine. The-waste water also occurs in smaller quantity and more favorable composition than in arrangements known hitherto.
Thus, for heating the washing liquid in a cleaning machine, there is provided an evaporator arrangement which on the steam side is heated in a primary circuit and which acts on the cleaning machine 11 in a secondary circuit. The used steam or heating water is thereby not applied directly to the cleaning machine in a primary circuit as hitherto usual, but indirectly via an evaporator in a secondary circuit. The feed water for the evaporator is derived from a quantity of water present in a first rinse water container 6 in the cleaning machine. As stated above, it is preferable to use condensed or softened water for this purpose.
The steam generated in the evaporator 1, after passing through the heat exchanger 4 of the cleaning machine and/or other heat exchange devices (not shown) is condensed and fed into the first rinse water container 6 following the last cleaning agent solution container 12. This condensation is used as rinsing water for rinsing residual quantities of the cleaning agent and any remaining dirt adhering to the foodstuff container stock to be cleaned. The use of the soft condensate for this purpose prevents the formation of fur which occurs when hard water is used.
Preferably, as described, liquid comprising a mixture of condensate, cleaning agent and dirt is fed back through feed water duct 8 to the evaporator 1 as feed water for renewed evaporation. The water or in the course of the process, the mixture of water and cleaning agent present in the first water container 6 is again evaporated in the evaporator and the steam is again fed to the heat exchanger of the cleaning machine for heating the solution contained in the last cleaning container 12. The condensate is again fed back to the first rinse water container 6 of the cleaning machine and is there circulated for rinsing by means of a pump. Accordingly, the solution in the evaporator 1 becomes progressively concentrated. From the progressively concentrated evaporator water, an adjustable quantity is again fed back as concentrate" to the cleaning means bath 10. In this, this quantity must be adjusted in dependence upon quanitites of cleaning agent carried in and carried away, evaporation in the atmosphere and other operational data. Lost quantities of water are restored by being fed from the second water container 13 to the first water container 6.
As described above, the first rinse water container 6 is divided by volume into first and second chambers 6' and 6", the incoming condensate being fed into the second chamber 6 and circulated therein, while the .ex-
cess is fed into the first chamber 6" of the first water container. The first chamber 6" is arranged after the last container 12 for the cleaning agent and the second chamber 6' after this first separation within the first rinse water container 6. In this, the first chamber 6" is to be divided by volume according to the given relationships; for the second chamber 6, the same quantity should be chosen as it occurs in the condensate, i.e., the quantity of condensate occurring per unit of container stock to be cleaned and unit of time should determine the size by volume of the second chamber 6' of the first rinse water container 6. Thereby, this second chamber 6' of the first rinse water container 6 is exclusively provided with condensate and the excess quantities are accommodated in the first chamber 6" of first rinse water container 6.
When running in the installation, it is important to create the optimal volume relationships of the water containers in dependence upon the achieved loading per hour of the stock to be cleaned. Other than is the case in the known installations, greater volumes are valid for the first water container of the cleaning machine in the case of the arrangement embodying the invention, when the so-called intermediate spraying is presupposed as given. It is also important, that apart from the naturally occurring carrying over from one container into the other (illustrated by an arrow 22), no connection exists between the first and the second rinse water containers 6 and 13, if one disregards the above described connection to the evaporator, in order to equalize the lost quantities of the first water container from the second water container.
As has already been mentioned, it is preferable to use condensate or softened water for the initial filling of the first water container, when soft water is not already supplied from the water mains network, in order in case of the use of alkaline solutions, which are carried away, to avoid a hard precipitation and to reduce in the evaporator the formation of sludge or possibility of incrusta tion.
Although a specific embodiment of the invention has been disclosed herein in detail, it is to be understood that this is for the purpose of illustrating the invention, and should not be construed as necessarily limiting the scope of the invention, since it is apparent that many changes can be made to the disclosed methods and structures by those skilled in the art to suit particular applications.
I claim:
1. A method for supplying and circulating liquid in an automatic cleaning machine for reusable foodstuff containers, said machine being of the type containing successive liquid cleaning and rinsing baths or stages for application of cleaning agent and rinse to the foodstuff containers travelling through the machine, said method comprising:
heating liquid in an evaporator to form steam; passing the steam to a heat exchanger in the machine to liberate heat for heating washing liquid in the machine and to form condensate from said steam; feeding the condensate to a first rinse water container in the machine; and rinsing the foodstuff containers with the condensate in the first rinse water container. 2. A method for supplying and circulating liquid as claimed in claim 1 further comprising the step of:
feeding the liquid in the first rinse water container, including condensate and cleaning agent rinsed from the foodstuff containers to the evaporator as feed water for renewed evaporation. 3. A method for supplying and circulating liquid as claimed in claim 2 further comprising the step of:
passing liquid which has accumulated in the evaporator, which includes cleaning agent rinsed from the foodstuff containers in the first rinse water container, back to a cleaning stage container in the machine, thereby to restore cleaning agent carried away therefrom on the foodstuff containers, thereby reducing the amount of cleaning agent needed to be supplied for cleaning and later discharged as waste.
4. A method for supplying and circulating liquid as claimed in claim 3, further comprising the step of:
passing accumulated liquid from the evaporator to the cleaning stage container in accordance with the quantity of fresh replacement water supplied to the machine to maintain the amount of fluid in the evaporator.
5. A method for supplying and circulating liquid as claimed in claim 4, wherein the replacement water is supplied to the first rinse water container to be fed back to the evaporator.
6. A method for supplying and circulating liquid as claimed in claim 2 wherein the first rinse water container has first and second chambers, and wherein the condensate from the heat exchanger is fed into the second chamber and wherein excess liquid feeds therefrom into the first chamber and is fed therefrom back into the evaporator.

Claims (6)

1. A METHOD FOR SUPPLYING AND CIRCULATING LIQUID IN AN AUTOMATIC CLEANING MACHINE FOR REUSABLE FOODSTUFF CONTAINERS, SAID MACHINE BEING OF THE TYPE CONTAINING SUCCESSIVE LIQUID CLEANING AND RINSING BATHS OR STAGES FOR APPLICATION OF CLEANING AGENT AN RINSE TO THE FOODSTUFF CONTAINERS TRAVELLING THROUGH THE MACHINE, SAID METHOD COMPRISING: HEATING LIQUID IN AN EVAPORATOR TO FORM STEAM, PASSING THE STEAM TO A HEAT EXCHANGER IN THE MACHINE TO LIBERATE HEAT FOR HEATING WASHING LIQUID IN THE MACHINE AND TO FORM CONDENSATE FROM SAID STEAM, FEEDING THE CONDENSATE TO A FIRST RINSE WATER CONTAINER IN THE MACHINE, AND
2. A method for supplying and circulating liquid as claimed in claim 1 further comprising the step of: feeding the liquid in the first rinse water container, including condensate and cleaning agent rinsed from the foodstuff containers to the evaporator as feed water for renewed evaporation.
3. A method for supplying and circulating liquid as claimed in claim 2 further comprising the step of: passing liquid which has accumulated in the evaporator, which includes cleaning agent rinsed from the foodstuff containers in the first rinse water container, back to a cleaning stage container in the machine, thereby to restore cleaning agent carried away therefrom on the foodstuff containers, thereby reducing the amount of cleaning agent needed to be supplied for cleaning and later discharged as waste.
4. A method for supplying and circulating liquid as claimed in claim 3, further comprising the step of: passing accumulated liquid from the evaporator to the cleaning stage container in accordance with the quantity of fresh replacement water supplied to the machine to maintain the amount of fluid in the evaporator.
5. A method for supplying and circulating liquid as claimed in clAim 4, wherein the replacement water is supplied to the first rinse water container to be fed back to the evaporator.
6. A method for supplying and circulating liquid as claimed in claim 2 wherein the first rinse water container has first and second chambers, and wherein the condensate from the heat exchanger is fed into the second chamber and wherein excess liquid feeds therefrom into the first chamber and is fed therefrom back into the evaporator.
US299052A 1972-10-19 1972-10-19 Method for automatically cleaning reusable foodstuff containers with reduced quantities of fresh water and chemicals Expired - Lifetime US3899348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US299052A US3899348A (en) 1972-10-19 1972-10-19 Method for automatically cleaning reusable foodstuff containers with reduced quantities of fresh water and chemicals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US299052A US3899348A (en) 1972-10-19 1972-10-19 Method for automatically cleaning reusable foodstuff containers with reduced quantities of fresh water and chemicals

Publications (1)

Publication Number Publication Date
US3899348A true US3899348A (en) 1975-08-12

Family

ID=23153108

Family Applications (1)

Application Number Title Priority Date Filing Date
US299052A Expired - Lifetime US3899348A (en) 1972-10-19 1972-10-19 Method for automatically cleaning reusable foodstuff containers with reduced quantities of fresh water and chemicals

Country Status (1)

Country Link
US (1) US3899348A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156621A (en) * 1977-09-28 1979-05-29 American Sterilizer Company Regeneration of used dishwashing water without chemical additives for sanitizing and spot-free rinse uses
US4162199A (en) * 1976-05-18 1979-07-24 Earl J. Kuntz Removing organic components from an aqueous cleaning solution
US5348588A (en) * 1993-06-29 1994-09-20 Church & Dwight Co., Inc. Evaporative treatment of inorganic saponifier wash water
EP2140948A1 (en) * 2008-07-04 2010-01-06 Wincor Nixdorf International GmbH Cleaning device for empties reverse vending machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2617435A (en) * 1948-09-25 1952-11-11 Michael Yundt Company Bottle-washing machine
US2721562A (en) * 1952-11-07 1955-10-25 Belle Fons Chemical Corp Pickling and pickling agent regeneration apparatus
US2774361A (en) * 1955-03-07 1956-12-18 Archie Ladewig Co Bottle washer
US3598131A (en) * 1969-08-12 1971-08-10 Adamation Inc Steam collection system for dishwashing machines
US3799807A (en) * 1971-05-27 1974-03-26 Ind Washing Machine Corp Automatic case washing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2617435A (en) * 1948-09-25 1952-11-11 Michael Yundt Company Bottle-washing machine
US2721562A (en) * 1952-11-07 1955-10-25 Belle Fons Chemical Corp Pickling and pickling agent regeneration apparatus
US2774361A (en) * 1955-03-07 1956-12-18 Archie Ladewig Co Bottle washer
US3598131A (en) * 1969-08-12 1971-08-10 Adamation Inc Steam collection system for dishwashing machines
US3799807A (en) * 1971-05-27 1974-03-26 Ind Washing Machine Corp Automatic case washing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4162199A (en) * 1976-05-18 1979-07-24 Earl J. Kuntz Removing organic components from an aqueous cleaning solution
US4156621A (en) * 1977-09-28 1979-05-29 American Sterilizer Company Regeneration of used dishwashing water without chemical additives for sanitizing and spot-free rinse uses
US5348588A (en) * 1993-06-29 1994-09-20 Church & Dwight Co., Inc. Evaporative treatment of inorganic saponifier wash water
EP2140948A1 (en) * 2008-07-04 2010-01-06 Wincor Nixdorf International GmbH Cleaning device for empties reverse vending machine

Similar Documents

Publication Publication Date Title
US4156621A (en) Regeneration of used dishwashing water without chemical additives for sanitizing and spot-free rinse uses
US3951158A (en) Apparatus for automatically cleaning reusable foodstuff containers with reduced quantities of fresh water and chemicals
CA1152867A (en) Water based cleaning system
US20060266381A1 (en) Commercial glassware dishwasher and related method
KR940000359B1 (en) Process for the cleaning flow restricted areas of secondary side of a steam generator
US2817606A (en) Cleaning process
JPH04225875A (en) Method and device for washing object with water washing fluid containing washing agent
US4154624A (en) Apparatus and method for cleaning containers
US3761381A (en) Plating waste recovery unit
US4861385A (en) Article washing method
US3899348A (en) Method for automatically cleaning reusable foodstuff containers with reduced quantities of fresh water and chemicals
RU2001106433A (en) METHOD FOR CLEANING HEAT AND POWER EQUIPMENT FROM SEDIMENTS AND SCALES AND DEVICE FOR ITS IMPLEMENTATION
US2008839A (en) Method and means for cleaning sulphite cellulose preheaters
US3542651A (en) Unit for recovery of plating solution
US2418063A (en) Method of removing and concentrating residue from containers
US2509003A (en) Process for washing containers
JP2904273B2 (en) How to clean the diffusion cleaning screen
JPS602900A (en) Chemical cleaning method of forced circulating drum type boiler
RU2138869C1 (en) Solution for cleaning objects from uranium compounds and method of cleaning
US3562026A (en) Method of quenching employing wash solution
CN1038606C (en) Method and apparatus for treatment of industrial rinsed water
Jönsson et al. Treatment of high-temperature rinsing water from a degreasing plant by reverse osmosis
JPS59153887A (en) Pretreating apparatus
SU848107A1 (en) Vessel washing method
SU378262A1 (en) METHOD OF CLEANING CAPACITIES