Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS3901414 A
Tipo de publicaciónConcesión
Fecha de publicación26 Ago 1975
Fecha de presentación3 Ene 1973
Fecha de prioridad6 Jul 1972
Número de publicaciónUS 3901414 A, US 3901414A, US-A-3901414, US3901414 A, US3901414A
InventoresCapra Nicholas G, Toth Vincent
Cesionario originalCapra Nicholas G, Toth Vincent
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Liquid dispenser
US 3901414 A
Resumen  disponible en
Imágenes(5)
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

United States Patent Capra et al.

[ ]*Aug. 26, 1975 LIQUID DISPENSER Inventors: Nicholas G. Capra, 467 Delavan Ave., Newark, NJ. 07107; Vincent Toth, RD No. l, 120 Mildred Ave., Stanhope, NJ. 07874 Notice: The portion of the term of this patent subsequent to Jan. 19, 1991, has been disclaimed.

Filed: Jan. 3, 1973 Appl. No.: 320,729

Related US. Application Data Continuation-impart of Ser. No. 269,452, July 6, 1972, Pat. No. 3,792,800.

US. Cl 222/340; 239/329 Int. Cl B67d 5/32 Field of Search 74/56; 222/321, 340, 341,

[56] References Cited UNITED STATES PATENTS 3,790,034 2/1974 Horvath 222/153 Primary ExaminerAllen N. Knowles Assistant ExaminerJoseph J. Rolla Attorney, Agent, or FirmShoemaker and Mattare [57] ABSTRACT A liquid dispenser comprising a container having relative rotatable parts, and within the container a cylinder and a piston movable relative to each other and forming a chamber. The cylinder or piston being moved by the relative rotatable part of the body of the container, andwhen so moved, filling the chamber with a fluid contained in the container. The fluid is placed under pressure in the chamber and is dispensed from that chamber upon actuation of a valve. There is also a means on the container for locking the valve in inoperative position.

10 Claims, 25 Drawing Figures PATENTEB AUG 2 61975 I56 I55 I32 SHEET 3 o 5 PATENTEU AUG 2 6 1975 sum u o 5 PATENTEB Auszsms FIG 22.

Fla 2/;

LIQUID DISPENSER This application is a continuation-in-part of our application Ser. No. 269,452, filed July 6, 1972, now US. Pat. No. 3,792,800.

BACKGROUND OF THE INVENTION Containers of material, such as fluids, i.e. insecticides, perfumes, herbicides, hair sprays, are placed in the container together with a gas propellant and are expelled from the containers upon the operation of a valve under the pressure of the propellant. Most of the substances contained in the container, together with the gas propellant, are toxic and injurious to the health of a human being. Further, the container cannot stand a high degree of heat and will explode due to the heating and expansion of the gas propellant. This is likewise injurious to anyone near the container when it explodes. The so-called spray containers are also injurious to small children because of their ease of operation. A small child operating the valve would not know enough to direct the spray nozzle away from his face or body, thereby getting the full force of the material and the propellant gas thus causing serious injury.

SUMMARY OF THE INVENTION This invention relates to a container for fluid and for the discharge of that fluid under pressure.

The object of the invention is to have a container for the storage ofa fluid which may be refilled and mechanism within the container operated by rotating one part of the container relative to another part which rotation will enlarge a chamber which by virtue of that enlargement will draw by suction a quantity of the fluid in the container into the chamber. When the chamber is full, the contents thereof are under spring pressure; and when a valve on the outside of the container is actuated, the fluid in that chamber will be dispensed therefrom by the pressure thereon either in the form of a spray or a pouring of the liquid from a spout.

Another object is to have the chamber of such size that a relatively small amount of the liquid will be drawn into the chamber and which amount can be dispensed from the container in a predetermined time according to the size of the chamber; and when the chamber is empty, it must be reactivated to again fill the chamber. Should any fluid remain in the chamber, it will gradually leak by a valve means back into the container through the pressure means on the fluid.

Still another object of the invention is that the amount of movement of the cooperating means may be so adjusted that a predetermined amount of fluid may be drawn into a larger chamber and dispensed therefrom.

A further object of the inventionis to provide a greater pressurization of the fluid in the chamber which may be a liquid of higher viscosity and which may be dispensed in the form of a foam.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of the container used in this invention.

FIG. 2 is a cross-sectional view of FIG. 1, taken on line 22 in FIG. 1.

FIG. 3 is a cross-sectional view taken on line 33 of FIG. 2.

FIG. 4 is a cross-sectional view taken on line 44 of FIG. 2.

FIG. 5 is a view similar to FIG. 2, but showing the action of dispensing.

FIG. 6 is an exploded view of the cooperating parts for operation of the dispensing means shown in FIG. 2.

FIG. 7 is a lay out of the cam, which is a part of the cooperating means.

FIG. 8 is a cross-sectional view of a modification of the cooperating means and dispensing means.

FIG. 9 is an exploded view of the mechanism shown in FIG. 8.

FIG, 10 is a cross-sectional view taken on like 10-10 of FIG. 8.

FIG. 11 is still a further modification, showing a different type of cooperating means.

FIG. 12 is a cross-sectional view taken on line 13l3 of FIG. 11.

FIG. 13 is a view partially in cross-section showing one type of check valve used in the dispensing means.

FIG. 14 is a view similar to FIG. 14, showing a different type of check valve.

FIG. 15 is a perspective view of a dispenser for dispensing a predetermined amount.

FIG. 16 is a cross-sectional view taken on line 1616 of FIG. 15.

FIG. 17 is a cross-sectional view taken on line 17-17 of FIG. 16.

FIG. 18 is an exploded view of the cap and cooperating parts for the setting of dispensing a predetermined amount.

FIG. 19 is a view of the cap and setting lever.

FIG. 20 is a perspective view partly in section showing a double cam arrangement of the cooperating parts.

FIG. 21 is an exploded view of the double cam ar rangement.

FIG. 22 is a perspective view of the double cam ar rangement before operation.

FIG. 23 is a perspective view of the double cam arrangement after the first step of operation.

FIG. 24 is a perspective view of the double cam arrangement after a complete operation, and

FIG. 25 is a lay-out of the double cam.

DESCRIPTION OF THE EMBODIMENTS A container for fluids and for dispensing the same, generally indicated at 10 is provided with a body part 11, a top part 12, and a bottom part 13. The top part 12 has on the upper wall 23 thereof, a dispensing nozzle 14 which when depressed, will open a valve 15 thus allowing the fluid within the container to be dispensed in a manner hereinafter described. Also in the top wall, there is provided a depressed portion 16. The depressed portion has side walls 17 and 18 which are slightly undercut to provide a groove. Mounted within the groove is a slide 19 which is movable in the groove by reciprocating the same through engagement by a finger with the rib 20. One end of the slide 19 has a bifurcation 21. The slide when moved from right to left will place the bifurcation 21 under the valve operating member 14, thus preventing depression of that member and operation of the valve 15. By moving the slide 19 in the reverse direction, the valve operating member 14 can be depressed, thus opening the valve 15.

The body part l1 of the container is of hollow tubular structure and may be made of plastic, metal or glass. The top part 12, also made of plastic, metal or glass, is mounted upon one end of the body part 11 by a slip joint 25 as shown in FIG. 2 and is sealed in that relationship. The joint between the top part and body part may be of any type, commensurate with the material being used, whereby a rigid sealed joint may be made.

The bottom part 13 is formed of a generally cupshaped configuration having a base 26 and a side wall 27. A groove 28 is formed in the interior of a side wall intermediate the height thereof. The body part 11 has formed on the outer surfce thereof near the other end a rib 29 which engages the groove 28. The bottom cap or part has an internal diameter in the side wall 27 of substantially the same diameter as the outer wall of the body part 1 1, and being of this diameter with the rib 29 seating in the groove 28 and the end of the body part 11 seating tightly against the base 26, seals the bottom part to the body part with sufficient tightness to prevent the liquid contents of the container from leaking at the juncture but still allowing rotation of the bottom part relative to the body part. The base of the bottom part is provided with a heavy portion 30 extending from the center radially outward toward the side wall 27. This heavy portion 30 provides between the outer circumference thereof and the side wall a groove 31 into which the other end of the body part 11 is seated.

The base of the bottom part also has an opening 32 therein which comprises a sealed opening by which liquid may be poured into the container and through which the contaker may be refilled after the liquid within the container has been used and dispensed. The opening is closed by a screw 33, and head of which seats in a countersink 34 so that the screw is flush with the outer surface of the bottom part. While there is shown the rib and groove connection between the bottom part and the body part, any other type of connection may be used, such as both parts having grooves therein with an O-ring filling the grooves. Any type of connection which will allow the sealing of that connection and the rotation of one part relative to the other part may be used.

Concentrically mounted upon and integral with the base 26 is an upstanding sleeve 36 having at its upper end a cam 37. The cam has diametrically opposed high points 38 and 39 and low points 40 and 41 also diametrically opposed and intermediate the high points with sloping cam surfaces 42 and 43 extending between the high point and the low points on one side of the high points and having vertical surfaces 44 and 45 on the other side of the high points. As was previously stated, the sleeve 36 is integral with the bottom part 26 and having the aforesaid cam surfaces on the upper part thereof is rotatable with the bottom part. Mounted upon the base 26 and extending upwardly therefrom in the container and concentrically within the sleeve 36 is a piston rod 48. The piston rod has at its lower end a head 49 which is embedded in the thickened part or heavy part 30 of the bottom part. This mounting gives rigidity to the piston rod and rotates the piston rod with the bottom part. A piston 50 is rigidly mounted on the upper end of the piston rod 48. The piston 50 has a seal ring 51 mounted on the outer surface thereof. The top part 12 carries the guide 55 extending from the lower part thereof into the body part. The guide 55 has a slot 56, the slot facing inwardly toward the center of the container. A head 57 having a rib 58 extending along one side wall thereof is guided by the rib 58 engaging in the slot 56 and having vertical movement therein. The head 57 is substantially cupshaped and is inverted with the base 59 extending toward the cap part and having a downwardly extending side wall 60. Sealed within the cup-shaped head is a downwardly extending sleeve 61. The upper end 62 of the sleeve 61 is open and fitted within the cup-shaped head member 57, engaging the base on the inside thereof and the inner surface of the side wall 60. The lower part of the sleeve 61 has a reduced wall portion 63 and extends into the upper part of the lower cam 37. The lower end 64 of the sleeve 61 is thickened into a head portion and is engaged with the piston rod 48 and is slidable thereon. Extending upwardly from the head portion 64 through the wall portion 63 and into the lower part of the wider sleeve 61, the sleeve is spaced from and concentric with the piston rod 48 and provides a chamber 65. Mounted within the chamber 65 is a coil spring 66, one end of which bears against the underside of the piston 50 and with the other end bearing against the head portion 64 of the sleeve. Surrounding the upper portion of the reduced part 63 of the sleeve and integral therewith is a cam surface 67 comprising the upper cam. The cam 67 has high points 68 and 69 and low points 70 and 71. The cam is directly opposite the lower cam 37, and when the two parts of the cam are engaged, the high points 68 and 69 will be engagement with the low points 40 and 41 and likewise the high points 38 and 39 will be in engagement with the low points 70 and 71. The sleeve 61, as was stated above, is hollow in the upper part thereof and forms with the head 57 a cylinder or chamber 72, which cylinder moves through the influence of the cam with respect to the piston 50 which is held stationary as previously described. Extending from the chamber through the head is a passageway 73. The passageway at the other end thereof is connected with a valve housing 74, having a check valve therein. Extending downwardly from that housing 74 is a passageway 76. The lower end of the valve housing 74 has sealed therein a tube 77, which is flexible and which extends downwardly onto and in engagement with the inner surface of the bottom part 26. The lower end 78 is open and lying within the fluid contained in the container. The valve housing 74 has another flexible tube 79 extending upwardly to a dispenser valve housing 80. The dispenser valve 15 is within the housing 80 and is operated by the operating member 14 as previously described. I

The device as shown in FIG. 2 discloses the chamber 72 filled with liquid, while as shown in FIG. 5, a portion of that liquid has been dispensed. When all of the liquid contained in the chamber 72 has been dispensed, the head 57 and the sleeve 61 will have moved downwardly under the influence of the spring 66 to a point wherein the head is in engagement with the piston 50; and at this point, the high points 68 and 69 of the upper cam are in engagement with the low points 40 and 41 of the lower cam. If it is desired to recharge the chamber 72, the bottom part 26 is rotated relative to the body 11 thus causing the slopes 42 and 43 to ride along the high points 68 and 69 causing the sleeve 61 and the head 57 to move upwardly toward the cap 12 and compressing the spring between the head 64 of the piston 60. By this movement a vacuum is produced in the chamber 72 which will cause a vacuum in the tube 77 which in turn will draw the liquid into the opening 78 through the tube 77 by the valve 75 through the passage 73 into the chamber 72, thus filling the chamber. When the various parts are in the position as shown in FIG. 2, the container is then ready for dispensing of thecontents within the chamber 72. The contents being under the pressure of the spring will cause the check valve 75 to close the tube 77 and the passageway 76 and upon operation of the valve by the operating member 14, the material within the chamber 72 will be sprayed outwardly to the desired point of usage. The size of the chamber 72 controls the amount of the liquid which is sprayed and the time of the period of dispensing. Here again, the size of the chamber is controlled by the size of the container. The normal size container for liquids to be sprayed will allow a time period of less than a minute, but a longer time period may be had with a different size chamber. A modification of the heretofore described dispenser is shown in FIG. 8, wherein any type of a container 85 is used. The container has an opening 86 in the upper part thereof. The opening is surrounded by a lip 87 or, in fact, may have any type of opening to which a cap or other type of closure member 88 may be applied and sealed thereto. The container 85 has a side wall 89 and a bottom wall 90, all integral. The container 85, however, is not limited to this particular type of container in that the bottom 90 may be seamed to the side wall in the same manner as closing an ordinary can.

Mounted on the underside of the cap 88 or otherwise affixed thereto is an inverted cup-shaped member 91 having a double cam surface 92 on the lower surface thereof. The double cam surface will havetwo high points and two low points substantially similar to that shown in FIG. 7. The base 93 of the cup has a central opening 94 therein, which opening is round.

The cap 88 has a like round opening 95 therein coin:

ciding with the opening 94. Extending through the openings 94 and 95 is a piston rod 96.

Fixed to the upper end 97 of the piston rod 96 is a spray head and operating member 98. The lower surface 99 of the spray head is provided with a socket 100 into which the upper end 97 of the piston rod 96fits and is sealed thereto. Also in the spray housing 98 is a passageway 101, a valve housing 102 and a combined nozzle and valve operating member 103. The housing 102 may contain any type of a spring pressed check valve, which when the spray nozzle 103 is operated, will in turn operate the valve. The spray nozzle 103 is latched against operation by the latch 104 which is constructed and operated in the same manner as the latch slide 19 previously described. 7

The cup-shaped member 91 has a second opening 105 larger in diameter than the previously mentioned opening 94. Slidingly received in the opening 105 is a hub 106. The hub 106 has a round outer surface 107 which tits in the opening 105 but is rotatable and reciprocable therein. The hub 106 has an opening 108 through the center thereof, engaging the piston rod 96 and is slidable thereon. The lower end 109 of the hub extends outwardly and downwardly to form a cylinder 110. The lower end 111 of the cylinder is opened and has slidably mounted within the cylinder a piston 112 carried by the lower end of the piston rod 96. The piston 112 carries a seal means 113 which seals the piston in its operation within the cylinder 110. The inner surface 114 of the piston has bearing against it a coil spring 115. The other end of the coil spring 115 bears against the inner surface 116 of the upper end of the hub 106. Surrounding a portion of the hub 106, the entire cylinder 110 and enclosing the piston 112 in a housing 117, the upper end of which is provided with a cam surface 118, which surface is complemental to the cam 92. Extending through the piston rod is a passageway 119, which passageway is connected to the passageway 101 in the spray head and operating member 98. The lower end of the housing 117 is closed by a cover 120 which becomes the end of the fluid chamber upon operation of the cylinder by the cams. The cover 120 has an opening 121 therein. A tube 122 extends downwardly from the opening 121 and is connected thereto and extends into the bottom of the container so that any fluid in the container may enter through the tube into the chamber 123. The upper end of the tube 122 has a valve housing 124 containing a check valve 125.

As has been previously stated, this particular dispensing mechanism as shown in FIG. 8 may be attached to any type of container such as a bottle or a can which has an open mouth or end. All of the dispensing mechanism is first assembled on a cap or cover for the container and is then inserted into and on the container with the cap or cover being sealed thereon. By rotating the spray head nozzle and the operating-member 98, one-half turn or less, the housing 117 is moved downwardly as shown in the dotted lines by virtue of the cam surface 118 engaging the cam surface 92 and being forced downwardly by the rotation of the cam 1 18 relative to the cam 92. The housing 117 and the cylinder being forced downwardly by operation of the two cams will move the housing and cylinder downwardly away from the head of the piston 112 and against the pressure of the spring 1 15. This movement causes a vacuum in the chamber 123 thus produced by such movement, and this vacuum will cause liquid within the container to pass through the tube 122 by the check valve 125 into the chamber 123. Upon rotation of the spray head and operating member 98, the chamber 123 will be filled with a predetermined quantity of fluid. Then by operation of the nozzle 103, the fluid will be dispensed through the passageway 1 19 by the valve in the housing 102 and outwardly through the nozzle. The pressure to move the fluid is produced by the pressure of the spring setting against the head 112 of the piston to force the housing 117 and the cylinder 110 upwardly toward the piston head 112.

As previously described, the size of the chamber 123 controls the amount of fluid which will be dispensed and the length of time it takes to dispense that particular amount of fluid. When the chamber is empty it is only necessary to again rotate the spray head and operating member 98 to recharge the chamber 123.

A further modification of the dispensing device is shown in FIGS. 11 and 12, wherein a container is used having side wall 131, a top wall 132 and an open bottom 134. The open end of the container 134 is closed by a cap 135 having side flange 136. The side flange has a groove 137 and the container near the end thereof is provided with a rib 138. The rib and groove providing the seal between the cap and the container. The cap has a fill opening 139 closed by a screw 140 through which the container may be refilled with the liquid after the contents thereof have been dispensed. Mounted on the inner wall 141 of the side wall of the container and affixed thereto is a cylinder 142. The cylinder 142 is mounted on the inner wall 141 by being cemented to or otherwise affixed to a semi-circular shaped pocket 143 which may be integral with the inner wall 141. The cylinder 142 is of arcuate formation and extends approximately one half of the circumference of the inner wall 141. The cylinder has a closed end wall 144 at one end thereof and a partially closed wall 145 at the other end thereof. The wall 145 has an opening 146 therein through which a piston rod 147 extends. The piston rod 147 has a piston 148 on the end extending into the cylinder. A coil spring 149 has one end thereof bearing against the piston 148 and the other end bearing against the partially closed wall 145. The piston rod 146 is also arcuate in shape and has the end opposite to the piston head 150 connected to an upstanding post 151 which upstands from and is connected to the cap 135. Adjacent the closed end of the cylinder is an opening 152 to which is connected a tube 153. The tube 153 extends upwardly to the top wall 132 of the container to a valve housing 154. A spray nozzle 155 and valve operating member is mounted on the outside of the end wall 132 and when depressed will operate the valve contained in the housing 154. A locking slide 156 of the same type as previously described is mounted on the outside of the top wall 132 and when placed under the spray nozzle 155 will prevent operation of the same. Extending also from the cylinder 142 adjacent the closed end thereof is a valve housing 157 having a check valve 158 therein. Extending from the valve housing 157 is a fill tube 159, the free end of which is open and lying on the bottom cap of the container.

By rotating the cap 135 in a counter clockwise direction relative to the container 130, the piston 148 is drawn toward the partially closed end 145 of the cylinder by virtue of the free end of the rod being connected to the post 151. This action of the piston with respect to the cylinder creates a vacuum therein, thus causing a suction within the tube 159 through the check valve 158 into the cylinder. This suction causes thefluid contained in the container to be drawn into the cylinder. Also, the movement of the piston 148 in this manner compresses the spring 149. When the piston has reached the end of its stroke, the cylinder is now charged with a predetermined amount of fluid. By manipulation of the spray nozzle 155, the valve in the housing 154 is operated, thus allowing the pressure of the spring 149 upon the contents of the cylinder to be forced upwardly through the tube 153 and out through the spray head 155.

The size of the cylinder and piston may be varied so that different predetermined amounts may be drawn into the cylinder and also the extent of the rotation of the cap 135 will move the piston predetermined amounts to likewise effect a predetermined charge in the cylinder. 4

A further safety feature is incorporated in the dispenser; and, more particularly, in the check valve in the fill tube which allows the fluid contained in the container to flow into the chamber when the container is manipulated to fill the chamber, but which will prevent flow back of the liquid into the container when the same is being discharged from the chamber. Such feature is incorporated in the check valve itself; and although disclosed in the position and shape of the housing in FIGS. 2 and 5, it may also be used in connection with the other figures.

FIG. 13 discloses a poppet-type check valve 152 mounted in the housing 163. The valve 162 has a stem 164 and a head 165. The head is provided with a beveled side 166. The valve chamber 163 is provided with a beveled side wall 167. The bevel of the valve 166 and the bevel of the seat 167 are not exactly complementary. However, they are complementary enough so that the valve is practically seated to prevent backflow when the discharge valve is opened but which will allow a slow leak back or flow back into the container when any fluid is left in the chamber and the container is not being operated but has been placed on a shelf.

The form disclosed in FIG. 14 discloses a ball-type check valve 170, having minute depressed areas 171 on the surface thereof. In using this type of valve with the minute depressed areas on the surface thereof, no matter when the valve is contacting the seat 167, there will always be at least one depressed area at the seating portion. Such depressed area will, therfore, allow a slow feed back of the liquid from the chamber into the container when the container is placed on a shelf with some of the fluid still in the chamber.

Thus, it will be noted that any fluid contained in the dispensing chamber is under the pressure of the spring between the moving part and the fixed part constituting the chamber. As long as the dispensing valve and nozzle are being operated, the fluid will be forced outwardly through the nozzle by the spring pressure. Should there by, however, any fluid remaining in the chamber after operation of the dispensing valve and nozzle and the container placed on a shelf and further if the dispensing nozzle and valve operating member is not latched as heretofore described, there is a danger that a child or other person upon picking up the container and operating the dispensing valve might be put in the position of a danger upon dispensing of the remaining fluid in the chamber. By making the check valves as shown and described in connection with FIGS. 13 and 14, the pressure of the spring upon the contents of the chamber will cause that fluid to flow back past the check valve and into the container. Thus, in a short period of time, the chamber will become empty of any fluid, thereby reducing the hazard of injury to a child or person picking up the container and operating the dispensing nozzle.

A further modification of the dispenser is shown in FIGS. 15 to 19, inclusive, wherein a predetermined amount or a measured amount of the liquid within the container may be dispensed by means of setting an indicator on the preferred amount and rotating the top of the mechanism clockwise until it is stopped and then by actuating a valve, the desired amount will be dispensed in accordance with the setting of the desired amount.

There is shown in FIG. 15, a bottle 175 having an elongated neck 176 closed by a cap 177 and mounted on the cap is an operating member 178 having a flow opening 179 therein. The operating member having thereon a series of valuations 180, which valuations may stand for fluid ounces or any other particular measurement commensurate with the contents of the bottle 175. The operating member 178 is substantially solid and has a top wall 181, a side wall 182, and a bottom wall 183. Extending downwardly from the graduations 180 on the side wall 182 and from each graduation are series of lines 184. The bottom wall 183 has a series of notches 185 cut therein, each notch being at the base of each line 184. Spaced inwardly from the outer wall 182 and extending into the body 178 on the bottom wall 183 is an opening 186. A lever 187 having a pin 188 adjacent one end 189 is pivotally mounted on the bottom wall 183 by inserting the pin 188 into the opening 186. The other end 190 of the lever 187 has a rib or protuberance 191 thereon which during operation of the device engages the notches 185. By moving the lever 187 into the desired notch for the particular evaluation or indication, that amount of fluid can be dispensed through the opening 179 in the operating member 178. The lever 187 also acts as a stop member for rotating the operating member 178 a distance to actuate the operating mechanism within the neck of the bottle to draw into a chamber the amount of liquid desired to be dispensed and then to dispense that desired amount.

Mounted on the underside of the cap 177 is an operating mechanism 192 which may be similar in all respects to the mechanism disclosed and described in FIG. 8. The dispensing mechanism 192 is fitted within the neck 176 and one part thereof is rotatable within the neck. Affixed to the underside of the cap 177 is an inverted cup 193 having on the lower surface thereof, one part of a cam 194. The cup-shaped member 193 has a circular opening 195 therein into which extends a hub 196 which is rotatable in the opening. Extending downwardly from the hub 196 is a cylinder 197 having at the lower end thereof a piston 198. Surrounding a portion of a hub and all of the cylinder is a housing 199 having a closure wall 200 at the lower end thereof which closes the lower end of the cylinder. The upper surface of the housing 199 is provided with a cam surface 201, which is complemental to the cam surface 199 on the cup-shaped member 193. Mounted within the cylinder is a coil spring 202, one end of which bears against the end of the cylinder 203 with the other end bearing against the piston 198 and maintaining the piston in the position shown in FIG. 16. Connected to the piston is a piston rod 204, which rod is square in formation. The piston rod extends upwardly through the hub 196 through the inverted cup 193, which has a circular opening therein, and through the cap 177 which has a like circular opening therein. The upper end of the piston rod 204 is fitted into the operating member 178 in the same manner as shown in FIG. 8. Upon turning the operating member 178 in a clockwise direction after setting the lever 187, the cam surface 201 will ride downwardly on the cam surface 194 which in turn will force the cylinder 197 downwardly and compressing the spring 202 against the head of the piston. Such action will cause a vacuum between the piston 198 and the end wall 200. Such vacuum will also cause a vacuum in the dip tube 205 which will draw the liquid from the bottle through the valve 206 into the chamber. Inasmuch as the operating member 178 will only be moved a predetermined distance in accordance with the setting of the lever 187. By operation of the finger piece 207 on top of the operating member 178, a valve contained in the housing 208 will be opened, thus allowing the contents in the passageway 209 in the piston rod to be dispensed through the opening 179 into a container 210.

In order to limit the amount of rotation of the operating member 178 and to also cause it to return to its normal position, there is mounted on the cap 177 a tube 211. The tube 211 has each end thereof closed by walls 212 and 213. Contained within the tube is a coil spring 214. One portion of the tube'21l has a slot 215 cut therein substantially the full length thereof. Carried on the bottom wall 183 of the operating member is a pin 216 which extends downwardly into the slot and is engaged by one end of the coil spring 214. Upon setting the lever 187 for the desired amount to be dispensed from the container and rotating the operating member 178, the pin 216 will compress the spring 214 within the tube 211 until such time as the lever 187 engages the end 213 of the tube 211. When this happens, the operating member 178 is released and the spring will force it back to its normal position. During the turning of the operating member 178, the desired amount of fluid contained within the bottle will be pumped into the chamber. Upon operation of the finger piece 207, that amount of fluid will then be dispensed through the opening 179.

When it is desired to dispense a relative viscous liquid or to produce a foam like substance, it is proposed to use a double cam arrangement so that by first rotating the rotatable part about 180 in a first direction and rotating the same part about 180 in the reverse direction, a substantial amount of the liquid is drawn into the chamber under a greater pressure than those previously described and the liquid dispensed either in a heavy spray, as a liquid, or in a foam condition.

Such an arrangement is shown in FIGS. 20-25, wherein 225 denotes a container of the type as shown in FIG. 1. Affixed to the bottom of the container 225 is a bottom part 226. This bottom part 226 is similar to the bottom part 26 of FIG. 2 and is rotatable relative to the container body in the same manner. Mounted in the bottom part 226 is a piston rod 227 extending upwardly therefrom with a piston 228 on the upper end thereof. The piston rod has a passageway 229 therein through which the liquid in the container may pass during operation of the container. Adjacent the upper end of the passageway is a valve housing 230 containing a check valve 231 allowing the liquid to flow in one direction only.

Extending upwardly from the bottom part 226 is a first sleeve 232. The sleeve surrounds the piston rod and has at its upper end a cam surface 233. The sleeve 232 is rotatable with the bottom part 226. The cam 233 is provided with high points 234 and low points 235. The sleeve 232 receives a second sleeve denoted generally as 236 having a reduced portion 237 extending into sleeve 232 and being freely slidable and rotatable relative thereto. The second sleeve 236 is provided with a double cam 238 having a cam surface 239 complemental to cam surface 233 and an upper cam surface 240 which is oppositely directed to the cam surface 239. The cam surface 239 is provided with high points 241 and low points 242 while the cam surface 240 is provided with high points 243 and low points 244.

A third sleeve denoted generally 245 has a reduced portion 246 which is received in the upper portion of the second sleeve 236 and is slidable and rotatable relative thereto. The third sleeve carries a cam 247 having a surface 248 complemental to the surface 240 of the upper cam of the double cam 238 and a cylinder 249. The cam surface 248 is provided with high points 250 and low points 251.

The cylinder 249 has the piston 228 slidably mounted therein and is provided with an inwardly extending shoulder 255 at the lower end thereof and a closure wall 256 at the upper end. The piston 228 at rest position is positioned against the closure wall 256 and when the cylinder is filled with liquid, the piston is against the shoulder 255. The closure wall is provided with an opening 257 through which the liquid in the cylinderchamber is discharged into the tube 258 and through a discharge valve (not shown) but which may be similar in construction to the tube 79 and discharge valve shown in FIG. 2.

The piston 228 and the cylinder 249 constitute a chamber 260 which is similar to chamber 72 as shown in FIG. 2.

A spring 261 surrounds the upper end of the piston rod 227 with one end bearing against the under side of the piston 228 and the other end bearing against a shoulder 262 formed on the lower end of the third sleeve 245. The spring normally holds the various cams together with the closure wall 256 against the upper side of the piston 228. When the cams are moved by rotation of the bottom part 226, the cylinder 249 is reciprocated relative to the piston 228 thus producing a vacuum in the chamber 260 and drawing liquid from the container into the chamber. A passageway 264 is placed adjacent the lower end of the first sleeve 232 to allow the liquid within the container 225 to flow into the first sleeve and be available to the passageway 229.

The operation of this form of the invention is shown in FIGS. 22-24, inclusive, wherein FIG. 22 discloses the position of the apparatus when there is no liquid in the chamber 260 and all of the cams are in full engagement. Upon rotation of the bottom part 226 to to the left as shown by the arrow, the cam surface 233 will by engagement with cam surface 239 raise the double cam 238 and also cam 247 thus moving cylinder 249 away from the piston 228, drawing liquid into passage 229 through the piston rod past the check valve 231 and through passage 265 in the piston 228 into the chamber 260. The rotation of the bottom part 226 is only carried to about 180. This movement of the chamber 260 will fill the chamber to approximately one-half its capacity.

-'The pressure of the liquid between the piston 228 and the end closure wall 256 will balance the pressure of the spring on the underside of the piston and against the shoulder 262 tending to force the end closure wall 256 against the piston 228 and also cause cam 238 to return to the normal position shown in FIG. 22. When the rotation of the bottom part has been made to approximately 180 the high points 241 are so positioned as to contact the high points 234 and thus be operable together as a unit.

When the cams 232 and 238 are in the position first described, than the bottom part 226 is-then turned toward the right in the direction of the arrow shown in FIG. 24. This rotation will cause cam surface 240 to react with cam surface 248, thus raising cam 247 which in turn will raise the cylinder 249 its remaining distance drawing in more liquid through the passage 229, past the check valve 231 into the chamber 260. The rotation-to the right is made approximately 180 or at least the distance whereby all cams are free to return to the position shown in FIG. 22 after the contents of the chamber have been dispensed under the pressure of the spring 261.

The action of the double cam arrangement just described will produce a greater pressure on the liquid so that if the liquid is relatively viscous it may be easily dispensed either in a spray or as a foam.

The check valve 231 may be the type shown in FIGS. 13 and 14 and as heretofore described in the specification.

As this invention may be embodied in several forms without departing from the spirit or essential characteristics thereof, the present invention is therefore illustrative and not restrictive, since the scope of the invention is defined by the appended claims rather than by the description preceding them, and all changes that fall within the metes and bounds of the claims or that form their functional as well as conjointly cooperative equivalcnts, are therefore intended to be embraced by those claims.

What is claimed is:

l. A dispensing container for liquids, said container having a side wall and opposite ends, a liquid dispenser on one end of said container, a cylinder mounted in said container, a piston in the cylinder mounted for relative reciprocation between the piston and cylinder, said piston and cylinder defining a chamber for liquid to be dispensed, first fluid communication means connected with the chamber to enable flow to said chamber and second fluid communicating means connected with said chamber and with said dispenser for flow of liquid from the chamber to the dispenser, valve means is said second fluid communicating means to normally prevent flow of liquid from said chamber and operable to enable flow from said chamber to said dispenser, spring means engaged between said piston and cylinder to urge relative reciprocation between said piston and cylinder to pressurize liquid in said chamber and dispense said liquid through said dispenser when said valve means in said second fluid communicating means is open, manually operable, rotatable operating means carried by said container externally thereof, a piston rod connected at one end thereof to said piston and extending axially'from said cylinder and connectedat its other end to said operating means, double acting cam means connected between the operating means and the cylinder so that relative rotation between said container and said operating means causes relative recipro cation between said piston and cylinder to compress said spring and enlarge said chamber to draw liquid thereinto for subsequent dispensing of said liquid when said valve means is opened and said spring expands to pressurize the liquid in said chamber.

2. The container as set forth in claim 1, wherein the container comprises a body having a top part and a bottom part thereon, said operating means comprising said bottom part.

3. The container as set forth in claim I, wherein the first fluid communicating means comprises a first conduit connected in fluid communicating relationship with said cylinder and said chamber, check valve means in said first conduit to enable flow through said conduit to said chamber and prevent reverse flow therethrough, said second fluid communicating means comprising a second conduit connected at one end with said cylinder and at the other end with the dispenser. and saidvalve means in said second conduit comprising a manually operated, normally closed valve.

4. The container as set forth in claim 2, wherein the cylinder member has a cam associated therewith and the piston member has a cam associated therewith and the double cam cooperates with each of the cams to operate one of the members.

5. The container as set forth in claim 4, wherein the piston cam is rotated by the bottom part, first in one direction and then in a reverse direction, each direction causing the double cam to react with the cylinder cam to reciprocate the cylinder member.

6. The container as set forth in claim 2 wherein the bottom part is rotated, a cam surface associated with the bottom part, the double cam having two cam surfaces thereon, the cylinder member having a cam surface associated therewith, each of the cam surfaces being in cooperative relationship.

7. The container as set forth in claim 6, wherein the cam surface associated with the bottom part engages one of the cam surfaces on the double cam and the other cam surface on the double cam engages the cam surface associated with the cylinder member and rotation of the bottom part causes the reaction of the cam surfaces to reciprocate the cylinder member.

8. The container as set forth in claim 6, wherein each of the two cam surfaces on the double cam extend in opposite directions from each other.

9. The container as set forth in claim 1, wherein the piston member has a cam associated therewith and the cylinder member has a cam associated therewith and there is a double cam interposed between the first mentioned cams, the bottom part being rotated first in one direction will react with the double cam to reciprocate the double cam and the cylinder and upon being rotated in a reverse direction will cause rotation of the double cam and further reciprocate the cylinder.

10. The container as set forth in claim 2, wherein the bottom part is rotated, the cylinder member and the piston member each having a cam associated therewith, a double cam interposed between each of the cams and in engagement therewith, the double cam having two cam surfaces thereon extending in opposite directions, rotation of the bottom part in one direction causing reciprocation of the double cam and the cylinder cam moving the cylinder from the piston and enlarging the chamber, and upon rotation of the bottom part in a reverse direction causing rotation of the double cam and further reciprocation of the cylinder and further enlarging the chamber, the reciprocation of the cylinder drawing liquid from the container into the chamber, and upon operation of the valve causing dispensing of the liquid from the chamber.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3790034 *14 Feb 19725 Feb 1974Thiokol Chemical CorpRechargeable sprayer
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US4685595 *7 Mar 198511 Ago 1987Ara-Werk Kraemer Gmbh & Co.Hand-operated implement for discharging pasty substances
US5310092 *29 Abr 199110 May 1994Bespak Plc.Pump dispensing device
US5810211 *14 Oct 199722 Sep 1998Hayes Products, LlcPump assembly with sliding plug
US5816447 *6 Mar 19976 Oct 1998Hayes Products, LlcNon-aerosol pump spray apparatus
US5860574 *14 Oct 199719 Ene 1999Hayes Products, LlcPump assembly with bayonet lock
US5918782 *14 Oct 19976 Jul 1999Hayes Products, LlcPump assembly with sprayer
US5944284 *11 Dic 199631 Ago 1999IntertechniqueHumidifier system for an aircraft cabin
US5964416 *4 Oct 199612 Oct 1999Boehringer Ingelheim GmbhDevice for producing high pressure in a fluid in miniature
US6089414 *14 Oct 199718 Jul 2000Hayes Products, LlcPump assembly with one piece piston
US6126043 *24 Sep 19993 Oct 2000Albert, Ii; William D.Reusable portable pressurized fluid container
US629615430 May 20002 Oct 2001Hayes Products, LlcPump assembly with one piece piston
US636092227 Abr 200026 Mar 2002Hayes Products, LlcPump assembly with pressure release capability
US640205516 Jul 199911 Jun 2002Boehringer Ingelheim GmbhDevice for producing high pressure in a fluid in miniature
US64676575 Sep 200122 Oct 2002Donald J. ShanklinPump assembly with one piece piston
US649737313 May 200224 Dic 2002Boehringer International GmbhDevice for producing high pressure in a fluid in miniature
US691854724 Mar 200419 Jul 2005Joachim JaegerDevice for producing high pressure in a fluid in miniature
US710447024 Jun 200512 Sep 2006Boehringer Ingelheim International GmbhDevice for producing high pressure in a fluid in miniature
US71981781 Mar 20043 Abr 2007Shanklin Donald JPump assembly with piston
US95393555 May 201510 Ene 2017Ming Jen HsiaoAroma diffuser
US20040178227 *24 Mar 200416 Sep 2004Boehringer International GmbhDevice for producing high pressure in a fluid in miniature
US20050023305 *1 Mar 20043 Feb 2005Shanklin Donald J.Pump assembly with one piece piston
US20050252990 *24 Jun 200517 Nov 2005Joachim JaegerDevice for producing high pressure in a fluid in miniature
US20140339337 *14 May 201320 Nov 2014Serene House International Enterprise Ltd.Automatic aroma sprayer
US20160360855 *16 May 201615 Dic 2016Young-Kwang ByunLiquid cosmetics case
Clasificaciones
Clasificación de EE.UU.222/340, 239/329
Clasificación internacionalB65D83/14, B05B9/08
Clasificación cooperativaB65D83/14, B05B9/0883
Clasificación europeaB65D83/14, B05B9/08C6B