US3904116A - Portable cordless sprayer - Google Patents

Portable cordless sprayer Download PDF

Info

Publication number
US3904116A
US3904116A US539867A US53986775A US3904116A US 3904116 A US3904116 A US 3904116A US 539867 A US539867 A US 539867A US 53986775 A US53986775 A US 53986775A US 3904116 A US3904116 A US 3904116A
Authority
US
United States
Prior art keywords
pump
nozzle
container
compartment
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US539867A
Inventor
John E Jones
Lynn D Lineback
Charles F Sherrill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DISSTON COMPANY 1030 W MARKET ST GREENSBORO NC 27401 A CORP OF
Original Assignee
DISSTON Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DISSTON Inc filed Critical DISSTON Inc
Priority to US539867A priority Critical patent/US3904116A/en
Application granted granted Critical
Publication of US3904116A publication Critical patent/US3904116A/en
Assigned to BARCLAYSAMERICAN/BUSINESS CREDIT, INC. reassignment BARCLAYSAMERICAN/BUSINESS CREDIT, INC. MORTGAGE (SEE DOCUMENT FOR DETAILS). Assignors: DISSTON COMPANY, THE
Assigned to DISSTON COMPANY, THE, 1030 W. MARKET ST., GREENSBORO, NC 27401, A CORP. OF NC reassignment DISSTON COMPANY, THE, 1030 W. MARKET ST., GREENSBORO, NC 27401, A CORP. OF NC ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: DISSTON, INC.
Assigned to FIRST INTERSTATE COMMERICAL CORPORATION reassignment FIRST INTERSTATE COMMERICAL CORPORATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DISSTON COMPANY
Assigned to DISSTON COMPANY, THE, A CORP. OF N.C. reassignment DISSTON COMPANY, THE, A CORP. OF N.C. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BARCLAYSMERICAN/BUSINESS CREDIT, INC. A CORP. OF CT.
Assigned to CITICORP NORTH AMERICA, INC., A DE. CORP. reassignment CITICORP NORTH AMERICA, INC., A DE. CORP. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DISSTON COMPANY, THE, A NC. CORP.
Assigned to DISSTON COMPANY, (THE) reassignment DISSTON COMPANY, (THE) RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). RECORDED AT REEL 4505 FRAMES 147-165 AND TM REEL 0519 FRAMES 848-865 Assignors: FIRST INTERSTATE COMMERCIAL CORPORATION
Assigned to RULE INDUSTRIES, INC. reassignment RULE INDUSTRIES, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DISSTON COMPANY, THE, A CORP. OF NC.
Anticipated expiration legal-status Critical
Assigned to DISSTON COMPANY reassignment DISSTON COMPANY RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: RULE INDUSTRIES
Assigned to CITICORP NORTH AMERICA reassignment CITICORP NORTH AMERICA TERMINATION OF SECURITY AGREEMENT Assignors: DISSTON COMPANY
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/08Apparatus to be carried on or by a person, e.g. of knapsack type
    • B05B9/085Apparatus to be carried on or by a person, e.g. of knapsack type with a liquid pump
    • B05B9/0866Apparatus to be carried on or by a person, e.g. of knapsack type with a liquid pump the pump being a gear, centrifugal or screw-type pump

Definitions

  • a portable cordless sprayer comprises a housing structure which detachably secures to a liquid container.
  • the housing structure provides a handle which mounts a control switch.
  • the housing also supports a compartment which is suspended within the container and houses a pump and batteries.
  • the liquid is sprayed through a conduit and nozzle arrangement which can be stored on the housing.
  • the pump has a bypass check valve and the nozzle has a shut-off valve with operating pressures selected so that the pump will be primed with the nozzle closed and before spraying commences and so that the nozzle closes quickly when spraying stops.
  • the liquid container may be refilled when depleted.
  • the nozzle operates bidirectionally and the pump is reversible which enables the pump to be used as a means to refill the container to minimize Contact with insecticides, et cetera.
  • cordless sprayers offer many advantages; however, an optimum arrangement has not been achieved and there remain many disadvantages such as poor weight balance, nozzle leakage, poor refilling arrangements and substantial lack of versatility for the many applications and conditions in which cordless sprayers can be used.
  • the present invention covers a cordless, batterypowered garden and yard sprayer.
  • the sprayer includes a balanced handle and housing combination having a horizontally-disposed external recess and a container or reservoir for liquid storage.
  • the pump, motor and batteries are stored in a cup-like compartment which is suspended in the container.
  • a spraying wand assembly employed in the invention apparatus includes a flexible conduit having a rigid terminal outer end nozzle portion.
  • the flexible portion connects to the reservoir, through a self-priming pump and reversible drive motor arrangement and may be either coiled around the sprayer housing in the mentioned recess with the rigid portion clamped to the housing for spraying in such clamped position or may be used in a fully uncoiled position.
  • the spraying wand nozzle may be adjusted for the type spray or stream condition desired.
  • a fluid discharge system which minimizes leakage includes a bypass arrangement at the pump and a ball check valve at the nozzle coordinated with respect to their operating pressures such that the pump operates through the bypass until fully primed and after priming, the fluid pressure opens the nozzle check valve and maintains the nozzle check valve open so long as, but only so long as, the pump operates.
  • the nozzle operates bidirectionally and the pump is reversible. By reversing the motor direction, the pump and nozzle can be used as a means of replenishing the fluid supply.
  • the nozzle has a hole near the spray end and a slidablc tube which can be moved rearwardly to expose this hole such that the nozzle can be immersed in a liquid supply and draw replacement fluid into the container.
  • FIG. 1 is a perspective view of the portable cordless sprayer of the invention.
  • FIG. 2 is an exploded pictorial view of the sprayer.
  • FIG. 3 is an elevation section view taken substantially through the center of the sprayer with the wire leads having been omitted from the view for clarity.
  • FIG. 4 is a top plan view of the sprayer with portions thereof cut away for clarity and illustration.
  • FIG. 5 is a fragmentary side elevation section view of the spraying wand handle.
  • FIG. 6 is a fragmentary side elevation view of the pump and bypass ball check valve used in the sprayer.
  • FIG. 7 is a fragmentary side elevation section view of the pump and reversible drive motor used in the sprayer.
  • FIG. 8 is a side elevation view of the container cup assembly used in the sprayer.
  • FIG. 9 is a plan view of the container cup assembly used in the sprayer.
  • FIG. 10 is a side elevation section view through the nozzle of the preferred embodiment adapted both for spraying and refilling.
  • FIG. 11 is a fragmentary end elevation section view illustrating the locking relationship of the container and housing and illustrating the rigid tube clamp.
  • FIG. 12 is a side elevation section view through an alternative type nozzle used for spraying only and slightly enlarged.
  • a portable cordless garden and yard sprayer incorporating the features of the invention is designated generally by numeral 10.
  • the sprayer includes a container 11 serving as a reservoir for the liquid to be sprayed.
  • Container 11 receives in a locking relation a housing designated generally by numeral 12.
  • a pump assembly generally designated 13 receives a flexible tube 14 which in turn receives a wand assembly generally designated 15 and a nozzle assembly generally designated 16.
  • left housing section 20 is designed to, when ready for assembly, mate with right housing section 21 by means of screws 22 which mount in screw insets 23 provided in the left housing section 20.
  • Housing 12 is preferably molded of lightweight plastic and provides a substantially horizontal tubular compartment forming a handle portion 24 as best shown in FIG. 3 and which provides room for internal mounting of the control switch 25 and associated wiring 26 (FIG. 2).
  • Handle portion 24, made up of left and right housing sections 20, 2] has a slot molded into each housing section. Slot 29 of section 20 and slot 30 of section 21, when plated together, mate and form an opening which receives switch button 31 but retains button 3] within the opening as it slides back and forth to its extreme positions.
  • Button 31 rests against the top inside wall of handle 24 and is held in a neutral, non-operating position by guides 32, 33, 34 of section 20 and similar guides 35, 36, 37, not shown, of section 21.
  • Switch 25 mounts in position on guides 38, 39 of section 20 and similar guides 40, 41 (not shown) of section 21.
  • Button 31 is molded with a hollow cavity which receives a coil spring 42 and a switch button 43 to which spring 42 connects. Switch is a reversible switch and can be actuated by pushing down on button 31 so that it clears guides 32, 33, 34, 35, 36, 37. Button 31 can either be pushed forward corresponding to a spray position or pulled backward to a refilling position.
  • Handle portion 24 is designed to receive the flanges or guides 130, 131, 132 within slots I33, 134, 135 of handle 24. A one-quarter turn of handle 24 locks container 11 in place.
  • FIGS. 8 and 9 illustrate a container cup 47 which is received by guide slot 48 of section 20 and guide slot 49 (not shown) of section 21.
  • Cup 47 has an open top and is a molded plastic unit with top flanges 50, 51 which slide fit into guide slots 48, 49.
  • Flange 51 has a slot 52 molded into flange 51 as more fully described later in the description.
  • Cup 47 is substantially circular and is slightly tapered from the top to the bottom so that it easily enters opening 17 in container 11 and as cap 47 slides into opening 17 its contacting diameter increases and preferably provides a tight seal between cup 47 and opening 17.
  • Bottom 53 has a pair of openings 54, 55 molded therein.
  • Cavity 47a of cup 47 is of sufficient depth and diameter to adequately house pump assembly 13, batteries 56, and wiring 58.
  • Pump assembly 13 is composed of a reversible drive motor 59 which has motor leads 60, 61 extending from the base 62 of motor 59 and connected by suitable wiring to the switch and battery.
  • Motor 59 has a drive shaft 63 which extends therefrom and upon which a washer or spacer 64 is mounted.
  • Motor 59 has a raised boss 65 which is received by a mating boss 66 molded as an integral member of a pump base member 67.
  • Pump base member 67 mounts on shaft 63 through hole 68, see FIG. 2.
  • a driven gear 69 is pressed onto shaft 63.
  • Base 67 has a stud 70 pressed into a hole 71 in base 67.
  • a second gear or idler gear 72 is then pressed onto stud 70.
  • Pump housing 75 has a hollowed out cavity 76 which has a pair of grooved slots 77, 78 for aligning a pressure plate 79 of the same configuration which is placed into cavity 76 and is brought to bear against the tops of gears 69, 72. Plate 79 is constantly pressed towards gears 69, 72 by coil spring 80.
  • screws 81, 82 are placed through holes 85a, 85.: of housing 75 and holes 86a, 86b of bottom plate 67. Screws 81.
  • Gears 69, 72 are relatively small and have relatively few gear teeth, e.g., 9 teeth per gear.
  • Pressure plate 79 and plate spring 80 complete the small but highly efficient gear pump assembly.
  • Pump outlet 89 is molded as an integral part of pump housing 75. Outlet 89 opens into cavity 76 so that as liquid is pumped through gears 69, 72. it will be forced out into outlet 89 which passes through hole 90 in right housing section 21. A second or by-pass outlet 91 opens into cavity 76 so that should pump 13 not he primed. pump 13 will prime itself since air will initially be forced through outlet 91, through flexible tube 911:
  • the nozzle check valve operating pressure and the bypass piping check valve operating pressure are selected such that until the pump becomes fully primed insufficient pressure is developed to open the nozzle valvev However, once primed the nozzle check valve opens and remains open so long as the pump is energized. However, when the switch is moved from on" to off" and the pump is electrically disconnected, the nozzle substan tially immediately shuts off and prevents dripping and syphoning effects which have been experienced with prior art devices and which can be hazardous with insecticides. and the like.
  • FIGS. 24, 6-9, l0 and 12 illustrate the pump and nozzle arrangements used in the invention.
  • Two features of the invention offer special advantages in actual use of the sprayer.
  • One feature allows the pump to be primed before any spraying commences and the other feature provides for minimizing leaks and pressure losses in the nozzle.
  • priming when the pump 13 is initially started air only may be pumped and ball 116 (as seen in FIG. 10 for the reversible flow em bodiment) or ball 144 (as seen in FIG. 12 for the nonreversible flow embodiment), as the case may be, is in a closed seated position which prevents the escape of such air through the nozzle.
  • ball 93 (FIG. 6) will be against its seat 94.
  • valve spring loading the diameters of the respective balls 116, 144, and the diameters of the passageways of their respective seats I15, 143 are purposely chosen so that a greater pressure is required to open the respective nozzle than is required to maintain it open.
  • initial priming is achieved before spraying commences and equally important maximum protection against leaks is achieved with minimum pressure loss during operation.
  • ball diameters and seat passageway diameters to achieve the operation described.
  • An extremely small vent hole 97 is located in the top wall of container 1 I and allows air to get back into container 11 for venting purposes.
  • FIGS. 2, 5 and 9 best illustrate wand 15 and nozzle 16.
  • tube 14 connects at its other end to a rigid tube 100 (see FIG. 5).
  • Rigid tube 100 passes through handle which is composed of left section 101 and right section 102 which are held together by screws 103, 104.
  • Handle 15 is used when the user needs to spray an area where the complete unit 10 cannot be used due to limited access, height, etc.
  • At the other end of rigid tube 100 is an angled portion 105. Nozzle assembly 16 is secured to this end of tube 100 in a suitable threaded manner.
  • FIGS. 2 and 10 illustrate the preferred embodiment of nozzle assembly 16.
  • a collar 106 is slid ably received by nozzle body 107.
  • Collar 106 has a pair of slots 108 which receive flexible tabs 110 so that tabs 110 ride in slots 108.
  • One side of body 107 is relatively flat so that when collar 106 is slid forward, a passageway 112 is opened up between body 107 and the internal wall of collar 106.
  • Body 107 has a central bore 113 extending its entire length. At a predetermined dis tance along the length of body 107 is a hole 114 which extends through the walls of body 107 and opens bore 113.
  • Bore 113 is of a larger diameter at its forward end than at its rearward end 113a, the two ends being separated by an angled wall 115. Angled wall 115 provides a seating surface for ball 116 so that liquid flow through bore 113 and 11311 can be sealed off by ball 116.
  • Ball 116 is spring loaded by coil spring 117 which rests against ball 116.
  • the op erating pressure of spring 117 and the diameters of ball 116 and bore 113a are selected with the primingspraying sequence in mind.
  • the diameter of the ball 116 and the diameter of the passageway, i.e., bore 11311, which it closes are chosen such that the pressure to open ball 116 is much greater than the pressure re quired to keep it open. In this way, the pressure losses, once ball 116 has opened, are minimized and in like fashion the pressure to initially open ball 116 is maximized. Efficiency is gained in the described nozzle ball check design in that a larger pressure is required to open ball 116 than that required to keep it open. This means that ball 116 opens reluctantly which gives maximum protection against leaks but once it has opened when pump 13 starts, a fairly small pressure loss is expended to keep it open.
  • the forward end of body 106 is externally threaded with threads 118 which allow nozzle body 119 to be screwed thereon by means of mating internal screw threads 120.
  • Nozzle body 119 also has a central bore 121 which aligns with bore 113 and further provides for a liquid path through nozzle assembly 16.
  • the forward end 122 of nozzle body 119 is solid and prevents further forward flow of liquid.
  • An elongated hole 123 extends through end 122 of body 119 and communicates with bore 121 so that liquid coming through bores 113 and 121 is allowed to exit through hole 123.
  • An angled groove 124 is cut into the forward end portion 122 of nozzle body 119.
  • a nozzle cap 125 is received by nozzle body 1 19. External threads 126 of nozzle body 119 and internal threads 127, not shown. of cap 125 mate so that cap 125 can be screwed down onto body 119. As liquid is forced through bores 113 and 121 and exits hole 123, the liquid is swirled around and is forced out through groove 124. The liquid then exits nozzle assembly 16 through opening 128 in cap 125. The distance that cap is screwed down on body 119 determines whether the liquid emerges as a spray or as a stream. Adjustment of cap 125 adjusts the liquid pattern.
  • Handle 24 has a recessed area 18 molded therein so that tube 14 can be wound around handle 24 and stored in recessed area 18.
  • rigid tube 100 is clamped to unit 10 by means of a suitable clamp 19 so that the unit 10 can be held in one hand and operated as a fixed positioned spray.
  • a suitable clamp 19 Another and more usual operating position is that where tube 14 is unwound and wand assembly 15 is held in the operators one hand while the handle 24 is held in the operator's other hand.
  • nozzle 16 is that of nozzle assembly (see FIG. 12).
  • This nozzle assem bly is designed for spraying purposes only and does not incorporate the refill feature of nozzle 16.
  • the two-way control switch 25 can be replaced by a one-way control switch and a unidirectional motor can be substituted for motor 59.
  • Nozzle 140 has a collar 141 which receives rigid tube 100.
  • Col lar 141 has a central bore 142 which, in nozzle as sembly 16, has a tapered portion 143 which seats a ball 144 to cover bore 142a. Ball 144 is held in place against tapered portion 143 by a coil spring 145 until pressure is great enough to compress spring 145 and allow liquid to flow past ball 144.
  • Nozzle body 146 is threadably secured to collar 141.
  • a central bore 147 aligns with bore 142 of collar 141.
  • the operating pressure of spring 145 and the diameters of ball 144 and bore 14211 are selected as previously explained such that the pump will be primed before spraying commences and such that the pressure required to force ball 144 open is substantially higher than the pressure required to keep it open.
  • Bore 147 receives spring 145 and retains the same in place while permitting liquid to flow through bore 147.
  • Bore 147 terminates at elongated hole 148 as in nozzle 16. Liquid exits bore 147 through hole 148 and travels over angled groove 149 of body 146.
  • a nozzle cap 150 is threadably adjustably received by nozzle body 146. Cap 150 has an opening 151 through which the liquid exits.
  • container 11 In using sprayer 10, container 11 must first be filled with the desired liquid.
  • nozzle 16 is set for refilling by sliding collar 106 rearwardly on nozzle body 107 and by depressing switch 25 and moving it rearwardly which causes motor 59 to be reversed and in effect reverses pump 13. This, as previously described, allows liquid to enter passage way 112 and to be drawn through nozzle 16 into container 11. Once filled, collar 106 is slid back to its forwardmost position.
  • Unit 10 can now be used as a sprayer by depressing switch 25 and moving it forward causing motor 59 to drive pump 13 and draw liquid through pump 13 once it has primed itself.
  • Nozzle cap 125 is adjusted so that the desired spray pattern is achieved. By releasing switch 25, liquid flow is stopped instantly without the usual dripping of liquid.
  • sprayer 10 is filled by removing housing 12 from container l1 and filling the container 11 manually. Hous ing 12 can be removed from container 11 by a simple one-quarter turn of housing 12 which frees guides I30, 13 l 132 of housing 12 from slots 133, 134., 135 of container 11. Once container 11 is filled, guides 130, 131, 132 are aligned with slots 133, 134, 135 and a reverse one-quarter turn is used to lock the housing 12 in place on container ll. Tapered container cup 47, as previously described, provides a tight seal between opening 17 and cup 47.
  • Switch 25 is depressed, pushed forward and held in this position so that pump l3 primes itself and then begins to spray the liquid, Once switch 25 is released, it returns to its neutral or off position and spraying ceases instantly without any dripping as has heretofore been the case.
  • motor 59 operated with a no load speed of 10,000 rpm. and with a speed at maximum power of 5,000 rpm.
  • Check valve balls 93 and 116 were 0.250 inches in diameter and nozzle check valve springs H7 and 145 had a spring rate of0.4lb./in.
  • the diameter of the opening 94 was 0.04 inches and the diameter of the bores 113a and 142a were 0.200 inches, the pump gears were approximately 0.344 inches in outside diameter and 0.375 inches in length and with nine teeth each.
  • an integral molded housing having an upper horizontal handle-shaped compartment, a base portion with an open bottom appended below said handle compartment, and a lower cup-shaped compartment having an open top end secured to and centrally of said base portion;
  • a liquid container formed by side, bottom and top walls, said top wall being formed to centrally mount said base portion and having a central opening to receive said cup compartment for suspension within said container during normal operation;
  • locking means for releasably locking said liquid container to said base portion with said cup compartment so suspended;
  • a pump having a battery powered motor and mounted within said cup compartment, said pump having an inlet pipe extending through the wall of said cup compartment and terminating within said container proximate said container bottom wall, having an outlet pipe terminating externally of said housing, said pump further having bypass piping connected to bypass fluid from the outlet side of said pump to said container and including a check valve with a ball free to move between open and close positions dependent on the pressure developed at said pump outlet side;
  • a manual control switch mounted in said handle compartment and having connected wiring extending through said handle compartment and base portion to said cup compartment enabling said switch to connect said battery means to said pump motor and thereby operate said pump;
  • circuit means mounted in said housing and adapting said battery means to be connected to external charging means;
  • conduit means connected to said outlet pipe and adapted to disburse said liquid through a nozzle in some predetermined pattern, said nozzle including a spring loaded ball check valve therein, said bypass piping check valve and nozzle check valve being designed with operating pressures such that said pump operates through said piping and bypass valve until fully primed and after priming develops sufficient pressure to open said nozzle check valve and maintain said nozzle check valve open so long as but only so long as said pump operates.
  • conduit means comprises:
  • a wand assembly providing a handle member, a rigid conduit portion connected at one end to said flexible conduit, and a liquid dispensing nozzle connected at an opposite end of said flexible con duit for controlling the dispensing and spray pattern of said liquid.
  • said locking means comprises mating locking flanges formed respectively in said base portion and on said container top wall and adapted to provide locking and unlocking by partial rotation of said housing relative to said container.
  • said pump comprises a pair of motor driven intermeshed gears, a pressure plate arranged to contact one end of said gears and spring means arranged to maintain said plate in said contact.
  • said pump comprises a reversible pump
  • said nozzle is operable bidirectionally and said switch is arranged to selectively connect said pump for operating for either corresponding direction thereby enabling said container to be refilled by reversing said pump and drawing fluid through said nozzle.
  • cup compartment comprises a cup-shaped vessel adapted to be releasably secured to and within said base portion and said container is adapted to be releasably secured to and within said base portion with the respective securement of the vessel being independent of the respective securement of the container.

Abstract

A portable cordless sprayer comprises a housing structure which detachably secures to a liquid container. The housing structure provides a handle which mounts a control switch. The housing also supports a compartment which is suspended within the container and houses a pump and batteries. The liquid is sprayed through a conduit and nozzle arrangement which can be stored on the housing. The pump has a bypass check valve and the nozzle has a shut-off valve with operating pressures selected so that the pump will be primed with the nozzle closed and before spraying commences and so that the nozzle closes quickly when spraying stops. The liquid container may be refilled when depleted. However, in the preferred embodiment, the nozzle operates bidirectionally and the pump is reversible which enables the pump to be used as a means to refill the container to minimize contact with insecticides, et cetera.

Description

United States Patent [191 Jones et al.
[451 Sept. 9, 1975 PORTABLE CORDLESS SPRAYER [73] Assignee: Disston, lnc., Danville, Va.
[22] Filed: Jan. 9, l975 [211 App]. No.: 539,867
Primary Examiner-M. Henson Wood, Jr. Assistant Examiner-Michael Mar Attorney, Agent, or Firm-B. B. Olive [57] ABSTRACT A portable cordless sprayer comprises a housing structure which detachably secures to a liquid container. The housing structure provides a handle which mounts a control switch. The housing also supports a compartment which is suspended within the container and houses a pump and batteries. The liquid is sprayed through a conduit and nozzle arrangement which can be stored on the housing. The pump has a bypass check valve and the nozzle has a shut-off valve with operating pressures selected so that the pump will be primed with the nozzle closed and before spraying commences and so that the nozzle closes quickly when spraying stops. The liquid container may be refilled when depleted. However, in the preferred embodiment, the nozzle operates bidirectionally and the pump is reversible which enables the pump to be used as a means to refill the container to minimize Contact with insecticides, et cetera.
6 Claims, 12 Drawing Figures PORTABLE CORDLESS SPRAYER BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to sprayers and particularly to cordless, battery-powered garden and yard sprayers.
2. Description of the Prior Art Conventional portable sprayers for dispensing liquids, e.g., insecticides, pesticides, and the like, have generally comprised a manual air pump and an attached receptacle. Portable paint sprayers have used A.C. driven pumps, compressed air tanks, and the like, as a pressure source. More recently, cordless Sprayers have appeared in the market and which use batteryoperated pumps under the tradenames Burgess", Black and Decker", *Hudson", Tudor and Rockwell".
Typical prior art includes the following US. Pat.
Nos.: 1,411,513; 2,257,725; 2,651,545; 2,737,413; 2,752,200; 2,923,481; 2,969,809; 2,980,343; 3,002,599; 3,072,345; 3,140,830; 3,219,278;
3,524,593; and 3,670,966.
The available cordless sprayers offer many advantages; however, an optimum arrangement has not been achieved and there remain many disadvantages such as poor weight balance, nozzle leakage, poor refilling arrangements and substantial lack of versatility for the many applications and conditions in which cordless sprayers can be used.
SUMMARY OF THE INVENTION The present invention covers a cordless, batterypowered garden and yard sprayer. The sprayer includes a balanced handle and housing combination having a horizontally-disposed external recess and a container or reservoir for liquid storage. The pump, motor and batteries are stored in a cup-like compartment which is suspended in the container. A spraying wand assembly employed in the invention apparatus includes a flexible conduit having a rigid terminal outer end nozzle portion. The flexible portion connects to the reservoir, through a self-priming pump and reversible drive motor arrangement and may be either coiled around the sprayer housing in the mentioned recess with the rigid portion clamped to the housing for spraying in such clamped position or may be used in a fully uncoiled position. The spraying wand nozzle may be adjusted for the type spray or stream condition desired.
A fluid discharge system which minimizes leakage includes a bypass arrangement at the pump and a ball check valve at the nozzle coordinated with respect to their operating pressures such that the pump operates through the bypass until fully primed and after priming, the fluid pressure opens the nozzle check valve and maintains the nozzle check valve open so long as, but only so long as, the pump operates.
In the preferred embodiment, the nozzle operates bidirectionally and the pump is reversible. By reversing the motor direction, the pump and nozzle can be used as a means of replenishing the fluid supply. The nozzle has a hole near the spray end and a slidablc tube which can be moved rearwardly to expose this hole such that the nozzle can be immersed in a liquid supply and draw replacement fluid into the container.
(ill
DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of the portable cordless sprayer of the invention.
FIG. 2 is an exploded pictorial view of the sprayer.
FIG. 3 is an elevation section view taken substantially through the center of the sprayer with the wire leads having been omitted from the view for clarity.
FIG. 4 is a top plan view of the sprayer with portions thereof cut away for clarity and illustration.
FIG. 5 is a fragmentary side elevation section view of the spraying wand handle.
FIG. 6 is a fragmentary side elevation view of the pump and bypass ball check valve used in the sprayer.
FIG. 7 is a fragmentary side elevation section view of the pump and reversible drive motor used in the sprayer.
FIG. 8 is a side elevation view of the container cup assembly used in the sprayer.
FIG. 9 is a plan view of the container cup assembly used in the sprayer.
FIG. 10 is a side elevation section view through the nozzle of the preferred embodiment adapted both for spraying and refilling.
FIG. 11 is a fragmentary end elevation section view illustrating the locking relationship of the container and housing and illustrating the rigid tube clamp.
FIG. 12 is a side elevation section view through an alternative type nozzle used for spraying only and slightly enlarged.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings and particularly to FIG. 1, a portable cordless garden and yard sprayer incorporating the features of the invention is designated generally by numeral 10. The sprayer includes a container 11 serving as a reservoir for the liquid to be sprayed. Container 11 receives in a locking relation a housing designated generally by numeral 12. A pump assembly generally designated 13 receives a flexible tube 14 which in turn receives a wand assembly generally designated 15 and a nozzle assembly generally designated 16.
Referring particularly to FIGS. 2 and 3 for a descrip' tion of housing 12, left housing section 20 is designed to, when ready for assembly, mate with right housing section 21 by means of screws 22 which mount in screw insets 23 provided in the left housing section 20. Housing 12 is preferably molded of lightweight plastic and provides a substantially horizontal tubular compartment forming a handle portion 24 as best shown in FIG. 3 and which provides room for internal mounting of the control switch 25 and associated wiring 26 (FIG. 2). Handle portion 24, made up of left and right housing sections 20, 2], has a slot molded into each housing section. Slot 29 of section 20 and slot 30 of section 21, when plated together, mate and form an opening which receives switch button 31 but retains button 3] within the opening as it slides back and forth to its extreme positions. Button 31 rests against the top inside wall of handle 24 and is held in a neutral, non-operating position by guides 32, 33, 34 of section 20 and similar guides 35, 36, 37, not shown, of section 21. Switch 25 mounts in position on guides 38, 39 of section 20 and similar guides 40, 41 (not shown) of section 21. Button 31 is molded with a hollow cavity which receives a coil spring 42 and a switch button 43 to which spring 42 connects. Switch is a reversible switch and can be actuated by pushing down on button 31 so that it clears guides 32, 33, 34, 35, 36, 37. Button 31 can either be pushed forward corresponding to a spray position or pulled backward to a refilling position.
Rearwardly of the handle compartment is a terminal 27 suited to connect to an AC source through recharging unit 28 as shown in FIG. 2. Once all parts have been assembled within handle portion 24 and screws 22 tightened into right housing section 21, wiring 26 is allowed to extend from the bottom of housing 12. Handle portion 24 is designed to receive the flanges or guides 130, 131, 132 within slots I33, 134, 135 of handle 24. A one-quarter turn of handle 24 locks container 11 in place.
FIGS. 8 and 9 illustrate a container cup 47 which is received by guide slot 48 of section 20 and guide slot 49 (not shown) of section 21. Cup 47 has an open top and is a molded plastic unit with top flanges 50, 51 which slide fit into guide slots 48, 49. Flange 51 has a slot 52 molded into flange 51 as more fully described later in the description. Cup 47 is substantially circular and is slightly tapered from the top to the bottom so that it easily enters opening 17 in container 11 and as cap 47 slides into opening 17 its contacting diameter increases and preferably provides a tight seal between cup 47 and opening 17. Bottom 53 has a pair of openings 54, 55 molded therein. Cavity 47a of cup 47 is of sufficient depth and diameter to adequately house pump assembly 13, batteries 56, and wiring 58.
The description will now shift to a description of pump assembly 13 and how it is mounted within cavity 47a of cup 47. Pump assembly 13, see FIG. 7, is composed of a reversible drive motor 59 which has motor leads 60, 61 extending from the base 62 of motor 59 and connected by suitable wiring to the switch and battery. Motor 59 has a drive shaft 63 which extends therefrom and upon which a washer or spacer 64 is mounted. Motor 59 has a raised boss 65 which is received by a mating boss 66 molded as an integral member of a pump base member 67. Pump base member 67 mounts on shaft 63 through hole 68, see FIG. 2. A driven gear 69 is pressed onto shaft 63. Base 67 has a stud 70 pressed into a hole 71 in base 67. A second gear or idler gear 72 is then pressed onto stud 70. Pump housing 75 has a hollowed out cavity 76 which has a pair of grooved slots 77, 78 for aligning a pressure plate 79 of the same configuration which is placed into cavity 76 and is brought to bear against the tops of gears 69, 72. Plate 79 is constantly pressed towards gears 69, 72 by coil spring 80. Once housing 75 is in place, screws 81, 82 are placed through holes 85a, 85.: of housing 75 and holes 86a, 86b of bottom plate 67. Screws 81. 82 are then tightened down in threaded holes 87, 88, not shown, in drive motor 59. Gears 69, 72 are relatively small and have relatively few gear teeth, e.g., 9 teeth per gear. Pressure plate 79 and plate spring 80 complete the small but highly efficient gear pump assembly.
Pump outlet 89 is molded as an integral part of pump housing 75. Outlet 89 opens into cavity 76 so that as liquid is pumped through gears 69, 72. it will be forced out into outlet 89 which passes through hole 90 in right housing section 21. A second or by-pass outlet 91 opens into cavity 76 so that should pump 13 not he primed. pump 13 will prime itself since air will initially be forced through outlet 91, through flexible tube 911:
and back into the container 1] until pump 13 is fully primed. Then. liquid will be drawn into cavity 76 by pump 13 through pump inlet 95 and through tube 96 into outlet 89. Further advantages will be pointed up later in the description.
In both the preferred and alternate embodiments, the nozzle check valve operating pressure and the bypass piping check valve operating pressure are selected such that until the pump becomes fully primed insufficient pressure is developed to open the nozzle valvev However, once primed the nozzle check valve opens and remains open so long as the pump is energized. However, when the switch is moved from on" to off" and the pump is electrically disconnected, the nozzle substan tially immediately shuts off and prevents dripping and syphoning effects which have been experienced with prior art devices and which can be hazardous with insecticides. and the like.
FIGS. 24, 6-9, l0 and 12 illustrate the pump and nozzle arrangements used in the invention. Two features of the invention offer special advantages in actual use of the sprayer. One feature allows the pump to be primed before any spraying commences and the other feature provides for minimizing leaks and pressure losses in the nozzle. With respect to priming, when the pump 13 is initially started air only may be pumped and ball 116 (as seen in FIG. 10 for the reversible flow em bodiment) or ball 144 (as seen in FIG. 12 for the nonreversible flow embodiment), as the case may be, is in a closed seated position which prevents the escape of such air through the nozzle. Just prior to pumping being started, ball 93 (FIG. 6) will be against its seat 94. However, once pump 13 is operating, the air pres' sure forces ball 93 off seat 94 and towards seat 94a which allows the air to escape around ball 93, through seat 94a. through outlet 91 (FIG. 6) into return tube 91, into tube 55 (FIGS. 2, 8, 9) and back into Container 11. As the pumping sequence continues, liquid begins to flow which increases the pressure at the outlet of pump 13. This increasing pressure then rapidly builds up and causes ball 93 to seat against seat 94a which prevents further bypassing of air or liquid through tube 910. As pressure continues to rise, a sufficient pressure is eventually developed to cause ball 116 (FIG. 10) or ball 144 (FIG. 12), as the case may be, to open and spraying to commence. In both embodiments the valve spring loading, the diameters of the respective balls 116, 144, and the diameters of the passageways of their respective seats I15, 143 are purposely chosen so that a greater pressure is required to open the respective nozzle than is required to maintain it open. Thus. initial priming is achieved before spraying commences and equally important maximum protection against leaks is achieved with minimum pressure loss during operation. With these objectives in mind, those skilled in the art may readily determine appropriate spring loading. ball diameters and seat passageway diameters to achieve the operation described. An extremely small vent hole 97 is located in the top wall of container 1 I and allows air to get back into container 11 for venting purposes.
Once liquid is being forced. through pump 13, through outlet 89 and then into tube 14, the liquid is directed to the area to be sprayed through flexible tube 14 which can be directed as required. FIGS. 2, 5 and 9 best illustrate wand 15 and nozzle 16. In addition to being connected to outlet 89, it will be noticed that tube 14 connects at its other end to a rigid tube 100 (see FIG. 5). Rigid tube 100 passes through handle which is composed of left section 101 and right section 102 which are held together by screws 103, 104. Handle 15 is used when the user needs to spray an area where the complete unit 10 cannot be used due to limited access, height, etc. At the other end of rigid tube 100 is an angled portion 105. Nozzle assembly 16 is secured to this end of tube 100 in a suitable threaded manner. FIGS. 2 and 10 illustrate the preferred embodiment of nozzle assembly 16. A collar 106 is slid ably received by nozzle body 107. Collar 106 has a pair of slots 108 which receive flexible tabs 110 so that tabs 110 ride in slots 108. One side of body 107 is relatively flat so that when collar 106 is slid forward, a passageway 112 is opened up between body 107 and the internal wall of collar 106. Body 107 has a central bore 113 extending its entire length. At a predetermined dis tance along the length of body 107 is a hole 114 which extends through the walls of body 107 and opens bore 113. As liquid passes through passageway 112 and down to hole 114, it is drawn through hole 114 into bore 113 and then back into tube 14 until container 11 is filled with liquid. Bore 113 is of a larger diameter at its forward end than at its rearward end 113a, the two ends being separated by an angled wall 115. Angled wall 115 provides a seating surface for ball 116 so that liquid flow through bore 113 and 11311 can be sealed off by ball 116.
Ball 116 is spring loaded by coil spring 117 which rests against ball 116. As previously explained, the op erating pressure of spring 117 and the diameters of ball 116 and bore 113a are selected with the primingspraying sequence in mind. The diameter of the ball 116 and the diameter of the passageway, i.e., bore 11311, which it closes are chosen such that the pressure to open ball 116 is much greater than the pressure re quired to keep it open. In this way, the pressure losses, once ball 116 has opened, are minimized and in like fashion the pressure to initially open ball 116 is maximized. Efficiency is gained in the described nozzle ball check design in that a larger pressure is required to open ball 116 than that required to keep it open. This means that ball 116 opens reluctantly which gives maximum protection against leaks but once it has opened when pump 13 starts, a fairly small pressure loss is expended to keep it open.
The forward end of body 106 is externally threaded with threads 118 which allow nozzle body 119 to be screwed thereon by means of mating internal screw threads 120. Nozzle body 119 also has a central bore 121 which aligns with bore 113 and further provides for a liquid path through nozzle assembly 16. The forward end 122 of nozzle body 119 is solid and prevents further forward flow of liquid. An elongated hole 123 extends through end 122 of body 119 and communicates with bore 121 so that liquid coming through bores 113 and 121 is allowed to exit through hole 123. An angled groove 124 is cut into the forward end portion 122 of nozzle body 119.
A nozzle cap 125 is received by nozzle body 1 19. External threads 126 of nozzle body 119 and internal threads 127, not shown. of cap 125 mate so that cap 125 can be screwed down onto body 119. As liquid is forced through bores 113 and 121 and exits hole 123, the liquid is swirled around and is forced out through groove 124. The liquid then exits nozzle assembly 16 through opening 128 in cap 125. The distance that cap is screwed down on body 119 determines whether the liquid emerges as a spray or as a stream. Adjustment of cap 125 adjusts the liquid pattern.
Handle 24 has a recessed area 18 molded therein so that tube 14 can be wound around handle 24 and stored in recessed area 18. When tube 14 is wound as described, rigid tube 100 is clamped to unit 10 by means of a suitable clamp 19 so that the unit 10 can be held in one hand and operated as a fixed positioned spray. Another and more usual operating position is that where tube 14 is unwound and wand assembly 15 is held in the operators one hand while the handle 24 is held in the operator's other hand.
An alternative arrangement of nozzle 16 is that of nozzle assembly (see FIG. 12). This nozzle assem bly is designed for spraying purposes only and does not incorporate the refill feature of nozzle 16. For this ap plication, the two-way control switch 25 can be replaced by a one-way control switch and a unidirectional motor can be substituted for motor 59. Nozzle 140 has a collar 141 which receives rigid tube 100. Col lar 141 has a central bore 142 which, in nozzle as sembly 16, has a tapered portion 143 which seats a ball 144 to cover bore 142a. Ball 144 is held in place against tapered portion 143 by a coil spring 145 until pressure is great enough to compress spring 145 and allow liquid to flow past ball 144. Nozzle body 146 is threadably secured to collar 141. A central bore 147 aligns with bore 142 of collar 141. The operating pressure of spring 145 and the diameters of ball 144 and bore 14211 are selected as previously explained such that the pump will be primed before spraying commences and such that the pressure required to force ball 144 open is substantially higher than the pressure required to keep it open. Bore 147 receives spring 145 and retains the same in place while permitting liquid to flow through bore 147. Bore 147 terminates at elongated hole 148 as in nozzle 16. Liquid exits bore 147 through hole 148 and travels over angled groove 149 of body 146. A nozzle cap 150 is threadably adjustably received by nozzle body 146. Cap 150 has an opening 151 through which the liquid exits.
In using sprayer 10, container 11 must first be filled with the desired liquid. Using the preferred embodiment, nozzle 16 is set for refilling by sliding collar 106 rearwardly on nozzle body 107 and by depressing switch 25 and moving it rearwardly which causes motor 59 to be reversed and in effect reverses pump 13. This, as previously described, allows liquid to enter passage way 112 and to be drawn through nozzle 16 into container 11. Once filled, collar 106 is slid back to its forwardmost position. Unit 10 can now be used as a sprayer by depressing switch 25 and moving it forward causing motor 59 to drive pump 13 and draw liquid through pump 13 once it has primed itself. Nozzle cap 125 is adjusted so that the desired spray pattern is achieved. By releasing switch 25, liquid flow is stopped instantly without the usual dripping of liquid.
In using the alternative embodiment nozzle 140, sprayer 10 is filled by removing housing 12 from container l1 and filling the container 11 manually. Hous ing 12 can be removed from container 11 by a simple one-quarter turn of housing 12 which frees guides I30, 13 l 132 of housing 12 from slots 133, 134., 135 of container 11. Once container 11 is filled, guides 130, 131, 132 are aligned with slots 133, 134, 135 and a reverse one-quarter turn is used to lock the housing 12 in place on container ll. Tapered container cup 47, as previously described, provides a tight seal between opening 17 and cup 47. Switch 25 is depressed, pushed forward and held in this position so that pump l3 primes itself and then begins to spray the liquid, Once switch 25 is released, it returns to its neutral or off position and spraying ceases instantly without any dripping as has heretofore been the case.
To generally illustrate the character of one embodiment of the invention, motor 59 operated with a no load speed of 10,000 rpm. and with a speed at maximum power of 5,000 rpm. Check valve balls 93 and 116 were 0.250 inches in diameter and nozzle check valve springs H7 and 145 had a spring rate of0.4lb./in. The diameter of the opening 94 was 0.04 inches and the diameter of the bores 113a and 142a were 0.200 inches, the pump gears were approximately 0.344 inches in outside diameter and 0.375 inches in length and with nine teeth each.
What is claimed is:
l. A portable cordless apparatus for disbursing a liquid under pressure for spraying, and the like, compris ing:
a. an integral molded housing having an upper horizontal handle-shaped compartment, a base portion with an open bottom appended below said handle compartment, and a lower cup-shaped compartment having an open top end secured to and centrally of said base portion;
b. a liquid container formed by side, bottom and top walls, said top wall being formed to centrally mount said base portion and having a central opening to receive said cup compartment for suspension within said container during normal operation;
c. locking means for releasably locking said liquid container to said base portion with said cup compartment so suspended;
d. a pump having a battery powered motor and mounted within said cup compartment, said pump having an inlet pipe extending through the wall of said cup compartment and terminating within said container proximate said container bottom wall, having an outlet pipe terminating externally of said housing, said pump further having bypass piping connected to bypass fluid from the outlet side of said pump to said container and including a check valve with a ball free to move between open and close positions dependent on the pressure developed at said pump outlet side;
e. battery means mounted in said cup compartment;
f. a manual control switch mounted in said handle compartment and having connected wiring extending through said handle compartment and base portion to said cup compartment enabling said switch to connect said battery means to said pump motor and thereby operate said pump;
g. circuit means mounted in said housing and adapting said battery means to be connected to external charging means; and
h. conduit means connected to said outlet pipe and adapted to disburse said liquid through a nozzle in some predetermined pattern, said nozzle including a spring loaded ball check valve therein, said bypass piping check valve and nozzle check valve being designed with operating pressures such that said pump operates through said piping and bypass valve until fully primed and after priming develops sufficient pressure to open said nozzle check valve and maintain said nozzle check valve open so long as but only so long as said pump operates.
2. An apparatus as claimed in claim 1 wherein said conduit means comprises:
a. a flexible conduit connected to said pump outlet pipe and extending therefrom; and
b, a wand assembly providing a handle member, a rigid conduit portion connected at one end to said flexible conduit, and a liquid dispensing nozzle connected at an opposite end of said flexible con duit for controlling the dispensing and spray pattern of said liquid.
3. The apparatus of claim I wherein said locking means comprises mating locking flanges formed respectively in said base portion and on said container top wall and adapted to provide locking and unlocking by partial rotation of said housing relative to said container.
4. The apparatus of claim 1 wherein said pump comprises a pair of motor driven intermeshed gears, a pressure plate arranged to contact one end of said gears and spring means arranged to maintain said plate in said contact.
5. The apparatus of claim 2 wherein said pump comprises a reversible pump, said nozzle is operable bidirectionally and said switch is arranged to selectively connect said pump for operating for either corresponding direction thereby enabling said container to be refilled by reversing said pump and drawing fluid through said nozzle.
6. The apparatus of claim 1 wherein said cup compartment comprises a cup-shaped vessel adapted to be releasably secured to and within said base portion and said container is adapted to be releasably secured to and within said base portion with the respective securement of the vessel being independent of the respective securement of the container.

Claims (6)

1. A portable cordless apparatus for disbursing a liquid under pressure for spraying, and the like, comprising: a. an integral molded housing having an upper horizontal handleshaped compartment, a base portion with an open bottom appended below said handle compartment, and a lower cup-shaped compartment having an open top end secured to and centrally of said base portion; b. a liquid container formed by side, bottom and top walls, said top wall being formed to centrally mount said base portion and having a central opening to receive said cup compartment for suspension within said container during normal operation; c. locking means for releasably locking said liquid container to said base portion with said cup compartment so suspended; d. a pump having a battery powered motor and mounted within said cup compartment, said pump having an inlet pipe extending through the wall of said cup Compartment and terminating within said container proximate said container bottom wall, having an outlet pipe terminating externally of said housing, said pump further having bypass piping connected to bypass fluid from the outlet side of said pump to said container and including a check valve with a ball free to move between open and close positions dependent on the pressure developed at said pump outlet side; e. battery means mounted in said cup compartment; f. a manual control switch mounted in said handle compartment and having connected wiring extending through said handle compartment and base portion to said cup compartment enabling said switch to connect said battery means to said pump motor and thereby operate said pump; g. circuit means mounted in said housing and adapting said battery means to be connected to external charging means; and h. conduit means connected to said outlet pipe and adapted to disburse said liquid through a nozzle in some predetermined pattern, said nozzle including a spring loaded ball check valve therein, said bypass piping check valve and nozzle check valve being designed with operating pressures such that said pump operates through said piping and bypass valve until fully primed and after priming develops sufficient pressure to open said nozzle check valve and maintain said nozzle check valve open so long as but only so long as said pump operates.
2. An apparatus as claimed in claim 1 wherein said conduit means comprises: a. a flexible conduit connected to said pump outlet pipe and extending therefrom; and b. a wand assembly providing a handle member, a rigid conduit portion connected at one end to said flexible conduit, and a liquid dispensing nozzle connected at an opposite end of said flexible conduit for controlling the dispensing and spray pattern of said liquid.
3. The apparatus of claim 1 wherein said locking means comprises mating locking flanges formed respectively in said base portion and on said container top wall and adapted to provide locking and unlocking by partial rotation of said housing relative to said container.
4. The apparatus of claim 1 wherein said pump comprises a pair of motor driven intermeshed gears, a pressure plate arranged to contact one end of said gears and spring means arranged to maintain said plate in said contact.
5. The apparatus of claim 2 wherein said pump comprises a reversible pump, said nozzle is operable bidirectionally and said switch is arranged to selectively connect said pump for operating for either corresponding direction thereby enabling said container to be refilled by reversing said pump and drawing fluid through said nozzle.
6. The apparatus of claim 1 wherein said cup compartment comprises a cup-shaped vessel adapted to be releasably secured to and within said base portion and said container is adapted to be releasably secured to and within said base portion with the respective securement of the vessel being independent of the respective securement of the container.
US539867A 1975-01-09 1975-01-09 Portable cordless sprayer Expired - Lifetime US3904116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US539867A US3904116A (en) 1975-01-09 1975-01-09 Portable cordless sprayer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US539867A US3904116A (en) 1975-01-09 1975-01-09 Portable cordless sprayer

Publications (1)

Publication Number Publication Date
US3904116A true US3904116A (en) 1975-09-09

Family

ID=24152991

Family Applications (1)

Application Number Title Priority Date Filing Date
US539867A Expired - Lifetime US3904116A (en) 1975-01-09 1975-01-09 Portable cordless sprayer

Country Status (1)

Country Link
US (1) US3904116A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189098A (en) * 1978-03-23 1980-02-19 Spray Tech Corporation Household spray apparatus
US4536635A (en) * 1983-09-12 1985-08-20 Nlb Corp. Method and apparatus for cleaning welding electrode wheels with high pressure water
US4618099A (en) * 1984-07-13 1986-10-21 Kyushu Hitachi Maxell, Ltd. Electric spray
US4621770A (en) * 1981-12-14 1986-11-11 Sayen Michael D Plant watering/misting device
US4790454A (en) * 1987-07-17 1988-12-13 S. C. Johnson & Son, Inc. Self-contained apparatus for admixing a plurality of liquids
US4801088A (en) * 1987-06-08 1989-01-31 Baker Wesley L Portable battery powered sprayer
EP0249153A3 (en) * 1986-06-09 1989-11-23 Josef Kranzle Pump unit pump unit
US4925105A (en) * 1989-04-14 1990-05-15 Lin Hsien C Rechargeable garden sprayer
US5014884A (en) * 1988-10-25 1991-05-14 Erich Wunsch Spray container
US5024384A (en) * 1989-11-13 1991-06-18 Redmon Gerald W Improved spray apparatus for concrete finishing machines
US5064123A (en) * 1990-05-10 1991-11-12 S. C. Johnson & Son, Inc. Insecticide dispensing apparatus
WO1993006938A1 (en) * 1991-10-01 1993-04-15 Alfred Kärcher GmbH & Co. High-pressure cleaning equipment
EP0593900A2 (en) * 1992-09-23 1994-04-27 Eckart Dipl.-Ing. Wunsch Device for micro-spraying liquids
US5320281A (en) * 1991-08-06 1994-06-14 Andreas Stihl Housing for a high-pressure cleaning apparatus
US5421520A (en) * 1993-09-02 1995-06-06 Diversified Dynamics Corporation Portable pressure washer
US5769321A (en) * 1996-02-20 1998-06-23 Wagner Spray Tech Corporation Yoke support for piston paint pumps
EP0949005A1 (en) 1998-04-08 1999-10-13 The Procter & Gamble Company Packaged product for cleaning
EP0949006A1 (en) 1998-04-08 1999-10-13 The Procter & Gamble Company A packaged product
US5975423A (en) * 1996-03-29 1999-11-02 Rice; Terrence D. Portable fully self-contained pressure wash-down system and method
EP1060800A2 (en) * 1999-06-10 2000-12-20 Lavorwash S.r.l. Control device for high-pressure washers or the like
US6189811B1 (en) * 1999-11-15 2001-02-20 David Owen Rudy Portable water-pumping system
US6267300B1 (en) * 1999-12-09 2001-07-31 The Boeing Company Spray back fluid applicator
US6502766B1 (en) 2000-07-24 2003-01-07 The Procter & Gamble Company Liquid sprayers
US6669113B2 (en) * 2001-03-22 2003-12-30 John Halle Plant watering device
US6752330B2 (en) 2000-07-24 2004-06-22 The Procter & Gamble Company Liquid sprayers
US20040118940A1 (en) * 2002-12-20 2004-06-24 Lavitt Lawrence J. Hand-portable self-contained electric plant/watering-wand
US20040211792A1 (en) * 2003-04-28 2004-10-28 Nottingham-Spirk Design Associates, Inc., An Ohio Corporation Pump drive unit for battery operated fluid dispensers
US20050121542A1 (en) * 2003-12-09 2005-06-09 Su Lim Howard T. Multi-purpose hand held sprayer having a vertical shut-off valve
US20050133624A1 (en) * 2003-12-18 2005-06-23 Hornsby James R. Power sprayer
US20050133627A1 (en) * 2003-12-18 2005-06-23 Hornsby James R. Power sprayer
US20050133626A1 (en) * 2003-12-18 2005-06-23 Hornsby James R. Power sprayer
US20060027681A1 (en) * 2004-08-06 2006-02-09 Scott Wu Portable direct-current sprayer
US20060076434A1 (en) * 2003-12-18 2006-04-13 James Russell Hornsby Power sprayer
US20060086411A1 (en) * 2004-10-27 2006-04-27 Robert Luca Portable fuel delivery apparatus
US20070125878A1 (en) * 2005-10-26 2007-06-07 Hahn Klaus K Hand held pressure washer
US7328859B2 (en) 2003-12-18 2008-02-12 Cepia, Llc Power sprayer
EP1795106A3 (en) * 2005-12-06 2008-03-19 Vax Limited Machine for cleaning a surface e.g. a floor surface
US20080272150A1 (en) * 2007-02-07 2008-11-06 Klaus Karl Hahn Sprayer system
US20090032618A1 (en) * 2003-12-18 2009-02-05 James Russell Hornsby Power sprayer
US20090159723A1 (en) * 2007-12-21 2009-06-25 Cepia, Llc Valve with actuator assist
US20090269218A1 (en) * 2008-04-25 2009-10-29 Gardner Michael R Portable pressure washer system
US8282135B1 (en) * 2009-12-17 2012-10-09 Baucom Jr Donald L Hydraulic hose coupler
US20120325355A1 (en) * 2010-06-24 2012-12-27 Frank Docheff Portable Axillary Fuel Supply
US8444068B2 (en) 2005-10-26 2013-05-21 Techtronic Outdoor Products Technology Limited Dual flow pressure washer
USD713931S1 (en) 2013-01-09 2014-09-23 Central Garden & Pet Company Sprayer
DE102013212672A1 (en) * 2013-06-28 2014-12-31 Robert Bosch Gmbh Power tools switching device
US9342996B2 (en) 2004-12-02 2016-05-17 The United States Of America, As Represented By The Secretary Of The Army Trauma training system
EP2373428A4 (en) * 2008-12-23 2017-03-22 Smg Brands, Inc. Sprayer
US20170101300A1 (en) * 2011-08-29 2017-04-13 Cardomon International Limited Apparatus for dispensing a liquid from a liquid storage container
CN108575963A (en) * 2018-04-30 2018-09-28 中山市科多隆自动化设备有限公司 A kind of spraying equipment and drugs
US10213799B1 (en) * 2017-12-18 2019-02-26 Edward Lee Roczey Multi-use portable hand-held sprayer
US10940497B2 (en) * 2016-07-11 2021-03-09 Bayer Cropscience Aktiengesellschaft Intelligent spray system
US20210394211A1 (en) * 2020-06-23 2021-12-23 James P. Shea Release agent spray system for temporary tape removal machine
US11440037B1 (en) * 2022-03-11 2022-09-13 Zap Mosquito Solutions Inc. Portable mist wand system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680789A (en) * 1970-04-18 1972-08-01 Josef Wagner Spray gun
US3768732A (en) * 1972-02-22 1973-10-30 Curtis Dyna Corp Intermittent liquid metering system and apparatus
US3825156A (en) * 1973-02-13 1974-07-23 Tiger Vacuum Bottle Ind Co Ltd Automatic liquid pouring device for vacuum bottle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680789A (en) * 1970-04-18 1972-08-01 Josef Wagner Spray gun
US3768732A (en) * 1972-02-22 1973-10-30 Curtis Dyna Corp Intermittent liquid metering system and apparatus
US3825156A (en) * 1973-02-13 1974-07-23 Tiger Vacuum Bottle Ind Co Ltd Automatic liquid pouring device for vacuum bottle

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189098A (en) * 1978-03-23 1980-02-19 Spray Tech Corporation Household spray apparatus
US4621770A (en) * 1981-12-14 1986-11-11 Sayen Michael D Plant watering/misting device
US4536635A (en) * 1983-09-12 1985-08-20 Nlb Corp. Method and apparatus for cleaning welding electrode wheels with high pressure water
US4618099A (en) * 1984-07-13 1986-10-21 Kyushu Hitachi Maxell, Ltd. Electric spray
EP0249153A3 (en) * 1986-06-09 1989-11-23 Josef Kranzle Pump unit pump unit
US4801088A (en) * 1987-06-08 1989-01-31 Baker Wesley L Portable battery powered sprayer
US4790454A (en) * 1987-07-17 1988-12-13 S. C. Johnson & Son, Inc. Self-contained apparatus for admixing a plurality of liquids
US5014884A (en) * 1988-10-25 1991-05-14 Erich Wunsch Spray container
US4925105A (en) * 1989-04-14 1990-05-15 Lin Hsien C Rechargeable garden sprayer
US5024384A (en) * 1989-11-13 1991-06-18 Redmon Gerald W Improved spray apparatus for concrete finishing machines
US5064123A (en) * 1990-05-10 1991-11-12 S. C. Johnson & Son, Inc. Insecticide dispensing apparatus
US5320281A (en) * 1991-08-06 1994-06-14 Andreas Stihl Housing for a high-pressure cleaning apparatus
WO1993006938A1 (en) * 1991-10-01 1993-04-15 Alfred Kärcher GmbH & Co. High-pressure cleaning equipment
US5395052A (en) * 1991-10-01 1995-03-07 Alfred Karcher Gmbh & Co. High-pressure cleaning device with pump housing/spray gun connection
EP0593900A2 (en) * 1992-09-23 1994-04-27 Eckart Dipl.-Ing. Wunsch Device for micro-spraying liquids
EP0593900A3 (en) * 1992-09-23 1994-09-21 Wunsch Eckart Device for micro-spraying liquids
US5397034A (en) * 1992-09-23 1995-03-14 Wunsch; Eckart Finely atomizing device for fluids
US5421520A (en) * 1993-09-02 1995-06-06 Diversified Dynamics Corporation Portable pressure washer
US5769321A (en) * 1996-02-20 1998-06-23 Wagner Spray Tech Corporation Yoke support for piston paint pumps
US5975423A (en) * 1996-03-29 1999-11-02 Rice; Terrence D. Portable fully self-contained pressure wash-down system and method
EP0949006A1 (en) 1998-04-08 1999-10-13 The Procter & Gamble Company A packaged product
US6560806B1 (en) * 1998-04-08 2003-05-13 The Procter & Gamble Company Process of cleaning carpets and the like
EP0949005A1 (en) 1998-04-08 1999-10-13 The Procter & Gamble Company Packaged product for cleaning
EP1010389A2 (en) 1998-04-08 2000-06-21 The Procter & Gamble Company A process of cleaning carpets and the like
WO1999051354A1 (en) 1998-04-08 1999-10-14 The Procter & Gamble Company A packaged product
US6595437B1 (en) * 1998-04-08 2003-07-22 The Procter & Gamble Company Packaged product
US6578224B1 (en) * 1998-04-08 2003-06-17 The Procter & Gamble Company Process of cleaning carpets and the like
EP1060800A2 (en) * 1999-06-10 2000-12-20 Lavorwash S.r.l. Control device for high-pressure washers or the like
EP1060800A3 (en) * 1999-06-10 2002-01-23 Lavorwash S.r.l. Control device for high-pressure washers or the like
US6189811B1 (en) * 1999-11-15 2001-02-20 David Owen Rudy Portable water-pumping system
US6267300B1 (en) * 1999-12-09 2001-07-31 The Boeing Company Spray back fluid applicator
US20030042330A1 (en) * 2000-07-24 2003-03-06 The Procter & Gamble Company Liquid sprayers
US6502766B1 (en) 2000-07-24 2003-01-07 The Procter & Gamble Company Liquid sprayers
US6752330B2 (en) 2000-07-24 2004-06-22 The Procter & Gamble Company Liquid sprayers
US6981658B2 (en) 2000-07-24 2006-01-03 The Procter & Gamble Company Liquid sprayers
US6969046B2 (en) 2000-07-24 2005-11-29 The Procter & Gamble Company Venting mechanism
US6669113B2 (en) * 2001-03-22 2003-12-30 John Halle Plant watering device
US20040118940A1 (en) * 2002-12-20 2004-06-24 Lavitt Lawrence J. Hand-portable self-contained electric plant/watering-wand
US20040211792A1 (en) * 2003-04-28 2004-10-28 Nottingham-Spirk Design Associates, Inc., An Ohio Corporation Pump drive unit for battery operated fluid dispensers
US7318539B2 (en) * 2003-04-28 2008-01-15 Power Sprayer Llc Pump drive unit for battery operated fluid dispensers
US20050121542A1 (en) * 2003-12-09 2005-06-09 Su Lim Howard T. Multi-purpose hand held sprayer having a vertical shut-off valve
US7051959B2 (en) 2003-12-09 2006-05-30 Howard Tak Su Lim Multi-purpose hand held sprayer having a vertical shut-off valve
US7097119B2 (en) 2003-12-18 2006-08-29 Cepia, Llc Power sprayer
US7568637B2 (en) 2003-12-18 2009-08-04 S.C. Johnson & Son, Inc. Power sprayer
US20060076434A1 (en) * 2003-12-18 2006-04-13 James Russell Hornsby Power sprayer
US7648083B2 (en) 2003-12-18 2010-01-19 S.C. Johnson & Son, Inc. Power sprayer
US20050133626A1 (en) * 2003-12-18 2005-06-23 Hornsby James R. Power sprayer
US20050133627A1 (en) * 2003-12-18 2005-06-23 Hornsby James R. Power sprayer
US7588198B2 (en) 2003-12-18 2009-09-15 S.C. Johnson & Son, Inc. Power sprayer
US20080237371A1 (en) * 2003-12-18 2008-10-02 Cepia, Llc Power sprayer
US7562834B2 (en) 2003-12-18 2009-07-21 S. C. Johnson & Son, Inc. Power sprayer
US7246755B2 (en) 2003-12-18 2007-07-24 Cepia, Llc Power sprayer
US20070228186A1 (en) * 2003-12-18 2007-10-04 Cepia, Llc Power sprayer
US20050133624A1 (en) * 2003-12-18 2005-06-23 Hornsby James R. Power sprayer
US7328859B2 (en) 2003-12-18 2008-02-12 Cepia, Llc Power sprayer
US20090032618A1 (en) * 2003-12-18 2009-02-05 James Russell Hornsby Power sprayer
US7384006B2 (en) 2003-12-18 2008-06-10 Cepia, Llc Power sprayer
US20060027681A1 (en) * 2004-08-06 2006-02-09 Scott Wu Portable direct-current sprayer
US7631818B2 (en) * 2004-08-06 2009-12-15 Scott Wu Portable direct-current sprayer
US20060266430A1 (en) * 2004-10-27 2006-11-30 Robert Luca Portable fuel delivery apparatus
US7108026B2 (en) * 2004-10-27 2006-09-19 Robert Luca Portable fuel delivery apparatus
US20060086411A1 (en) * 2004-10-27 2006-04-27 Robert Luca Portable fuel delivery apparatus
US10347157B2 (en) 2004-12-02 2019-07-09 The United States Of America, As Represented By The Secretary Of The Army Trauma training system
US9342996B2 (en) 2004-12-02 2016-05-17 The United States Of America, As Represented By The Secretary Of The Army Trauma training system
US7854398B2 (en) 2005-10-26 2010-12-21 Techtronic Outdoor Products Technology Limited Hand held pressure washer
US20070125878A1 (en) * 2005-10-26 2007-06-07 Hahn Klaus K Hand held pressure washer
US8444068B2 (en) 2005-10-26 2013-05-21 Techtronic Outdoor Products Technology Limited Dual flow pressure washer
EP1795106A3 (en) * 2005-12-06 2008-03-19 Vax Limited Machine for cleaning a surface e.g. a floor surface
US20080272150A1 (en) * 2007-02-07 2008-11-06 Klaus Karl Hahn Sprayer system
US20110073677A1 (en) * 2007-02-07 2011-03-31 Klaus Karl Hahn Sprayer system
US20090159723A1 (en) * 2007-12-21 2009-06-25 Cepia, Llc Valve with actuator assist
US8602386B2 (en) 2007-12-21 2013-12-10 S.C. Johnson & Son, Inc. Valve with actuator assist
US8425203B2 (en) 2008-04-25 2013-04-23 Techtronic Outdoor Products Technology Limited Portable pressure washer system
US20090269218A1 (en) * 2008-04-25 2009-10-29 Gardner Michael R Portable pressure washer system
EP2373428A4 (en) * 2008-12-23 2017-03-22 Smg Brands, Inc. Sprayer
US8282135B1 (en) * 2009-12-17 2012-10-09 Baucom Jr Donald L Hydraulic hose coupler
US9016308B2 (en) * 2010-06-24 2015-04-28 Frank Docheff Portable axillary fuel supply
US20120325355A1 (en) * 2010-06-24 2012-12-27 Frank Docheff Portable Axillary Fuel Supply
US10807854B2 (en) * 2011-08-29 2020-10-20 Cardomon International Limited Apparatus for dispensing a liquid from a liquid storage container
US20170101300A1 (en) * 2011-08-29 2017-04-13 Cardomon International Limited Apparatus for dispensing a liquid from a liquid storage container
US11390513B2 (en) * 2011-08-29 2022-07-19 Cardomon International Limited Apparatus for dispensing a liquid from a liquid storage container
US10202270B2 (en) * 2011-08-29 2019-02-12 Cardomon International Limited Apparatus for dispensing a liquid from a liquid storage container
USD713931S1 (en) 2013-01-09 2014-09-23 Central Garden & Pet Company Sprayer
DE102013212672A1 (en) * 2013-06-28 2014-12-31 Robert Bosch Gmbh Power tools switching device
US10940497B2 (en) * 2016-07-11 2021-03-09 Bayer Cropscience Aktiengesellschaft Intelligent spray system
US11059063B2 (en) * 2016-07-11 2021-07-13 Bayer Cropscience Aktiengesellschaft Spray device having a replaceable cartridge
US10213799B1 (en) * 2017-12-18 2019-02-26 Edward Lee Roczey Multi-use portable hand-held sprayer
CN108575963B (en) * 2018-04-30 2021-02-26 林广华 Pesticide spraying equipment
CN108575963A (en) * 2018-04-30 2018-09-28 中山市科多隆自动化设备有限公司 A kind of spraying equipment and drugs
US20210394211A1 (en) * 2020-06-23 2021-12-23 James P. Shea Release agent spray system for temporary tape removal machine
US11534783B2 (en) * 2020-06-23 2022-12-27 James P. Shea Release agent spray system for temporary tape removal machine
US11440037B1 (en) * 2022-03-11 2022-09-13 Zap Mosquito Solutions Inc. Portable mist wand system

Similar Documents

Publication Publication Date Title
US3904116A (en) Portable cordless sprayer
US5054947A (en) Self-contained power painting systems
US4033511A (en) Portable atomizer apparatus
US6328543B1 (en) Gear pump and replaceable reservoir for a fluid sprayer
IL45728A (en) Cordless electric sprayer
US3802511A (en) Portable fire extinguisher
US7753290B2 (en) Portable powered foaming sprayer
US6565015B2 (en) Portable self-energizing pressure sprayer
US2704690A (en) Spray gun
CN102202802A (en) Portable airless sprayer
US20050230429A1 (en) Grease gun with remote-feed adapter
PL184482B1 (en) Pumping atomiser
CA2060541A1 (en) Spray gun with regulated pressure feed paint cup
US6394365B1 (en) Portable dynamic pre-pressurized sprayer for use with water or dilute aqueous solution
US20050031404A1 (en) Car wash device
US6234347B1 (en) Pressurized water gun with selective pressurization
US3433415A (en) Hydraulic systems
US5411183A (en) Liquid spray or foam dispensing apparatus
EP4000741A1 (en) Electric sprayer
AU659496B2 (en) Spraying apparatus
US20040159368A1 (en) Quick fill cap for a toy water gun
US4763814A (en) Fluid feeding device
KR101966027B1 (en) Apparatus for Spraying Agricultural Chemicals
US4177937A (en) Constant pressure spraying apparatus
US11965707B1 (en) Metered volume water gun

Legal Events

Date Code Title Description
AS Assignment

Owner name: BARCLAYSAMERICAN/BUSINESS CREDIT, INC., 2302 WEST

Free format text: MORTGAGE;ASSIGNOR:DISSTON COMPANY, THE;REEL/FRAME:004081/0236

Effective date: 19821124

AS Assignment

Owner name: DISSTON COMPANY, THE, 1030 W. MARKET ST., GREENSBO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DISSTON, INC.;REEL/FRAME:004132/0257

Effective date: 19821129

AS Assignment

Owner name: FIRST INTERSTATE COMMERICAL CORPORATION, 10375 EAS

Free format text: SECURITY INTEREST;ASSIGNOR:DISSTON COMPANY;REEL/FRAME:004505/0147

Effective date: 19851126

AS Assignment

Owner name: DISSTON COMPANY, THE, 1030 W. MARKET STREET, GREEN

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BARCLAYSMERICAN/BUSINESS CREDIT, INC. A CORP. OF CT.;REEL/FRAME:004505/0170

Effective date: 19851226

AS Assignment

Owner name: CITICORP NORTH AMERICA, INC., 450 MAMARONECK AVENU

Free format text: SECURITY INTEREST;ASSIGNOR:DISSTON COMPANY, THE, A NC. CORP.;REEL/FRAME:004826/0326

Effective date: 19871230

Owner name: CITICORP NORTH AMERICA, INC., A DE. CORP.,NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:DISSTON COMPANY, THE, A NC. CORP.;REEL/FRAME:004826/0326

Effective date: 19871230

AS Assignment

Owner name: DISSTON COMPANY, (THE)

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:FIRST INTERSTATE COMMERCIAL CORPORATION;REEL/FRAME:004894/0639

Effective date: 19880402

Owner name: DISSTON COMPANY, (THE), STATELESS

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:FIRST INTERSTATE COMMERCIAL CORPORATION;REEL/FRAME:004894/0639

Effective date: 19880402

AS Assignment

Owner name: RULE INDUSTRIES, INC., MASSACHUSETTS

Free format text: SECURITY INTEREST;ASSIGNOR:DISSTON COMPANY, THE, A CORP. OF NC.;REEL/FRAME:005250/0662

Effective date: 19891211

AS Assignment

Owner name: DISSTON COMPANY, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:RULE INDUSTRIES;REEL/FRAME:007007/0834

Effective date: 19940519

AS Assignment

Owner name: CITICORP NORTH AMERICA, NEW YORK

Free format text: TERMINATION OF SECURITY AGREEMENT;ASSIGNOR:DISSTON COMPANY;REEL/FRAME:007030/0529

Effective date: 19940505