US3904849A - Temperature controlled electric fluid heating apparatus - Google Patents

Temperature controlled electric fluid heating apparatus Download PDF

Info

Publication number
US3904849A
US3904849A US320624A US32062473A US3904849A US 3904849 A US3904849 A US 3904849A US 320624 A US320624 A US 320624A US 32062473 A US32062473 A US 32062473A US 3904849 A US3904849 A US 3904849A
Authority
US
United States
Prior art keywords
housing
passage
core
side wall
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US320624A
Inventor
Daniel P Lucero
Alan R Teets
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meloy Laboratories Inc
Original Assignee
Meloy Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meloy Laboratories Inc filed Critical Meloy Laboratories Inc
Priority to US320624A priority Critical patent/US3904849A/en
Priority to US05/430,572 priority patent/US4036915A/en
Application granted granted Critical
Publication of US3904849A publication Critical patent/US3904849A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/142Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply

Definitions

  • An apparatus for providing precise control of the temperature of a fluid includes a cylindrical housing hav- [211 Appl' 320624 ing its side wall spaced from the side wall of a hollow cylindrical core contained therein to provide a thin [52] U.S. Cl. 219/299; 165/155; 219/301; flow passage therebetween for the fluid.
  • An electric 219/308; 219/331; 219/368; 261/142 heater coil is wound around the exterior of the hous- [51] Int. Cl. H0511 1/02; F24h 3/04 i g to pply he t to th fluid in the passage.
  • the fluid [58] Field of Search 219/296-309 is admitted to the p g at One end thereof, flows 219/368, 367, 373, 379-382, 331; 165/155; the length of the passage to the other end thereof, 261 141, 142 passes through a port which communicates the other end of the passage with the interior of the core, flows [56] Refe en e Cit d the length of the core and exits through an outlet from UNITED STATES PATENTS the core adjacent to said one end of the passage.
  • the heater power output is controlled in response to 21 1,514,813 11/1924 Adams 219/298 X tem erature sensor positioned in the housin to Sense 1 519 395 12/1924 Clench 219/299 p g 1534298 4/1925 Clark I I 4 219l299 the temperature of the fluid which has passed along 1:624:843 4 1927 McQuinn 219 299 the passage 80 that the temperature is Precisely COW 1,634,704 7 1927 Brand 219 29 X trolled.
  • the exterior of the housing is thermally insu- 1,772,557 8/1930 Schumers.
  • This invention relates to temperature-controlled apparatus and more particularly to temperaturecontrolled apparatus for precise control of the permeation of a fluid into a carrier fluid.
  • a permeation tube containing liquified sulphur dioxide is placed in a heater chamber or conduit through which air, serving as a carrier or dilution gas, is passed.
  • the sulphur dioxide sample diffuses through the permeation tube wall into the air stream at a known rate, dependent upon temperature.
  • the sulphur dioxide concentration of the gas mixture is thus precisely controlled. It is used to calibrate the analyzer accordingly.
  • Yet another object of the invention is to provide apparatus of the foregoing type which readily accommodates variations of the inlet temperature of the carrier gas, which is relatively independent of ambient condi tions, and which is less sensitive to the rate of flow of the carrier gas.
  • a temperature-regulated enclosure essentially an isothermal enclosure, in which a permeation tube or the like is located, the permeation tube containing a supply of a fluid which is to be diffused into a carrier fluid.
  • the enclosure provides a thin large-surface-area passage through which the carrier fluid passes and by which the carrier fluid is heated to a precisely controlled temperature.
  • the enclosure is constituted by a cylindrical housing having a cylindrical core therein, with the side wall of the core spaced from the side wall of the housing to provide a cylindrical passage of thin annular cross-section.
  • the carrier fluid such as air
  • the carrier fluid passes along the length of the hollow core interior and then through an exit port from the housing.
  • the outer surface of the housing is provided with a heater winding, the power output of which is controlled in response to a temperature sensor in the core to provide heating power for precise temperature regulation of the carrier fluid as it passes into the hollow interior of the core.
  • the entire housing is insulated from the ambient condition by external insulation.
  • the permeation tube may extend transversely of the core or longitudinally of the core, and access to the tube may be provided at one side of the housing or at an end thereof.
  • FIG. 11 is a longitudinal sectional view, partially broken away, of a first embodiment of the invention.
  • FIG. 2 is an end view, partially broken away, as seen in the direction of arrows 22 of FIG. 1;
  • FIG. 3 is an end view, partially broken away, as seen in the direction of the arrows 33 of FIG. 1;
  • FIG. 4 is a block diagram of a circuit for regulating the temperature
  • FIG. 5 is a longitudinal sectional view, partially broken away, of a modification of the invention.
  • FIG. 6 is an end view, partially broken away, as seen in the direction of arrows 6-6 of FIG. 5;
  • FIG. 7 is an endview, partially broken away, as seen in the direction of arrows 77 of FIG. 5.
  • the present invention comprises a temperature-regulated enclosure 10 including a tubular housing 12 and a tubular core 14 contained within the housing.
  • the housing is preferably a circular cylinder, which may be formed of aluminum, for example, having a side wall 16 and end closures 118 and 20, which may be secured to the housing as by screws 22 (see FIGS. 2 and 3).
  • the core 14 is also preferably a circular cylinder with a hollow interior.
  • the core may be formed completely of Teflon, for example.
  • the inner surfaces of the housing, which as seen hereinafter are contacted by gas flowing in the enclosure, are preferably Teflon coated.
  • the length of the core is approximately the same as the interior length of the housing, and the core is provided with circumferential flanges 24 and 26 adjacent to the opposite ends thereof for spacing the outer surface of the side wall 28 of the core from the inner surface of the side wall 16 of the housing to provide a cylindrical passage 30 therebetween having thin annular cross-section.
  • O-rings 32 and 34 surround the core beyond the flanges 24 and 26, respectively, to provide a seal between the side wall of the core and the side wall of the housing at opposite ends of the passage 30.
  • a port 36 extends through the side wall 16 of the housing adjacent to one end thereof (see FIGS. 1 and 2) to provide access to the passage 30 for the admission of fluid to one end thereof.
  • the port may be internally threaded as shown to permit the coupling of a tube (not shown) thereto.
  • the side wall 28 of the core is provided with a port 38 therethrough adjacent to the end of the housing opposite the end at which port 36 is provided, in order to provide communication between one end of the passage 30 and the hollow interior 40 of the core.
  • a port 42 is provided through the end wall 18 of the housing (adjacent to port 36) by which fluid may leave the hollow interior 40. Port 42 may be internally threaded as shown in order to permit connection with a tube (not shown).
  • Port 42 may be connected to a vacuum pump (not shown) for moving a carrier fluid, such as clean air, through the temperature-regulated enclosure (or port 36 may be connected to a source of positive pressure).
  • the carrier fluid enters port 36 and one end of passage 30, as indicated by arrow 43.
  • the fluid moves circumferentially around the core 14 and longitudinally along the passage 30, as indicated by arrows 44 and 46.
  • the carrier fluid moves circumferentially about the core, as indicated by arrows 48, and enters the port 38.
  • the fluid moves longitudinally through a further flow passage provided by the hollow interior 40 of the core, as indicated by arrows 50, and leaves the enclosure by the port 42, as indicated by arrow 52.
  • a permeable wall within the enclosure is a permeable wall, one side of which is exposed to the carrier fluid in the hollow interior 40 of the core, and the other side of which is exposed to a supply of a fluid to be diffused into the carrier fluid.
  • the wall is constituted by the side wall of a permeation tube 54 of a type well known in the art.
  • the permeation tube may be a Teflon tube, for example, containing a supply of liquified sulphur dioxide which diffuses through the permeation tube wall into the stream of carrier gas in the hollow core.
  • a recess 56 is provided internally of the side wall 28 of the core, and aligned openings 58 and 60 are provided in the side wall 28 of the core and the side wall 16 of the housing, through which the permeation tube 54 may be inserted into the core.
  • a holder 62 has a cup 64 into which one end of the permeation tube is received, the other end being received in the recess 56.
  • a boss 66 extends outwardly from the side wall 16 of the housing and is internally threaded to mate with external threads 68 on the holder 62, the outer end of which may be provided with a screw head 70.
  • the opening 58 in the side wall 28 of the core may be undercut at 72 to receive an O-ring 74 to prevent fluid communication between passage 30 and the hollow interior 40 of the core through opening 58.
  • the rate at which the fluid in the permeation tube diffuses into the carrier gas is a function of the permeation tube temperature and indirectly a function of the temperature within the enclosure 10.
  • the temperature of the carrier gas and permeation tube be regulated.
  • a heater coil 76 such as insulated electrical heater tape, is wound helically about the exterior surface of the side wall 16 of the housing, and the entire housing is enclosed in thermal insulation 78, which may be in the form of foam rings stacked upon the housing, for example.
  • the temperature within the hollow core may be sensed by a thermistor connected to terminals 82 on end wall 20 of the housing.
  • the heater 76 is energized from a power supply 84 through a temperature controller 86, which is responsive to the temperature sensor 80.
  • the temperature controller may be a conventional solid state or other type of device which precisely regulates the electric power supplied to the heater 76 in response to the temperature sensor 80 and which may be adjusted to select a desired temperature. Such temperature controllers are well known in the art.
  • the carrier fluid moves along the passage 30 as a thin sheet of large surface area in intimate contact with the side wall 16 of the housing upon which the heater winding 76 or heat exchanger is mounted.
  • a long large-surface-area flow path is provided for the carrier fluid in order to ensure that the carrier is heated and precisely controlled to a predetermined temperature.
  • the enclosure 10 is isolated from ambient conditions by the insulation 78 to further ensure temperature control and conserve power.
  • FIGS. 5-7 A modification of the invention is illustrated in FIGS. 5-7.
  • This embodiment of the invention is essentially the same as that previously illustrated (the external insulation not being shown in the drawing) except that a permeation tube 54 is supported longitudinally within the hollow interior of the core 14' instead of transversely.
  • the side wall 16 of the housing and the side wall 28' of the core are devoid of the holes and recess provided in FIG. 1 for insertion and support of the permeation tube.
  • the end wall 18' of the housing has a threaded recess 88 into which a bent rod 90 is threaded, the opposite end of the rod being threaded into a permeation tube holder 62.
  • the housing 12 is 7.19 inches long with an outer diameter of 2.50 inches and an inner diameter of 2.00 inches.
  • the core 14 is 6.87 inches long with an outer diameter (neglecting the flanges) of 1.98 inches and an inner diameter of 1.25 inches, the flanges having an outer diameter matched to the inner diameter of the housing.
  • Apparatus for providing precise control of the temperature of a fluid which comprises a cylindrical housing, a hollow cylindrical core in said housing with a side wall thereof spaced from a side wall of the housing to provide a thin flow passage therebetween along the length of the core and the housing, means for closing said passage at one end thereof, means for admitting fluid to said passage adjacent to said one end thereof, closure means for the housing adjacent to the opposite end of the passage, means for providing communication between the opposite end of the passage and the interior of the core, means for providing a fluid outlet from the core adjacent to said one end of the passage, heater means secured to the outer surface of the side wall of the housing, means for insulating the housing from the ambient, means in said housing for sensing the temperature of fluid which has passed along said passage, and means responsive to said temperature sensing means for controlling said heater means.
  • Apparatus in accordance with claim 4 further comprising means for providing fluid seals between the side wall of the housing and the side wall of the core at opposite ends thereof.
  • said admitting means comprises a first port through the side wall of said housing at one side. only of said core adjacent to said one end of said passage, wherein said means for providing communication between said passage and said hollowinterior of said core comprises a second port through the side wall of said core adjacent to the opposite end of said passage and only at the side of said core opposite to the side at which fluid is admitted to said passage, whereby said fluid is constrained to flow around said core in order to pass from said first port to said second port.

Abstract

An apparatus for providing precise control of the temperature of a fluid includes a cylindrical housing having its side wall spaced from the side wall of a hollow cylindrical core contained therein to provide a thin flow passage therebetween for the fluid. An electric heater coil is wound around the exterior of the housing to supply heat to the fluid in the passage. The fluid is admitted to the passage at one end thereof, flows the length of the passage to the other end thereof, passes through a port which communicates the other end of the passage with the interior of the core, flows the length of the core and exits through an outlet from the core adjacent to said one end of the passage. The heater power output is controlled in response to a temperature sensor positioned in the housing to sense the temperature of the fluid which has passed along the passage so that the temperature is precisely controlled. The exterior of the housing is thermally insulated from the ambient to maintain stable tmperature conditions.

Description

United States Patent [191 Lucero et al. 1 Sept. 9, 1975 [54] TEMPERATURE CONTROLLED ELECTRIC 3,824,836 7/1974 Lyshkow 73/1 R FLUID HEATING APPARATUS [75] Inventors: Daniel P. Lucero, Triangle; Alan R. primlry Examiner*A- Bartis Teas Springfield, both of Va Attorney, Agent, or Firm-Shap1ro and Shapiro [73] Assignee: Meloy Laboratories, Inc.,
Springfield, Va. 1 STRAQT [22] Filed; Jan, 2, 1973 An apparatus for providing precise control of the temperature of a fluid includes a cylindrical housing hav- [211 Appl' 320624 ing its side wall spaced from the side wall of a hollow cylindrical core contained therein to provide a thin [52] U.S. Cl. 219/299; 165/155; 219/301; flow passage therebetween for the fluid. An electric 219/308; 219/331; 219/368; 261/142 heater coil is wound around the exterior of the hous- [51] Int. Cl. H0511 1/02; F24h 3/04 i g to pply he t to th fluid in the passage. The fluid [58] Field of Search 219/296-309, is admitted to the p g at One end thereof, flows 219/368, 367, 373, 379-382, 331; 165/155; the length of the passage to the other end thereof, 261 141, 142 passes through a port which communicates the other end of the passage with the interior of the core, flows [56] Refe en e Cit d the length of the core and exits through an outlet from UNITED STATES PATENTS the core adjacent to said one end of the passage. The heater power output is controlled in response to 21 1,514,813 11/1924 Adams 219/298 X tem erature sensor positioned in the housin to Sense 1 519 395 12/1924 Clench 219/299 p g 1534298 4/1925 Clark I I 4 219l299 the temperature of the fluid which has passed along 1:624:843 4 1927 McQuinn 219 299 the passage 80 that the temperature is Precisely COW 1,634,704 7 1927 Brand 219 29 X trolled. The exterior of the housing is thermally insu- 1,772,557 8/1930 Schumers. 219/299 lated from the ambient to maintain stable tmperature 1,825,793 10/1931 Heroy 219/299 conditions, 3,247,359 4/1966 Feld i 219/301 X 3,517,162 6/1970 Webb 219/331 X 8 Claims, 7 Drawing Figures ?-52 |B Q j 1 3: 1 2 E 7 1 j g 2411 2 5 i ,44/ l8 1 -1 a r- 3 1 q 46j%/ ?;%a 46 ,l
E 4 1 y" IO E 1 PERHEATION E u 1 E 1 6 12/ 1 1 54 E H 1 64 1 E 74 O 1 3 e [4e 1 1 1 t 22 1 f 82 go 1 PATENTEH SEP Q1975 SLiZET 1 u; 2
52 POWER T SUPPLY PERMEATION TUBE TEMP.
CONTROL" LER HEATERfiv TEMPERATURE CONTROLLED ELECTRIC FLUID HEATING APPARATUS BACKGROUND OF THE INVENTION This invention relates to temperature-controlled apparatus and more particularly to temperaturecontrolled apparatus for precise control of the permeation of a fluid into a carrier fluid.
It has previously been proposed to provide controlled mixing of one fluid with another by the utilization of diverse types of dilution or proportioning techniques, such as permeation or diffusion. See, for example, U.S. Pat. Nos. 3,521,865; 3,533,272; 3,618,911; 3,209,579; 3,669,637; 2,843,138; 3,516,278; British Pat. No. 81 1,401; and Review of Scientific Instruments, March, 1955, Vol. 26, No. 3, pp. 305306. For example, by one method used in calibrating a sulphur dioxide analy zer, a permeation tube containing liquified sulphur dioxide is placed in a heater chamber or conduit through which air, serving as a carrier or dilution gas, is passed. The sulphur dioxide sample diffuses through the permeation tube wall into the air stream at a known rate, dependent upon temperature. The sulphur dioxide concentration of the gas mixture is thus precisely controlled. It is used to calibrate the analyzer accordingly.
Prior attempts to provide precisely controlled mixing of fluids or dilution of one fluid by another through permeation or diffusion techniques have left much to be desired, however, because of the complexity and expense of the apparatus required, the difficulty in obtaining reproducible results, the limited range of dilution control, and/or the inability to accommodate variations in fluid temperature and flow rate. It has been known that the amount of permeation or diffusion of a fluid through a permeable wall is a function of temperature, but prior attempts to provide precise temperature control of the permeation process have left much to be desired, despite an extensive body of prior art in the heater, heat exchanger, and temperature controller field, including, for example, U.S. Pat. Nos. 2,706,620;
2,446,367; 1,480,922; 3,368,546; 1,906,450; 1,389,166; 2,730,083; 1,519,395; 1,772,557; and 1,624,843.
BRIEF SUMMARY OF THE INVENTION tus of the foregoing type in which the temperature of a carrier gas and a permeation tube immersed therein are precisely controlled, and hence in which the rate of diffusion of a sample into the carrier gas is precisely controlled,
Yet another object of the invention is to provide apparatus of the foregoing type which readily accommodates variations of the inlet temperature of the carrier gas, which is relatively independent of ambient condi tions, and which is less sensitive to the rate of flow of the carrier gas.
Briefly stated, in accordance with a preferred embodiment of the invention a temperature-regulated enclosure is provided, essentially an isothermal enclosure, in which a permeation tube or the like is located, the permeation tube containing a supply of a fluid which is to be diffused into a carrier fluid. The enclosure provides a thin large-surface-area passage through which the carrier fluid passes and by which the carrier fluid is heated to a precisely controlled temperature. More specifically, the enclosure is constituted by a cylindrical housing having a cylindrical core therein, with the side wall of the core spaced from the side wall of the housing to provide a cylindrical passage of thin annular cross-section. The carrier fluid, such as air, is admitted to one end of this passage, and at the other end of the passage a port through the hollow core is provided for admission of the carrier fluid to the hollow interior of the core, in which the permeation tube is located. The carrier fluid passes along the length of the hollow core interior and then through an exit port from the housing. The outer surface of the housing is provided with a heater winding, the power output of which is controlled in response to a temperature sensor in the core to provide heating power for precise temperature regulation of the carrier fluid as it passes into the hollow interior of the core. The entire housing is insulated from the ambient condition by external insulation. The permeation tube may extend transversely of the core or longitudinally of the core, and access to the tube may be provided at one side of the housing or at an end thereof.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be further described in conjunction with the accompanying drawings, which illustrate preferred and exemplary embodiments, and wherein:
FIG. 11 is a longitudinal sectional view, partially broken away, of a first embodiment of the invention;
FIG. 2 is an end view, partially broken away, as seen in the direction of arrows 22 of FIG. 1;
FIG. 3 is an end view, partially broken away, as seen in the direction of the arrows 33 of FIG. 1;
FIG. 4 is a block diagram of a circuit for regulating the temperature;
FIG. 5 is a longitudinal sectional view, partially broken away, of a modification of the invention;
FIG. 6 is an end view, partially broken away, as seen in the direction of arrows 6-6 of FIG. 5; and
FIG. 7 is an endview, partially broken away, as seen in the direction of arrows 77 of FIG. 5.
DETAILED DESCRIPTION OF THE INVENTION Referring to the drawings, and initially to FIG. 1 thereof, the present invention comprises a temperature-regulated enclosure 10 including a tubular housing 12 and a tubular core 14 contained within the housing. The housing is preferably a circular cylinder, which may be formed of aluminum, for example, having a side wall 16 and end closures 118 and 20, which may be secured to the housing as by screws 22 (see FIGS. 2 and 3). The core 14 is also preferably a circular cylinder with a hollow interior. The core may be formed completely of Teflon, for example. The inner surfaces of the housing, which as seen hereinafter are contacted by gas flowing in the enclosure, are preferably Teflon coated.
The length of the core is approximately the same as the interior length of the housing, and the core is provided with circumferential flanges 24 and 26 adjacent to the opposite ends thereof for spacing the outer surface of the side wall 28 of the core from the inner surface of the side wall 16 of the housing to provide a cylindrical passage 30 therebetween having thin annular cross-section. O- rings 32 and 34 surround the core beyond the flanges 24 and 26, respectively, to provide a seal between the side wall of the core and the side wall of the housing at opposite ends of the passage 30.
A port 36 extends through the side wall 16 of the housing adjacent to one end thereof (see FIGS. 1 and 2) to provide access to the passage 30 for the admission of fluid to one end thereof. The port may be internally threaded as shown to permit the coupling of a tube (not shown) thereto. The side wall 28 of the core is provided with a port 38 therethrough adjacent to the end of the housing opposite the end at which port 36 is provided, in order to provide communication between one end of the passage 30 and the hollow interior 40 of the core. A port 42 is provided through the end wall 18 of the housing (adjacent to port 36) by which fluid may leave the hollow interior 40. Port 42 may be internally threaded as shown in order to permit connection with a tube (not shown).
Port 42 may be connected to a vacuum pump (not shown) for moving a carrier fluid, such as clean air, through the temperature-regulated enclosure (or port 36 may be connected to a source of positive pressure). The carrier fluid enters port 36 and one end of passage 30, as indicated by arrow 43. The fluid moves circumferentially around the core 14 and longitudinally along the passage 30, as indicated by arrows 44 and 46. At the opposite end of the passage the carrier fluid moves circumferentially about the core, as indicated by arrows 48, and enters the port 38. Then the fluid moves longitudinally through a further flow passage provided by the hollow interior 40 of the core, as indicated by arrows 50, and leaves the enclosure by the port 42, as indicated by arrow 52.
Within the enclosure is a permeable wall, one side of which is exposed to the carrier fluid in the hollow interior 40 of the core, and the other side of which is exposed to a supply of a fluid to be diffused into the carrier fluid. In the form shown the wall is constituted by the side wall of a permeation tube 54 of a type well known in the art. The permeation tube may be a Teflon tube, for example, containing a supply of liquified sulphur dioxide which diffuses through the permeation tube wall into the stream of carrier gas in the hollow core. A recess 56 is provided internally of the side wall 28 of the core, and aligned openings 58 and 60 are provided in the side wall 28 of the core and the side wall 16 of the housing, through which the permeation tube 54 may be inserted into the core. A holder 62 has a cup 64 into which one end of the permeation tube is received, the other end being received in the recess 56. A boss 66 extends outwardly from the side wall 16 of the housing and is internally threaded to mate with external threads 68 on the holder 62, the outer end of which may be provided with a screw head 70. The opening 58 in the side wall 28 of the core may be undercut at 72 to receive an O-ring 74 to prevent fluid communication between passage 30 and the hollow interior 40 of the core through opening 58.
The rate at which the fluid in the permeation tube diffuses into the carrier gas is a function of the permeation tube temperature and indirectly a function of the temperature within the enclosure 10. In order that the mixture of the fluids may be precisely controlled, it is necessary that the temperature of the carrier gas and permeation tube be regulated. For this purpose a heater coil 76, such as insulated electrical heater tape, is wound helically about the exterior surface of the side wall 16 of the housing, and the entire housing is enclosed in thermal insulation 78, which may be in the form of foam rings stacked upon the housing, for example. The temperature within the hollow core may be sensed by a thermistor connected to terminals 82 on end wall 20 of the housing.
As shown in FIG. 4, the heater 76 is energized from a power supply 84 through a temperature controller 86, which is responsive to the temperature sensor 80. The temperature controller may be a conventional solid state or other type of device which precisely regulates the electric power supplied to the heater 76 in response to the temperature sensor 80 and which may be adjusted to select a desired temperature. Such temperature controllers are well known in the art.
It will be noted that the carrier fluid moves along the passage 30 as a thin sheet of large surface area in intimate contact with the side wall 16 of the housing upon which the heater winding 76 or heat exchanger is mounted. A long large-surface-area flow path is provided for the carrier fluid in order to ensure that the carrier is heated and precisely controlled to a predetermined temperature. The enclosure 10 is isolated from ambient conditions by the insulation 78 to further ensure temperature control and conserve power. In accordance with the invention it is possible to ensure temperature regulation of the carrier fluid to within plus or minus 0.0 1 C, for example, over a large range of carrier fluid input temperatures and flow rates. Equilibrium conditions are quickly reached and temperature variations in the admitted carrier fluid are quickly compensated by the large thermal mass, the walls of the enclosure being very thick compared to the thickness of passage 30. Compactness and efficiency are promoted by the reverse carrier gas flow through the enclosure, the permeable wall being beyond the cylindrical passage 30 of thin annular cross-section but within the confines of the passage. No preheater is required and the provision of the heater 76 only on the exterior of housing 12 (not on the core or the inside of the housing) greatly simplifies the construction.
A modification of the invention is illustrated in FIGS. 5-7. This embodiment of the invention is essentially the same as that previously illustrated (the external insulation not being shown in the drawing) except that a permeation tube 54 is supported longitudinally within the hollow interior of the core 14' instead of transversely. The side wall 16 of the housing and the side wall 28' of the core are devoid of the holes and recess provided in FIG. 1 for insertion and support of the permeation tube. lnstead, the end wall 18' of the housing has a threaded recess 88 into which a bent rod 90 is threaded, the opposite end of the rod being threaded into a permeation tube holder 62.
In one practical configuration of the invention the housing 12 is 7.19 inches long with an outer diameter of 2.50 inches and an inner diameter of 2.00 inches. The core 14 is 6.87 inches long with an outer diameter (neglecting the flanges) of 1.98 inches and an inner diameter of 1.25 inches, the flanges having an outer diameter matched to the inner diameter of the housing.
While preferred embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that changes can be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims. For example, other types of permeable walls may be employed for the diffusion of fluids diffusable through such walls.
The invention claimed is:
1. Apparatus for providing precise control of the temperature of a fluid, which comprises a cylindrical housing, a hollow cylindrical core in said housing with a side wall thereof spaced from a side wall of the housing to provide a thin flow passage therebetween along the length of the core and the housing, means for closing said passage at one end thereof, means for admitting fluid to said passage adjacent to said one end thereof, closure means for the housing adjacent to the opposite end of the passage, means for providing communication between the opposite end of the passage and the interior of the core, means for providing a fluid outlet from the core adjacent to said one end of the passage, heater means secured to the outer surface of the side wall of the housing, means for insulating the housing from the ambient, means in said housing for sensing the temperature of fluid which has passed along said passage, and means responsive to said temperature sensing means for controlling said heater means.
2. Apparatus in accordance with claim 1, wherein said housing has further closure means adjacent to said one end of said passage with a port through said further closure means to provide said outlet.
3. Apparatus in accordance with claim 2, wherein said closure means are removably connected to the side wall of said housing.
4. Apparatus in accordance with claim 1, wherein said core has circumferential flanges at opposite ends thereof spacing the side wall of the core from the side wall of the housing.
5. Apparatus in accordance with claim 4, further comprising means for providing fluid seals between the side wall of the housing and the side wall of the core at opposite ends thereof.
6. Apparatus in accordance with claim 1, wherein said admitting means comprises a first port through the side wall of said housing at one side. only of said core adjacent to said one end of said passage, wherein said means for providing communication between said passage and said hollowinterior of said core comprises a second port through the side wall of said core adjacent to the opposite end of said passage and only at the side of said core opposite to the side at which fluid is admitted to said passage, whereby said fluid is constrained to flow around said core in order to pass from said first port to said second port.
7. Apparatus in accordance with claim 1, wherein the adjacent surfaces of the side walls of said housing and said core are uniformly separated cylindrical surfaces throughout the length of said thin flow passage.
8. Apparatus in accordance with claim 1, wherein the thickness of the side wall of said housing is many times the thickness of said flow passage and the housing side wall is formed of metal.

Claims (8)

1. Apparatus for providing precise control of the temperature of a fluid, which comprises a cylindrical housing, a hollow cylindrical core in said housing with a side wall thereof spaced from a side wall of the housing to provide a thin flow passage therebetween along the length of the core and the housing, means for closing said passage at one end thereof, means for admitting fluid to said passage adjacent to said one end thereof, closure means for the housing adjacent to the opposite end of the passage, means for providing communication between the opposite end of the passage and the interior of the core, means for providing a fluid outlet from the core adjacent to said one end of the passage, heater means secured to the outer surface of the side wall of the housing, means for insulating the housing from the ambient, means in said housing for sensing the temperature of fluid which has passed along said passage, and means responsive to said temperature sensing means for controlling said heater means.
2. Apparatus in accordance with claim 1, wherein said housing has further closure means adjacent to said one end of said passage with a port through said further closure means to provide said outlet.
3. Apparatus in accordance with claim 2, wherein said closure means are removably connected to the side wall of said housing.
4. Apparatus in accordance with claim 1, wherein said core has circumferential flanges at opposite ends thereof spacing the side wall of the core from the side wall of the housing.
5. Apparatus in accordance with claim 4, further comprising means for providing fluid seals between the side wall of the housing and the side wall of the core at opposite ends thereof.
6. Apparatus in accordance with claim 1, wherein said admitting means comprises a first port through the side wall of said housing at one side only of said core adjacent to said one end of said passage, wherein said means for providing communication between said passage and said hollow interior of said core comprises a second port through the side wall of said core adjacent to the opposite end of said passage and only at the side of said core opposite to the side at which fluid is admitted to said passage, whereby said fluid is constrained to flow around said core in order to pass from said first port to said second port.
7. Apparatus in accordance with claim 1, wherein the adjacent surfaces of the side walls of said housing and said core are uniformly separated cylindrical surfaces throughout the length of said thin flow passage.
8. Apparatus in accordance with claim 1, wherein the thickness of the side wall of said housing is many times the thickness of said flow passage and the housing side wall is formed of metal.
US320624A 1973-01-02 1973-01-02 Temperature controlled electric fluid heating apparatus Expired - Lifetime US3904849A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US320624A US3904849A (en) 1973-01-02 1973-01-02 Temperature controlled electric fluid heating apparatus
US05/430,572 US4036915A (en) 1973-01-02 1974-01-03 Temperature-controlled apparatus for fluid permeation or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US320624A US3904849A (en) 1973-01-02 1973-01-02 Temperature controlled electric fluid heating apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/430,572 Division US4036915A (en) 1973-01-02 1974-01-03 Temperature-controlled apparatus for fluid permeation or the like

Publications (1)

Publication Number Publication Date
US3904849A true US3904849A (en) 1975-09-09

Family

ID=23247231

Family Applications (1)

Application Number Title Priority Date Filing Date
US320624A Expired - Lifetime US3904849A (en) 1973-01-02 1973-01-02 Temperature controlled electric fluid heating apparatus

Country Status (1)

Country Link
US (1) US3904849A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337388A (en) * 1980-05-29 1982-06-29 July Mark E Rapid-response water heating and delivery system
US4461950A (en) * 1982-08-17 1984-07-24 The Foxboro Company Heater for air bath oven
US4517135A (en) * 1983-06-21 1985-05-14 Pepsico, Inc. Carbonation measuring system and process
US4921642A (en) * 1987-12-03 1990-05-01 Puritan-Bennett Corporation Humidifier module for use in a gas humidification assembly
US20020072700A1 (en) * 2000-06-30 2002-06-13 Mantell Robert R. Method and apparatus for humidification and warming of air
US20030129093A1 (en) * 2002-01-04 2003-07-10 Olivier Rogerieux Sample processing system for a plasma spectrometer for analysing viscous samples, and samples insoluble at room temperature
FR2895276A1 (en) * 2005-12-23 2007-06-29 Renault Sas Plant for producing gaseous mixture from first and second fluids, especially for calibrating gas analyzer, includes gas-permeable inner pipe, gas-impermeable outer pipe, temperature sensor and heater in inner pipe
US20080060408A1 (en) * 2006-09-11 2008-03-13 Guth Richard U Breath test simulator
US20080060409A1 (en) * 2006-09-11 2008-03-13 Guth Laboratories, Inc. Breath Test Simulator
US8211052B1 (en) 2006-07-13 2012-07-03 Lexion Medical Llc Charged hydrator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1514813A (en) * 1922-05-31 1924-11-11 Leslie M Adams Electric heating device
US1519395A (en) * 1920-08-07 1924-12-16 George H Sanburn Water heater
US1534298A (en) * 1921-07-14 1925-04-21 Clark Warren Franklin Water-heating device
US1624843A (en) * 1924-06-10 1927-04-12 Harry Morton Sargood Electric water heater
US1634704A (en) * 1925-12-22 1927-07-05 Brand Hermann Water heater
US1772557A (en) * 1928-12-20 1930-08-12 Clarence P Schumers Heat exchanger
US1825793A (en) * 1930-11-28 1931-10-06 Heroy Herbert Electric heating system for fluids
US3247359A (en) * 1960-02-10 1966-04-19 Siemens Elektrogeraete Gmbh Electric instantaneous water heater
US3517162A (en) * 1966-02-09 1970-06-23 Webb James E Method and apparatus for controllably heating fluid
US3824836A (en) * 1972-11-21 1974-07-23 Combustion Equipment Ass Gas permeator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1519395A (en) * 1920-08-07 1924-12-16 George H Sanburn Water heater
US1534298A (en) * 1921-07-14 1925-04-21 Clark Warren Franklin Water-heating device
US1514813A (en) * 1922-05-31 1924-11-11 Leslie M Adams Electric heating device
US1624843A (en) * 1924-06-10 1927-04-12 Harry Morton Sargood Electric water heater
US1634704A (en) * 1925-12-22 1927-07-05 Brand Hermann Water heater
US1772557A (en) * 1928-12-20 1930-08-12 Clarence P Schumers Heat exchanger
US1825793A (en) * 1930-11-28 1931-10-06 Heroy Herbert Electric heating system for fluids
US3247359A (en) * 1960-02-10 1966-04-19 Siemens Elektrogeraete Gmbh Electric instantaneous water heater
US3517162A (en) * 1966-02-09 1970-06-23 Webb James E Method and apparatus for controllably heating fluid
US3824836A (en) * 1972-11-21 1974-07-23 Combustion Equipment Ass Gas permeator

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337388A (en) * 1980-05-29 1982-06-29 July Mark E Rapid-response water heating and delivery system
US4461950A (en) * 1982-08-17 1984-07-24 The Foxboro Company Heater for air bath oven
US4517135A (en) * 1983-06-21 1985-05-14 Pepsico, Inc. Carbonation measuring system and process
US4921642A (en) * 1987-12-03 1990-05-01 Puritan-Bennett Corporation Humidifier module for use in a gas humidification assembly
US6976489B2 (en) 2000-06-30 2005-12-20 Northgate Technologies, Inc. Method and apparatus for humidification and warming of air
US20020072700A1 (en) * 2000-06-30 2002-06-13 Mantell Robert R. Method and apparatus for humidification and warming of air
US7647925B2 (en) 2000-06-30 2010-01-19 Northgate Technologies, Inc. Method and apparatus for humidification and warming of air
US20060033223A1 (en) * 2000-06-30 2006-02-16 Northgate Technologies, Inc. Method and apparatus for humidification and warming of air
US20070107726A1 (en) * 2000-06-30 2007-05-17 Northgate Technologies, Inc. Method and apparatus for humidification and warming of air
US10052444B2 (en) 2000-06-30 2018-08-21 Northgate Technologies Inc. Method and apparatus for humidification and warming of air
US8955511B2 (en) 2000-06-30 2015-02-17 Northgate Technologies, Inc. Method and apparatus for humidification and warming of air
US8091546B2 (en) 2000-06-30 2012-01-10 Northgate Technologies, Inc. Method and apparatus for humidification and warming of air
US7762251B2 (en) 2000-06-30 2010-07-27 Northgate Technologies, Inc. Method and apparatus for humidification and warming of air
US20100163044A1 (en) * 2000-06-30 2010-07-01 Mantell Robert R Method and apparatus for humidification and warming of air
US20030129093A1 (en) * 2002-01-04 2003-07-10 Olivier Rogerieux Sample processing system for a plasma spectrometer for analysing viscous samples, and samples insoluble at room temperature
FR2895276A1 (en) * 2005-12-23 2007-06-29 Renault Sas Plant for producing gaseous mixture from first and second fluids, especially for calibrating gas analyzer, includes gas-permeable inner pipe, gas-impermeable outer pipe, temperature sensor and heater in inner pipe
US8211052B1 (en) 2006-07-13 2012-07-03 Lexion Medical Llc Charged hydrator
US7493793B2 (en) 2006-09-11 2009-02-24 Guth Richard U Breath test simulator
US7404311B2 (en) 2006-09-11 2008-07-29 Guth Laboratories, Inc. Breath test simulator
US20080060409A1 (en) * 2006-09-11 2008-03-13 Guth Laboratories, Inc. Breath Test Simulator
US20080060408A1 (en) * 2006-09-11 2008-03-13 Guth Richard U Breath test simulator

Similar Documents

Publication Publication Date Title
US4036915A (en) Temperature-controlled apparatus for fluid permeation or the like
US3904849A (en) Temperature controlled electric fluid heating apparatus
US3926561A (en) Gas analysis employing semi-permeable membrane
JPH0363346B2 (en)
US4294799A (en) Temperature regulating apparatus
JPH032854Y2 (en)
US3833016A (en) Apparatus for precisely controlled dilution of fluid samples
US3824836A (en) Gas permeator
US3072259A (en) Dialysis apparatus
US4720196A (en) Method and apparatus for measuring the heating power of combustible gases
JPS59208447A (en) Method of adjusting zero point in thermal conductance measuring cell in aeration culture tank
US4428684A (en) Apparatus for measuring melting point and boiling point of gas
Pocock et al. Isothermal Joule–Thomson coefficient of nitrogen
US4045998A (en) Temperature control system
US2987918A (en) Dew point determining method and apparatus
CN207488852U (en) A kind of gas constant temperature device and detecting system
US3943774A (en) Precision temperature control
JPH03123851A (en) Bod measuring instrument
US2926521A (en) Liquid aerosol indicating apparatus
US2749221A (en) Apparatus for the continuous quantitative determination of gases
JPS6059537B2 (en) Sampling device for volatile components in liquids
JP2988013B2 (en) Thermostat for biosensor
JPH02218949A (en) Apparatus for heating and cooling thermally analyzing sample
JPS61746A (en) Construction of gas calorie meter
CN107894795A (en) A kind of gas constant temperature device and detecting system