US3905363A - Dual mode fluidic ventilator - Google Patents

Dual mode fluidic ventilator Download PDF

Info

Publication number
US3905363A
US3905363A US417351A US41735173A US3905363A US 3905363 A US3905363 A US 3905363A US 417351 A US417351 A US 417351A US 41735173 A US41735173 A US 41735173A US 3905363 A US3905363 A US 3905363A
Authority
US
United States
Prior art keywords
ventilator
time
fluid
restrictors
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US417351A
Inventor
Irving C Dudley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAM RESEARCH Inc
Original Assignee
RAM RESEARCH Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAM RESEARCH Inc filed Critical RAM RESEARCH Inc
Priority to US417351A priority Critical patent/US3905363A/en
Application granted granted Critical
Publication of US3905363A publication Critical patent/US3905363A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2544Supply and exhaust type

Definitions

  • a ventilator employs a fluidic circuit which alternates between a control mode and a demand mode.
  • the control mode pro'v'ides oxygen to a non-breathing patient at a predetermined rate and volume.
  • the demand mode provides oxygen to a breathing patient to assist the patient in his breathing.
  • the fluidic circuit automatically switches between these modes in response to the patients needs.
  • a multiposition switch assembly provides different flow rates and volumes during the control mode depending upon the patients size.
  • Ventilators whether or not employing fluidic circuits, generally control the duration of the inspiration and expiration phases (I/E ratio) and the flow rate, such as tidal volume.
  • Ventilators In the use of ventilator there are two types of patient conditions which require separate modes of operation: controlled ventilation, that is, totally controlling the breathing of the patient; and demand ventilation, that is, aiding the patient in his breathing as a function of his demand. Ventilators currently available provide both modes of operation, and can switch from assisted ventilation to controlled ventilation automatically. However, if the patient recovers while on controlled ventilation, then, in most ventilators, an alarm is actuated and to place the respirator in the assisted ventilation mode, manual actuation is required.
  • the present invention is directed to a method and apparatus for controlling the flow rate of a fluid into an enclosure. More particularly, the method and apparatus f the invention are directed to a ventilator which may alternate between a controlled ventilation mode and a demand ventilation mode.
  • the control mode insures that an enclosure is filled intermittently with a fluid in uniform cycles of duration including a first phase for delivering the fluid to the enclosure and a second phase for interrupting the flow to the enclosure.
  • a manually operative pneumatic switch which is devoid of electrical dependence, and which provides the capability of switching from one of a plurality of positions corresponding to pre-established sets of conditions.
  • a ventilator which automatically alternates between 21 damand ventilation mode and a controlled ventilation mode. This alternation between modes is controlled solely by the patients needs.
  • a fluid supply is provided and communicates with the ventilator.
  • the ventilator includes a fluidic integrated circuit necessary to control the demand ventilation mode, the controlled ventilation mode, and the alternation between these modes and is solely responsive to the level of pressure in the conduit which communicates with the patient.
  • the demand ventilation mode functions. If the patient requires full control, then the ventilator automatically switches to the controlled ventilation mode. If the patient subsequently requires only assistance, then the ventilator automatically switches to the demand ventilation mode.
  • the invention is directed to a ventilator to control the flow of fluid to a patient in at least two modes, and means responsive to the pressure variations in the ventilating conduit to alternate between a first demand ventilation mode to a second controlled ventilation mode.
  • the invention includes a switch which controls the BPM, I/E ratio, and tidal volume during the controlled ventilation mode.
  • the method of the invention comprises measuring the pressure in an enclosure, providing a first fluid flow to the enclosure in response to the measured pressure at a first level, and providing a second fluid flow to the enclosure at a second pressure level in response to a change in the pressure level in the enclosure, and alternating between the first and second modes solely in response to the pressure in the enclosure.
  • a switch assembly which comprises a plurality of mechanical switches or buttons, each switch in communication with at least one valve, the valve in communication with a fluidic circuit. Actuation of the button opens its corresponding valve and deactivates all other valves.
  • the switch assembly comprises a push button selector and a valve assembly.
  • the selector includes a plurality of valves associated therewith.
  • the valves communicate with the fluidic integrated modular circuit and correspond to a set of conditions of operation: BPM, I/E ratio, and tidal volume. Actuation of a push button will insure the desired conditions are met for the ventilator.
  • FIG. is a block diagram of a ventilator, which embodies the invention.
  • FIG. 2 is a schematic illustration of a circuit employed in the ventilator
  • FIG. 3 is a perspective telescopic view of the push button selector
  • FIG. 4 is a side sectional view of a valve block assembly, engaged to the push button selector.
  • FIG. 5 is a perspective view of the switch assembly.
  • a ventilator 10 which embodies the invention is shown in block diagram form and includes a fluidic integrated circuit module 12 mated to a switch assembly 14.
  • a delivery line or conduit 16 places a patient in communication with the ventilator 10 and includes any of the well-known devices adapted for such purpose, such as masks or mouthpieces (not shown).
  • a pressure-relief valve 18 to insure that the pressure developed does not reach a level which would be injurious to the patient and an indicator 20 to demonstrate visibly the operating pressure of the ventilator are secured to the line 16.
  • the fluidic integrated modular circuit 12 is shown in detail and includes a fluid amplifier 22 disposed upstream'of the indicator 20 and downstream of the fluid power or air source and a switching circuit 24.
  • a control mode circuit 30 is shown in communication with the amplifier 22 and a control mode amplifier 26.
  • the circuit 30 also includes restrictors R3A-R3E; R4A-R4E; and RSA-RSE.
  • the switching circuit 24 comprises a Schmitt trigger STl in combination with a time-delay relay TDR-l.
  • the Schmitt trigger STl includes a resistor R1, a reference control port CI, a control port C2 which is downstream of all circuits and in direct communication with the patient, and output ports -2 and 0-1.
  • the output 0-2 communicates directly with a control port CV-2 of the fluid amplifier 26.
  • the power supply PS flows to the Schmitt trigger ST-l as shown and through restrictor R-l which sets the level of ST-l and to the reference control port 0-2.
  • the output port 0-1 provides a signal to the time-delay relay TDR-l.
  • the time-delay relay includes a restrictor R2 to control the duration of the delay of the output signal of the relay, as will be described in the operation of the invention
  • the fluid amplifier 22 includes a control port CV-l, in communication with the output, port L, of timedelay relay TDR-l.
  • the fluid amplifier 22 also includes the inlet port IV-l, downstream of the power supply PS and an outlet port OV-l, which provides a signal to the control circuit 30.
  • the control circuit 30 includes a flip-flop FFl in communication with the outlet port OV-l of the fluid amplifier 22.
  • the flip-flop FFl includes control ports Cl and C2, and outlet ports 0-2 and 0-1, which communicate with the time-delay relays TDR-2 and TDR- 3, respectively.
  • the time cycle of each leg of the flipflop FFl is determined by a combination of the timedelay relay and the restrictive device, e.g. R3A, R4A in which it is in combination with.
  • the time-restrictive device is calibrated to establish both the UB ratio and the BPM. This is determined by selection of the appropriate button on the switch assembly 14 as will be described in detail in the description of FIGS. 3 and 4, and the operation of the invention.
  • the inlets E of the time-delay relays TDR-Z and TDR-3 are in communication with both the control ports Cl and C2 of the flip-flop F F1 and the control port CV-2 of the fluid amplifier 22.
  • the switch assembly comprises two sections: the push-button selector and the valve block assembly.
  • the switch assembly may, in addition to being used with the fluidic integrated circuit 12 of the present invention, be used with other pneumatic or fluidic circuits.
  • the switch assembly shown in detail in FIGS. 3 and 4 is a 7-position switch and includes an off button which prevents operation of the entire unit and a CPR switch, which must remain manually depressed to function and provides fluid to the patient at a rate of 60 slpm for cardioarrest victims.
  • the remaining five buttons control, in combination with the restrictors shown in FIG. 2, predetermined conditions for tidal volume, BPM and HE ratio.
  • Push-buttons are identified as OFF, 30-50, 50-100, 100-150, 150-200, 200 up, and CPR.
  • the push-button selector of the switching assembly is shown in perspective telescopic view.
  • the assembly comprises a dowel pin 50 received in an aperture 50 of a button-slide 54.
  • the dowel pin 50 is disposed in the button slide 54 by pressure fit such that an approximately equal length, say for example 11/32 of an inch protrudes from both the top and the bottom of the button slide 54.
  • an approximately equal length say for example 11/32 of an inch protrudes from both the top and the bottom of the button slide 54.
  • FIG. 3 only one button slide-dowel assembly is shown in FIG. 3. However, it should be understood that matching assemblies are provided for each of the buttons.
  • a spring 56 is received in the button slide 54 between the two protruding tails 58(a) and (b) and extends beyond the upper and lower surfaces of the slide 54.
  • a dowel pin 60 is received securely by pressure fit in an aperture 62 in the end of a valve button housing 64.
  • a valve interlock bar 66 having L-shaped slots therein 68, (ae) and 72, and a tab 74 at one end thereof is disposed in the valve button housing 64.
  • a spring 76 is disposed about the dowel pin 60 extends therebeyond to engage the tab 74 of the valve interlock bar 66 such that it biases the valve interlock bar 66 rightwardly as shown in FIG. 3.
  • a plurality of separate button interlocks 79(a-f), shown side by side, have U-shaped slots 80 at one side thereof.
  • the reduced section of each button interlock when aligned side by side defines with the reduced section of the button lock it is contiguous to V-shaped slots 82.
  • the button interlocks 79(a-e) are placed in the valve button housing 64 below the interlock bar 66 such that the V-shaped slots 82 register with aligned upper and lower control slots 65 and 67, of the housing 64, and the L-shaped slots of the interlock bar 66.
  • the back wall of the housing 64 is characterized by a plurality of uniformly spaced rectangular openings 84 each opening adapted to receive in a slidable manner a button slide 54.
  • the button slide 54 is received in the rectangular opening at the rear of the housing 84, the spring 56 contacting the inner surface of the back wall, and the dowel pin 50 is received in a slidable manner in the slots 65 and 67 of the housing 64 in the slot 70(a) of the interlock bar 66 and in the V-shaped slot of the interlock bar 78.
  • a valve button guide having a plurality of parallel equally spaced slots 91 on its upper surface 92 and a plurality of equally spaced apertures 93 on the front thereof is secured, such as by screws, to the valve button housing 64 and the extended ends of the button slide 54 pass through the openings 93.
  • the buttons, identified as OFF, 30-50, etc., are then secured by pressure fit to the elongated end of the button slide 54.
  • the upper and lower surfaces 92 and 95 of the button guide are within the housing 64 such that the valve interlock bar is slidably secured between the top surface of the button guide 90 and the bottom surface of the top ledge of the housing 64.
  • the interlocks 79 are slidably secured between the bottom surface of the button guide 90 and the upper surface of the lower ledge of the housing 64.
  • the slide 54 is between the shelves of the button guide 90. Slots 65, 70, 91, 82, and 67 are all in register such that the dowel pin 50 of the buttons 30-50, etc., passes through all. There are no corresponding slots 82 for the OFF and CPR buttons, and the dowel pins 50 engage the L- shaped slots 68 through 72 of the valve interlock bar 66 respectively.
  • valve assemblies are required for the buttons 30-50, etc. Three assemblies each are stacked in series and function as one unit as will be described to provide the input and output apertures for the openings required, as shown in FIG. 2 and identified as A(1-5) through E(1-5). One valve assembly is required for the CRT button and no valve assemblies are required for the OFF button.
  • valve block assembly is shown, a first valve schematically, the second valve in cross-section, and the third valve in partial section partial perspective.
  • the valve 100 includes a valve block 122 and a valve stem 101 shown in closed position having a rear shoulder portion 102 and a forward conical-shaped portion 104.
  • the rear-shaped and forward-shaped portions terminate in rear and front stems 108 and 106.
  • a spring 110 is received about the stem 108 and engages the shoulder 102 at one end and engages a spring retainer 1 12 at the other end.
  • the spring retainer 1 12 is secured into the inner shoulder 113 of valve block 122 by press fit.
  • a diaphragm 114 is secured in non-movable sealing engagement by press fit in the outer shoulder 1 of the valve block 122.
  • the seal retainer 116 is received in a slidable manner in the apertures of the retainer 112 and diaphragm 114.
  • the central section of the valve block 122 has a chamber in which the valve stem 101 reciprocates between its open and closed positions, input and output conduits A -A A -A and A -A respectively; a shoulder 124, a conduit 132 and an outer ring portion 133.
  • a ring-like shoulder 126 on the forward portion of each valve mates with a corresponding recess 128 at the rear of each valve block 122.
  • the first valve 100 includes a section 140 through which the seal retainer 116 passes.
  • the section 140 includes a rectangular recess 142 which receives the rear portion of the button slide 54 shown in FIG. 3.
  • the conical section 104 of the stem 101 sealingly engages the shoulder 124, preventing fluid flow between the ports A and A
  • the stem is biased to to this closed position by the spring 110.
  • the stem 101 is partially received in conduit 132 where it contacts retainer 116. Movement of the button slide 54 initially engages retainer 1 16 which moves rearwardly effecting movement of the subsequent valve stems 101 and retainers 116.
  • Keyways 150 maintain the entire assembly in line and provide mounting holes for screws to clamp the valve assembly to the switching assembly.
  • FIG. 5 illustrates the entire assembly with the ports corresponding to the ports of FIG. 2. It being understood that for each button, except OFF and CRT these are the corresponding valves in series which provide six ports. Specifically, the following relationship is provided: button 30-50, ports A(1-6); button 50-100, ports B(l-6); button 100-150, ports C(1-6); button 150-200, ports D(1-6); and button 200 up, ports E(1- 6). As shown in FIG. 1, the power supply at -90 psig flows directly to the single valve 130 associated with the CPR button and the output flows directly to the patient by passing the entire fluidic integrated circuit.
  • the physical interface between the circuit 12 and the switch assembly 14 is accomplished by clamping the fluidic integrated circuit module 12 to the top of the valve assembly 14, such as by screws being threaded into the holes in the valve assembly 14.
  • the sealing is accomplished by O-rings which fit into the standard counterboard holes in the fluidic integrated circuit module and actually seal against the valve assembly when the two parts are clamped together.
  • a power supply of fluid supply such as oxygen tank is turned on and its output controlled at 3-10 lb. per square inch gauge pressure by pressure regulator 13 which is all that is required to operate the fluidic devices of the circuit 12.
  • pressure regulator 13 Upstream of the pressure regulator 13, the line branches and is connected to the input side of the valve 130 in combination with the CPR button. This flow of oxygen to the patient will hereinafter be referred to as the signal.
  • the fluid supply Under operating conditions, the fluid supply will be at 50 standard liters per minute at the reference gauge pressure.
  • a mask or tracheal tube is placed about or in the patients mouth and/or nose as appropriate.
  • the pressure relief valve 18 insures that an injurious amount of pressure in the event of malfunction is not transmitted to the patient, and for example, would insure that no pressure above 50 CMH O reaches the patient.
  • the ventilator is activated by power turn on, and based on the size of the patient, the 30-50 button is actuated. This insures that a defined BPM and I/E ratio will be provided for the patient as required during the controlled ventilation mode.
  • the restrictor RSA ports A A is placed on line downstream of amplifier 22 and upstream of the delivery line 16. As long as the button 30-50 is actuated, RSA will control the flow rate whether the ventilator is in the demand or controlled ventilation mode.
  • the button slide 54 is forced rearwardly against the bias of the spring 56, which spring engages the inside wall of the back of the housing 64 and the slide 54.
  • the dowel pin 50 travels in the slots 64 and 67 in the housing 64, cams against the angular surface 69a of the L- shaped slot 70a in the valve interlock bar 66.
  • the dowel 50 will also travel in the slots 91 upper and lower of the valve button guide 90. The action will cam the interlock bar 66 to the left against the bias of the spring 76.
  • the dowel pin also cams against the inclined surfaces of the button interlocks 79b and 790.
  • the button interlocks in this embodiment comprises six separate pieces and, as shown, they are simply lying side by side.
  • the left outer edge of interlock 79a is spaced apart from the left inner side wall of the housing 64 and the right outer edge of the interlock 79f is spaced apart from the right inner side wall of the housing.
  • the movement of the button interlocks'79b and 79c by the action of the dowel pin cause interlock 79a to move to the left and interlocks 7912, c, a, e, and f to move to the right such that the other buttons cannot be activated at the same time.
  • the button slide 54 travel is terminated when the dowel pin has traveled or cammed to the L-shaped portion of the slot 70a. After the dowel has cammed over the surface of the L-shaped slot 70a, it is received in the leg portion of the slot and the action of the spring 76 biasing the valve interlock bar 66 rightwardly locks the dowel pin into position and thereby locks the button 30-50 into position.
  • the rectangular section on the back of the slide now protrudes approximately one-fourth inch from the back side of the housing 64, and is received in the recess 142 and activates the corresponding valves in the valve assembly with this displacement.
  • the end of slide 54 contacts and moves the retainer 116.
  • the length of the stem 101 is designed such that there is a small gap, say for example 0.15 inches, between the back of one valve stem and the front of the succeeding valve stem, insuring that when in the closed position each valve can properly close by the action of its own spring and not be interfered with by the positions of the other valves in the line.
  • valve assembly and fluidic integrated modular circuit permits only one pair of paths for air flow for each valve to be opened at one time, or three sets of air paths for each button selection. Therefore, with the button 30-50 now actuated, the passageways for the restrictors R3A, R4A, and RSA are now available for operation during the controlled mode of the respirator.
  • buttons open and restrictors are made operable: button 30-50, ports Al-2, restrictor RSA; ports A3-4, restrictor R3A; ports A5-6, restrictor R4A.
  • button 50-100 ports B1-2, restrictor RSB; ports B3-4, restrictor R3B 200 up, ports 153-4, restrictor R3E; and ports E5-6, resistor R4E.
  • the tidal volume restrictors shown in H6. 2 are such that they provide the following flow rates:
  • volume, BPM, and l/E ratios are 100 cc., 40 BPM, 0.8 seconds to 1.6 seconds; 200 cc., 30 BPM, 0.67 seconds to 1.33 seconds; 300 cc., 25 BPM, 080 seconds to 1.60 seconds; 500 cc., 2O BPM and 1.0 to 2.0 seconds; and cc., 15 BPM, 1.33 to 2.67 seconds.
  • the ventilator After the ventilator is activated, referring to FIG. 2, there is a signal immediately present at one side of the restrictor R1, and at the input ports of the Schmitt trigger STl and the time-delay relay TDR-1 at the input port IV-l of the amplifier 22. Also, there is a signal present at the input port lV-2 of the amplifier 26.
  • the Schmitt trigger STl functions in its normal manner such that its input will switch between first and second states depending upon control signals.
  • the signal at control port C1 is set by the restricting device R1.
  • a signal appearing at control port C2 greater than the signal at C1 will shift the output of the Schmitt trigger to output port 01. Conversely, when the input signal at C2 is less than that at C1, the output will shift to the 02 port.
  • the control port C2 is directly in communication with the patient at a point downstream of all devices.
  • Port 02 is connected to control port CV2 of amplifier 26, which amplifier is activated when the 02 port is activated, causing the normally closed amplifier 26 to open and permit the supply to pass through the valve through the tidal volume restrictor RSA and to the patient.
  • the rise in signal at C2 switches the output of the Schmitt trigger to O1, shutting off the supply to the patient by closing amplifier 26 (no signal from 02 of STI) and causes the signal to be present at the input port E of the time-delay relay, TDR-l.
  • TDR-l delays the signal for a preset time, e.g., 15 seconds, before it allows the signal to exit at port L. If the patient inhales before the time delay elapses, the signal at C2 decreases and then the Schmitt trigger switches to its 02 state and the amplifier 26 is opened.
  • the time-delay relay TDR-l is disabled. As long as the patient is breathing, the fluidic circuit remains in its first or demand ventilation mode, namely through activation of the fluid amplifier 26 allowing the flow of sup ply to the patient based on the patients control (pressure in the respiratory system).
  • the signal appears at the output port L of TDR-l and the control port CV1 of the fluid amplifier 22.
  • the valve opens and permits a signal to pass through and to be introduced to the PS control ports of the flip-flop FF 1 and the two time-delay relays TDR-2 and TDR-3, as well as one side of each of the two restrictive devices R3A and R4A, ports A3-4, A5-6 being open, button 30-50 being actuated.
  • FFl immediately and indiscriminately assumes either its 02 or 01 output state. Assuming that it takes the 02 state, then the signal exits through 02 and enters port E on TDR-2.
  • the delay network in the device in conjunction with the restrictive device R3A permits exit of the signal at port L after the time set has elapsed, which is 0.5 seconds the flip-flop then switches to its 01 state, providing a signal at E of "FDR-3 and CV-2 of amplifier 26.
  • the fluid amplifier 26 remains open the period of time that it takes for the delay restrictive circuit of the TDR-3 and the restrictor R4A to emit the signal at port L of the relay and at the control port C2 of the flip-flop.
  • the flip-flop changes to its 02 state and the entire cycle is repeated until the patient starts spontaneous breathing or the machine is shut off. Thus, if the patient does not start spontaneous breathing, then the apparatus continues in its controlled mode cycle.
  • the fluid amplifier 26 also allows the tidal volume to flow through the restrictor R5A, ports A5-A6 being open.
  • the time cycle of each leg is set by a combination of time-delay relay and restrictive device calibrated to establish both the I/E ratio and the BPM.
  • the OFF button will not act to open any valve and is only used to disconnect all other positions when desired.
  • the CPR button is momentary, providing the same action on the button interlocks 79, but can only be held in place manually, as is apparent from its corresponding slot in the interlock bar 66.
  • This button operates a single valve, two ports, identical to those previously described, which supplies oxygen to the patient at arate of slpm directly from the source by passing the fluidic circuit entirely as long as the button is held in place providing the ventilation requirements for cardiopulmonary resuscitation for cardiac arrest victims.
  • valve assembly may be used either alone or in combination with the above-described fluidic circuit or other pneumatic circuits.
  • any structure which would control the alternation of modes of operation such as a demand valve and fluidic control arrangement, may be employed; for example, a demand valve may replace the Schmitt Trigger.
  • a ventilator for controlling the flow of a fluid to a user which comprises:
  • switching means operable between a first mode to place the ventilator in a demand ventilation mode and a second mode to place the ventilator in a controlled ventilation mode, said switching means responsive to a signal from the conduit to effect its changes between modes;
  • a first fluid amplifier responsive to the switching means in its first mode and in communication with the conduit to provide the ventilating flow to the user in the demand ventilation mode
  • a controlled ventilation mode circuit responsive to the switching means in its second mode and in communication with the means to provide the ventilating flow to the user, said ventilation mode circuit including:
  • first and second timing means in combination with the means responsive to the switching means, the first timing means in communication with the means responsive to the switching means in its first state, and the second timing means in communication with the means responsive to the switching means in its second state to control the rate at which the ventilating fluid flows to the user.
  • means responsive to the switching means includes a flip-flop actuatable between first and second states;
  • first and second timing means include first and second time-delay relays and at least one coordinated pair of restrictors, the restrictors in communication with the first and second timedelay relays respectively such that when the flipflop is in its first state it communicates with the first time-delay relay and its associated restrictor and when the flip-flop is in its second state it communicates with the second time-delay relay and its associated restrictor.
  • the ventilator of claim 2 which includes a second fluid amplifier responsive to the switching means in its second mode, the second fluid amplifier adapted to provide a signal to the flip-flop while the switching means is in its second mode.
  • the ventilator of claim 2 which includes a plurality of coordinated pairs of restrictors, each pair of restrictors of a different value to establish a plurality of BPMs and l/R ratios;
  • the ventilator of claim 5 wherein the ventilator includes a plurality of tidal flow restrictors and the means to select a coordinated pair of restrictors includes means to select one of said tidal flow restrictors.
  • a ventilator for controlling the flow of fluid to a user which comprises:
  • a Schmitt trigger in combination with a first timedelay relay responsive to the pressure in the conduit and actuatable between first and second states, the Schmitt trigger when in its first state actuating a first fluid amplifier, which amplifier allows flow of the ventilating fluid to the user in a demand ventilation mode, the trigger when in its second state actuating the first time-delay relay;
  • a second fluid amplifier responsive to a signal from the first time-delay relay, the signal provided when the Schmitt trigger is in its second state for a time longer than the preestablished time of the first time-delay relay to provide a controlled ventilation mode
  • a controlled ventilation mode circuit including bistable means responsive to the second fluid amplifier, second and third time-delay relays in communication with the bistable means, at least one coordinated pair of restrictors in communication with the second and third time-delay relays respectively, the bistable means when in its first state in communication with the second time-delay relay and its associated restrictor adapted to provide a signal to the first fluid amplifier to allow flow of fluid to the user, the duration of the first state controlled by the second time-delay relay and its associated restrictor, the bistable means when in its second state in communication with the third time-delay relay and its associated restrictor adapted to terminate the signal to the first fluid amplifier to stop the flow of fluid to the user, the duration of the second state controlled by the third time-delay relay and its associated restrictor, the alternation between states of the bistable means continuing until the Schmitt trigger in response to a pressure change in the conduit switches to its first state.
  • each of the restrictors of the pair is of a different value.
  • the ventilator of claim 8 which includes a plurality of coordinated pairs of restirctors, each pair of restrictors of different values whereby a plurality of BPMs and UK ratios are established;
  • the ventilator of claim 9 which includes at least one tidal flow restrictor downstream of the first fluid amplifier to control the flow rate of fluid to the user.
  • the ventilator of claim 10 which includes a plurality of tidal flow restrictors and the means to select a coordinated pair of restricotrs includes means to select one of said tidal flow restrictors.
  • A a plurality of non-electric switches
  • D. means to prevent actuation of a second switch when the first switch is engaged.

Abstract

A ventilator employs a fluidic circuit which alternates between a control mode and a demand mode. The control mode provides oxygen to a non-breathing patient at a predetermined rate and volume. The demand mode provides oxygen to a breathing patient to assist the patient in his breathing. The fluidic circuit automatically switches between these modes in response to the patient''s needs. A multiposition switch assembly provides different flow rates and volumes during the control mode depending upon the patient''s size.

Description

United States Patent [191 Dudley DUAL MODE FLUIDIC VENTILATOR Irving C. Dudley, Mendon, Mass.
[73] Assignee: Ram Research Incorporated,
Boston, Mass.
[22] Filed: Nov. 19, 1973 [21] Appl. No.: 417,351
[75] Inventor:
[52] US. Cl 128/1453; 137/102 [51] Int. Cl. A61M 16/00 [58] Field of Search 128/1458, 145.6, 145.7,
[56] References Cited UNITED STATES PATENTS 6/1972 Sundblam 128/1456 5/1973 Davison... 128/1456 9/1973 Ollivier l28/l45.6
OTHER PUBLICATIONS Logic Circuit of Artificial Respiration Fourth Cran- POWER SUPPLY [4 1 Sept. 16, 1975 field Fluidics Conference, Coventry, Gt. Britian, Belforte.
Primary ExaminerGaudet, Richard A. Assistant ExaminerHenry J. Recla Attorney, Agent, or Firm-Richard L. Stevens ABSTRACT A ventilator employs a fluidic circuit which alternates between a control mode and a demand mode. The control mode pro'v'ides oxygen to a non-breathing patient at a predetermined rate and volume. The demand mode provides oxygen to a breathing patient to assist the patient in his breathing. The fluidic circuit automatically switches between these modes in response to the patients needs. A multiposition switch assembly provides different flow rates and volumes during the control mode depending upon the patients size.
12 Claims, 5 Drawing Figures I L J PATENTEU SEP 1 e 1975 SHEET 2 BF 3 n6 :2 6m QM DUAL MODE FLUIDIC VENTILATOR BACKGROUND OF THE INVENTION In the field of respirators or ventiltors, it is known to provide apparatus which can function without moving parts through the employment of fluidic circuits (see, for example, US. Pat. No. 3,736,949). Ventilators, whether or not employing fluidic circuits, generally control the duration of the inspiration and expiration phases (I/E ratio) and the flow rate, such as tidal volume.
In the use of ventilator there are two types of patient conditions which require separate modes of operation: controlled ventilation, that is, totally controlling the breathing of the patient; and demand ventilation, that is, aiding the patient in his breathing as a function of his demand. Ventilators currently available provide both modes of operation, and can switch from assisted ventilation to controlled ventilation automatically. However, if the patient recovers while on controlled ventilation, then, in most ventilators, an alarm is actuated and to place the respirator in the assisted ventilation mode, manual actuation is required.
In ventilators, there are ranges over which the apparatus must be capable of functioning to handle all situations. That is, there is a requirement to control the breaths per minute (BPM), the I/E ratio, and the tidal volume entering the patients lungs. The BPM and I/E ratio and tidal volume vary depending upon patient condition and size. These conditions can be categorized whereby a plurality of defined operational parameters can be established to handle most situations. In some ventilators, multiposition switches are employed. Each position of the switch corresponds to a given set of conditions, i.e., BPM, I/E ratio, and tidal volume. However, these switches incorporated into the ventilator are electrically operable and increase the danger of an explosion based on the fluid used, and additionally do not allow the unit to be easily sterilized.
SUMMARY OF THE INVENTION The present invention is directed to a method and apparatus for controlling the flow rate of a fluid into an enclosure. More particularly, the method and apparatus f the invention are directed to a ventilator which may alternate between a controlled ventilation mode and a demand ventilation mode. The control mode insures that an enclosure is filled intermittently with a fluid in uniform cycles of duration including a first phase for delivering the fluid to the enclosure and a second phase for interrupting the flow to the enclosure.
In another aspect of the invention, a manually operative pneumatic switch is provided, which is devoid of electrical dependence, and which provides the capability of switching from one of a plurality of positions corresponding to pre-established sets of conditions.
In the preferred embodiment of the invention, a ventilator is provided which automatically alternates between 21 damand ventilation mode and a controlled ventilation mode. This alternation between modes is controlled solely by the patients needs. A fluid supply is provided and communicates with the ventilator. The ventilator includes a fluidic integrated circuit necessary to control the demand ventilation mode, the controlled ventilation mode, and the alternation between these modes and is solely responsive to the level of pressure in the conduit which communicates with the patient.
When the patient only requires assistance, the demand ventilation mode functions. If the patient requires full control, then the ventilator automatically switches to the controlled ventilation mode. If the patient subsequently requires only assistance, then the ventilator automatically switches to the demand ventilation mode.
More particularly, the invention is directed to a ventilator to control the flow of fluid to a patient in at least two modes, and means responsive to the pressure variations in the ventilating conduit to alternate between a first demand ventilation mode to a second controlled ventilation mode. Further, the invention includes a switch which controls the BPM, I/E ratio, and tidal volume during the controlled ventilation mode.
The method of the invention comprises measuring the pressure in an enclosure, providing a first fluid flow to the enclosure in response to the measured pressure at a first level, and providing a second fluid flow to the enclosure at a second pressure level in response to a change in the pressure level in the enclosure, and alternating between the first and second modes solely in response to the pressure in the enclosure.
Another aspect of the invention is directed to a multiposition switch to function in combination with the fluidic integrated circuit. A switch assembly is provided which comprises a plurality of mechanical switches or buttons, each switch in communication with at least one valve, the valve in communication with a fluidic circuit. Actuation of the button opens its corresponding valve and deactivates all other valves.
More particularly, the switch assembly comprises a push button selector and a valve assembly. The selector includes a plurality of valves associated therewith. The valves communicate with the fluidic integrated modular circuit and correspond to a set of conditions of operation: BPM, I/E ratio, and tidal volume. Actuation of a push button will insure the desired conditions are met for the ventilator.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. is a block diagram of a ventilator, which embodies the invention;
FIG. 2 is a schematic illustration of a circuit employed in the ventilator;
FIG. 3 is a perspective telescopic view of the push button selector;
FIG. 4 is a side sectional view of a valve block assembly, engaged to the push button selector; and
FIG. 5 is a perspective view of the switch assembly.
DESCRIPTION OF THE PREFERRED EMBODIMENT(S) In FIG. I, a ventilator 10 which embodies the invention is shown in block diagram form and includes a fluidic integrated circuit module 12 mated to a switch assembly 14. A delivery line or conduit 16 places a patient in communication with the ventilator 10 and includes any of the well-known devices adapted for such purpose, such as masks or mouthpieces (not shown). A pressure-relief valve 18 to insure that the pressure developed does not reach a level which would be injurious to the patient and an indicator 20 to demonstrate visibly the operating pressure of the ventilator are secured to the line 16.
Referring to FIG. 2, the fluidic integrated modular circuit 12 is shown in detail and includes a fluid amplifier 22 disposed upstream'of the indicator 20 and downstream of the fluid power or air source and a switching circuit 24. A control mode circuit 30 is shown in communication with the amplifier 22 and a control mode amplifier 26. The circuit 30 also includes restrictors R3A-R3E; R4A-R4E; and RSA-RSE.
The switching circuit 24 comprises a Schmitt trigger STl in combination with a time-delay relay TDR-l. The Schmitt trigger STl includes a resistor R1, a reference control port CI, a control port C2 which is downstream of all circuits and in direct communication with the patient, and output ports -2 and 0-1. The output 0-2 communicates directly with a control port CV-2 of the fluid amplifier 26. The power supply PS flows to the Schmitt trigger ST-l as shown and through restrictor R-l which sets the level of ST-l and to the reference control port 0-2. The output port 0-1 provides a signal to the time-delay relay TDR-l. The time-delay relay includes a restrictor R2 to control the duration of the delay of the output signal of the relay, as will be described in the operation of the invention The fluid amplifier 22 includes a control port CV-l, in communication with the output, port L, of timedelay relay TDR-l. The fluid amplifier 22 also includes the inlet port IV-l, downstream of the power supply PS and an outlet port OV-l, which provides a signal to the control circuit 30.
The control circuit 30 includes a flip-flop FFl in communication with the outlet port OV-l of the fluid amplifier 22. The flip-flop FFl includes control ports Cl and C2, and outlet ports 0-2 and 0-1, which communicate with the time-delay relays TDR-2 and TDR- 3, respectively. The time cycle of each leg of the flipflop FFl is determined by a combination of the timedelay relay and the restrictive device, e.g. R3A, R4A in which it is in combination with. The time-restrictive device is calibrated to establish both the UB ratio and the BPM. This is determined by selection of the appropriate button on the switch assembly 14 as will be described in detail in the description of FIGS. 3 and 4, and the operation of the invention. The inlets E of the time-delay relays TDR-Z and TDR-3 are in communication with both the control ports Cl and C2 of the flip-flop F F1 and the control port CV-2 of the fluid amplifier 22.
SWITCH ASSEMBLY The switch assembly comprises two sections: the push-button selector and the valve block assembly.
The switch assembly may, in addition to being used with the fluidic integrated circuit 12 of the present invention, be used with other pneumatic or fluidic circuits. The switch assembly shown in detail in FIGS. 3 and 4 is a 7-position switch and includes an off button which prevents operation of the entire unit and a CPR switch, which must remain manually depressed to function and provides fluid to the patient at a rate of 60 slpm for cardioarrest victims. The remaining five buttons control, in combination with the restrictors shown in FIG. 2, predetermined conditions for tidal volume, BPM and HE ratio. Push-buttons are identified as OFF, 30-50, 50-100, 100-150, 150-200, 200 up, and CPR.
Referring to FIG. 3, the push-button selector of the switching assembly is shown in perspective telescopic view. The assembly comprises a dowel pin 50 received in an aperture 50 of a button-slide 54. The dowel pin 50 is disposed in the button slide 54 by pressure fit such that an approximately equal length, say for example 11/32 of an inch protrudes from both the top and the bottom of the button slide 54. For purposes of clarity, only one button slide-dowel assembly is shown in FIG. 3. However, it should be understood that matching assemblies are provided for each of the buttons.
A spring 56 is received in the button slide 54 between the two protruding tails 58(a) and (b) and extends beyond the upper and lower surfaces of the slide 54.
A dowel pin 60 is received securely by pressure fit in an aperture 62 in the end of a valve button housing 64. A valve interlock bar 66, having L-shaped slots therein 68, (ae) and 72, and a tab 74 at one end thereof is disposed in the valve button housing 64. A spring 76 is disposed about the dowel pin 60 extends therebeyond to engage the tab 74 of the valve interlock bar 66 such that it biases the valve interlock bar 66 rightwardly as shown in FIG. 3.
A plurality of separate button interlocks 79(a-f), shown side by side, have U-shaped slots 80 at one side thereof. The reduced section of each button interlock when aligned side by side defines with the reduced section of the button lock it is contiguous to V-shaped slots 82. The button interlocks 79(a-e) are placed in the valve button housing 64 below the interlock bar 66 such that the V-shaped slots 82 register with aligned upper and lower control slots 65 and 67, of the housing 64, and the L-shaped slots of the interlock bar 66. The back wall of the housing 64 is characterized by a plurality of uniformly spaced rectangular openings 84 each opening adapted to receive in a slidable manner a button slide 54. The button slide 54 is received in the rectangular opening at the rear of the housing 84, the spring 56 contacting the inner surface of the back wall, and the dowel pin 50 is received in a slidable manner in the slots 65 and 67 of the housing 64 in the slot 70(a) of the interlock bar 66 and in the V-shaped slot of the interlock bar 78. A valve button guide having a plurality of parallel equally spaced slots 91 on its upper surface 92 and a plurality of equally spaced apertures 93 on the front thereof is secured, such as by screws, to the valve button housing 64 and the extended ends of the button slide 54 pass through the openings 93. The buttons, identified as OFF, 30-50, etc., are then secured by pressure fit to the elongated end of the button slide 54. When assembled, the upper and lower surfaces 92 and 95 of the button guide are within the housing 64 such that the valve interlock bar is slidably secured between the top surface of the button guide 90 and the bottom surface of the top ledge of the housing 64. The interlocks 79 are slidably secured between the bottom surface of the button guide 90 and the upper surface of the lower ledge of the housing 64. The slide 54 is between the shelves of the button guide 90. Slots 65, 70, 91, 82, and 67 are all in register such that the dowel pin 50 of the buttons 30-50, etc., passes through all. There are no corresponding slots 82 for the OFF and CPR buttons, and the dowel pins 50 engage the L- shaped slots 68 through 72 of the valve interlock bar 66 respectively.
In the preferred embodiment of the invention, fifteen valve assemblies are required for the buttons 30-50, etc. Three assemblies each are stacked in series and function as one unit as will be described to provide the input and output apertures for the openings required, as shown in FIG. 2 and identified as A(1-5) through E(1-5). One valve assembly is required for the CRT button and no valve assemblies are required for the OFF button.
Referring to FIG. 4, the valve block assembly is shown, a first valve schematically, the second valve in cross-section, and the third valve in partial section partial perspective.
The valve 100 includes a valve block 122 and a valve stem 101 shown in closed position having a rear shoulder portion 102 and a forward conical-shaped portion 104. The rear-shaped and forward-shaped portions terminate in rear and front stems 108 and 106. A spring 110 is received about the stem 108 and engages the shoulder 102 at one end and engages a spring retainer 1 12 at the other end. The spring retainer 1 12 is secured into the inner shoulder 113 of valve block 122 by press fit. A diaphragm 114 is secured in non-movable sealing engagement by press fit in the outer shoulder 1 of the valve block 122. The seal retainer 116 is received in a slidable manner in the apertures of the retainer 112 and diaphragm 114.
The central section of the valve block 122 has a chamber in which the valve stem 101 reciprocates between its open and closed positions, input and output conduits A -A A -A and A -A respectively; a shoulder 124, a conduit 132 and an outer ring portion 133. A ring-like shoulder 126 on the forward portion of each valve mates with a corresponding recess 128 at the rear of each valve block 122. The first valve 100 includes a section 140 through which the seal retainer 116 passes. The section 140 includes a rectangular recess 142 which receives the rear portion of the button slide 54 shown in FIG. 3.
Referring to the second valve 100, the conical section 104 of the stem 101 sealingly engages the shoulder 124, preventing fluid flow between the ports A and A The stem is biased to to this closed position by the spring 110. The stem 101 is partially received in conduit 132 where it contacts retainer 116. Movement of the button slide 54 initially engages retainer 1 16 which moves rearwardly effecting movement of the subsequent valve stems 101 and retainers 116.
Keyways 150 maintain the entire assembly in line and provide mounting holes for screws to clamp the valve assembly to the switching assembly.
FIG. 5 illustrates the entire assembly with the ports corresponding to the ports of FIG. 2. It being understood that for each button, except OFF and CRT these are the corresponding valves in series which provide six ports. Specifically, the following relationship is provided: button 30-50, ports A(1-6); button 50-100, ports B(l-6); button 100-150, ports C(1-6); button 150-200, ports D(1-6); and button 200 up, ports E(1- 6). As shown in FIG. 1, the power supply at -90 psig flows directly to the single valve 130 associated with the CPR button and the output flows directly to the patient by passing the entire fluidic integrated circuit.
The physical interface between the circuit 12 and the switch assembly 14 is accomplished by clamping the fluidic integrated circuit module 12 to the top of the valve assembly 14, such as by screws being threaded into the holes in the valve assembly 14. The sealing is accomplished by O-rings which fit into the standard counterboard holes in the fluidic integrated circuit module and actually seal against the valve assembly when the two parts are clamped together.
OPERATION The operation of the invention will be described in reference to the use of the ventilator as an emergency unit, wherein a patient of from 30 to 50 lbs. requires artificial ventilation. Referring to FIG. 1, a power supply of fluid supply such as oxygen tank is turned on and its output controlled at 3-10 lb. per square inch gauge pressure by pressure regulator 13 which is all that is required to operate the fluidic devices of the circuit 12. Upstream of the pressure regulator 13, the line branches and is connected to the input side of the valve 130 in combination with the CPR button. This flow of oxygen to the patient will hereinafter be referred to as the signal. Under operating conditions, the fluid supply will be at 50 standard liters per minute at the reference gauge pressure. A mask or tracheal tube, as is well known in the art, is placed about or in the patients mouth and/or nose as appropriate. The pressure relief valve 18 insures that an injurious amount of pressure in the event of malfunction is not transmitted to the patient, and for example, would insure that no pressure above 50 CMH O reaches the patient.
The ventilator is activated by power turn on, and based on the size of the patient, the 30-50 button is actuated. This insures that a defined BPM and I/E ratio will be provided for the patient as required during the controlled ventilation mode. The restrictor RSA (ports A A is placed on line downstream of amplifier 22 and upstream of the delivery line 16. As long as the button 30-50 is actuated, RSA will control the flow rate whether the ventilator is in the demand or controlled ventilation mode.
Referring to FIGS. 3 and 4, as the 30-50 button is pushed, the button slide 54 is forced rearwardly against the bias of the spring 56, which spring engages the inside wall of the back of the housing 64 and the slide 54. Assuming no other button is engaged at the time, the dowel pin 50 travels in the slots 64 and 67 in the housing 64, cams against the angular surface 69a of the L- shaped slot 70a in the valve interlock bar 66. The dowel 50 will also travel in the slots 91 upper and lower of the valve button guide 90. The action will cam the interlock bar 66 to the left against the bias of the spring 76. At the same time, the dowel pin also cams against the inclined surfaces of the button interlocks 79b and 790. It should be understood that the button interlocks in this embodiment comprises six separate pieces and, as shown, they are simply lying side by side. The left outer edge of interlock 79a is spaced apart from the left inner side wall of the housing 64 and the right outer edge of the interlock 79f is spaced apart from the right inner side wall of the housing. The movement of the button interlocks'79b and 79c by the action of the dowel pin cause interlock 79a to move to the left and interlocks 7912, c, a, e, and f to move to the right such that the other buttons cannot be activated at the same time.
The button slide 54 travel is terminated when the dowel pin has traveled or cammed to the L-shaped portion of the slot 70a. After the dowel has cammed over the surface of the L-shaped slot 70a, it is received in the leg portion of the slot and the action of the spring 76 biasing the valve interlock bar 66 rightwardly locks the dowel pin into position and thereby locks the button 30-50 into position.
The rectangular section on the back of the slide now protrudes approximately one-fourth inch from the back side of the housing 64, and is received in the recess 142 and activates the corresponding valves in the valve assembly with this displacement. Specifically, the end of slide 54 contacts and moves the retainer 116. The length of the stem 101 is designed such that there is a small gap, say for example 0.15 inches, between the back of one valve stem and the front of the succeeding valve stem, insuring that when in the closed position each valve can properly close by the action of its own spring and not be interfered with by the positions of the other valves in the line. As the 30-50 button is pushed, in the selector section, the back of the button slide 54 pushes the corresponding valve stem back against the action of the spring 110, thereby providing communication between the input and output ports A -A A A and A -A of the first, second and third valves, only the action of the first and second valves being shown in section, it being understood that all valves are identical. The design of the valve assembly and fluidic integrated modular circuit permits only one pair of paths for air flow for each valve to be opened at one time, or three sets of air paths for each button selection. Therefore, with the button 30-50 now actuated, the passageways for the restrictors R3A, R4A, and RSA are now available for operation during the controlled mode of the respirator.
When any of the buttons with the exception of the OFF and CPR buttons, are actuated, the following ports open and restrictors are made operable: button 30-50, ports Al-2, restrictor RSA; ports A3-4, restrictor R3A; ports A5-6, restrictor R4A. Correspondingly, for button 50-100, ports B1-2, restrictor RSB; ports B3-4, restrictor R3B 200 up, ports 153-4, restrictor R3E; and ports E5-6, resistor R4E. The tidal volume restrictors shown in H6. 2 are such that they provide the following flow rates:
Restrictor Flow( SCC/ M Flows( L/M) RSA 2600 2.6 R5 B 3000 2.0 RSC 7500 2.5 R5 D 10,000 10.0 RSE 1 0,500 10.5
For the controlled ventilation mode to establish the BPM and l/E ratio at 1:2 one pair of restrictors (4 ports) is operated at one time. This is achieved by setting the time lapse before resetting flip-flop FFI.
Restricted Coordinated Frequency of Breath l/E Ratio Pair R3A-R4A 40 BPM 1:2 R3B-R4B 3O BPM 1:2 R3C-R4C 25 BPM 1:2 R3D-R4D BPM 1:2 R3ER4E l5 BPM 1:2
volume, BPM, and l/E ratios are 100 cc., 40 BPM, 0.8 seconds to 1.6 seconds; 200 cc., 30 BPM, 0.67 seconds to 1.33 seconds; 300 cc., 25 BPM, 080 seconds to 1.60 seconds; 500 cc., 2O BPM and 1.0 to 2.0 seconds; and cc., 15 BPM, 1.33 to 2.67 seconds.
After the ventilator is activated, referring to FIG. 2, there is a signal immediately present at one side of the restrictor R1, and at the input ports of the Schmitt trigger STl and the time-delay relay TDR-1 at the input port IV-l of the amplifier 22. Also, there is a signal present at the input port lV-2 of the amplifier 26. The Schmitt trigger STl functions in its normal manner such that its input will switch between first and second states depending upon control signals.
The signal at control port C1 is set by the restricting device R1. A signal appearing at control port C2 greater than the signal at C1 will shift the output of the Schmitt trigger to output port 01. Conversely, when the input signal at C2 is less than that at C1, the output will shift to the 02 port. It should be noted that the control port C2 is directly in communication with the patient at a point downstream of all devices.
If the patient is breathing, as he inhales he will cause the signal at C2 to decrease, shifting the output of the Schmitt trigger to 02. Port 02 is connected to control port CV2 of amplifier 26, which amplifier is activated when the 02 port is activated, causing the normally closed amplifier 26 to open and permit the supply to pass through the valve through the tidal volume restrictor RSA and to the patient.
If the patient is not breathing, the rise in signal at C2 switches the output of the Schmitt trigger to O1, shutting off the supply to the patient by closing amplifier 26 (no signal from 02 of STI) and causes the signal to be present at the input port E of the time-delay relay, TDR-l. TDR-l delays the signal for a preset time, e.g., 15 seconds, before it allows the signal to exit at port L. If the patient inhales before the time delay elapses, the signal at C2 decreases and then the Schmitt trigger switches to its 02 state and the amplifier 26 is opened. The time-delay relay TDR-l is disabled. As long as the patient is breathing, the fluidic circuit remains in its first or demand ventilation mode, namely through activation of the fluid amplifier 26 allowing the flow of sup ply to the patient based on the patients control (pressure in the respiratory system).
If the patient does not breath during the delay, then the signal appears at the output port L of TDR-l and the control port CV1 of the fluid amplifier 22. When the signal is present at the control port CV1 of the fluid amplifier 22, the valve opens and permits a signal to pass through and to be introduced to the PS control ports of the flip-flop FF 1 and the two time-delay relays TDR-2 and TDR-3, as well as one side of each of the two restrictive devices R3A and R4A, ports A3-4, A5-6 being open, button 30-50 being actuated.
FFl immediately and indiscriminately assumes either its 02 or 01 output state. Assuming that it takes the 02 state, then the signal exits through 02 and enters port E on TDR-2. The delay network in the device in conjunction with the restrictive device R3A permits exit of the signal at port L after the time set has elapsed, which is 0.5 seconds the flip-flop then switches to its 01 state, providing a signal at E of "FDR-3 and CV-2 of amplifier 26. The fluid amplifier 26 remains open the period of time that it takes for the delay restrictive circuit of the TDR-3 and the restrictor R4A to emit the signal at port L of the relay and at the control port C2 of the flip-flop. When this occurs, the flip-flop changes to its 02 state and the entire cycle is repeated until the patient starts spontaneous breathing or the machine is shut off. Thus, if the patient does not start spontaneous breathing, then the apparatus continues in its controlled mode cycle. The fluid amplifier 26 also allows the tidal volume to flow through the restrictor R5A, ports A5-A6 being open.
The time cycle of each leg is set by a combination of time-delay relay and restrictive device calibrated to establish both the I/E ratio and the BPM. Once in the controlled mode, as soon as the patient commences spontaneous breathing, then the inhalation will cause the Schmitt trigger at input port C1 to switch, allowing the fluid amplifier 26 to open to assist the patient in breathing. If the patient does not continue spontaneous breathing within the fixed period of time, then the Schmitt trigger, in combination with the time-delay relay TDR-l will switch to the controlled mode, employing the fluid amplifier 22 and the combination of restrictors as described.
Referring to FIGS. 3 and 4, if a different set of conditions are required for a patient, when another button is pushed, say for example the 150-200 button, the same action initially takes place as when the 30-50 button is pushed, and the corresponingly dowel pin of the 150-200 button moves forward in its slots, it earns the interlock bar 66 to the left prior to engaging and separating the button interlocks 97d and e, permitting the 30-50 button that was previously activated to return to its inactive position forced by the action of the spring 56 between the housing 64 and the button slide 54. More specifically, as the interlock bar 66 moves to the left, the dowel of the slide 54 is moved closer to the longer leg of the L-shaped slot 700. When the movement of the dowel associated with the 150-200 button completes its camming action but prior to its entry into the short leg of the slot 70d, the action of the spring 56 forces the slide 54 back to its closed position. The button 150-200 does not slide back, of course, because of the manual pressure being applied. The portion of the dowel which extends below the slide does not engage the interlocks 79d and e until the dowel is pressed into the short leg portion of the slot 70d. At that time, the bar 66 moves rightwardly locking the 150-200 button into position, and opening its corresponding valves, and the button interlocks 79d and e are separated. The movement of the button interlock as before prevents the actuation of two buttons at the same time.
The OFF button will not act to open any valve and is only used to disconnect all other positions when desired. The CPR button is momentary, providing the same action on the button interlocks 79, but can only be held in place manually, as is apparent from its corresponding slot in the interlock bar 66. This button operates a single valve, two ports, identical to those previously described, which supplies oxygen to the patient at arate of slpm directly from the source by passing the fluidic circuit entirely as long as the button is held in place providing the ventilation requirements for cardiopulmonary resuscitation for cardiac arrest victims.
Although my invention has been described with reference to particular values as far as I/E ratios, BPMs and tidal volumes, it is obvious that these may be varied by those skilled in the art. Also, it is apparent that additional or fewer valves may be stacked in serial relationship to allow for the opening or closing of other ports as desired. Further, the valve assembly may be used either alone or in combination with the above-described fluidic circuit or other pneumatic circuits. Additionally, any structure which would control the alternation of modes of operation, such as a demand valve and fluidic control arrangement, may be employed; for example, a demand valve may replace the Schmitt Trigger.
Having described my invention, what I now claim is:
l. A ventilator for controlling the flow of a fluid to a user, which comprises:
a. means to deliver a ventilating fluid to a user, in-
cluding at least one conduit communicating with the user;
b. switching means operable between a first mode to place the ventilator in a demand ventilation mode and a second mode to place the ventilator in a controlled ventilation mode, said switching means responsive to a signal from the conduit to effect its changes between modes;
c. a first fluid amplifier responsive to the switching means in its first mode and in communication with the conduit to provide the ventilating flow to the user in the demand ventilation mode;
d. at least one tidal volume restrictor downstream of the first fluid amplifier to control the volume of the ventilating fluid flowing to the user in either the controlled or demand ventilation mode; and
e. a controlled ventilation mode circuit responsive to the switching means in its second mode and in communication with the means to provide the ventilating flow to the user, said ventilation mode circuit including:
i. means responsive to the switching means in the second mode, said means actuatable between first and second states; and
ii. first and second timing means in combination with the means responsive to the switching means, the first timing means in communication with the means responsive to the switching means in its first state, and the second timing means in communication with the means responsive to the switching means in its second state to control the rate at which the ventilating fluid flows to the user.
2. The ventilator of claim 1, wherein means responsive to the switching means includes a flip-flop actuatable between first and second states; and
wherein the first and second timing means include first and second time-delay relays and at least one coordinated pair of restrictors, the restrictors in communication with the first and second timedelay relays respectively such that when the flipflop is in its first state it communicates with the first time-delay relay and its associated restrictor and when the flip-flop is in its second state it communicates with the second time-delay relay and its associated restrictor.
3. The ventilator of claim 2, which includes a second fluid amplifier responsive to the switching means in its second mode, the second fluid amplifier adapted to provide a signal to the flip-flop while the switching means is in its second mode.
4. The ventilator of claim 3, wherein the flip-flop in its first state provides a signal to and opens the first fluid amplifier and in its second state stops the signal to and closes the first fluid amplifier.
5. The ventilator of claim 2, which includes a plurality of coordinated pairs of restrictors, each pair of restrictors of a different value to establish a plurality of BPMs and l/R ratios; and
means to select which coordinated pair of restrictors is placed in communication with the first and second time-delay relays.
6. The ventilator of claim 5, wherein the ventilator includes a plurality of tidal flow restrictors and the means to select a coordinated pair of restrictors includes means to select one of said tidal flow restrictors.
7. A ventilator for controlling the flow of fluid to a user, which comprises:
a. means to deliver a ventilating fluid to a user, in-
cluding at least one conduit communicating with the user;
b. a Schmitt trigger in combination with a first timedelay relay responsive to the pressure in the conduit and actuatable between first and second states, the Schmitt trigger when in its first state actuating a first fluid amplifier, which amplifier allows flow of the ventilating fluid to the user in a demand ventilation mode, the trigger when in its second state actuating the first time-delay relay;
c. a second fluid amplifier responsive to a signal from the first time-delay relay, the signal provided when the Schmitt trigger is in its second state for a time longer than the preestablished time of the first time-delay relay to provide a controlled ventilation mode; and
d. a controlled ventilation mode circuit including bistable means responsive to the second fluid amplifier, second and third time-delay relays in communication with the bistable means, at least one coordinated pair of restrictors in communication with the second and third time-delay relays respectively, the bistable means when in its first state in communication with the second time-delay relay and its associated restrictor adapted to provide a signal to the first fluid amplifier to allow flow of fluid to the user, the duration of the first state controlled by the second time-delay relay and its associated restrictor, the bistable means when in its second state in communication with the third time-delay relay and its associated restrictor adapted to terminate the signal to the first fluid amplifier to stop the flow of fluid to the user, the duration of the second state controlled by the third time-delay relay and its associated restrictor, the alternation between states of the bistable means continuing until the Schmitt trigger in response to a pressure change in the conduit switches to its first state.
8. The ventilator of claim 7 wherein each of the restrictors of the pair is of a different value.
9. The ventilator of claim 8 which includes a plurality of coordinated pairs of restirctors, each pair of restrictors of different values whereby a plurality of BPMs and UK ratios are established; and
means to select which coordinated pair of restrictors is placed in communication with the second and third time-delay relays.
10. The ventilator of claim 9 which includes at least one tidal flow restrictor downstream of the first fluid amplifier to control the flow rate of fluid to the user.
1 l. The ventilator of claim 10, which includes a plurality of tidal flow restrictors and the means to select a coordinated pair of restricotrs includes means to select one of said tidal flow restrictors.
12. The ventilator of claim 9, wherein the means to select which coordinated pair of restrictors is placed in communication with its associated time delay relay includes:
A. a plurality of non-electric switches;
B. at least one valve responsive to the actuation of each switch, each said valve in communication with each set of coordinated restrictors;
C. means to close mechanically one of said valves by actuation of its corresponding switch; and
D. means to prevent actuation of a second switch when the first switch is engaged.

Claims (12)

1. A ventilator for controlling the flow of a fluid to a user, which comprises: a. means to deliver a ventilating fluid to a user, including at least one conduit communicating with the user; b. switching means operable between a first mode to place the ventilator in a demand ventilation mode and a second mode to place the ventilator in a controlled ventilation mode, said switching means responsive to a signal from the conduit to effect its changes between modes; c. a first fluid amplifier responsive to the switching means in its first mode and in communication with the conduit to provide the ventilating flow to the user in the demand ventilation mode; d. at least one tidal volume restrictor downstream of the first fluid amplifier to control the volume of the ventilating fluid flowing to the user in either the controlled or demand ventilation mode; and e. a controlled ventilation mode circuit responsive to the switching means in its second mode and in communication with the means to provide the ventilating flow to the user, said ventilation mode circuit including: i. means responsive to the switching means in the second mode, said means actuatable between first and second states; and ii. first and second timing means in combination with the means responsive to the switching means, the first timing means in communication with the means responsive to the switching means in its first state, and the second timing means in communication with the means responsive to the switching means in its second state to control the rate at which the ventilating fluid flows to the user.
2. The ventilator of claim 1, wherein means responsive to the switching means includes a flip-flop actuatable between first and second states; and wherein the first and second timing means include first and second time-delay relays and at least one coordinated pair of restrictors, the restrictors in communication with the first and second time-delay relays respectively such that when the flip-flop is in its first state it communicates with the first time-delay relay and its associated restrictor and when the flip-flop is in its second state it communicates with the second time-delay relay and its associated restrictor.
3. The ventilator of claim 2, which includes a second fluid amplifier responsive to the switching means in its second mode, the second fluid amplifier adapted to provide a signal to the flip-flop while the switching means is in its second mode.
4. The ventilator of claim 3, wherein the flip-flop in its first state provides a signal to and opens the first fluid amplifier and in its second state stops the signal to and closes the first fluid amplifier.
5. The ventilator of claim 2, which includes a plurality of coordinated pAirs of restrictors, each pair of restrictors of a different value to establish a plurality of BPM''s and I/R ratios; and means to select which coordinated pair of restrictors is placed in communication with the first and second time-delay relays.
6. The ventilator of claim 5, wherein the ventilator includes a plurality of tidal flow restrictors and the means to select a coordinated pair of restrictors includes means to select one of said tidal flow restrictors.
7. A ventilator for controlling the flow of fluid to a user, which comprises: a. means to deliver a ventilating fluid to a user, including at least one conduit communicating with the user; b. a Schmitt trigger in combination with a first time-delay relay responsive to the pressure in the conduit and actuatable between first and second states, the Schmitt trigger when in its first state actuating a first fluid amplifier, which amplifier allows flow of the ventilating fluid to the user in a demand ventilation mode, the trigger when in its second state actuating the first time-delay relay; c. a second fluid amplifier responsive to a signal from the first time-delay relay, the signal provided when the Schmitt trigger is in its second state for a time longer than the preestablished time of the first time-delay relay to provide a controlled ventilation mode; and d. a controlled ventilation mode circuit including bistable means responsive to the second fluid amplifier, second and third time-delay relays in communication with the bistable means, at least one coordinated pair of restrictors in communication with the second and third time-delay relays respectively, the bistable means when in its first state in communication with the second time-delay relay and its associated restrictor adapted to provide a signal to the first fluid amplifier to allow flow of fluid to the user, the duration of the first state controlled by the second time-delay relay and its associated restrictor, the bistable means when in its second state in communication with the third time-delay relay and its associated restrictor adapted to terminate the signal to the first fluid amplifier to stop the flow of fluid to the user, the duration of the second state controlled by the third time-delay relay and its associated restrictor, the alternation between states of the bistable means continuing until the Schmitt trigger in response to a pressure change in the conduit switches to its first state.
8. The ventilator of claim 7 wherein each of the restrictors of the pair is of a different value.
9. The ventilator of claim 8 which includes a plurality of coordinated pairs of restirctors, each pair of restrictors of different values whereby a plurality of BPM''s and I/R ratios are established; and means to select which coordinated pair of restrictors is placed in communication with the second and third time-delay relays.
10. The ventilator of claim 9 which includes at least one tidal flow restrictor downstream of the first fluid amplifier to control the flow rate of fluid to the user.
11. The ventilator of claim 10, which includes a plurality of tidal flow restrictors and the means to select a coordinated pair of restricotrs includes means to select one of said tidal flow restrictors.
12. The ventilator of claim 9, wherein the means to select which coordinated pair of restrictors is placed in communication with its associated time delay relay includes: A. a plurality of non-electric switches; B. at least one valve responsive to the actuation of each switch, each said valve in communication with each set of coordinated restrictors; C. means to close mechanically one of said valves by actuation of its corresponding switch; and D. means to prevent actuation of a second switch when the first switch is engaged.
US417351A 1973-11-19 1973-11-19 Dual mode fluidic ventilator Expired - Lifetime US3905363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US417351A US3905363A (en) 1973-11-19 1973-11-19 Dual mode fluidic ventilator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US417351A US3905363A (en) 1973-11-19 1973-11-19 Dual mode fluidic ventilator

Publications (1)

Publication Number Publication Date
US3905363A true US3905363A (en) 1975-09-16

Family

ID=23653635

Family Applications (1)

Application Number Title Priority Date Filing Date
US417351A Expired - Lifetime US3905363A (en) 1973-11-19 1973-11-19 Dual mode fluidic ventilator

Country Status (1)

Country Link
US (1) US3905363A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985131A (en) * 1974-11-20 1976-10-12 Searle Cardio-Pulmonary Systems Inc. Infant and pediatric ventilator
US4057059A (en) * 1975-07-29 1977-11-08 Oklahoma State University Intermittent positive pressure breathing device
US4187842A (en) * 1977-12-06 1980-02-12 N.A.D., Inc. Pressure monitor for breathing system
WO1980001646A1 (en) * 1979-02-12 1980-08-21 Rule Industries Flow control equipment
US4232666A (en) * 1978-03-16 1980-11-11 D G T S.R.L. Medical breathing apparatus
US4237925A (en) * 1977-01-18 1980-12-09 Citizen Watch Co., Ltd. Anesthesia apparatus
DE3034338A1 (en) * 1979-02-12 1981-02-26 D Levy FLOW CONTROL EQUIPMENT
WO1981002677A1 (en) * 1980-03-20 1981-10-01 Berkshire Res Partners Volume ventilator
US5327887A (en) * 1993-01-25 1994-07-12 Ludwik Nowakowski Cardiopulmonary resuscitation device
US6152134A (en) * 1996-10-18 2000-11-28 Invacare Corporation Oxygen conserving device
CN102028997A (en) * 2009-09-30 2011-04-27 北京谊安医疗系统股份有限公司 Mode switching method for anaesthesia machine or breathing machine
CN102266618A (en) * 2010-12-31 2011-12-07 北京谊安医疗系统股份有限公司 Ventilation mode switching method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669108A (en) * 1969-10-20 1972-06-13 Veriflo Corp Ventilator
US3730180A (en) * 1970-10-21 1973-05-01 Mine Safety Appliances Co Pneumatically operated ventilator
US3756229A (en) * 1970-12-14 1973-09-04 Veriflo Corp Ventilator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669108A (en) * 1969-10-20 1972-06-13 Veriflo Corp Ventilator
US3730180A (en) * 1970-10-21 1973-05-01 Mine Safety Appliances Co Pneumatically operated ventilator
US3756229A (en) * 1970-12-14 1973-09-04 Veriflo Corp Ventilator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985131A (en) * 1974-11-20 1976-10-12 Searle Cardio-Pulmonary Systems Inc. Infant and pediatric ventilator
US4057059A (en) * 1975-07-29 1977-11-08 Oklahoma State University Intermittent positive pressure breathing device
US4237925A (en) * 1977-01-18 1980-12-09 Citizen Watch Co., Ltd. Anesthesia apparatus
US4187842A (en) * 1977-12-06 1980-02-12 N.A.D., Inc. Pressure monitor for breathing system
US4232666A (en) * 1978-03-16 1980-11-11 D G T S.R.L. Medical breathing apparatus
WO1980001646A1 (en) * 1979-02-12 1980-08-21 Rule Industries Flow control equipment
DE3034338A1 (en) * 1979-02-12 1981-02-26 D Levy FLOW CONTROL EQUIPMENT
US4256100A (en) * 1979-02-12 1981-03-17 Rule Medical Instruments, Inc. Flow control equipment
WO1981002677A1 (en) * 1980-03-20 1981-10-01 Berkshire Res Partners Volume ventilator
US4340044A (en) * 1980-03-20 1982-07-20 Berkshire Research Partners Volume ventilator
US5327887A (en) * 1993-01-25 1994-07-12 Ludwik Nowakowski Cardiopulmonary resuscitation device
US6152134A (en) * 1996-10-18 2000-11-28 Invacare Corporation Oxygen conserving device
CN102028997A (en) * 2009-09-30 2011-04-27 北京谊安医疗系统股份有限公司 Mode switching method for anaesthesia machine or breathing machine
CN102028997B (en) * 2009-09-30 2015-01-21 北京谊安医疗系统股份有限公司 Mode switching method for anaesthesia machine or breathing machine
CN102266618A (en) * 2010-12-31 2011-12-07 北京谊安医疗系统股份有限公司 Ventilation mode switching method and device
CN102266618B (en) * 2010-12-31 2014-06-11 北京谊安医疗系统股份有限公司 Ventilation mode switching method and device

Similar Documents

Publication Publication Date Title
US3905363A (en) Dual mode fluidic ventilator
US4057059A (en) Intermittent positive pressure breathing device
US4044763A (en) Ventilator and method
US4141356A (en) Respirator system and method
US3985131A (en) Infant and pediatric ventilator
US4459982A (en) Servo-controlled demand regulator for respiratory ventilator
US3485243A (en) Respirator with improved exhalation valve and control means
US3834382A (en) Fluidic respirator control system with patient triggering response means
US3191596A (en) Respirator
US3234932A (en) Respirator
US3662751A (en) Automatic respirator-inhalation therapy device
US6427690B1 (en) Combined oxygen regulator and conservation device
JP2623016B2 (en) Automatic ventilator
US5398675A (en) Anesthesia rebreathing system
US3319627A (en) Intermittent positive pressure breathing apparatus
US3842828A (en) Pediatric ventilator
US3756229A (en) Ventilator
GB1532011A (en) Ventilator
US3991790A (en) Patient ventilator trigger circuit
GB1562604A (en) Patient ventilator
US3976065A (en) Digital fluidic ventilator
GB1208775A (en) Improvements in or relating to respiratory apparatus
US3385295A (en) Apparatus for use in administering intermittent positive pressure breathing therapy
US3659598A (en) Respirator with fluid amplifiers with fluid timer
US3820539A (en) Ventilator with compliance isolation switch