US3906595A - Slide fastener - Google Patents

Slide fastener Download PDF

Info

Publication number
US3906595A
US3906595A US380323A US38032373A US3906595A US 3906595 A US3906595 A US 3906595A US 380323 A US380323 A US 380323A US 38032373 A US38032373 A US 38032373A US 3906595 A US3906595 A US 3906595A
Authority
US
United States
Prior art keywords
coil
links
coils
link
slide fastener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US380323A
Inventor
George B Moertel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Talon Inc
Original Assignee
Textron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Textron Inc filed Critical Textron Inc
Priority to US380323A priority Critical patent/US3906595A/en
Priority to CA204,831A priority patent/CA1047740A/en
Priority to DE2434394A priority patent/DE2434394B2/en
Priority to NL7409669A priority patent/NL7409669A/en
Priority to BE7000544A priority patent/BE817777A/en
Priority to CH985074A priority patent/CH579885A5/xx
Priority to GB3167074A priority patent/GB1474794A/en
Priority to JP49081241A priority patent/JPS5037541A/ja
Priority to FR7424815A priority patent/FR2237593B1/fr
Priority to AU71344/74A priority patent/AU501529B2/en
Priority to BR5921/74A priority patent/BR7405921D0/en
Priority to US05/596,109 priority patent/US4034056A/en
Application granted granted Critical
Publication of US3906595A publication Critical patent/US3906595A/en
Priority to CA292,255A priority patent/CA1047749A/en
Assigned to TALON, INC., A CORP. OF DE. reassignment TALON, INC., A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: TEXTRON, INC.
Assigned to CONTINENTAL ILLINOIS NATIONAL BANK AND TRUST COMPANY, 231 SOUTH LASALLE ST., CHICAGO, IL., 60697 reassignment CONTINENTAL ILLINOIS NATIONAL BANK AND TRUST COMPANY, 231 SOUTH LASALLE ST., CHICAGO, IL., 60697 SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TALON, INC., A CORP OF DE.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D5/00Producing elements of slide fasteners; Combined making and attaching of elements of slide fasteners
    • B29D5/06Producing elements of slide fasteners; Combined making and attaching of elements of slide fasteners the interlocking members being formed by continuous helix
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B19/00Slide fasteners
    • A44B19/10Slide fasteners with a one-piece interlocking member on each stringer tape
    • A44B19/12Interlocking member in the shape of a continuous helix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T24/00Buckles, buttons, clasps, etc.
    • Y10T24/25Zipper or required component thereof
    • Y10T24/2518Zipper or required component thereof having coiled or bent continuous wire interlocking surface

Definitions

  • ABSTRACT A slide fastener and method and apparatus for making the same are disclosed wherein coils of filamentary material are secured to adjacent edges of a pair of carrier tapes.
  • Each coil of filamentary material is formed from a filament having a specially shaped cross section which is arranged in a mirror image relationship with respect to its adjacent filamentary coil. During formation of the filamentary coils, they are simultaneously wound on a mandrel having differently shaped surfaces which aid in the final shaping of each coil.
  • This invention relates to slide fasteners and to a method and apparatus for making the same, and in particular to the structural formation of the filamentary coils for slide fasteners.
  • the slide fastener device includes a pair of carrier tapes having edges disposed adjacent each other, a pair of interengaging filamentary coils respectively attached to the edges of the carrier tapes with each coil having a plurality of convolutions disposed along a longitudinal axis parallel to a longitudinal .axis defined by its carrier tape edge, each convolution of each coil including a bight element with first and second links extending therefrom and a connector member interconnecting a link of one convolution with a second link of an adjacent convolution, the bight elements of one coil being generally adjacent the connec- .tor members of the other coil, the first links of one coil engaging the first links of the other coil in a first pattern, and the second links of one coil engaging the second links of the other coil in a second pattern different from the first pattern whereby the filamentary coils are easily flexed with their respective carrier tapes.
  • An object of the present invention is to increase the flexibility of a slide fastener without decreasing the strength of the slide fastener.
  • Another object of the present invention is to increase the strength of a slide fastener while reducing the size thereof.
  • This invention has another object in that the coils of a slide fastener device are meshed together in a nesting arrangement.
  • Another object of this invention is to eliminate sharp edged interlocking elements on the filamentary coils of slide fasteners.
  • Still another object of this invention is to construct the coils of a slide fastener by a reorientation of the geometry of the filamentary coils.
  • the present invention has another object in that the coils of a slide fastener are made by wrapping a generally elliptical filament around a mandrel having asymmetrical surfaces.
  • FIG. 1 is a partial front elevation view of a slide fastener embodying the present invention
  • FIG. 2 is a partial front elevation view of the right hand coil of FIG. 1 on an enlarged scale
  • FIG. 3 is a top plan view of FIG. 2;
  • FIG. 4 is a cross sectional view taken along line 44 of FIG. 2;
  • FIG. 5 is a side elevation as viewed from the FIG. 2;
  • FIG. 6 is a top plan view of FIG. 5;
  • FIG. 7 is a cross sectional view taken along line 77 of FIG. 5;
  • FIG. 8 is a view similar to FIG. 2 but showing a rear elevation view of the right hand coil of FIG. 1;
  • FIG. 9 is a top plan view of FIG. 8;
  • FIG. 10 is a cross sectional view taken along line 1010 of FIG. 8;
  • FIG. 11 is a side elevation as viewed from the right of FIG. 8;
  • FIG. 12 is a top plan view of FIG. 11;
  • FIG. 13 is a cross sectional view taken along line l3-l3 of FIG. 11;
  • FIG. 14 is a partial front elevation view of the coils in FIG. 1 in mating positions
  • FIG. 15 is a side elevation view as viewed from the right of FIG. 14;
  • FIG. 16 is a partial rear elevation view of the detail shown in FIG. 14;
  • FIG. 17 is a side elevation view as viewed from the right of FIG. 16;
  • FIG. 18 is a partial elevation view with parts in section of a coiling apparatus embodying the present invention.
  • FIG. 19 is an enlarged elevation view of the top portion of FIG. 18;
  • FIG. 20 is a top plan view of FIG. 19'
  • FIG. 21 is a perspective view of the mandrel of FIG. 18 on an enlarged scale
  • FIG. 22 is a partial cross sectional view taken along line 22-22 of FIG. 21 with parts added;
  • FIG. 23 is a partial cross sectional view taken along line 23-23 of FIG. 21 with parts added;
  • FIG. 24 is a partial front elevation of FIG. 21 with parts added;
  • FIG. 25 is a schematic diagram illustrating the relative initial positions of the two coils being wound on the mandrel at the beginning of a winding operation
  • FIG. 26 is a view similar to FIG. 25 wherein the two coils are displaced 90 from the initial position of FIG. 25;
  • FIG. 27 is a view similar to FIG. 25 wherein the two coils are displaced 180 from the initial position of FIG. 25;
  • FIG. 28 is a view similar to FIG. 25 wherein the two coils are displaced 270 from the initial position of FIG. 25.
  • the present invention is embodied in a slide fastener illustrated in FIG. 1 as including a slider and pull assembly 5 which is moved longitudinally along a pair of stringers for opening and closing the opening in a garment or the like as is well known in the art.
  • the stringers include a pair of carrier tapes 7 and 9, the adjacent edges of which are provided with interlocking elements made of a suitable plastic filamentary material, such as nylon, 21 polyester, or the like.
  • the interlocking elements are designated as the right-hand filamentary coil which is suitably secured to the edge of the carrier tape 9; the left-hand filamentary coil 110 is similarly secured to an adjacent edge of the lefthand carrier tape 7.
  • the terms left, right, front, rear, etc. are being used herein in order to facilitate the description of the structural components.
  • the filamentary coil 10 is defined by a series of convolutions each of which includes a bight element 12 with its opposite ends having links 14 and 16 and with a connector member 18 interconnecting the front link 14 of one convolution with the rear link 16 of an adjacent convolution.
  • the filament of the coil 10 may have any suitable crosssectional configuration that approaches an elliptical shape; i.e., the exact parameters of the major and minor axes, may vary widely but they may not be equal as in the case of a circular cross-sectional configuration.
  • the elliptical cross section of the filament of the coil is substantially the same throughout its length and the appearance that certain components of each convolution may be of different sizes than other components is not primarily accomplished by a deformation of the particular component but rather is accomplished by a reorientation of the major and minor axes of each convolutions components with respect to each other. While it is not necessary for the purposes of the present invention.
  • the bight element 12 is slightly enlarged along its major axis because of the apparatus utilized in coiling filamentary material; i.e., the bight element 12 is physically folded or wrapped around a surface small enough to cause a high unit pressure whereby the bight element 12 is slightly compressed against a surface perpendicular to its minor axis causing a slight reduction in its minor axis and a corre spondingly slight enlargement of its major axis (see FIG. 13).
  • the major axis of the front link 14 is inclined approximately 60 from the vertical which defines the longitudinal plane in which the filamentary coil 10 is disposed.
  • the connector member 18, which connects adjacent front and rear link 14 and 16 is shown in FIGS. 5 and 6 to be generally opposite the bight element 12; the major axis of the filament of the coil 10 at the connector member 18 is shown in FIG. 7 to be rotated approximately 60 counterclockwise from that of the front link 14 of FIG. 4, i.e., the major axis of the connector member 18 substantially coincides with the vertical defining such longitudinal plane.
  • FIGS. 8-10 which respectively resemble FIGS. 2-4 but which differ therefrom in that the major axis of the rear link 16 is displaced counterclockwise from that shown in FIG. 4 for the from link 14.
  • the major axis of the ellipse forming the rear link 16 is inclined approximately 30 counterclockwise from the vertical which defines the above longitudinal plane (see FIG. 10).
  • the bight element 12 shown in FIGS. 11 and 12 is generally opposite to the connector member 18 and its cross section is substantially the same as that shown for connector member 18 in FIG. 7. However, inasmuch as the bight element 12 is slightly compressed along its minor axis as discussed above, the cross section of the bight element 12 of FIG. 13 is not identical to that of FIG. 7.
  • the major axis of the bight element 12 is shown in FIG. 13 to be rotated approximately 30 clockwise from that of the rear link 16 of FIG. 10; i.e., the major axis of the bight element 12 substantially coincides with the vertical defining the above longitudinal plane.
  • each convolution of the left hand coil includes a bight element 112, front and rear links 114 and 116, and a connector member 1 18; in addition, the coil 1 10 is disposed in mirror image relation to the coil 10 so that bight elements 12 and 112 face each other when the slide fastener of FIG. 1 is opened.
  • FIG. 14 A portion of the slide fastener coils 10 and 110 is illustrated in FIG. 14 in a closed position and the front links 14 and 114 are nested into contact with each other in a generally parallel arrangement.
  • each front link 14 and 114 has a geometry that is continuously changing because each coil 10 and 110 is formed in the general construction of an open helix.
  • the geometry of coil 10 changes from its front link 14 to its bight element 12 by reorientation of the cross-sectional major axis from its position shown in FIG. 4 to its position shown in FIG. 13, thence from bight element 12 to its rear link I6 by reorientation of the major axis from its position shown in FIG. 13 to its position shown in FIG. 10, and finally from its rear link 16 to its connector member 18 by reorientation of the major axis from its position shown in FIG. 10 to its position shown in FIG. 7.
  • Each front link 14 (114) has an asymmetrical geometry with respect to its rear link 16 (116). As is shown in FIGS. 2. l4 and IS, the front link 14 (114) is generally perpendicular relative to the longitudinal axis defined by the plane of coil 10 110); thus, the front links 14 of coil 10 are generally parallel to the front links 114 of the coil 110 as best seen in FIG. 14. As is shown in FIGS. 5, l6 and 17, the link 16 (116) is generally inclined relative to the longitudinal axis defined by the plane of the coil 10 (110); the links 16 and 116 are not parallel to each other but rather are inclined toward each other as best seen in FIG. 16. The parallel and inclined relationship applies generally to the respective central portions of the adjacent links 14 and 114 and the adjacent links 16 and 116 because the crosssectional geometry of each coil 10 and 110 changes as the components of each convolution is shaped.
  • FIG. 14 When the two coils 10 and 110 are intermeshed, as illustrated in the lower part of FIG. 1, the front side of FIG. 1 is shown in FIG. 14 as having a generally parallel arrangement while the rear side is shown in FIG. 16 as having a generally herringbone arrangement.
  • the bight element 12 of coil 10 is nested between the links 114 and 116 and spaced slightly from the connector member 118 of coil 110 (see FIGS. 14 and 17), while the bight element 112 of coil 110 is nested between the links 14 and 16 and spaced slightly from the connector member 18 of coil 10 (see FIGS. 14 and
  • a slide fastener constructed according to the present invention exhibits a high degree of flexibility together with a high degree of lateral strength.
  • each coil 10 and 110 By rearranging the geometry of each coil 10 and 110 into an asymmetrical construction, the front and rear sides have different configurations which permits the convolutions of one coil to be closely inter locked with the adjacent convolutions of the other coil whereby the overall strength of the slide fastener chain is enhanced.
  • the bight elements 12 and 112 have their major axes oriented to be parallel with and substantially coinciding with the longitudinal plane in which the coils 10 and 110 are disposed, improper lateral separation of the bight elements from their interlocked arrangement is virtually precluded.
  • the bight element 12 has its major axis substantially vertical, as shown in FIG. 13 so that any lateral movement in a direction toward its connector member 18 would be impeded by the adjacent links 114 (see FIGS.
  • the strength of the slide fastener is substantially increased by the above arrangement which also substantially increases the flexibility of the slide fastener.
  • the parallel construction of the front links 14 and 114 as seen in FIG. 14 is asymmetrical to the herringbone construction of the rear links 16 and 116 as seen in FIG 16.
  • Such an asymmetrical arrangement permits easy flexing of the slide fastener perpendicular to its longitudinal axis whereby it may be installed in a garment opening (not shown) without bunching of the garment material and whereby it may bend with the garment when being worn without agitation and/or irritation to the wearer.
  • the flexibility of the slide fastener becomes apparent by comparing the four sides thereof as shown in FIGS. 14-17 which illustrate a close interlocking arrangement of the coils l0 and without sharp edges and/or abutments.
  • each coil 10 110
  • the major axis of the filament of coil 10 (110) varies through each complete convolution thereof, as shown in FIGS. 4, 7, 10 and 13.
  • This changing of the geometry of each coiled convolution permits the utilization of more convolutions per unit length of the coil resulting in the particular advantages of increasing the longitudinal and lateral strength of the slide fastener device without increasing the bulk or diametrical size of the filament or the coil.
  • the front or first link 14 of coil 10 nests with the front or first links 114 of coil 110 and, similarly, the rear or second link 16 nests with the rear or second link 116; as is apparent in FIGS. 14 and 16, such nesting arrangements present a close fitting, generally parallel construction for the first links 14 and 114, and a generally herringbone construction for the second links 16 and 116.
  • the method of making the interengaging coils for the slide fastener device commences with a pair of continuous filaments having generally elliptical cross sections and being supplied under suitable tension from supply spools or the like to a shaping mandrel.
  • the filaments are oriented so that their major axes are substantially parallel to the longitudinal axis of the mandrel and then are simultaneously wound in opposite directions about the mandrel with one filament being degrees out of phase with the second filament so that they will cross each other.
  • the coils 10 and 110 are formed with a plurality of convolutions, each of which includes the four components, namely, the bight element 12, the first link 14, the second link 16 and the connector member 18.
  • each convolution is being shaped, its filaments geometry is continuously changing by reorienting the major axis of its cross section resulting in an asymmetrical relationship between the first and second links.
  • the reorientation of each bight element 12 (112) is accomplished by aligning its major axis so as to be generally parallel to a longitudinal axis defined by the intermeshed coils; the reorientation of each connector member 18 118) is accomplished by aligning its major axis so as to be generally parallel to such longitudinal axis.
  • each of the first and second links is accomplished by inclining their major axes relative to such longitudinal axis and at a different angle between each other.
  • Each of the bight elements 12 1 12) is shaped by aligning the major axis thereof so as to be generally parallel to each other and to the longitudinal axis of the intermeshed coils.
  • each connector member 18 (118) is formed by being wrapped around adjacent portions of the bight elements with the connector members of one coil being wrapped around the bight elements of the other coil.
  • the oppositely wound filaments are maintained under tension to assure cooperation with the shaping mandrel. after which the interfitting components of the convolutions are maintained in intermeshed relationship by means of an internal support projecting from the shaping mandrel.
  • the intenneshed coils then pass through a heating stage to permanently form the shaped components and are then removed from such internal support.
  • FIG. 1 Apparatus for making the filamentary coils in accordance with the present invention is illustrated in FIG.
  • a drive shaft 22 is rotated by any suitable power means such as an electric motor (not shown) and a helical gear 24 fixed to shaft 22 for rotation therewith.
  • the two coilers shown in FIGS. 18 and I9 are substantially similar so that only one is being described and identified with reference numbers; similar reference numerals with 100 added for correlated components of the second coiler are being shown in parentheses.
  • the two coilers are inclined toward each other and the driving gear 24 meshes with a helical gear 30 (I30) which is fixed to a longitudinally bored shaft 32 (I32) that is rotatably mounted and sealed in the easing 20 by a suitable bar 34 (I34) and a shaft seal 36 (136) at its lower end and by a ball bearing assembly 38 (I38) at its upper end.
  • a shank member 40 (140) is fixed to the upper end of the shaft 32 (132) by any suitable means such as a clamping block 41 (141) and cap screws 42 I42); see FIG. 20.
  • a plurality of spaced odontoid or lugs 44 144) are circumferentially spaced about the upper periphery of the shank member.
  • a guide pulley or wheel 46 (146) is rotatably carried in the shank member 40 (140) and the strand of filamentary material of the coil (I10) progresses from a supply spool 48 (148) through the central bore of the shaft 32 I32) and around the pulley 46 (146) through a slotted portion of one of the projections 44 (144) from which it is wrapped on a mandrel, as described below.
  • the odontoid projections 44 and 144 are shaped so as to support an oval-shaped mandrel holder 49 in a substantially floating condition. Thus, rotation of the shank members 40 and 140 in opposite directions causes the projections 44 to pass between the projections 144 so that the rotatable path of the projections 44 intersects the rotatable path of the projections 144.
  • the floating mandrel holder 49 has a centrally disposed bore which supports a mandrel base 50. the lower portion of which is substantially circular to conform to the shape of the mandrel holder bore.
  • the upper portion of the mandrel base 50 includes a generally frusto-conical surface 52, the apex of which is truncated.
  • a rectangular bore 54 extends centrally through the mandrel base 50 and intersects the truncated surface. As viewed in FIG. 21. an elongated slot 56 is disposed adjacent the left short side of the rectangular bore 54 and a similar slot 58 is disposed adjacent the right short side thereof.
  • a generally rectangular mandrel 60 fits into the rectangular opening 54.
  • mandrel 60 Adjacent the notches 56 and 58 the sides of mandrel 60 are slanted with a decreasing taper defining similarly sloped surfaces 62 and 64, respectively. Also adjacent the rectangular opening 54 the mandrel 60 has a rear sloping surface 66 which terminates in the general area of the surfaces 62 and 64. As is illustrated in FIG. 23, the side of the mandrel opposite to the sloping surface 66 is provided with a front sloping surface 68, the angle of inclination of which is substantially greater than the angle of inclination of the sloping surface 66.
  • the mandrel 60 is provided with a longitudinally disposed, rectangular slot which receives a rectangularly shaped extension 70 in telescoping fashion.
  • a heat box 72 surrounds the extension 70 to provide a permanent set for the shaped coils. Heat is provided to the heat box 72 by any suitable menas. e.g. electric resistance coils or the like.
  • the two filaments of the coils I0 and 110 are wound about the mandrel 60 in opposite directions with the two filaments being out of phase by 180.
  • the coiler heads rotate in opposite directions so that the filament of the coil 10 advances through a sector in a clockwise direction from the position in FIG. 25 to the position of FIG. 26; simultaneously, the filament of the coils I10 advances through a 90 sector in a counter clockwise direction.
  • FIG. 27 shows the filaments of the coils l0 and being advanced through another 90 sector while FIG. 28 shows such filaments being advanced through another 90 sector. From FIG. 28, the filaments of the coils 10 and 110 will proceed to their initial position, as illustrated in FIG. 25.
  • the bight elements 12 and 112 are fonned by contacting the mandrel surfaces while the connector members [8 and I 18 are formed by contacting those portions of the opposite filaments which are wrapped on the mandrel.
  • the intermeshed coils are thus formed by the mandrel and filament interaction and are moved vertically along the longitudinal axis of the mandrel, as shown in FIGS. 21-24.
  • the intermeshed coils 12 and I12 are guided by the mandrel extension 70 and are passed through the heating box 72 so that the formed intermeshed coils are permanently set or cured by heating.
  • the intermeshed coils undergo an air cooling stage by being moved in such a manner as to prevent stretching or compression, i.e., by two constant speed driven pulleys or wheels (not shown). After leaving such wheels, the intermeshed coils drop through a distance of about 5 feet whereby they are finally air cooled and, by hanging downwardly, gravity prevents the coils from being kinked, convoluted or otherwise disturbed.
  • a slide fastener device comprising a pair of carrier tapes having edges disposed adjacent each other
  • each coil being formed from a filament having a central core axis and having an elliptical cross section transverse to the central core axis,
  • each coil having a plurality of convolutions disposed along a longitudinal axis parallel to a longitudinal axis defined by its carrier tape edge
  • each convolution of each coil including a bight element, first and second links extending from said bight element and a connector member interconnecting a first link of one convolution with a second link of an adjacent convolution,
  • each convolution of each coil being substantially identical to its adjacent convolution each first link having a cross section with a major axis different from a major axis of a cross section of each second link.
  • the bight elements first and second links and connec tor members of one coil being of substantially identical construction to the respective bight elements first and second links and connector members of the other cool the bight elements of one coil being generally adjacent the connector members of the other coil,
  • each coil has a generally elliptical configuration defined by inner and outer peripheries of each convolution. and wherein said inner and outer peripheries have different center points.

Abstract

A slide fastener and method and apparatus for making the same are disclosed wherein coils of filamentary material are secured to adjacent edges of a pair of carrier tapes. Each coil of filamentary material is formed from a filament having a specially shaped cross section which is arranged in a mirror image relationship with respect to its adjacent filamentary coil. During formation of the filamentary coils, they are simultaneously wound on a mandrel having differently shaped surfaces which aid in the final shaping of each coil.

Description

United States Patent [191 Moertel 1 Sept. 23, 1975 SLIDE FASTENER [75] inventor: George B. Moertel, Conneautville,
[73] Assignee: Textron Inc., Providence, RI.
[221 Filed: July 18, 1973 [21] Appl. No.: 380,323
[52] US. Cl. 24/205.l3 C; 24/205.13 (51] Int. Cl A44!) 19/12 [58] Field of Search 24/205.l3 C, 205.l C
[56] References Cited UNITED STATES PATENTS 9/1942 Smith 24/120513 C 2.919482 1/1960 Caisson. 24/205.13 C 3.247.871 4/1966 Lacam 24/205114 C FOREIGN PATENTS OR APPLICATIONS 115,798 9/1942 Australia 24/205.13 C
1,323,015 2/1963 France. 3 C 1,145,117 3/1963 Germany 24/2051] C 940.066 10/1963 United Kingdom 24/20513 C Primary ExaminerBernard A. Gelak [57] ABSTRACT A slide fastener and method and apparatus for making the same are disclosed wherein coils of filamentary material are secured to adjacent edges of a pair of carrier tapes. Each coil of filamentary material is formed from a filament having a specially shaped cross section which is arranged in a mirror image relationship with respect to its adjacent filamentary coil. During formation of the filamentary coils, they are simultaneously wound on a mandrel having differently shaped surfaces which aid in the final shaping of each coil.
6 Claims, 28 Drawing Figures US Patent Sept. 23,1975 Sheet 1 of 8 3,906,595
US Patent Sept. 23,1975 Sheet 2 of 8 3,906,595
US Patent Sept. 23,1975 Sheet 3 of8 3,906,595
US Patent Sept. 23,1975 Sheet 4 of 8 3,906,595
FIG. l8
US Patent Sept. 23,1975
Sheet 5 of 8 US Patent Sept. 23,1975 Sheet 6 of8 3,906,595
US Patent Sept. 23,1975 Sheet 8 0f8 3,906,595
FIG. 25-
FIG. 26
FIG. 27
FIG. 28
SLIDE FASTENER BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to slide fasteners and to a method and apparatus for making the same, and in particular to the structural formation of the filamentary coils for slide fasteners.
2. Description of the Prior Art It has been conventional for the coil of slide fasteners to be formed from filamentary material with each convolution of the coil having head and heel elements interconnected by leg elements; simultaneous formation of a pair of coils has been accomplished on coiling machines which shape the convolutions of the filamentary coils on suitable mandrels and intermesh such coils after their formation.
U.S. Pat. Nos. 1,937,297; 2,296,880; 2,300,442; 2,300,433; 2,541,728; 2,643,432; 2,907,066; 2,973,554; 3,053,288; 3,145,523; 3,152,433; 3,196,489,; 3,553,782 and 3,609,827 are representative of the prior art in illustrating a variety of cross sections for the interlocking elements of slide fasteners as well as a variety of methods and apparatuses for forming the same.
One of the problems associated with the prior art devices is that the manufacture of slide fastener coils having non-circular cross sections has resulted in slide fasteners that have a low index of flexibility and a high index of rigidity. While the prior art devices may have been satisfactory for the particular purpose for which they were designed, they have not been satisfactory in maintaining the proper flexibility for the different types and sizes of slide fasteners utilizing filamentary coil of the plastic type. The many methods and apparatus in the prior art have served their particular purposes with respect to the types of slide fastener coils for which they were designed. However, such prior art arrangements have always utilized a symmetrical association of coiling steps and mandrel configuration.
SUMMARY OF THE INVENTION The present invention is summarized in a slide fastener device and a method and apparatus for making the same wherein the slide fastener device includes a pair of carrier tapes having edges disposed adjacent each other, a pair of interengaging filamentary coils respectively attached to the edges of the carrier tapes with each coil having a plurality of convolutions disposed along a longitudinal axis parallel to a longitudinal .axis defined by its carrier tape edge, each convolution of each coil including a bight element with first and second links extending therefrom and a connector member interconnecting a link of one convolution with a second link of an adjacent convolution, the bight elements of one coil being generally adjacent the connec- .tor members of the other coil, the first links of one coil engaging the first links of the other coil in a first pattern, and the second links of one coil engaging the second links of the other coil in a second pattern different from the first pattern whereby the filamentary coils are easily flexed with their respective carrier tapes.
An object of the present invention is to increase the flexibility of a slide fastener without decreasing the strength of the slide fastener.
Another object of the present invention is to increase the strength of a slide fastener while reducing the size thereof.
This invention has another object in that the coils of a slide fastener device are meshed together in a nesting arrangement.
Another object of this invention is to eliminate sharp edged interlocking elements on the filamentary coils of slide fasteners.
Still another object of this invention is to construct the coils of a slide fastener by a reorientation of the geometry of the filamentary coils.
The present invention has another object in that the coils of a slide fastener are made by wrapping a generally elliptical filament around a mandrel having asymmetrical surfaces.
It is a further object of the present invention to construct a coil forming mandrel with differently shaped sloping surfaces about which a pair of filamentary coils are wound into predetermined shapes.
Other objects and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial front elevation view of a slide fastener embodying the present invention;
FIG. 2 is a partial front elevation view of the right hand coil of FIG. 1 on an enlarged scale;
FIG. 3 is a top plan view of FIG. 2;
FIG. 4 is a cross sectional view taken along line 44 of FIG. 2;
FIG. 5 is a side elevation as viewed from the FIG. 2;
FIG. 6 is a top plan view of FIG. 5;
FIG. 7 is a cross sectional view taken along line 77 of FIG. 5;
FIG. 8 is a view similar to FIG. 2 but showing a rear elevation view of the right hand coil of FIG. 1;
FIG. 9 is a top plan view of FIG. 8;
FIG. 10 is a cross sectional view taken along line 1010 of FIG. 8;
FIG. 11 is a side elevation as viewed from the right of FIG. 8;
FIG. 12 is a top plan view of FIG. 11;
FIG. 13 is a cross sectional view taken along line l3-l3 of FIG. 11;
FIG. 14 is a partial front elevation view of the coils in FIG. 1 in mating positions;
FIG. 15 is a side elevation view as viewed from the right of FIG. 14;
FIG. 16 is a partial rear elevation view of the detail shown in FIG. 14;
FIG. 17 is a side elevation view as viewed from the right of FIG. 16;
FIG. 18 is a partial elevation view with parts in section of a coiling apparatus embodying the present invention;
FIG. 19 is an enlarged elevation view of the top portion of FIG. 18;
FIG. 20 is a top plan view of FIG. 19',
FIG. 21 is a perspective view of the mandrel of FIG. 18 on an enlarged scale;
FIG. 22 is a partial cross sectional view taken along line 22-22 of FIG. 21 with parts added;
right of FIG. 23 is a partial cross sectional view taken along line 23-23 of FIG. 21 with parts added;
FIG. 24 is a partial front elevation of FIG. 21 with parts added;
FIG. 25 is a schematic diagram illustrating the relative initial positions of the two coils being wound on the mandrel at the beginning of a winding operation;
FIG. 26 is a view similar to FIG. 25 wherein the two coils are displaced 90 from the initial position of FIG. 25;
FIG. 27 is a view similar to FIG. 25 wherein the two coils are displaced 180 from the initial position of FIG. 25; and
FIG. 28 is a view similar to FIG. 25 wherein the two coils are displaced 270 from the initial position of FIG. 25.
DESCRIPTION OF THE PREFERRED EMBGDIMENTS The present invention is embodied in a slide fastener illustrated in FIG. 1 as including a slider and pull assembly 5 which is moved longitudinally along a pair of stringers for opening and closing the opening in a garment or the like as is well known in the art. The stringers include a pair of carrier tapes 7 and 9, the adjacent edges of which are provided with interlocking elements made of a suitable plastic filamentary material, such as nylon, 21 polyester, or the like. As viewed in FIG. 1 the interlocking elements are designated as the right-hand filamentary coil which is suitably secured to the edge of the carrier tape 9; the left-hand filamentary coil 110 is similarly secured to an adjacent edge of the lefthand carrier tape 7. The terms left, right, front, rear, etc. are being used herein in order to facilitate the description of the structural components.
As is illustrated in FIGS. 2 and 3, the filamentary coil 10 is defined by a series of convolutions each of which includes a bight element 12 with its opposite ends having links 14 and 16 and with a connector member 18 interconnecting the front link 14 of one convolution with the rear link 16 of an adjacent convolution. The filament of the coil 10 may have any suitable crosssectional configuration that approaches an elliptical shape; i.e., the exact parameters of the major and minor axes, may vary widely but they may not be equal as in the case of a circular cross-sectional configuration. In accordance with the present invention the elliptical cross section of the filament of the coil is substantially the same throughout its length and the appearance that certain components of each convolution may be of different sizes than other components is not primarily accomplished by a deformation of the particular component but rather is accomplished by a reorientation of the major and minor axes of each convolutions components with respect to each other. While it is not necessary for the purposes of the present invention. it will be noted that the bight element 12 is slightly enlarged along its major axis because of the apparatus utilized in coiling filamentary material; i.e., the bight element 12 is physically folded or wrapped around a surface small enough to cause a high unit pressure whereby the bight element 12 is slightly compressed against a surface perpendicular to its minor axis causing a slight reduction in its minor axis and a corre spondingly slight enlargement of its major axis (see FIG. 13).
As viewed in FIG. 4, the major axis of the front link 14 is inclined approximately 60 from the vertical which defines the longitudinal plane in which the filamentary coil 10 is disposed. The connector member 18, which connects adjacent front and rear link 14 and 16 is shown in FIGS. 5 and 6 to be generally opposite the bight element 12; the major axis of the filament of the coil 10 at the connector member 18 is shown in FIG. 7 to be rotated approximately 60 counterclockwise from that of the front link 14 of FIG. 4, i.e., the major axis of the connector member 18 substantially coincides with the vertical defining such longitudinal plane.
The rear link 16 is more clearly illustrated in FIGS. 8-10 which respectively resemble FIGS. 2-4 but which differ therefrom in that the major axis of the rear link 16 is displaced counterclockwise from that shown in FIG. 4 for the from link 14. Thus, the major axis of the ellipse forming the rear link 16 is inclined approximately 30 counterclockwise from the vertical which defines the above longitudinal plane (see FIG. 10).
The bight element 12 shown in FIGS. 11 and 12 is generally opposite to the connector member 18 and its cross section is substantially the same as that shown for connector member 18 in FIG. 7. However, inasmuch as the bight element 12 is slightly compressed along its minor axis as discussed above, the cross section of the bight element 12 of FIG. 13 is not identical to that of FIG. 7. The major axis of the bight element 12 is shown in FIG. 13 to be rotated approximately 30 clockwise from that of the rear link 16 of FIG. 10; i.e., the major axis of the bight element 12 substantially coincides with the vertical defining the above longitudinal plane.
The filamentary coils 10 and 110 have substantially the same components so that a detailed description of coil 110 is being omitted for sake of brevity and the corresponding components merely being identified with the same reference numerals with added. For example, each convolution of the left hand coil includes a bight element 112, front and rear links 114 and 116, and a connector member 1 18; in addition, the coil 1 10 is disposed in mirror image relation to the coil 10 so that bight elements 12 and 112 face each other when the slide fastener of FIG. 1 is opened.
A portion of the slide fastener coils 10 and 110 is illustrated in FIG. 14 in a closed position and the front links 14 and 114 are nested into contact with each other in a generally parallel arrangement. As is apparent from FIGS. 2 and 15, each front link 14 and 114 has a geometry that is continuously changing because each coil 10 and 110 is formed in the general construction of an open helix. The geometry of coil 10 changes from its front link 14 to its bight element 12 by reorientation of the cross-sectional major axis from its position shown in FIG. 4 to its position shown in FIG. 13, thence from bight element 12 to its rear link I6 by reorientation of the major axis from its position shown in FIG. 13 to its position shown in FIG. 10, and finally from its rear link 16 to its connector member 18 by reorientation of the major axis from its position shown in FIG. 10 to its position shown in FIG. 7.
Each front link 14 (114) has an asymmetrical geometry with respect to its rear link 16 (116). As is shown in FIGS. 2. l4 and IS, the front link 14 (114) is generally perpendicular relative to the longitudinal axis defined by the plane of coil 10 110); thus, the front links 14 of coil 10 are generally parallel to the front links 114 of the coil 110 as best seen in FIG. 14. As is shown in FIGS. 5, l6 and 17, the link 16 (116) is generally inclined relative to the longitudinal axis defined by the plane of the coil 10 (110); the links 16 and 116 are not parallel to each other but rather are inclined toward each other as best seen in FIG. 16. The parallel and inclined relationship applies generally to the respective central portions of the adjacent links 14 and 114 and the adjacent links 16 and 116 because the crosssectional geometry of each coil 10 and 110 changes as the components of each convolution is shaped.
When the two coils 10 and 110 are intermeshed, as illustrated in the lower part of FIG. 1, the front side of FIG. 1 is shown in FIG. 14 as having a generally parallel arrangement while the rear side is shown in FIG. 16 as having a generally herringbone arrangement. In addition, the bight element 12 of coil 10 is nested between the links 114 and 116 and spaced slightly from the connector member 118 of coil 110 (see FIGS. 14 and 17), while the bight element 112 of coil 110 is nested between the links 14 and 16 and spaced slightly from the connector member 18 of coil 10 (see FIGS. 14 and With the above arrangement, a slide fastener constructed according to the present invention exhibits a high degree of flexibility together with a high degree of lateral strength. By rearranging the geometry of each coil 10 and 110 into an asymmetrical construction, the front and rear sides have different configurations which permits the convolutions of one coil to be closely inter locked with the adjacent convolutions of the other coil whereby the overall strength of the slide fastener chain is enhanced. Since the bight elements 12 and 112 have their major axes oriented to be parallel with and substantially coinciding with the longitudinal plane in which the coils 10 and 110 are disposed, improper lateral separation of the bight elements from their interlocked arrangement is virtually precluded. For example, the bight element 12 has its major axis substantially vertical, as shown in FIG. 13 so that any lateral movement in a direction toward its connector member 18 would be impeded by the adjacent links 114 (see FIGS. 2 and 14) because its major axis presents a larger dimension than the spacing between the adjacent links 114; any such lateral movement would also affect the opposite bight element 112 which would be similarly impeded in its lateral movement by the adjacent links 14. Such lateral movement of the bight element 12 is further precluded because its vertical edge portions would abut the adjacent vertical edge portions of the adjacent pair of bight elements 112 of the coil 110; similarly, the vertical edge portions of bight element 112 would engage those of the adjacent pair of bight elements 12.
The strength of the slide fastener is substantially increased by the above arrangement which also substantially increases the flexibility of the slide fastener. For
example, the parallel construction of the front links 14 and 114 as seen in FIG. 14 is asymmetrical to the herringbone construction of the rear links 16 and 116 as seen in FIG 16. Such an asymmetrical arrangement permits easy flexing of the slide fastener perpendicular to its longitudinal axis whereby it may be installed in a garment opening (not shown) without bunching of the garment material and whereby it may bend with the garment when being worn without agitation and/or irritation to the wearer. The flexibility of the slide fastener becomes apparent by comparing the four sides thereof as shown in FIGS. 14-17 which illustrate a close interlocking arrangement of the coils l0 and without sharp edges and/or abutments. Such an arrangement is accomplished by the constantly changing geometry of each coil 10 (110), i.e., the major axis of the filament of coil 10 (110) varies through each complete convolution thereof, as shown in FIGS. 4, 7, 10 and 13. This changing of the geometry of each coiled convolution permits the utilization of more convolutions per unit length of the coil resulting in the particular advantages of increasing the longitudinal and lateral strength of the slide fastener device without increasing the bulk or diametrical size of the filament or the coil. For example, the front or first link 14 of coil 10 nests with the front or first links 114 of coil 110 and, similarly, the rear or second link 16 nests with the rear or second link 116; as is apparent in FIGS. 14 and 16, such nesting arrangements present a close fitting, generally parallel construction for the first links 14 and 114, and a generally herringbone construction for the second links 16 and 116.
The method of making the interengaging coils for the slide fastener device commences with a pair of continuous filaments having generally elliptical cross sections and being supplied under suitable tension from supply spools or the like to a shaping mandrel. The filaments are oriented so that their major axes are substantially parallel to the longitudinal axis of the mandrel and then are simultaneously wound in opposite directions about the mandrel with one filament being degrees out of phase with the second filament so that they will cross each other.
The coils 10 and 110 are formed with a plurality of convolutions, each of which includes the four components, namely, the bight element 12, the first link 14, the second link 16 and the connector member 18. As each convolution is being shaped, its filaments geometry is continuously changing by reorienting the major axis of its cross section resulting in an asymmetrical relationship between the first and second links. The reorientation of each bight element 12 (112) is accomplished by aligning its major axis so as to be generally parallel to a longitudinal axis defined by the intermeshed coils; the reorientation of each connector member 18 118) is accomplished by aligning its major axis so as to be generally parallel to such longitudinal axis. The reorientation of each of the first and second links is accomplished by inclining their major axes relative to such longitudinal axis and at a different angle between each other. Each of the bight elements 12 1 12) is shaped by aligning the major axis thereof so as to be generally parallel to each other and to the longitudinal axis of the intermeshed coils. each connector member 18 (118) is formed by being wrapped around adjacent portions of the bight elements with the connector members of one coil being wrapped around the bight elements of the other coil.
The oppositely wound filaments are maintained under tension to assure cooperation with the shaping mandrel. after which the interfitting components of the convolutions are maintained in intermeshed relationship by means of an internal support projecting from the shaping mandrel. The intenneshed coils then pass through a heating stage to permanently form the shaped components and are then removed from such internal support.
Apparatus for making the filamentary coils in accordance with the present invention is illustrated in FIG.
18 as including a casing 20 which houses power drivendrive and gearing assemblies. A drive shaft 22 is rotated by any suitable power means such as an electric motor (not shown) and a helical gear 24 fixed to shaft 22 for rotation therewith.
The two coilers shown in FIGS. 18 and I9 are substantially similar so that only one is being described and identified with reference numbers; similar reference numerals with 100 added for correlated components of the second coiler are being shown in parentheses. For example, the two coilers are inclined toward each other and the driving gear 24 meshes with a helical gear 30 (I30) which is fixed to a longitudinally bored shaft 32 (I32) that is rotatably mounted and sealed in the easing 20 by a suitable bar 34 (I34) and a shaft seal 36 (136) at its lower end and by a ball bearing assembly 38 (I38) at its upper end. A shank member 40 (140) is fixed to the upper end of the shaft 32 (132) by any suitable means such as a clamping block 41 (141) and cap screws 42 I42); see FIG. 20. A plurality of spaced odontoid or lugs 44 144) are circumferentially spaced about the upper periphery of the shank member. A guide pulley or wheel 46 (146) is rotatably carried in the shank member 40 (140) and the strand of filamentary material of the coil (I10) progresses from a supply spool 48 (148) through the central bore of the shaft 32 I32) and around the pulley 46 (146) through a slotted portion of one of the projections 44 (144) from which it is wrapped on a mandrel, as described below.
The odontoid projections 44 and 144 are shaped so as to support an oval-shaped mandrel holder 49 in a substantially floating condition. Thus, rotation of the shank members 40 and 140 in opposite directions causes the projections 44 to pass between the projections 144 so that the rotatable path of the projections 44 intersects the rotatable path of the projections 144.
It is to be recognized that the specific details of construction of the two coilers described above may take a variety of conventional forms; consequently, further description of the coiler components as well as their path sequence of operation is being omitted for the sake of brevity. For a complete description of coilers that may be utilized herewith, attention is directed to US. Pat. No. 3,053,288 which shows various types of coilers and which is incorporated herein by reference.
The floating mandrel holder 49 has a centrally disposed bore which supports a mandrel base 50. the lower portion of which is substantially circular to conform to the shape of the mandrel holder bore. The upper portion of the mandrel base 50 includes a generally frusto-conical surface 52, the apex of which is truncated. A rectangular bore 54 extends centrally through the mandrel base 50 and intersects the truncated surface. As viewed in FIG. 21. an elongated slot 56 is disposed adjacent the left short side of the rectangular bore 54 and a similar slot 58 is disposed adjacent the right short side thereof. A generally rectangular mandrel 60 fits into the rectangular opening 54. Adjacent the notches 56 and 58 the sides of mandrel 60 are slanted with a decreasing taper defining similarly sloped surfaces 62 and 64, respectively. Also adjacent the rectangular opening 54 the mandrel 60 has a rear sloping surface 66 which terminates in the general area of the surfaces 62 and 64. As is illustrated in FIG. 23, the side of the mandrel opposite to the sloping surface 66 is provided with a front sloping surface 68, the angle of inclination of which is substantially greater than the angle of inclination of the sloping surface 66.
The mandrel 60 is provided with a longitudinally disposed, rectangular slot which receives a rectangularly shaped extension 70 in telescoping fashion. As is illustrated in FIG. 21, a heat box 72 surrounds the extension 70 to provide a permanent set for the shaped coils. Heat is provided to the heat box 72 by any suitable menas. e.g. electric resistance coils or the like.
As is illustrated in FIG. 25, the two filaments of the coils I0 and 110 are wound about the mandrel 60 in opposite directions with the two filaments being out of phase by 180. The coiler heads rotate in opposite directions so that the filament of the coil 10 advances through a sector in a clockwise direction from the position in FIG. 25 to the position of FIG. 26; simultaneously, the filament of the coils I10 advances through a 90 sector in a counter clockwise direction. FIG. 27 shows the filaments of the coils l0 and being advanced through another 90 sector while FIG. 28 shows such filaments being advanced through another 90 sector. From FIG. 28, the filaments of the coils 10 and 110 will proceed to their initial position, as illustrated in FIG. 25.
During the formation of the intermeshed coils, the bight elements 12 and 112 are fonned by contacting the mandrel surfaces while the connector members [8 and I 18 are formed by contacting those portions of the opposite filaments which are wrapped on the mandrel. The intermeshed coils are thus formed by the mandrel and filament interaction and are moved vertically along the longitudinal axis of the mandrel, as shown in FIGS. 21-24. During their vertical movement, the intermeshed coils 12 and I12 are guided by the mandrel extension 70 and are passed through the heating box 72 so that the formed intermeshed coils are permanently set or cured by heating. After leaving the heating box, the intermeshed coils undergo an air cooling stage by being moved in such a manner as to prevent stretching or compression, i.e., by two constant speed driven pulleys or wheels (not shown). After leaving such wheels, the intermeshed coils drop through a distance of about 5 feet whereby they are finally air cooled and, by hanging downwardly, gravity prevents the coils from being kinked, convoluted or otherwise disturbed.
Inasmuch as the present invention is subject to many modifications, variations and changes in detail, it is intended that all matter contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
What is claimed is:
I. A slide fastener device comprising a pair of carrier tapes having edges disposed adjacent each other,
a pair of interengaging continuous coils respectively attached to the edges of said carrier tapes,
each coil being formed from a filament having a central core axis and having an elliptical cross section transverse to the central core axis,
each coil having a plurality of convolutions disposed along a longitudinal axis parallel to a longitudinal axis defined by its carrier tape edge,
each convolution of each coil including a bight element, first and second links extending from said bight element and a connector member interconnecting a first link of one convolution with a second link of an adjacent convolution,
each convolution of each coil being substantially identical to its adjacent convolution each first link having a cross section with a major axis different from a major axis of a cross section of each second link.
the bight elements first and second links and connec tor members of one coil being of substantially identical construction to the respective bight elements first and second links and connector members of the other cool the bight elements of one coil being generally adjacent the connector members of the other coil,
the first links of one coil each having its central core axis parallel to the central core axis of each first link of the other coil and said first links of the one coil nesting with the first links of the other coil in a first pattern defining a generally parallel arrangement and the second links of the one coil each having its central core axis displaced from the central core axis of each second link of the other coil and said second links of the one coil nesting with the second links of the other coil in a second pattern different from said first pattern and defining a generally herringbone arrangement whereby the filamentary coils are easily flexed with their respective carrier tapes 2. A slide fastener device as claimed in claim 1 wherein, each coil has a generally elliptical configuration defined by inner and outer peripheries of each convolution. and wherein said inner and outer peripheries have different center points.
3. A slide fastener device as claimed in claim 1 wherein the elliptical cross section of said first and second links have major axes inclined from a vertical plane in which the coils are disposed.
4. A slide fastener device as claimed in claim 3 wherein the major axis of said first link is oppositely inclined from the major axis of said second link.
5. A slide fastener device as claimed in claim 3 wherein the elliptical cross section of said bight element has a major axis generally in alignment with a vertical plane in which the coils are disposed.
6. A slide fastener device as claimed in claim 3 wherein the elliptical cross section of said connector member has a major axis generally in alignment with a vertical plane in which the coils are disposed

Claims (6)

1. A slide fastener device comprising a pair of carrier tapes having edges disposed adjacent each other, a pair of interengaging continuous coils respectively attached to the edges of said carrier tapes, each coil being formed from a filament having a central core axis and having an elliptical cross section transverse to the central core axis, each coil having a plurality of convolutions disposed along a longitudinal axis parallel to a longitudinal axis defined by its carrier tape edge, each convolution of each coil including a bight Element, first and second links extending from said bight element and a connector member interconnecting a first link of one convolution with a second link of an adjacent convolution, each convolution of each coil being substantially identical to its adjacent convolution, each first link having a cross section with a major axis different from a major axis of a cross section of each second link, the bight elements, first and second links and connector members of one coil being of substantially identical construction to the respective bight elements first and second links and connector members of the other cool the bight elements of one coil being generally adjacent the connector members of the other coil, the first links of one coil each having its central core axis parallel to the central core axis of each first link of the other coil and said first links of the one coil nesting with the first links of the other coil in a first pattern defining a generally parallel arrangement, and the second links of the one coil each having its central core axis displaced from the central core axis of each second link of the other coil and said second links of the one coil nesting with the second links of the other coil in a second pattern different from said first pattern and defining a generally herringbone arrangement whereby the filamentary coils are easily flexed with their respective carrier tapes.
2. A slide fastener device as claimed in claim 1 wherein, each coil has a generally elliptical configuration defined by inner and outer peripheries of each convolution, and wherein said inner and outer peripheries have different center points.
3. A slide fastener device as claimed in claim 1 wherein the elliptical cross section of said first and second links have major axes inclined from a vertical plane in which the coils are disposed.
4. A slide fastener device as claimed in claim 3 wherein the major axis of said first link is oppositely inclined from the major axis of said second link.
5. A slide fastener device as claimed in claim 3 wherein the elliptical cross section of said bight element has a major axis generally in alignment with a vertical plane in which the coils are disposed.
6. A slide fastener device as claimed in claim 3 wherein the elliptical cross section of said connector member has a major axis generally in alignment with a vertical plane in which the coils are disposed.
US380323A 1973-07-18 1973-07-18 Slide fastener Expired - Lifetime US3906595A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US380323A US3906595A (en) 1973-07-18 1973-07-18 Slide fastener
CA204,831A CA1047740A (en) 1973-07-18 1974-07-15 Slide fastener and method and apparatus for making the same
AU71344/74A AU501529B2 (en) 1973-07-18 1974-07-17 Slide fastener and method and apparatus for making same
BE7000544A BE817777A (en) 1973-07-18 1974-07-17 ZIPPER AND METHOD AND DEVICE FOR MAKING IT
CH985074A CH579885A5 (en) 1973-07-18 1974-07-17
GB3167074A GB1474794A (en) 1973-07-18 1974-07-17 Slide fastener and method and apparatus for making the same
JP49081241A JPS5037541A (en) 1973-07-18 1974-07-17
FR7424815A FR2237593B1 (en) 1973-07-18 1974-07-17
DE2434394A DE2434394B2 (en) 1973-07-18 1974-07-17 Zip fastener and device for its manufacture
NL7409669A NL7409669A (en) 1973-07-18 1974-07-17 ZIPPER AND METHOD AND DEVICE FOR MAKING IT.
BR5921/74A BR7405921D0 (en) 1973-07-18 1974-07-18 ZIP AND PROCESS TO FORM A PAIR OF SPIRALS FOR A ZIP
US05/596,109 US4034056A (en) 1973-07-18 1975-07-16 Method of making slide fastener coils
CA292,255A CA1047749A (en) 1973-07-18 1977-12-02 Slide fastener and method and apparatus for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US380323A US3906595A (en) 1973-07-18 1973-07-18 Slide fastener

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/596,109 Division US4034056A (en) 1973-07-18 1975-07-16 Method of making slide fastener coils

Publications (1)

Publication Number Publication Date
US3906595A true US3906595A (en) 1975-09-23

Family

ID=23500745

Family Applications (1)

Application Number Title Priority Date Filing Date
US380323A Expired - Lifetime US3906595A (en) 1973-07-18 1973-07-18 Slide fastener

Country Status (11)

Country Link
US (1) US3906595A (en)
JP (1) JPS5037541A (en)
AU (1) AU501529B2 (en)
BE (1) BE817777A (en)
BR (1) BR7405921D0 (en)
CA (1) CA1047740A (en)
CH (1) CH579885A5 (en)
DE (1) DE2434394B2 (en)
FR (1) FR2237593B1 (en)
GB (1) GB1474794A (en)
NL (1) NL7409669A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084297A (en) * 1975-09-10 1978-04-18 Opti Patent- Forschungs- Und Fabrikations-Ag Slide fastener
US6643899B2 (en) 2000-06-16 2003-11-11 André Corriveau Spiral for interconnecting ends of endless belt segments
US10194720B2 (en) 2014-06-03 2019-02-05 Ykk Corporation Method of producing a fastener element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216590A (en) * 1975-07-30 1977-02-07 Sumitomo Chem Co Ltd Preparation of high impact resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2296880A (en) * 1940-11-28 1942-09-29 Dow Chemical Co Fastener
US2919482A (en) * 1960-01-05 Interlocking fastener elements for a slide fastener
US3247871A (en) * 1962-02-23 1966-04-26 Guy Serge Pierre Lacam Method of producing zip fasteners

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1171427A (en) * 1956-01-16 1959-01-26 Wahl Brothers Device for winding threads, in particular for manufacturing slide fasteners

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2919482A (en) * 1960-01-05 Interlocking fastener elements for a slide fastener
US2296880A (en) * 1940-11-28 1942-09-29 Dow Chemical Co Fastener
US3247871A (en) * 1962-02-23 1966-04-26 Guy Serge Pierre Lacam Method of producing zip fasteners

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084297A (en) * 1975-09-10 1978-04-18 Opti Patent- Forschungs- Und Fabrikations-Ag Slide fastener
US6643899B2 (en) 2000-06-16 2003-11-11 André Corriveau Spiral for interconnecting ends of endless belt segments
US10194720B2 (en) 2014-06-03 2019-02-05 Ykk Corporation Method of producing a fastener element
US10687591B2 (en) 2014-06-03 2020-06-23 Ykk Corporation Fastener stringer and slide fastener

Also Published As

Publication number Publication date
CA1047740A (en) 1979-02-06
GB1474794A (en) 1977-05-25
DE2434394A1 (en) 1975-02-06
BR7405921D0 (en) 1975-05-13
JPS5037541A (en) 1975-04-08
DE2434394B2 (en) 1981-01-15
AU501529B2 (en) 1979-06-21
FR2237593B1 (en) 1978-02-17
AU7134474A (en) 1976-01-22
BE817777A (en) 1975-01-17
NL7409669A (en) 1975-01-21
FR2237593A1 (en) 1975-02-14
CH579885A5 (en) 1976-09-30

Similar Documents

Publication Publication Date Title
US2919482A (en) Interlocking fastener elements for a slide fastener
KR100319344B1 (en) Method and apparatus for manufacturing slide fastener continuous element row
JPS6128096A (en) Link belt
US3906595A (en) Slide fastener
US2541729A (en) Apparatus and method for making separable fasteners
US4090832A (en) Apparatus for making slide fastener
US3951715A (en) Slide fasteners and method of making the same
US4034056A (en) Method of making slide fastener coils
US3199162A (en) Continuous slide fastener
US3553782A (en) Machine for coiling filamentary material
CA1047749A (en) Slide fastener and method and apparatus for making the same
US3353217A (en) Forming apparatus for helical slide fastener elements
US3412438A (en) Slide fastener
GB1018595A (en) Filament coiling machine
US4126158A (en) Slide fastener stringer and method and apparatus for manufacture
US3189964A (en) Slide fastener stringer
US4112555A (en) Slide fastener
CA1199481A (en) Apparatus for stamping filamentary material for helically coiled slide-fastener coupling elements
US4082598A (en) Apparatus for manufacturing an untwisted synthetic resin string
US3133315A (en) Apparatus for forming filamentary material for slide fasteners
US3423803A (en) Multi-strand slide fastener
US3057030A (en) Sliding clasp fastener
ES473563A1 (en) Apparatus for manufacturing a slide fastener stringer having a woven coiled element
US3255288A (en) Method of making interlocking zipper elements
US2920348A (en) Apparatus for forming spring cords

Legal Events

Date Code Title Description
AS Assignment

Owner name: TALON, INC., 626 ARCH ST. MEADVILLE, PA. A CORP. O

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:TEXTRON, INC.;REEL/FRAME:003933/0130

Effective date: 19810710

AS Assignment

Owner name: CONTINENTAL ILLINOIS NATIONAL BANK AND TRUST COMPA

Free format text: SECURITY INTEREST;ASSIGNOR:TALON, INC., A CORP OF DE.;REEL/FRAME:004604/0467

Effective date: 19860827