US3909993A - Arch supported membrane structure - Google Patents

Arch supported membrane structure Download PDF

Info

Publication number
US3909993A
US3909993A US359892A US35989273A US3909993A US 3909993 A US3909993 A US 3909993A US 359892 A US359892 A US 359892A US 35989273 A US35989273 A US 35989273A US 3909993 A US3909993 A US 3909993A
Authority
US
United States
Prior art keywords
arch
arches
attached
base
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US359892A
Inventor
Carl F Huddle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOTTEL Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US359892A priority Critical patent/US3909993A/en
Priority to US434077*[A priority patent/US3899854A/en
Priority to US05/549,711 priority patent/US3990194A/en
Application granted granted Critical
Publication of US3909993A publication Critical patent/US3909993A/en
Assigned to HOTTEL CORPORATION THE reassignment HOTTEL CORPORATION THE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: TENSION STRUCTURES CO. A COMPANY OF MI
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H15/00Tents or canopies, in general
    • E04H15/32Parts, components, construction details, accessories, interior equipment, specially adapted for tents, e.g. guy-line equipment, skirts, thresholds
    • E04H15/34Supporting means, e.g. frames
    • E04H15/42Supporting means, e.g. frames external type, e.g. frame outside cover
    • E04H15/425Flexible supporting means
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B1/3205Structures with a longitudinal horizontal axis, e.g. cylindrical or prismatic structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H15/00Tents or canopies, in general
    • E04H15/02Tents combined or specially associated with other devices
    • E04H15/10Heating, lighting or ventilating
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B2001/3217Auxiliary supporting devices used during erection of the arched structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B2001/3235Arched structures; Vaulted structures; Folded structures having a grid frame
    • E04B2001/3252Covering details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S135/00Tent, canopy, umbrella, or cane
    • Y10S135/905Method of erecting shelter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S135/00Tent, canopy, umbrella, or cane
    • Y10S135/906Arched structure

Definitions

  • ABSTRACT A pre-stressed arch supported membrane structure, a method of assembly and erection and a means of tensioning a membrane of double curvature supported by and attached to upright arches.
  • Assembly and erection consists of attaching flat arch member ends to base beams, one fixed and one movable; attaching membranes to these flat members when reclined on the ground, operatively attaching transverse or inclined arch members to their respective structural members; moving the non-fixed base beam towards the fixed base beam thus causing the arches to be formed as the structure rises to its erected position.
  • Preliminary tensioning of the membrane can take place when the transverse or inclined arches are attached to the arch members in their reclined position.
  • Final membrane tensioning adjustments at the crown and! at the base by moving the arches horizontally then anchoring the structure to the base, safely securing the base beams and arch ends completes the erection of the main structure.
  • An alternate method of erection is provided by elimination of the base beams by fastening the arches directly to the base.
  • the support arches are bowed after being attached to the transverse or inclined arches and then attached to the base by means of an adjustable fastener.
  • Lightweight end closures or doors may be assembled and partially attached before erection to eliminate or decrease above ground assembly.
  • FIGURE 3 US. Patent 0a. 7,1975 Sheet 2 01 4 V v W FIGURE 6
  • FIGURE 7 [07 FIGURE 8 l3 UQS Ptent Oct. 7,1975 Sheet 3 of4 3,909,993
  • FIGURE 9 FIGURE H US. Patent Oct. 7,1975 Sheet4 0f4 3,99,993
  • FIGURE I2 FIGURE l3 as I? L27 x w 230
  • FIGURE I4 ARCH SUPPORTED MEMBRANE STRUCTURE BACKGROUND OF INVENTION
  • This structure is a combination of my patented inclined and vertical arch structure but includes a new method of tensioning the membranes between the arches and a new method of erection by which very large structures can be assembled on the ground or base, then erected and adjustments made to properly tension the membranes.
  • a double arch section in the structure can be used, similar to the construction in my patent application, Ser. No. 49,811, June 25, 1970, for a Pavilion With Intermediate Arch, to provide an area to mount ventilation or other equipment and to also provide additional structural strength to support overhead cranes, winches or other such tools for aircraft or other maintenance.
  • the principal object of this invention is to provide large arch supported, highly tensioned double curvature membrane structures that have clear spans with open ends, closed ends, or full opening doors and are economical in cost and occupy a minimum of space in addition to their sheltered area.
  • the second object of this invention is to provide curved arch membrane supports that can be formed by bowing," at the erection site, from straight or flat structural members that are sufficiently resilient to be bent to the arch shape desired and still have the structural rigidity necessary to construct a dependable, rugged structure that can safely withstand adverse weather conditions and reasonable shock loads, if necessary.
  • Another object of this invention is to provide a method to erect tensioned membrane structures by assembling the structural flat arch members, used to form arches, to their base beams, attaching the tailored membranes to these flat structural members, fastening the membrane tensioning members to their respective structural members, attaching the end closures, if any, and then erecting the shelter by drawing the base beams toward each other to form the structural curved arches.
  • Another object of this invention is to provide a method of tensioning the membrane between the support arches by using inclined arches to force the support arches apart in their crown area.
  • Still another object of this invention is to provide a method of tensioning the membrane(s) between the support arches by using fairly flat transverse arches between two, or by spanning :a multiplicity of, support arches, to force apart the membrane support arches.
  • a further object of this invention is to provide small and large lightweight shelters that can be moved in their erected state, weather conditions being favorable,
  • Another object of this invention is to provide a closer spaced, multiple arch section in the structure to sup port equipment above and below the roof.
  • a still further object of this invention is to provide a structual end arch frame for the shelter to which a full opening door can be attached and folded within the shelter.
  • FIG. 1 is a perspective view of a structure using inclined arches to tension the membranes between the arches.
  • FIG. 2 is a perspective view of a structure using transverse arches around and above the structure to tension the membranes between the arches.
  • FIGS. 3, 4 and 5 illustrates the erection procedure for a structure having its membranes tensioned by an inclined arch.
  • FIGS. 6, 7, 8, 9 and 10 illustrates the erection steps for a structure that has its membranes tensioned by overhead transverse arches.
  • FIG. 11 is a perspective cutaway view of a shelter with overhead transverse arches under the roof of the structure that tensions the membranes between the arches.
  • FIG. 12 is a perspective view of a structure having vertical and inclined arches with two vertical arches near the center of the structure to carry extra external or internal loads.
  • FIG. 13 is a side view of the above structure indicating that a multiple vertical arch section can be placed at other locations in the structure.
  • FIG. 14 illustrates the assembly of typical equipment such as cranes and hoists that can be supported by the multiple vertical equipment module.
  • support arches can be placed closer together or wider apart. Inclined arches can have different inclinations and can be located inside as well as outside of the structure. The same goes for transverse arches.
  • the base beams can be omitted in some structures as the support arches can be attached directly to a base and each support and inclined arch can be individually bowed to the desired shape. All arches can also have cross-ties to alter their shape for appearance or for better structural support.
  • FIG. 1 the shelter illustrated has vertical end arches 1 and one intermediate center arch 2. In between these arches are membranes 3 having a double curvature that are attached to and supported by the vertical arches l & 2.
  • the inclined arches 4 are used to force apart the end arches 2 above the base by compression members 5.
  • the membranes 3 can be operatively attached to the inclined arches 4 to form a truss effect between the end arch l and the inclined arch 4, the compression members 5, and the tensioned membrane 6. All arches are adjustable horizontally 7 on their bases to properly tension the membranes near the base.
  • the inclined arch 4 may have a non-uniform cross-section to resist bending in critical areas.
  • Inclined arches 4 attached to the crowns of the exterior support arches 1 and adjustably attached to the base can force the support arches apart by moving the feet of the inclined arch 4 toward the support arch l.
  • the latter support arch 1 can be moved to tension the lower part of the membrane and align the structure.
  • the shelter is supported by a series of vertical curved arches 8 that support a membrane 9 which is attached to the arches 8 that are forced apart by the transverse arches 10.
  • the transverse arches are stabilized between the exterior arches by members 11 which can be shortened to increase the tension in the membranes 9 between the arches 8. All the arches can be adjustably attached to the base 13 to properly tension the membranes between the arches 8 along the base and to align the shelter.
  • the stabilizing members 11 are adjustable and can be resilient.
  • the transverse arches are also adjustable in length.
  • FIG. 3 a plan view of one shelter with inclined arches is shown before erection.
  • all the arch members 1, 2 & 4 are laid flat on the base (before bowing) to attach the vertical arch members 1 & 2 and the inclined arch members 4 to the base beams 13.
  • These vertical arch members 1 are positioned closer together to permit easy attachment of membranes 3 & 6, in this position, before erection.
  • the inclined arches 4 are curved on the flat base, in the same plane as the vertical arch members 1 & 2, attached to the apex of arch members 1 and the base beams 13.
  • one base beam 130 is anchored in its final position before the bowing operation to erect the structure or the vertical arch members 1 & 2 can be individually bowed (fix one arch end to the base) after the assembly operation, if desired.
  • the base beams 13 are then drawn closer together (FIG. 4) by winches 14 or other means.
  • base beams 13 can be manually pulled together by brute force or pushed together by manpower, a vehicle, etc.
  • the vertical curved arches 1 & 2 and the inclined arches 4 are formed from the flat arch members to support and tension the membranes 3 respectively, by moving the base beams 13 to which the arches are attached closer together which causes the structure to rise. This operation is continued (FIG. 5) until the shelter reaches its erected position. The final adjustments in alignment and tensioning of the membranes are then made by moving the arches horizontally in their attachment to the base beam. Anchoring of the structure is completed to be sure the shelter will not lift or blow away. Tie cables 14a, steel rods or other tension members can be used between the base beams 13 to make sure the arch ends do not separate under the constant pressure of the bent arch members. Safety cables can also be used to prevent collapse of the structure in case of membrane 3 failure.
  • FIG. 6 the shelter in FIG. 2 is shown in its reclined assembly position.
  • the base beams 13 are placed at the ends of the fiat arch members 8 which are positioned for easy attachment of the membrane 9 and then attached to the base beams 13.
  • the membrane tensioning arch members 10a in their reclined flat shape are placed over the arches.
  • the stabilizers 11 are connected to the members 10a but need not be at their final length.
  • the ends 16 of transverse arch members are then moved closer to each other causing the flat member 10a to rise and form a rather flat arch 10, which is then attached to the exterior arches (FIG. 8) (or between each two arches if shorter rather flat arches are preferred.)
  • This causes the membranes 9 to be tensioned to a selected value.
  • the tension in the membrane 9 can be adjusted by changing the length of the arch 10 and/or stabilizers 1 1 that attaches the arch 10 to the intermediate arches 8.
  • Safety cables 17 can be installed between the vertical arches 8 to prevent collapse of the structure in case of membrane 9 failure.
  • the base ends of the arches 8 are then adjustable on the base beam 13 to properly tension the membranes 9 at the base 12. Some adjustments may be necessary to align the shelter to its design position.
  • FIG. 11 the transverse arches 19 that tension the membrane 9 are shown inside the shelter and under the arches 8.
  • This design offers a cleaner appearance for the exterior but some obstructions to the interior space.
  • Crossing safety cables 21 between adjacent arches can be used on the interior but will again possibly interfere with interior occupancy.
  • Safety cables from arch apex to arch apex in the interior will cause movement of the arches 8 with membrane failure as they must follow the membrane 9 sag line when installed.
  • an end enclosure 22 has an uneven surface to obtain membrane curvature in more than one direction.
  • the enclosure can withstand severe wind loads. These wind loads will be transferred to the arch frame of the shelter which is prevented from racking by the tensioned membrane 9 between the arches 8.
  • FIG. 13 a section of the structure is shown that has two closer spaced arches 24 to bbtain greater structural strength to support utilities, ventilators, skylights, cranes, winches or other equipment.
  • This multiple arch section may be located anywhere in the structure. More than one of these sections can also be used.
  • the space between them 25 can be bridged or covered by fairly thin sheets of plywood, metal, composite material, etc. that can be installed before or after erection.
  • thin sheets of such material 26 is easily bent to the curve of the arches and attached to the arches. These sheets can be made stiff enough by reinforcing 27, if necessary, to support exterior equipment 28 and some interior fixtures for lighting 29, sprinklers, etc.
  • the two arches can be structurally bridged 30 to support winches 31, monorail devices or bridge cranes for maintenance and/or repair work on equipment below that is sheltered in the structure.
  • This feature is similar to the one shown in my application Ser. No. 49,811, dated June 25, 1970 entitled, Pavilion With Intermediate Arch and Method of Assembling and Erecting It.
  • a tensioned membrane shelter comprised of a multiplicity of upright arches with curved bights, consecutively spaced apart in parallel relationship and mounted on the ground or other base that includes at least one shallow resilient transverse arch with each end attached to an upright support arch and extending between them in perpendicular relationship as it bridges at least one intermediate upright support arch to form a structural frame in space; a flexible but structural membrane operatively attached to and extending between said upright support arches that is concavely curved inwardly between the bights of said upright arches to form a roof of double curvature that is tensioned longitudinally and transversely between said upright arches; the arrangement being such that the shallow transverse arch is bowed to urge apart the upright support arches attached to its ends to maintain tension in said membrane and to stabilize the structure.
  • said structural frame includes at least one upright support arch and one arch inclined outwardly from the center of the structure with their apexes aligned and operatively attached to each other near their crowns and their ends attached to said base.

Abstract

A pre-stressed arch supported membrane structure, a method of assembly and erection and a means of tensioning a membrane of double curvature supported by and attached to upright arches. By moving the ends of flat resilient arch structural members closer together, pre-stressed arches are formed by ''''bowing.'''' Assembly and erection consists of attaching flat arch member ends to base beams, one fixed and one movable; attaching membranes to these flat members when reclined on the ground, operatively attaching transverse or inclined arch members to their respective structural members; moving the non-fixed base beam towards the fixed base beam thus causing the arches to be formed as the structure rises to its erected position. Preliminary tensioning of the membrane can take place when the transverse or inclined arches are attached to the arch members in their reclined position. Final membrane tensioning adjustments at the crown and at the base by moving the arches horizontally then anchoring the structure to the base, safely securing the base beams and arch ends completes the erection of the main structure. An alternate method of erection is provided by elimination of the base beams by fastening the arches directly to the base. The support arches are bowed after being attached to the transverse or inclined arches and then attached to the base by means of an adjustable fastener. Lightweight end closures or doors may be assembled and partially attached before erection to eliminate or decrease above ground assembly.

Description

United States Patent [191 Huddle Oct. 7, 1975 ARCH SUPPORTED MEMBRANE STRUCTURE Carl F. Huddle, Pleasant Ridge, Mich.
[22] Filed: May 14, 1973 [21] Appl. No.: 359,892
[75] Inventor:
[52] US. Cl. 52/63; 52/82; 52/86; 52/222; l35/l R [51] Int. Cl. E04B l/32; E04B 1/347 [58] Field of Search 52/86, 87, 80, 88, 63,
52/82, 222, 223 R; 135/1 R, 4 R
[5 6] References Cited UNITED STATES PATENTS 2,752,868 7/1956 Blumfield 52/86 2,823,683 2/1958 Smith et a1... 135/1 R 3,057,119 10/1962 Kesseler 52/63 3,137,097 6/1964 Zeinetz 52/80 3,215,153 11/1965 l-luddle.. 135/1 R 3,424,179 l/1969 Minot 52/63 X 3,465,764 9/1969 l-luddle.. 135/1 R 3,469,587 9/1969 Folkes 135/4 R X 3,699,987 10/1972 Huddle. 135/4 R 3,710,519 l/1973 Jones 52/63 X 3,749,107 7/1973 Labergc 135/1 R 3,751,862 8/1973 Linecker... 52/80 X 3,765,134 10/1973 Gilchrist 52/63 3,788,335 1/1974 Hemmelsbach.. 135/1 R 3,798,849 3/1974 Biggs et a1 135/] R 3,798,851 3/1974 Utahara 52/86 OTHER PUBLICATIONS Popular Mechanics, Mushroom Roof Supports Itself, p. 163, Oct. 1949.
Primary Exarhiner-Ernest R. Purser Assistant Examiner-Leslie A. Braun [5 7] ABSTRACT A pre-stressed arch supported membrane structure, a method of assembly and erection and a means of tensioning a membrane of double curvature supported by and attached to upright arches.
By moving the ends of flat resilient arch structural members closer together, pre-stressed arches are formed by bowing."
Assembly and erection consists of attaching flat arch member ends to base beams, one fixed and one movable; attaching membranes to these flat members when reclined on the ground, operatively attaching transverse or inclined arch members to their respective structural members; moving the non-fixed base beam towards the fixed base beam thus causing the arches to be formed as the structure rises to its erected position. Preliminary tensioning of the membrane can take place when the transverse or inclined arches are attached to the arch members in their reclined position. Final membrane tensioning adjustments at the crown and! at the base by moving the arches horizontally then anchoring the structure to the base, safely securing the base beams and arch ends completes the erection of the main structure.
An alternate method of erection is provided by elimination of the base beams by fastening the arches directly to the base. The support arches are bowed after being attached to the transverse or inclined arches and then attached to the base by means of an adjustable fastener.
Lightweight end closures or doors may be assembled and partially attached before erection to eliminate or decrease above ground assembly.
15 Claims, 14 Drawing Figures US. Patent Oct. 7,1975 Sheet 1 of 4 3,909,993
FIGURE 3 US. Patent 0a. 7,1975 Sheet 2 01 4 V v W FIGURE 6 FIGURE 7 [07 FIGURE 8 l3 UQS Ptent Oct. 7,1975 Sheet 3 of4 3,909,993
FIGURE 9 FIGURE H US. Patent Oct. 7,1975 Sheet4 0f4 3,99,993
FIGURE I2 FIGURE l3 as I? L27 x w 230 FIGURE I4 ARCH SUPPORTED MEMBRANE STRUCTURE BACKGROUND OF INVENTION This structure is a combination of my patented inclined and vertical arch structure but includes a new method of tensioning the membranes between the arches and a new method of erection by which very large structures can be assembled on the ground or base, then erected and adjustments made to properly tension the membranes.
A double arch section in the structure can be used, similar to the construction in my patent application, Ser. No. 49,811, June 25, 1970, for a Pavilion With Intermediate Arch, to provide an area to mount ventilation or other equipment and to also provide additional structural strength to support overhead cranes, winches or other such tools for aircraft or other maintenance.
These large shelters should have dependable, continuous membrane fastener means for quick efficient assembly on the ground and to prevent point stresses in the membranes as described in another of my recent patent applications.
SUMMARY OF INVENTION The principal object of this invention is to provide large arch supported, highly tensioned double curvature membrane structures that have clear spans with open ends, closed ends, or full opening doors and are economical in cost and occupy a minimum of space in addition to their sheltered area.
The second object of this invention is to provide curved arch membrane supports that can be formed by bowing," at the erection site, from straight or flat structural members that are sufficiently resilient to be bent to the arch shape desired and still have the structural rigidity necessary to construct a dependable, rugged structure that can safely withstand adverse weather conditions and reasonable shock loads, if necessary.
Another object of this invention is to provide a method to erect tensioned membrane structures by assembling the structural flat arch members, used to form arches, to their base beams, attaching the tailored membranes to these flat structural members, fastening the membrane tensioning members to their respective structural members, attaching the end closures, if any, and then erecting the shelter by drawing the base beams toward each other to form the structural curved arches.
Another object of this invention is to provide a method of tensioning the membrane between the support arches by using inclined arches to force the support arches apart in their crown area.
Still another object of this invention is to provide a method of tensioning the membrane(s) between the support arches by using fairly flat transverse arches between two, or by spanning :a multiplicity of, support arches, to force apart the membrane support arches.
A further object of this invention is to provide small and large lightweight shelters that can be moved in their erected state, weather conditions being favorable,
or can be dismantled by reversing the erection procedure and reassembled in another location.
Another object of this invention is to provide a closer spaced, multiple arch section in the structure to sup port equipment above and below the roof.
A still further object of this invention is to provide a structual end arch frame for the shelter to which a full opening door can be attached and folded within the shelter.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a structure using inclined arches to tension the membranes between the arches.
FIG. 2 is a perspective view of a structure using transverse arches around and above the structure to tension the membranes between the arches.
FIGS. 3, 4 and 5 illustrates the erection procedure for a structure having its membranes tensioned by an inclined arch.
FIGS. 6, 7, 8, 9 and 10 illustrates the erection steps for a structure that has its membranes tensioned by overhead transverse arches.
FIG. 11 is a perspective cutaway view of a shelter with overhead transverse arches under the roof of the structure that tensions the membranes between the arches.
FIG. 12 is a perspective view of a structure having vertical and inclined arches with two vertical arches near the center of the structure to carry extra external or internal loads.
FIG. 13 is a side view of the above structure indicating that a multiple vertical arch section can be placed at other locations in the structure.
FIG. 14 illustrates the assembly of typical equipment such as cranes and hoists that can be supported by the multiple vertical equipment module.
It is desired to point out that due to the application of these structures from very small to very large shelters the illustrations above do not show all the combinations of arch arrangements that can result from this basic idea. As an example, support arches can be placed closer together or wider apart. Inclined arches can have different inclinations and can be located inside as well as outside of the structure. The same goes for transverse arches. The base beams can be omitted in some structures as the support arches can be attached directly to a base and each support and inclined arch can be individually bowed to the desired shape. All arches can also have cross-ties to alter their shape for appearance or for better structural support.
DESCRIPTION OF Til-IE PREFERRED EMBODIMENTS In FIG. 1 the shelter illustrated has vertical end arches 1 and one intermediate center arch 2. In between these arches are membranes 3 having a double curvature that are attached to and supported by the vertical arches l & 2.
The inclined arches 4 are used to force apart the end arches 2 above the base by compression members 5. The membranes 3 can be operatively attached to the inclined arches 4 to form a truss effect between the end arch l and the inclined arch 4, the compression members 5, and the tensioned membrane 6. All arches are adjustable horizontally 7 on their bases to properly tension the membranes near the base.
In some cases, it may be best not to attach the membrane 3 to the inclined arch 4. This depends upon weather conditions, size of the structure, etc. In such cases, the inclined arch 4 may have a non-uniform cross-section to resist bending in critical areas.
Inclined arches 4 attached to the crowns of the exterior support arches 1 and adjustably attached to the base can force the support arches apart by moving the feet of the inclined arch 4 toward the support arch l. The latter support arch 1 can be moved to tension the lower part of the membrane and align the structure.
In FIG. 2 the shelter is supported by a series of vertical curved arches 8 that support a membrane 9 which is attached to the arches 8 that are forced apart by the transverse arches 10. The transverse arches are stabilized between the exterior arches by members 11 which can be shortened to increase the tension in the membranes 9 between the arches 8. All the arches can be adjustably attached to the base 13 to properly tension the membranes between the arches 8 along the base and to align the shelter.
This is a method similar to the use of inclined arches except that a series of transverse arches can be used to tension the membrane 9. The stabilizing members 11 are adjustable and can be resilient. The transverse arches are also adjustable in length.
In FIG. 3 a plan view of one shelter with inclined arches is shown before erection. Here all the arch members 1, 2 & 4 are laid flat on the base (before bowing) to attach the vertical arch members 1 & 2 and the inclined arch members 4 to the base beams 13. These vertical arch members 1 are positioned closer together to permit easy attachment of membranes 3 & 6, in this position, before erection. The inclined arches 4 are curved on the flat base, in the same plane as the vertical arch members 1 & 2, attached to the apex of arch members 1 and the base beams 13.
In FIG. 4 one base beam 130 is anchored in its final position before the bowing operation to erect the structure or the vertical arch members 1 & 2 can be individually bowed (fix one arch end to the base) after the assembly operation, if desired. The base beams 13 are then drawn closer together (FIG. 4) by winches 14 or other means.
For small shelters of this type, base beams 13 can be manually pulled together by brute force or pushed together by manpower, a vehicle, etc.
In shelters of all sizes, the vertical curved arches 1 & 2 and the inclined arches 4 are formed from the flat arch members to support and tension the membranes 3 respectively, by moving the base beams 13 to which the arches are attached closer together which causes the structure to rise. This operation is continued (FIG. 5) until the shelter reaches its erected position. The final adjustments in alignment and tensioning of the membranes are then made by moving the arches horizontally in their attachment to the base beam. Anchoring of the structure is completed to be sure the shelter will not lift or blow away. Tie cables 14a, steel rods or other tension members can be used between the base beams 13 to make sure the arch ends do not separate under the constant pressure of the bent arch members. Safety cables can also be used to prevent collapse of the structure in case of membrane 3 failure.
In FIG. 6 the shelter in FIG. 2 is shown in its reclined assembly position. The base beams 13 are placed at the ends of the fiat arch members 8 which are positioned for easy attachment of the membrane 9 and then attached to the base beams 13.
In FIG. 7, the membrane tensioning arch members 10a in their reclined flat shape are placed over the arches. The stabilizers 11 are connected to the members 10a but need not be at their final length. The ends 16 of transverse arch members are then moved closer to each other causing the flat member 10a to rise and form a rather flat arch 10, which is then attached to the exterior arches (FIG. 8) (or between each two arches if shorter rather flat arches are preferred.) This causes the membranes 9 to be tensioned to a selected value. In shelters where a long arch 10 is used between several arches 8, or between exterior arches, the tension in the membrane 9 can be adjusted by changing the length of the arch 10 and/or stabilizers 1 1 that attaches the arch 10 to the intermediate arches 8. Safety cables 17 can be installed between the vertical arches 8 to prevent collapse of the structure in case of membrane 9 failure.
In the erection of this structure it seems best to provide guys 18 to guide the structure upward when the base beams 13 are drawn together by winches 14 or moved towards each other by any other method or force. As the structure rises sufficiently (FIG. 9) to put enough curvature in the arch members 8, the guys 18 can be disconnected as the shelter becomes more and more stable as it reaches its final position (FIG. 10).
The base ends of the arches 8 are then adjustable on the base beam 13 to properly tension the membranes 9 at the base 12. Some adjustments may be necessary to align the shelter to its design position.
In FIG. 11 the transverse arches 19 that tension the membrane 9 are shown inside the shelter and under the arches 8. This design offers a cleaner appearance for the exterior but some obstructions to the interior space. Crossing safety cables 21 between adjacent arches can be used on the interior but will again possibly interfere with interior occupancy. Safety cables from arch apex to arch apex in the interior will cause movement of the arches 8 with membrane failure as they must follow the membrane 9 sag line when installed.
In FIG. 12 an end enclosure 22 has an uneven surface to obtain membrane curvature in more than one direction. When this is designed with convex curvatures 23 of more than 5% between outward points to inward points or valleys, and the membrane tensioned by pushing out on the exterior projections, the enclosure can withstand severe wind loads. These wind loads will be transferred to the arch frame of the shelter which is prevented from racking by the tensioned membrane 9 between the arches 8.
In FIG. 13 a section of the structure is shown that has two closer spaced arches 24 to bbtain greater structural strength to support utilities, ventilators, skylights, cranes, winches or other equipment. This multiple arch section may be located anywhere in the structure. More than one of these sections can also be used. When closely spaced arches 24 are used, the space between them 25 can be bridged or covered by fairly thin sheets of plywood, metal, composite material, etc. that can be installed before or after erection. In FIG. 14 thin sheets of such material 26 is easily bent to the curve of the arches and attached to the arches. These sheets can be made stiff enough by reinforcing 27, if necessary, to support exterior equipment 28 and some interior fixtures for lighting 29, sprinklers, etc. The two arches can be structurally bridged 30 to support winches 31, monorail devices or bridge cranes for maintenance and/or repair work on equipment below that is sheltered in the structure. This feature is similar to the one shown in my application Ser. No. 49,811, dated June 25, 1970 entitled, Pavilion With Intermediate Arch and Method of Assembling and Erecting It.
I claim:
1. A tensioned membrane shelter comprised of a multiplicity of upright arches with curved bights, consecutively spaced apart in parallel relationship and mounted on the ground or other base that includes at least one shallow resilient transverse arch with each end attached to an upright support arch and extending between them in perpendicular relationship as it bridges at least one intermediate upright support arch to form a structural frame in space; a flexible but structural membrane operatively attached to and extending between said upright support arches that is concavely curved inwardly between the bights of said upright arches to form a roof of double curvature that is tensioned longitudinally and transversely between said upright arches; the arrangement being such that the shallow transverse arch is bowed to urge apart the upright support arches attached to its ends to maintain tension in said membrane and to stabilize the structure.
2. The structure described in claim 1 wherein the upright support arches are pre-stressed by bowing straight structural arch members, by moving the opposite ends of each arch closer together.
3. The structure described in claim 2 that includes in addition, a tension member that extends between the opposite ends of said upright support arches to maintain their pre-stressed erected state.
4. The structure described in claim 1 wherein the ends of said upright support arches on at least one side of the structure are operatively attached to a base beam which is secured to said base.
5. The structure described in claim 1 wherein the ends of said upright support arches are so attached to said base or to a base beam to provide for adjustment horizontally.
6. The structure described in claim 1 wherein said structural frame includes at least one upright support arch and one arch inclined outwardly from the center of the structure with their apexes aligned and operatively attached to each other near their crowns and their ends attached to said base.
7. The structure described in claim 6 wherein said inclined arch is adjustable horizontally on said base; the arrangement being such that said membrane can be variably tensioned by moving said inclined arch then securing it to the base to maintain said membrane in tension.
8. The structure described in claim 1 wherein said shallow transverse arch is more resilient under compression and bowing in a plane perpendicular with the top surface of the upright support arches where it is attached than in any other plane.
9. The structure described in claim 1 wherein said shallow transverse arch is adjustable in length to vary the membrane tension between said upright support arches to which it is attached.
10. The structure described in claim 1 wherein the lower part of the fexible roof membrane between the upright arches is attached to: (a) the base, (b) the base beam, (c) the lower part of said upright support arches.
11. The structure described! in claim 1 with the addition of a safety tension member that is attached to and extends between: (a) the ends of said shallow transverse arc, (b) the upright arches to which the shallow transverse arch is attached.
12. The structure described in claim 1 wherein said shallow transverse arch is operatively attached to at least one intermediate upright support arch, which it bridges, to maintain alignment of said shallow transverse arch and maintain tension in said roof membrane.
13. The structure described! in claim 12 wherein the operative attachment between the shallow transverse arch and the intermediate upright support arch is adjustable in length to vary the tension in the roof membrane.
14. The structure described in claim 13 wherein at least one shallow transverse arch is adjustable in length and is adjustably attached to at least one intermediate upright support arch which it bridges.
15. The structure described in claim 12 wherein said shallow transverse arch is operatively attached to at least one intermediate upright support arch by (a) at least one resilient means.

Claims (15)

1. A tensioned membrane shelter comprised of a multiplicity of upright arches with curved bights, consecutively spaced apart in parallel relationship and mounted on the ground or other base that includes at least one shallow resilient transverse arch with each end attached to an upright support arch and extending between them in perpendicular relationship as it bridges at least one intermediate upright support arch to form a structural frame in space; a flexible but structural membrane operatively attached to and extending between said upright support arches that is concavely curved inwardly between the bights of said upright arches to form a roof of double curvature that is tensioned longitudinally and transversely between said upright arches; the arrangement being such that the shallow transverse arch is bowed to urge apart the upright support arches attached to its ends to maintain tension in said membrane and to stabilize the structure.
2. The structure described in claim 1 wherein the upright support arches are pre-stressed by bowing straight structural arch members, by moving the opposite ends of each arch closer together.
3. The structure described in claim 2 that includes in addition, a tension member that extends between the opposite ends of said upright support arches to maintain their pre-stressed erected state.
4. The structure described in claim 1 wherein the ends of said upright support arches on at least one side of the structure are operatively attached to a base beam which is secured to said base.
5. The structure described in claim 1 wherein the ends of said upright support arches are so attached to said base or to a base beam to provide for adjustment horizontally.
6. The structure described in claim 1 wherein said structural frame includes at least one upright support arch and one arch inclined outwardly from the center of the structure with their apexes aligned and operatively attached to each other near their crowns and their ends attached to said base.
7. The structure described in claim 6 wherein said inclined arch is adjustable horizontally on said base; the arrangement being such that said membrane can be variably tensioned by moving said inclined arch then securing it to the base to maintain said membrane in tension.
8. The structure described in claim 1 wherein said shallow transverse arch is more resilient under compression and bowing in a plane perpendicular with the top surface of the upright support arches where it is attached than in any other plane.
9. The structure described in claim 1 wherein said shallow transverse arch is adjustable in length to vary the membrane tension between said upright support arches to which it is attached.
10. The structure described in claim 1 wherein the lower part of the fexible roof membrane between the upright arches is attached to: (a) the base, (b) the base beam, (c) the lower part of said upright support arches.
11. The structure described in claim 1 with the addition of a safety tension member that is attached to and extends between: (a) the ends of said shallow transverse arc, (b) the upright arches to which the shallow transverse arch is attached.
12. The structure described in claim 1 wherein said shallow transverse arch is operatively attached to at least one intermediate upright support arch, which it bridges, to maintain alignment of said shallow transverse arch and maintain tension in said roof membrane.
13. The structure described in claim 12 wherein the operative attachment between the shallow transverse arch and the intermediate upright support arch is adjustable in length to vary the tension in the roof membrane.
14. The structure described in claim 13 wherein at least one shallow transverse arch is adjustable in length and is adjustably attached to at least one intermediate upright support Arch which it bridges.
15. The structure described in claim 12 wherein said shallow transverse arch is operatively attached to at least one intermediate upright support arch by (a) at least one resilient means.
US359892A 1973-05-14 1973-05-14 Arch supported membrane structure Expired - Lifetime US3909993A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US359892A US3909993A (en) 1973-05-14 1973-05-14 Arch supported membrane structure
US434077*[A US3899854A (en) 1973-05-14 1974-02-19 Method of erection for a pretensioned membrane structure
US05/549,711 US3990194A (en) 1973-05-14 1975-02-13 Arch supported membrane structure and a method of erection that pretensions the arches and membranes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US359892A US3909993A (en) 1973-05-14 1973-05-14 Arch supported membrane structure
US434077*[A US3899854A (en) 1973-05-14 1974-02-19 Method of erection for a pretensioned membrane structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US434077*[A Division US3899854A (en) 1973-05-14 1974-02-19 Method of erection for a pretensioned membrane structure

Publications (1)

Publication Number Publication Date
US3909993A true US3909993A (en) 1975-10-07

Family

ID=27000669

Family Applications (2)

Application Number Title Priority Date Filing Date
US359892A Expired - Lifetime US3909993A (en) 1973-05-14 1973-05-14 Arch supported membrane structure
US434077*[A Expired - Lifetime US3899854A (en) 1973-05-14 1974-02-19 Method of erection for a pretensioned membrane structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
US434077*[A Expired - Lifetime US3899854A (en) 1973-05-14 1974-02-19 Method of erection for a pretensioned membrane structure

Country Status (1)

Country Link
US (2) US3909993A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143502A (en) * 1975-07-14 1979-03-13 Wyche Cyril T Method of erecting a structural arch support
US4269210A (en) * 1978-01-26 1981-05-26 Sierra Designs, Inc. Arch supported tent
US4417597A (en) * 1980-08-19 1983-11-29 Montgomery Rodney L Awning structure
US4646770A (en) * 1985-01-28 1987-03-03 Lobato Matthew P Wind-deflector and shelter apparatus
US5345962A (en) * 1992-07-27 1994-09-13 Moss C William Arch supported fabric structure
US5381634A (en) * 1991-12-17 1995-01-17 I.C.P.-Industria Componenti Prefabbricati S.R.L. Covering structure particularly for surfaces having a marked longitudinal extension
US5487242A (en) * 1994-04-26 1996-01-30 Stafford; Robert M. Method and apparatus for uniformly tensioning fabric panels of portable buildings
EP0761910A1 (en) * 1995-09-12 1997-03-12 Vango (Scotland) Limited Improvements in and relating to tents
US5901727A (en) * 1997-06-18 1999-05-11 Mountain Hardwear, Inc. Tent including web structure and article storage and support member
US6289909B1 (en) 2000-04-15 2001-09-18 Thomas James Wood Instant boat garage
US6418953B1 (en) * 2000-06-05 2002-07-16 John T. Novotny Canopy system
US6470901B1 (en) 2000-05-03 2002-10-29 American Recreation Products, Inc. Tent
US20040226224A1 (en) * 2003-05-15 2004-11-18 American Recreation Products, Inc. Tent with truss system
US20050150534A1 (en) * 2004-01-12 2005-07-14 Scherer Michael J. Portable structure with linking pole
US20060081282A1 (en) * 2004-09-20 2006-04-20 Rottmann Andrew A Tent frame and canopy
US20070095376A1 (en) * 2004-09-20 2007-05-03 Rottmann Andrew A Tent frame and canopy
US20070240747A1 (en) * 2004-01-12 2007-10-18 Scherer Michael J Portable structure with linking pole
US20080264462A1 (en) * 2004-09-20 2008-10-30 Rottmann Andrew A Test frame and canopy
US20090044459A1 (en) * 2005-06-21 2009-02-19 Arpad Kolozsvary-Kiss Roof arches without bending moments
US20110167737A1 (en) * 2010-01-11 2011-07-14 Kuang-Hsi Wu Protective cover for buildings
US20110197940A1 (en) * 2010-02-12 2011-08-18 Gerhard Allan Warner Saddle shaped tent with portico
US20120096804A1 (en) * 2009-05-06 2012-04-26 The Euuropean Union, represented by the European Commission Supporting arch structure construction method
US20130180184A1 (en) * 2012-01-17 2013-07-18 James L. CHEH Method for forming a double-curved structure and double-curved structure formed using the same
US9388564B2 (en) * 2013-01-28 2016-07-12 Airbus Defense And Space, S.A. Modular adaptable housing architecture
US9404281B1 (en) 2013-10-08 2016-08-02 Adjustable Canopy, LLC Adjustable canopy
US10957967B2 (en) 2018-03-21 2021-03-23 Aecom Support structures for transportation systems

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279680A (en) * 1978-07-28 1981-07-21 Watson Jr Louis L Methods for forming thinwall structures
DE4201857A1 (en) * 1992-01-24 1993-08-12 Frank Hans Albrecht Support framework for canopy roof structure - where to curved beams of many segments are symmetrically sprayed part to carry canopy
US6595227B2 (en) * 2001-01-19 2003-07-22 Gray Matter Holdings, Llc Self-opening shades and methods of using the same
US6523308B1 (en) 2001-08-10 2003-02-25 Eagle Manufacturing Company Rotating-cover storage shed
GB2407329B (en) * 2003-10-15 2007-02-14 Moonburst Structures Ltd Building structure with a tensile membrane
USD965924S1 (en) * 2021-11-26 2022-10-04 Peng Zhang Pet tunnel

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2752868A (en) * 1950-11-30 1956-07-03 Blumfield Cyril Vernon Roof construction
US2823683A (en) * 1951-11-20 1958-02-18 Smith Charles Aquila Vincent Collapsible building structures
US3057119A (en) * 1957-08-09 1962-10-09 Kessler Milton Method of erecting pre-stressed building construction
US3137097A (en) * 1960-04-14 1964-06-16 Zeinetz Bertil Olov Roof structure
US3215153A (en) * 1963-06-10 1965-11-02 Carl F Huddle Architectural structure
US3424179A (en) * 1967-06-22 1969-01-28 Seymour Minot Collapsible swimming pool enclosure
US3465764A (en) * 1967-07-19 1969-09-09 Carl F Huddle Damping means for portable structure
US3469587A (en) * 1967-12-22 1969-09-30 Foldway Covers Ltd Collapsible weatherproof cover for swimming pools
US3699987A (en) * 1970-09-08 1972-10-24 Tension Structures Co Housing with cable suspended panels
US3710519A (en) * 1971-07-21 1973-01-16 W Jones Air supported structures for fenced areas
US3749107A (en) * 1971-05-18 1973-07-31 N Laberge Collapsible garage
US3751862A (en) * 1971-04-02 1973-08-14 J Linecker Pneumatically supported structure
US3765134A (en) * 1967-10-26 1973-10-16 T Gilchrist Construction of rigid tensioned frame structure
US3788335A (en) * 1971-11-09 1974-01-29 Space Age Ind Inc Anchor means for portable building structure
US3798849A (en) * 1970-07-24 1974-03-26 E Konkel Hyperbolic paraboloid roof structure
US3798851A (en) * 1972-06-27 1974-03-26 M Utahara Arched structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2360831A (en) * 1940-07-17 1944-10-24 William F Drew Steel building
US3094812A (en) * 1959-06-22 1963-06-25 Lawrence F Peeler Precast unit for forming a hyperbolic paraboloidal roof structure
US3708944A (en) * 1969-10-31 1973-01-09 M Miyake Method of making an arch

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2752868A (en) * 1950-11-30 1956-07-03 Blumfield Cyril Vernon Roof construction
US2823683A (en) * 1951-11-20 1958-02-18 Smith Charles Aquila Vincent Collapsible building structures
US3057119A (en) * 1957-08-09 1962-10-09 Kessler Milton Method of erecting pre-stressed building construction
US3137097A (en) * 1960-04-14 1964-06-16 Zeinetz Bertil Olov Roof structure
US3215153A (en) * 1963-06-10 1965-11-02 Carl F Huddle Architectural structure
US3424179A (en) * 1967-06-22 1969-01-28 Seymour Minot Collapsible swimming pool enclosure
US3465764A (en) * 1967-07-19 1969-09-09 Carl F Huddle Damping means for portable structure
US3765134A (en) * 1967-10-26 1973-10-16 T Gilchrist Construction of rigid tensioned frame structure
US3469587A (en) * 1967-12-22 1969-09-30 Foldway Covers Ltd Collapsible weatherproof cover for swimming pools
US3798849A (en) * 1970-07-24 1974-03-26 E Konkel Hyperbolic paraboloid roof structure
US3699987A (en) * 1970-09-08 1972-10-24 Tension Structures Co Housing with cable suspended panels
US3751862A (en) * 1971-04-02 1973-08-14 J Linecker Pneumatically supported structure
US3749107A (en) * 1971-05-18 1973-07-31 N Laberge Collapsible garage
US3710519A (en) * 1971-07-21 1973-01-16 W Jones Air supported structures for fenced areas
US3788335A (en) * 1971-11-09 1974-01-29 Space Age Ind Inc Anchor means for portable building structure
US3798851A (en) * 1972-06-27 1974-03-26 M Utahara Arched structure

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143502A (en) * 1975-07-14 1979-03-13 Wyche Cyril T Method of erecting a structural arch support
US4269210A (en) * 1978-01-26 1981-05-26 Sierra Designs, Inc. Arch supported tent
US4417597A (en) * 1980-08-19 1983-11-29 Montgomery Rodney L Awning structure
US4646770A (en) * 1985-01-28 1987-03-03 Lobato Matthew P Wind-deflector and shelter apparatus
US5381634A (en) * 1991-12-17 1995-01-17 I.C.P.-Industria Componenti Prefabbricati S.R.L. Covering structure particularly for surfaces having a marked longitudinal extension
US5345962A (en) * 1992-07-27 1994-09-13 Moss C William Arch supported fabric structure
US5487242A (en) * 1994-04-26 1996-01-30 Stafford; Robert M. Method and apparatus for uniformly tensioning fabric panels of portable buildings
GB2305193A (en) * 1995-09-12 1997-04-02 Vango Stabilizing tents
EP0761910A1 (en) * 1995-09-12 1997-03-12 Vango (Scotland) Limited Improvements in and relating to tents
GB2305193B (en) * 1995-09-12 1999-12-08 Vango Improvements in and relating to tents
US5901727A (en) * 1997-06-18 1999-05-11 Mountain Hardwear, Inc. Tent including web structure and article storage and support member
US6289909B1 (en) 2000-04-15 2001-09-18 Thomas James Wood Instant boat garage
US6470901B1 (en) 2000-05-03 2002-10-29 American Recreation Products, Inc. Tent
US6418953B1 (en) * 2000-06-05 2002-07-16 John T. Novotny Canopy system
US20040226224A1 (en) * 2003-05-15 2004-11-18 American Recreation Products, Inc. Tent with truss system
US6866055B2 (en) 2003-05-15 2005-03-15 American Recreation Products, Inc. Tent with truss system
US20100263699A1 (en) * 2004-01-12 2010-10-21 Michael James Scherer Portable Structure With Linking Pole
US20050150534A1 (en) * 2004-01-12 2005-07-14 Scherer Michael J. Portable structure with linking pole
US20070240747A1 (en) * 2004-01-12 2007-10-18 Scherer Michael J Portable structure with linking pole
US7997292B2 (en) 2004-01-12 2011-08-16 Inkling, Inc. Portable structure with linking pole
US7766023B2 (en) 2004-01-12 2010-08-03 Inkling, Inc. Portable structure with linking pole
US7185667B2 (en) 2004-09-20 2007-03-06 Rottmann Andrew A Tent frame and canopy
US20070095376A1 (en) * 2004-09-20 2007-05-03 Rottmann Andrew A Tent frame and canopy
US20080264462A1 (en) * 2004-09-20 2008-10-30 Rottmann Andrew A Test frame and canopy
US20060081282A1 (en) * 2004-09-20 2006-04-20 Rottmann Andrew A Tent frame and canopy
US7575010B2 (en) 2004-09-20 2009-08-18 Rottmann Andrew A Tent frame and canopy
US7766024B2 (en) 2004-09-20 2010-08-03 Rottmann Andrew A Tent frame and canopy
US20090044459A1 (en) * 2005-06-21 2009-02-19 Arpad Kolozsvary-Kiss Roof arches without bending moments
US7726078B2 (en) * 2005-06-21 2010-06-01 Arpad Kolozsvary-Kiss Roof arches without bending moments
US20120096804A1 (en) * 2009-05-06 2012-04-26 The Euuropean Union, represented by the European Commission Supporting arch structure construction method
US8479473B2 (en) * 2009-05-06 2013-07-09 The European Union, Represented By The European Commission Supporting arch structure construction method
US20110167737A1 (en) * 2010-01-11 2011-07-14 Kuang-Hsi Wu Protective cover for buildings
US20110197940A1 (en) * 2010-02-12 2011-08-18 Gerhard Allan Warner Saddle shaped tent with portico
US8701689B2 (en) * 2010-02-12 2014-04-22 0798555 B.C. Ltd. Saddle shaped tent with portico
US20130180184A1 (en) * 2012-01-17 2013-07-18 James L. CHEH Method for forming a double-curved structure and double-curved structure formed using the same
US8789317B2 (en) * 2012-01-17 2014-07-29 James L. CHEH Method for forming a double-curved structure and double-curved structure formed using the same
US9388564B2 (en) * 2013-01-28 2016-07-12 Airbus Defense And Space, S.A. Modular adaptable housing architecture
US9404281B1 (en) 2013-10-08 2016-08-02 Adjustable Canopy, LLC Adjustable canopy
US10957967B2 (en) 2018-03-21 2021-03-23 Aecom Support structures for transportation systems

Also Published As

Publication number Publication date
US3899854A (en) 1975-08-19

Similar Documents

Publication Publication Date Title
US3909993A (en) Arch supported membrane structure
US3388711A (en) Portable structure
US4036244A (en) Vertical arch shelter
KR910008081B1 (en) Building truss and method of constructing the building truss
US4831792A (en) Retractable stadium roof system with rectangular opening
US5146719A (en) Space tension chord arch dome reinforced with tension members and method for building same
CA1056253A (en) Rigid frame structure with tensioned membrane cladding
US3708944A (en) Method of making an arch
US5309693A (en) Frame structure
US4682449A (en) Retractable stadium roof system with rectangular opening
JPS61204470A (en) Truss assembly
US3820553A (en) Pavilion with series of arches and method of assembling and erecting it
JPH0647839B2 (en) Construction method of structure
US3849953A (en) Arched building assembly formed of resiliently, flexible members
US3990194A (en) Arch supported membrane structure and a method of erection that pretensions the arches and membranes
US3961638A (en) Vaulted membrane shelter
US10858856B1 (en) Modular tent construction and components thereof
USRE30044E (en) Vertical arch shelter
GB1484236A (en) Roof structure
WO1990012167A1 (en) Frame structure
US4065906A (en) Method and apparatus for constructing buildings
US3958588A (en) Erection method for vaulted pavilion
US4398376A (en) Fabric panel unit
JP2798820B2 (en) Truss manufacturing method and dome construction method using truss
US2084524A (en) Tent frame construction

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOTTEL CORPORATION THE, A CORP. OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:TENSION STRUCTURES CO. A COMPANY OF MI;REEL/FRAME:003886/0001

Effective date: 19810202

Owner name: HOTTEL CORPORATION THE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TENSION STRUCTURES CO. A COMPANY OF MI;REEL/FRAME:003886/0001

Effective date: 19810202