US3911273A - X-ray diagnostic apparatus for preparing x-ray exposures including an automatic illuminating device and automatic adjustment of the exposure voltage - Google Patents

X-ray diagnostic apparatus for preparing x-ray exposures including an automatic illuminating device and automatic adjustment of the exposure voltage Download PDF

Info

Publication number
US3911273A
US3911273A US439612A US43961274A US3911273A US 3911273 A US3911273 A US 3911273A US 439612 A US439612 A US 439612A US 43961274 A US43961274 A US 43961274A US 3911273 A US3911273 A US 3911273A
Authority
US
United States
Prior art keywords
ray tube
tube voltage
voltage
ray
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US439612A
Inventor
Kurt Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Application granted granted Critical
Publication of US3911273A publication Critical patent/US3911273A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/32Supply voltage of the X-ray apparatus or tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/38Exposure time
    • H05G1/42Exposure time using arrangements for switching when a predetermined dose of radiation has been applied, e.g. in which the switching instant is determined by measuring the electrical energy supplied to the tube
    • H05G1/44Exposure time using arrangements for switching when a predetermined dose of radiation has been applied, e.g. in which the switching instant is determined by measuring the electrical energy supplied to the tube in which the switching instant is determined by measuring the amount of radiation directly

Definitions

  • the X-ray tube voltage is automatically lowered by means of adjusting means for commencing an exposure within a short period as compared with the shortest exposure time, from a maximum initial value corresponding to the largest patient bulkiness, and in which the adjusting means is controllable by a comparator element having introduced at one input thereof a differential quotient of a proportional value of the dosage load measured behind the patient in the direction of the X-rays pursuant to the X-ray tube voltage at the instantaneous X-ray tube voltage as the actual value, while at the other input thereof there is provided a reference value signal corresponding to the desired contrast and which conveys a signal to the adjusting meansfor maintaining the X-ray tube voltage as soon as both input signals are equal.
  • the reference value signal herein is a percentage figure of a differential quotient of the dosage load behind the patient, and corresponding to the desired contrast, pursuant to the X-ray tube voltage at a relative reference X-ray tube voltage of proportional value.
  • the present invention relates to an X-ray diagnostic apparatus for the preparation of X-ray exposures, including an automatic exposure timer device for the automatic switching off of the X-ray tube upon a predetermined ray dosage being received by the X-ray film, and including automatic adjusting means for the X-ray tube voltage.
  • German Pat. No. 1,227,570 there has become known automatically illuminated X-ray diagnostic apparatus having adjusting means for the X-ray tube voltage and the' X-ray tube current, including an overload protective device for indicating and adjusting the limiting time in dependence upon the preadjusted X-ray tube load by means of the X-ray load nomograph or computing chart, as well as through an X-ray dosage load measuring device located behind the object being X-rayed.
  • this X-ray diagnostic apparatus there is provided a control arrangement, which upon an adjustment of the overload protective device, located on the basis of the preadjusted value of the existent tube load presently lies at a predetermined breakage point below the limiting load of the X-ray tube, then raises the X-ray tube voltage during the first exposure phase until it attains the limiting load limit of a permissible magnitude, when the predetermined dosage load measurement commenced with exposure initiation indicates that the required X-ray dosage for the desired film darkening cannot be attained with the preadjusted dosage load within the settime limit.
  • this X-ray diagnostic apparatus there is achieved an automatic correlation between the X-ray tube voltage and the bulk of the patient.
  • the initial value of the X-ray tube voltage must always be selected in conformance with the body portion or organ which is to be X-rayed. Additionally, for the exposure of a predetermined body portion or organ there are only two different X-ray tube voltages available, so that correlation to the varied constitutions of patients is only roughly obtained. Consequently, also this X-ray diagnostic apparatus, not always can there be obtained an optimum illumination time at the lowest possible ray load on the patient and at an optimum image contrast.
  • an object of the present invention to provide an X-ray diagnostic apparatus of the type described, in effect, an automatically illuminatable X-ray diagnostic apparatus which, in comparison with the state of the technology is considerably simplified with respect to its operation, inasmuch as there is no longer a need for adjustment of the X-ray tube voltage.
  • the X-ray tube voltage therein automatically adjusts itself in conformance with a preselected contrast.
  • the X-ray tube voltage is automatically lowered by means of adjusting means for commencing an exposure within a short period as compared with the shortest exposure time, from a maximum initial value corresponding to the largest patient bulkiness, and in which the adjusting means is controllable by a comparator element having introduced at one input thereof a differential quotient of a proportional value of the dosage load behind the patient pursuant to the X-ray tube voltage at the instantaneous X-ray tube voltage as the actual value, while at the other input thereof there is provided a reference value signal corresponding to the desired contrast and which conveys a signal to the adjusting means for maintaining the X-ray tube voltage as soon as both input signals are equal.
  • the reference value signal herein is a percentage figure of a differential quotient of the dosage load behind the patient, and corresponding to the desired contrast, pursuant to the X-ray tube voltage at a relative X-ray tube voltage of proportional value.
  • inventive X-ray diagnostic apparatus there is no longer a requirement for the adjustment of the X-ray tube voltage. It is merely necessary to select the desired image contrast. This selection sequence, however, is only to be relatively seldomly required.
  • the desired image contrast may also be fixedly adjusted when a contrast variation is not considered to be needed.
  • the operation of the inventive X-ray diagnostic apparatus thus becomes extremely simple, inasmuch as practically no exposure data need be selected. Consequently, a fully automatic operation of the apparatus becomes possible.
  • a voltage of the automatic exposure timer device which is proportional to the instantaneous dosage
  • a voltage of the automatic exposure timer device which is proportional to the instantaneous dosage
  • avoltage which is proportional to the instantaneous X-ray tube voltage.
  • a particularly simple construction is achieved when the reduction of the X-ray tube voltage for commencement of the exposure from the maximum initial value thereof is effected in a time-proportional manner. In that instance it is not required to actually determine the X-ray tube voltage. It is much more adequate that the differentiating element timewise differentiates a voltage from the automatic exposure timer device proportional to the instantaneous dosage.
  • a further embodiment of the invention consists of in that the X-ray tube voltage, through there is imparted the required differential quotient for the formation of the reference value, is also switched over in dependence upon the selected contrast, and wherein the maximum initial value of the X-ray tube voltage for initiating the exposure lies only a small amount above the present X-ray tube voltage effective for the differential quotient.
  • FIG. 1 is a graphical representation of the relationship of the dosage load at various X-ray tube voltages with respect to the dosage load at a predetermined maximum X-ray tube voltage for various patient bulks;
  • FIG. 2 illustrates differential quotients of the dosage load behind the patient (DL) according to the X-ray tube voltage in dependence upon the X-ray tube voltage, as obtained from the curves in FIG. 1, regulated for these differential quotients at a maximum X-ray voltage (U "M" for various patient bulks;
  • FIG. 3 illustrates a circuit diagram for an X-ray diagnostic apparatus according to the present invention
  • FIG. 4 graphically illustrates a sequence for the X-ray tube voltage in the X-ray diagnostic apparatus of FIG. 3; and I FIG. 5 shows circuit details of the circuit diagram of FIG. 3.
  • the X-ray tube voltage is designated by U
  • the curve 1 relates to a thin patient, whereas curve 4 relates to a bulky patient.
  • the curves 2 and 3 correspondingly relate to intermediate values of patient bulks.
  • the image contrast K of an X-ray exposure remains, not-withstanding variations in the bulk D of a patient, approximately constant when the X-ray tube voltage U is adjusted in a manner in which the quotient Q remains constant from the differential quotient of the dosage quantity behind the patient pursuant to the X-ray tube voltage at the location U (exposure voltage) and the differential quotient of the dosage quantity behind the patient pursuant the X-ray tube voltage at the location of a suitable X-ray tube voltage U which is larger than U
  • a suitable X-ray tube voltage U which is larger than U
  • FIG. 2 The sequence or graph of the quotient Q in dependence upon the X-ray tube voltage U is illustrated in FIG. 2.
  • the curves 5 through 8 herein correspond to curves 1 through 4 in FIG. 1.
  • FIG. 2 there is shown a line 9 which defines a particular preselected contrast. From FIG. 2 it may be ascertained that in order to obtain a contrast according to line 9 for patients represented by curves 1 and 5, there is required an X-ray tube" voltage of approximately kv, while for patients represented by curves 4 and 8, there is required an X-ray tube voltage of approximately kv. From FIG. 2 it is ascertainable that completely determinate X-ray tube voltage U, f(d) belongs to each patient constitution, and which there is obtained a predetermined contrast.
  • v The sequence or graph of the quotient Q in dependence upon the X-ray tube voltage U is illustrated in FIG. 2.
  • the curves 5 through 8 herein correspond to curves 1 through 4 in FIG. 1.
  • a line 9 which defines a particular
  • FIG. 3 of the drawings An X-ray diagnostic apparatus which operates in accordance with this principle is illustrated in FIG. 3 of the drawings.
  • the X-ray diagnostic apparatus according to FIG. 3 includes a rotary or three-phase high voltage transformer 10 having a split secondary side.
  • Two high voltage rectifiers l1 and 12 supply an X-ray tube 13 through two conduits l4 and 15 which are positioned in the high voltage circuit.
  • the conduits 14 and 15 have control arrangements or amplifers l6 and 17 associated therewith, by means of which the anodecathode resistance of the conduits l4 and 15, and thereby the voltage reduction of the conduits l4 and 15, becomes adjustable. Through the intermediary of control arrangements or amplifiers l6 and 17, the X-ray voltage tube thus may be adjusted.
  • control of the control arrangements or amplifiers l6 and 17 is effected through a function generator 18 which has an input 19, and which maintains to final value throughwhich it controls the control arrangements or amplifiers l6 and 17 as soon as a signal is generated at its input, in effect, in the conduit 19.
  • the conduit 19 is, at the other side thereof, connected to a comparison circuit 20 which receives at a portion comprising a resistance 21, as a reference value the output voltage of a sample and hold circuit 22, and as an actual value the timewise differentiated output voltage of a dose rate meter 25, through a condensor 23 and resistance 24.
  • the dose rate meter 25 is connected with a suitable ray detector 26 which is located behind the patient 27 in the direction of the X-rays and, in FIG. 3, in front of (in practice also possibly in back of) the X-ray film 28.
  • the output voltage of the dose rate meter 25 which has been timewise differentiated by means of condensor 23 and resistance 24, is also conveyed to the circuit 22.
  • the differentiated output voltage of the dose rate meter 25 which, at a particular moment after commencement of the exposure, is present at the resistance 24, is sensed by the sample and hold 22, supplied and then maintained at the resistance 21 for as long until a signal appears in the conduit 19.
  • the output signal of the dose rate meter 25 is, in addition to the differential components 23, 24, conveyed toward an integrator 29, and the integrator result to a cut-off amplifier 30 which has a reference value input 1 high voltage transformer for the switching off of the X-ray tube 13.
  • the resistance 24 is small in comparison with the fraction T in which T,, T (see FIG. 4 for that time, within which the X-ray tube voltage, for commencing the exposure at a suitably high value, reaches its correct value U, and in which C is the ca pacity of condensor 23.
  • the voltage at the resistant 24 is defined by the following equation:
  • the function generator 18 is programmed in a manner so that this linear reduction is effected for'as long as the voltage at the resistance 24 is larger than the voltage atthe tap-off for resistance 21, in effect meaning, as long as no signal is transmitted from the comparison circuit to the conduit 19.
  • the voltage U in the embodiment of FIG. 3 may be utilized for obtaining the quotient Q, as follows:
  • the X-ray tube voltage U after commencement of the X-ray exposure jumps to a suitable maximum value U This is retained until time point T and then drops linearly.
  • the slope or degree of drop-off of the X-ray tube voltage for initiating the exposure is so selected, that the dosage which is produced in the time T is also at the lowest occurring X-ray tube voltage small in comparison with the dosage between the time T and the minimum employed exposure time T so that during the largest portion exposure time there provided at the X-ray tube an X-ray tube voltage corresponding to the optimum contrast.
  • the X-ray diagnostic apparatus in the X-ray diagnostic apparatus according to FIG. 3 there is no requirement for an adjustment of the X-ray tube voltage. Since the X-ray tube current may also be rigidly programmed pursuant to the loading nomograph of the X-ray tube, the operation and manipulation of this X-ray diagnostic apparatus is considerably simplified, inasmuch as practically no exposure data needbe adjusted; The desired contrast may singly be adjusted'for a pluralityof exposures at the resistance 21, and thecorrelation with the employed X-ray film similarly 'fillows for a plurality of exposures at a single instance through generation of a corresponding signal at the input 31 of the cut-off amplifier 30.
  • the X-ray diagnostic apparatus according to FIG. 3 consequently is completely automatedly exposed, and in which the adjusting sequence for the X-ray tube voltage is incorporated in the automation thereof.
  • the embodiment according to FIG. 3 is particularly simple since the X-ray tube voltage drops off linearly with time, and consequently no particular evaluation of the X-ray tube voltage changes need be effected through corresponding measuring elements.
  • the reduction or dropping off of the X-ray tube voltage may also follow in conformance with another function. If this function is fixedly programmed in the function generator 18, then also in this instance no measurement of the particular actual value of the X-ray tube voltage change is required, but merely the differentiation cannot be effected by means of the RC-element 23, 24, and a more suitable differentiator must be introduced.
  • a signal be transmitted to the comparison circuit 20 which is proportional to the differential quotient of the dosage quantity pursuant to the X-ray tube voltage, and in which the signal is compared with a signal proportional to the reference value of the contrast corresponding percentage value of a differential quotient of the dosage quantity pursuant to the X-ray tube voltage at a reference X-ray tube voltage, and upon the balancing of the signals the X-ray tube voltage is maintained.
  • the function generator 18 includes a condensor 33 which is dischargeable through a discharge resistance 34, as well as through a relay contact 35.
  • the relay contact 35 is actuatable by means of a relay 36 which is controlled by the cut-off amplifier 30.
  • the switching-in of the discharge resistance 34 at the condensor 33 is effected through a circuit switch 37 and a relay contact 38, whose relay 39 is controlled by the signal in the conduit 19.
  • the exposure switch 37 Prior to commencing an exposure, the exposure switch 37 is opened and the condensor 33 is charged. in order to initate an exposure, the switch 37 is closed.
  • the condensor 33 discharges approximately linearly through resistance 34 up to the time point T Since the X-ray tube voltage corresponds to the condensor voltage, the X-ray tube voltage also drops linearly up to time point 7 ⁇ , pursuant to FIG. 4.
  • the comparison circuit transmits a signal to conduit 19, which causes the relay 39 to open its contact 38 and interrupt the discharge of condensor 33.
  • the condensor voltage thereby remains constant up to time point 7 ⁇ , whereby the X-ray tube voltage also maintains the value U, up to time point T,.
  • Relay 36 closes its contact 35 and completely discharges condensor 33.
  • the condensor voltage, and therewith the X-ray tube voltage extend herewith from time point T, on, pursuant to the graph in FIG. 4, until reaching zero value.
  • the relay 36 Prior to initiating a new exposure, the relay 36 is again de-energized so that the contact 35 is opened. Furthermore, the exposure switch 37 is again opened prior to initiating an exposure, and for the making of a new exposure, closed again. The above-described sequences are then repeated.
  • an X-ray diagnostic apparatus having an X-ray tube for the making of X-ray exposures of a patient; including an automatic exposure timer means for automatically switching off the X-ray tube upon an X-ray film being subject to a predetermined dosage of rays; and means for automatically adjusting the voltage of the X-ray tube, the improvement comprising; said voltage adjusting means being adapted to automatically lower the X-ray tube voltage at the initiation of each exposure during a small time interval in comparison with the shortest exposure time of said apparatus from a maximum initial value, equal for all examinations, and based on a largest patient bulk; and comparison circuit means operatively connected to said voltage adjusting means and adapted to control the latter, said comparison circuit having a first input receiving a signal as an actual value proportionate to a differential quotient of the X-ray dosage quantity measured behind the patient in the direction of the X-rays pursuant to the X-ray tube voltage, and a second input receiving a reference value signal corresponding to a desired image contrast; and
  • said reference value signal at the second input of said comparison circuit means being in correspondence with the desired image contrast, a percentage of a signal proportional to the differential quotient of the dosage quantity measured behind the patient in the direction of the X-rays pursuant to an X-ray tube voltage.
  • An apparatus as claimed in claim 1, comprising differentiating means for generating a signal conforming to the formation of change in the dosage quantity measured behind the patient in the direction of the X- rays; and dose rate meter means connected to said differentiating means for measuring voltage proportional to the dosage quantity.
  • An apparatus as claimed in claim 1, comprising means for fixedly programming the function of the reducing rate of the X-ray tube voltage.
  • said programming means linearly reducing said X-ray tube voltage as a function of time.

Abstract

An automatically illuminatable X-ray diagnostic apparatus which, in comparison with the state of the technology is considerably simplified with respect to its operation by avoiding the need for adjustment of the X-ray tube voltage. The X-ray tube voltage therein automatically adjusts itself in conformance with a preselected contrast. The X-ray tube voltage is automatically lowered by means of adjusting means for commencing an exposure within a short period as compared with the shortest exposure time, from a maximum initial value corresponding to the largest patient bulkiness, and in which the adjusting means is controllable by a comparator element having introduced at one input thereof a differential quotient of a proportional value of the dosage load measured behind the patient in the direction of the X-rays pursuant to the X-ray tube voltage at the instantaneous X-ray tube voltage as the actual value, while at the other input thereof there is provided a reference value signal corresponding to the desired contrast and which conveys a signal to the adjusting means for maintaining the X-ray tube voltage as soon as both input signals are equal. The reference value signal herein is a percentage figure of a differential quotient of the dosage load behind the patient, and corresponding to the desired contrast, pursuant to the X-ray tube voltage at a relative reference X-ray tube voltage of proportional value.

Description

United States Patent [1 1 Franke [451 Oct. 7, 1975 [75] Inventor:
[73] Assignee: Siemens Aktiengesellschait,
Erlangen, Germany 221 Filed: Feb. 4, 1974 211 Appl. No.: 439,612
Kurt Franke, Erlangen, Germany Primary Examiner-Davis L. Willis Attorney, Agent, or Firm-Waters, Schwartz & Nissen 5 7 ABSTRACT An automatically illuminatable X-ray diagnostic apparatus which, in comparison with the state of the technology is considerably simplified with respect to its operation by avoiding the need for adjustment of the X-ray tube voltage. The X-ray tube voltage therein automatically adjusts itself in conformance with a presev lected contrast. The X-ray tube voltage is automatically lowered by means of adjusting means for commencing an exposure within a short period as compared with the shortest exposure time, from a maximum initial value corresponding to the largest patient bulkiness, and in which the adjusting means is controllable by a comparator element having introduced at one input thereof a differential quotient of a proportional value of the dosage load measured behind the patient in the direction of the X-rays pursuant to the X-ray tube voltage at the instantaneous X-ray tube voltage as the actual value, while at the other input thereof there is provided a reference value signal corresponding to the desired contrast and which conveys a signal to the adjusting meansfor maintaining the X-ray tube voltage as soon as both input signals are equal. The reference value signal herein is a percentage figure of a differential quotient of the dosage load behind the patient, and corresponding to the desired contrast, pursuant to the X-ray tube voltage at a relative reference X-ray tube voltage of proportional value.
6 Claims, 5 Drawing Figures U.S. Patent Oct. 7,1975 Sheet 1 of2 3,911,273
DL AS FUNCTION OF UR DL AT U A d (DL AS FUNCTION OF U URMAX d(DL AS FUNCTION O U d UR US. Patent Oct. 7,1975 Sheet 2 of2 3,911,273
function Sample P' generate and 22 A circqii FIELD OF THE INvENTIoN The present invention relates to an X-ray diagnostic apparatus for the preparation of X-ray exposures, including an automatic exposure timer device for the automatic switching off of the X-ray tube upon a predetermined ray dosage being received by the X-ray film, and including automatic adjusting means for the X-ray tube voltage.
DISCUSSION OF THE PRIOR ART In known X-ray diagnostic apparatus having automatic exposure timer devices, adjustment must be provided for the X-ray tube voltage. The switching off of the X-ray tube, in effect, the completion of an exposure, is obtained the required X-ray dosage predetermined for optimum film darkening has been imparted to the film. The X-ray tube voltage must, in that instance, be adjusted in dependence upon the object being penetrated by the rays, so as to provide an optimum picture contrast. The adjustment of the X-ray tube voltage is effected by means of tables, orbased on the experience of the examining person.
Through German Pat. No. 1,227,570 there has become known automatically illuminated X-ray diagnostic apparatus having adjusting means for the X-ray tube voltage and the' X-ray tube current, including an overload protective device for indicating and adjusting the limiting time in dependence upon the preadjusted X-ray tube load by means of the X-ray load nomograph or computing chart, as well as through an X-ray dosage load measuring device located behind the object being X-rayed. In this X-ray diagnostic apparatus there is provided a control arrangement, which upon an adjustment of the overload protective device, located on the basis of the preadjusted value of the existent tube load presently lies at a predetermined breakage point below the limiting load of the X-ray tube, then raises the X-ray tube voltage during the first exposure phase until it attains the limiting load limit of a permissible magnitude, when the predetermined dosage load measurement commenced with exposure initiation indicates that the required X-ray dosage for the desired film darkening cannot be attained with the preadjusted dosage load within the settime limit. In this X-ray diagnostic apparatus there is achieved an automatic correlation between the X-ray tube voltage and the bulk of the patient. Also attainable is a predetermined degree of automation of the adjustment of the X-ray tube voltage. However, the initial value of the X-ray tube voltage must always be selected in conformance with the body portion or organ which is to be X-rayed. Additionally, for the exposure of a predetermined body portion or organ there are only two different X-ray tube voltages available, so that correlation to the varied constitutions of patients is only roughly obtained. Consequently, also this X-ray diagnostic apparatus, not always can there be obtained an optimum illumination time at the lowest possible ray load on the patient and at an optimum image contrast.
SUMMARY OF THE INVENTION It is, accordingly, an object of the present invention to provide an X-ray diagnostic apparatus of the type described, in effect, an automatically illuminatable X-ray diagnostic apparatus which, in comparison with the state of the technology is considerably simplified with respect to its operation, inasmuch as there is no longer a need for adjustment of the X-ray tube voltage. The X-ray tube voltage therein automatically adjusts itself in conformance with a preselected contrast.
The foregoing task is inventively solved in that the X-ray tube voltage is automatically lowered by means of adjusting means for commencing an exposure within a short period as compared with the shortest exposure time, from a maximum initial value corresponding to the largest patient bulkiness, and in which the adjusting means is controllable by a comparator element having introduced at one input thereof a differential quotient of a proportional value of the dosage load behind the patient pursuant to the X-ray tube voltage at the instantaneous X-ray tube voltage as the actual value, while at the other input thereof there is provided a reference value signal corresponding to the desired contrast and which conveys a signal to the adjusting means for maintaining the X-ray tube voltage as soon as both input signals are equal. The reference value signal herein is a percentage figure of a differential quotient of the dosage load behind the patient, and corresponding to the desired contrast, pursuant to the X-ray tube voltage at a relative X-ray tube voltage of proportional value. In the inventive X-ray diagnostic apparatus there is no longer a requirement for the adjustment of the X-ray tube voltage. It is merely necessary to select the desired image contrast. This selection sequence, however, is only to be relatively seldomly required. Within the scope of the invention, the desired image contrast may also be fixedly adjusted when a contrast variation is not considered to be needed. The operation of the inventive X-ray diagnostic apparatus thus becomes extremely simple, inasmuch as practically no exposure data need be selected. Consequently, a fully automatic operation of the apparatus becomes possible.
Within the framework of the invention there may be, on the one side conveyed to a differentiating element, for the formation of a value proportional to a differential quotient of the dosage quantity behind the patient in the direction of teh X-rays according to the X-ray tube voltage, a voltage of the automatic exposure timer device which is proportional to the instantaneous dosage, and, on the other side, avoltage which is proportional to the instantaneous X-ray tube voltage. The automatic exposure timer device herein is employed for the generation of switching off signal for the X-ray tube, as well as for adjustment of the X-ray tube voltage. Consequently, there is provided thereby an extremely simple construction.
A particularly simple construction is achieved when the reduction of the X-ray tube voltage for commencement of the exposure from the maximum initial value thereof is effected in a time-proportional manner. In that instance it is not required to actually determine the X-ray tube voltage. It is much more adequate that the differentiating element timewise differentiates a voltage from the automatic exposure timer device proportional to the instantaneous dosage.
A further embodiment of the invention consists of in that the X-ray tube voltage, through there is imparted the required differential quotient for the formation of the reference value, is also switched over in dependence upon the selected contrast, and wherein the maximum initial value of the X-ray tube voltage for initiating the exposure lies only a small amount above the present X-ray tube voltage effective for the differential quotient.
BRIEF DESCRIPTION OF THE DRAWINGS Further advantages of the present invention may be now ascertained from the following detailed description of an exemplary embodiment thereof, taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a graphical representation of the relationship of the dosage load at various X-ray tube voltages with respect to the dosage load at a predetermined maximum X-ray tube voltage for various patient bulks;
FIG. 2 illustrates differential quotients of the dosage load behind the patient (DL) according to the X-ray tube voltage in dependence upon the X-ray tube voltage, as obtained from the curves in FIG. 1, regulated for these differential quotients at a maximum X-ray voltage (U "M" for various patient bulks;
FIG. 3 illustrates a circuit diagram for an X-ray diagnostic apparatus according to the present invention;
FIG. 4 graphically illustrates a sequence for the X-ray tube voltage in the X-ray diagnostic apparatus of FIG. 3; and I FIG. 5 shows circuit details of the circuit diagram of FIG. 3.
DETAILED DESCRIPTION Referring now to the drawing, in FIG. 1 the X-ray tube voltage is designated by U The curve 1 relates to a thin patient, whereas curve 4 relates to a bulky patient. The curves 2 and 3 correspondingly relate to intermediate values of patient bulks.
The image contrast K of an X-ray exposure remains, not-withstanding variations in the bulk D of a patient, approximately constant when the X-ray tube voltage U is adjusted in a manner in which the quotient Q remains constant from the differential quotient of the dosage quantity behind the patient pursuant to the X-ray tube voltage at the location U (exposure voltage) and the differential quotient of the dosage quantity behind the patient pursuant the X-ray tube voltage at the location of a suitable X-ray tube voltage U which is larger than U In short form:
K f(d). in the event U U,, wherein U, is such,
that
The sequence or graph of the quotient Q in dependence upon the X-ray tube voltage U is illustrated in FIG. 2. The curves 5 through 8 herein correspond to curves 1 through 4 in FIG. 1. In FIG. 2 there is shown a line 9 which defines a particular preselected contrast. From FIG. 2 it may be ascertained that in order to obtain a contrast according to line 9 for patients represented by curves 1 and 5, there is required an X-ray tube" voltage of approximately kv, while for patients represented by curves 4 and 8, there is required an X-ray tube voltage of approximately kv. From FIG. 2 it is ascertainable that completely determinate X-ray tube voltage U, f(d) belongs to each patient constitution, and which there is obtained a predetermined contrast. v
The invention recognizes that the image contrast, as well as the given quotient of the differential quotients, are dependent upon the patient bulk and the exposure voltage, and that this dependence of the image contrast and the given quotient from the patient bulk may be compensated for in that the exposure voltage follows the patients bulk in a determined function U =f(d), and wherein this function U f (d) is the same for the image contrast and the quotient Q, so that it is only necessary to maintain the X-ray tube voltage at that value which provides a preselected quotient, in order to thereby concurrently also achieve the associated image contrast.
An X-ray diagnostic apparatus which operates in accordance with this principle is illustrated in FIG. 3 of the drawings. The X-ray diagnostic apparatus according to FIG. 3 includes a rotary or three-phase high voltage transformer 10 having a split secondary side. Two high voltage rectifiers l1 and 12 supply an X-ray tube 13 through two conduits l4 and 15 which are positioned in the high voltage circuit. The conduits 14 and 15 have control arrangements or amplifers l6 and 17 associated therewith, by means of which the anodecathode resistance of the conduits l4 and 15, and thereby the voltage reduction of the conduits l4 and 15, becomes adjustable. Through the intermediary of control arrangements or amplifiers l6 and 17, the X-ray voltage tube thus may be adjusted.
The control of the control arrangements or amplifiers l6 and 17 is effected through a function generator 18 which has an input 19, and which maintains to final value throughwhich it controls the control arrangements or amplifiers l6 and 17 as soon as a signal is generated at its input, in effect, in the conduit 19.
The conduit 19 is, at the other side thereof, connected to a comparison circuit 20 which receives at a portion comprising a resistance 21, as a reference value the output voltage of a sample and hold circuit 22, and as an actual value the timewise differentiated output voltage of a dose rate meter 25, through a condensor 23 and resistance 24. The dose rate meter 25 is connected with a suitable ray detector 26 which is located behind the patient 27 in the direction of the X-rays and, in FIG. 3, in front of (in practice also possibly in back of) the X-ray film 28.
The output voltage of the dose rate meter 25, which has been timewise differentiated by means of condensor 23 and resistance 24, is also conveyed to the circuit 22. The differentiated output voltage of the dose rate meter 25 which, at a particular moment after commencement of the exposure, is present at the resistance 24, is sensed by the sample and hold 22, supplied and then maintained at the resistance 21 for as long until a signal appears in the conduit 19.
The output signal of the dose rate meter 25 is, in addition to the differential components 23, 24, conveyed toward an integrator 29, and the integrator result to a cut-off amplifier 30 which has a reference value input 1 high voltage transformer for the switching off of the X-ray tube 13.
At the output of the dose rate meter 25 there is formed a voltage which is proportional to the measured dosage quantity in back of the patient 27in the direction of the X-rays. The resistance 24 is small in comparison with the fraction T in which T,, T (see FIG. 4 for that time, within which the X-ray tube voltage, for commencing the exposure at a suitably high value, reaches its correct value U,, and in which C is the ca pacity of condensor 23. The voltage at the resistant 24 is defined by the following equation:
in which I(* is a constant. In order to obtain a linear dropping off of the X-ray tube voltage, the function generator 18 is programmed in a manner so that this linear reduction is effected for'as long as the voltage at the resistance 24 is larger than the voltage atthe tap-off for resistance 21, in effect meaning, as long as no signal is transmitted from the comparison circuit to the conduit 19.
If dt with respect to the relationship for the X-ray tube voltage U is introduced in the relationship for the voltage U,, at the resistance 24, then the following equation is obtained for the voltage U In this equation the differential quotient of the dosage quantity is obtained pursuant to the X-ray tube voltage. Based on the prior assumption that the X-ray tube voltage drops off linearly with time, then the voltage U,, in the embodiment of FIG. 3 may be utilized for obtaining the quotient Q, as follows:
The operation ofthe X-ray diagnostic apparatus of FIG. 3 is as follows, having reference to FIG. 4:
The X-ray tube voltage U after commencement of the X-ray exposure, jumps to a suitable maximum value U This is retained until time point T and then drops linearly. 1
At the resistance 24 there appears a voltage impulse in conformance with the sudden occurrence of the dosage. After the voltage impulse has reduced prusuant to T and the voltage U,,- is now proportional to the differential quotient d (DL)/d U then U,,- (U,,-) at U is sensed and supplied or energized.
(U,,) at U then appears at the output of circuit or unit 22. Through the intermediary of resistance 21, a predetermined portion (percentage) corresponding to the desired image contrast is transmitted to the comparison circuit 20, as represented by:
Q (UK) at mmm mit Q 1 AT T, or respectively, at U U the following pertains:
R) I (z/(DLJ) R) lunu For U there results for various patient bulks, from exposure to exposure, always a different value, and namely the X-ray tube voltage which independently of the patients bulk always constantly provides the same contrast. At the time point T there is accordingly maintained the X-ray tube voltage at the value U 1 and the X-ray exposure is'preparedat the voltage U up to the time point T at which the cut-off amplifier 30 terminates the exposure. After the time point T the X-ray tube voltage drops exponentially toward zero. The slope or degree of drop-off of the X-ray tube voltage for initiating the exposure is so selected, that the dosage which is produced in the time T is also at the lowest occurring X-ray tube voltage small in comparison with the dosage between the time T and the minimum employed exposure time T so that during the largest portion exposure time there provided at the X-ray tube an X-ray tube voltage corresponding to the optimum contrast. i
In summation, it may be readily ascertained that in the X-ray diagnostic apparatus according to FIG. 3 there is no requirement for an adjustment of the X-ray tube voltage. Since the X-ray tube current may also be rigidly programmed pursuant to the loading nomograph of the X-ray tube, the operation and manipulation of this X-ray diagnostic apparatus is considerably simplified, inasmuch as practically no exposure data needbe adjusted; The desired contrast may singly be adjusted'for a pluralityof exposures at the resistance 21, and thecorrelation with the employed X-ray film similarly 'fillows for a plurality of exposures at a single instance through generation of a corresponding signal at the input 31 of the cut-off amplifier 30. The X-ray diagnostic apparatus according to FIG. 3 consequently is completely automatedly exposed, and in which the adjusting sequence for the X-ray tube voltage is incorporated in the automation thereof.
The embodiment according to FIG. 3 is particularly simple since the X-ray tube voltage drops off linearly with time, and consequently no particular evaluation of the X-ray tube voltage changes need be effected through corresponding measuring elements. Within the framework or scope of the invention, the reduction or dropping off of the X-ray tube voltage may also follow in conformance with another function. If this function is fixedly programmed in the function generator 18, then also in this instance no measurement of the particular actual value of the X-ray tube voltage change is required, but merely the differentiation cannot be effected by means of the RC- element 23, 24, and a more suitable differentiator must be introduced. Within the scope of the invention it is also possible, to ascertain the dosage quantity change, as well as the X-ray tube voltage change be ascertained through corresponding measuring elements, and to form the differential quotient by means of a differentiating element. It is always important for the invention that a signal be transmitted to the comparison circuit 20 which is proportional to the differential quotient of the dosage quantity pursuant to the X-ray tube voltage, and in which the signal is compared with a signal proportional to the reference value of the contrast corresponding percentage value of a differential quotient of the dosage quantity pursuant to the X-ray tube voltage at a reference X-ray tube voltage, and upon the balancing of the signals the X-ray tube voltage is maintained.
The construction of the function generator 18 is described in greater particularity in FIG. 5 of the drawings. From FIG. 5 it is ascertained that the function generator 18 includes a condensor 33 which is dischargeable through a discharge resistance 34, as well as through a relay contact 35. The relay contact 35 is actuatable by means of a relay 36 which is controlled by the cut-off amplifier 30. The switching-in of the discharge resistance 34 at the condensor 33 is effected through a circuit switch 37 and a relay contact 38, whose relay 39 is controlled by the signal in the conduit 19.
Prior to commencing an exposure, the exposure switch 37 is opened and the condensor 33 is charged. in order to initate an exposure, the switch 37 is closed. The condensor 33 discharges approximately linearly through resistance 34 up to the time point T Since the X-ray tube voltage corresponds to the condensor voltage, the X-ray tube voltage also drops linearly up to time point 7}, pursuant to FIG. 4. The control voltage for the conduits or triodes l4 and namely corresponds with the voltage in the conduit 40, which is amplified through the control amplifiers l6 and 17.
At the time point 7' the voltage U, is attained in the X-ray tube, and the comparison circuit transmits a signal to conduit 19, which causes the relay 39 to open its contact 38 and interrupt the discharge of condensor 33. The condensor voltage thereby remains constant up to time point 7}, whereby the X-ray tube voltage also maintains the value U, up to time point T,. At time point T, there is effected the termination of the exposure by means of the output signal of the cut-off amplifier 30, which causes the excitation of relay 36. Relay 36 closes its contact 35 and completely discharges condensor 33. The condensor voltage, and therewith the X-ray tube voltage, extend herewith from time point T, on, pursuant to the graph in FIG. 4, until reaching zero value. Prior to initiating a new exposure, the relay 36 is again de-energized so that the contact 35 is opened. Furthermore, the exposure switch 37 is again opened prior to initiating an exposure, and for the making of a new exposure, closed again. The above-described sequences are then repeated.
While there has been shown what is considered to be the preferred embodiment of the invention, it will be obvious that modifications may be made which come within the scope of the disclosure of the specification.
What is claimed is:
1. In an X-ray diagnostic apparatus having an X-ray tube for the making of X-ray exposures of a patient; including an automatic exposure timer means for automatically switching off the X-ray tube upon an X-ray film being subject to a predetermined dosage of rays; and means for automatically adjusting the voltage of the X-ray tube, the improvement comprising; said voltage adjusting means being adapted to automatically lower the X-ray tube voltage at the initiation of each exposure during a small time interval in comparison with the shortest exposure time of said apparatus from a maximum initial value, equal for all examinations, and based on a largest patient bulk; and comparison circuit means operatively connected to said voltage adjusting means and adapted to control the latter, said comparison circuit having a first input receiving a signal as an actual value proportionate to a differential quotient of the X-ray dosage quantity measured behind the patient in the direction of the X-rays pursuant to the X-ray tube voltage, and a second input receiving a reference value signal corresponding to a desired image contrast; and means transmitting a signal from the output of said comparison circuit means to said voltage adjusting means for maintaining the X-ray tube voltage constant upon said first and second input signals being equal.
2. An apparatus as claimed in claim 1, said reference value signal at the second input of said comparison circuit means being in correspondence with the desired image contrast, a percentage of a signal proportional to the differential quotient of the dosage quantity measured behind the patient in the direction of the X-rays pursuant to an X-ray tube voltage.
3. An apparatus as claimed in claim 1, comprising differentiating means for generating a signal conforming to the formation of change in the dosage quantity measured behind the patient in the direction of the X- rays; and dose rate meter means connected to said differentiating means for measuring voltage proportional to the dosage quantity.
4. An apparatus claimed in claim 3, said differentiating means having an output signal adapted to generate one of the input signals of said comparison circuit means.
5. An apparatus as claimed in claim 1, comprising means for fixedly programming the function of the reducing rate of the X-ray tube voltage.
6. An apparatus as claimed in claim 4, said programming means linearly reducing said X-ray tube voltage as a function of time.

Claims (6)

1. In an X-ray diagnostic apparatus having an X-ray tube for the making of X-ray exposures of a patient; including an automatic exposure timer means for automatically switching off the X-ray tube upon an X-ray film being subject to a predetermined dosage of rays; and means for automatically adjusting the voltage of the X-ray tube, the improvement comprising; said voltage adjusting means being adapted to automatically lower the X-ray tube voltage at the initiation of each exposure during a small time interval in comparison with the shortest exposure time of said apparatus from a maximum initial value, equal for all examinations, and based on a largest patient bulk; and comparison circuit means operatively connected to said voltage adjusting means and adapted to control the latter, said comparison circuit having a first input receiving a signal as an actual value proportionate to a differential quotient of the X-ray dosage quantity measured behind the patient in the direction of the X-rays pursuant to the X-ray tube voltage, and a second input receiving a reference value signal corresponding to a desired image contrast; and means transmitting a signal from the output of said comparison circuit means to said voltage adjusting means for maintaining the X-ray tube voltage constant upon said first and second input signals being equal.
2. An apparatus as claimed in claim 1, said reference value signal at the second input of said comparison circuit means being in correspondence with the desired image contrast, a percentage of a signal proportional to the differential quotient of the dosage quantity measured behind the patient in the direction of the X-rays pursuant to an X-ray tube voltage.
3. An apparatus as claimed in claim 1, comprising differentiating means for generating a signal conforming to the formation of change in the dosage quantity measured behind the patient in the direction of the X-rays; and dose rate meter means connected to said differentiating means for measuring voltage proportional to the dosage quantity.
4. An apparatus as claimed in claim 3, said differentiating means having an output signal adapted to generate one of the input signals of said comparison circuit means.
5. An apparatus as claimed in claim 1, comprising means for fixedly programming the function of the reducing rate of the X-ray tube voltage.
6. An apparatus as claimed in claim 4, said programming means linearly reducing said X-ray tube voltage as a function of time.
US439612A 1973-04-27 1974-02-04 X-ray diagnostic apparatus for preparing x-ray exposures including an automatic illuminating device and automatic adjustment of the exposure voltage Expired - Lifetime US3911273A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2321448A DE2321448A1 (en) 1973-04-27 1973-04-27 X-RAY DIAGNOSTIC APPARATUS FOR THE PRODUCTION OF X-RAY PHOTOS WITH AN EXPOSURE AUTOMATIC AND AUTOMATIC ADJUSTMENT OF THE RECORDING VOLTAGE

Publications (1)

Publication Number Publication Date
US3911273A true US3911273A (en) 1975-10-07

Family

ID=5879492

Family Applications (1)

Application Number Title Priority Date Filing Date
US439612A Expired - Lifetime US3911273A (en) 1973-04-27 1974-02-04 X-ray diagnostic apparatus for preparing x-ray exposures including an automatic illuminating device and automatic adjustment of the exposure voltage

Country Status (4)

Country Link
US (1) US3911273A (en)
JP (1) JPS5751720B2 (en)
DE (1) DE2321448A1 (en)
FR (1) FR2226971B1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035649A (en) * 1973-10-08 1977-07-12 U.S. Philips Corporation X-ray generator for a tomography apparatus
US4047043A (en) * 1975-06-12 1977-09-06 Siemens Aktiengesellschaft Irradiation installation for ionizing radiation
US4087686A (en) * 1975-11-10 1978-05-02 Siemens Aktiengesellschaft X-ray diagnostic apparatus for X-ray film photographs with an automatic exposure timer
US4092538A (en) * 1975-06-20 1978-05-30 C.G.R. Mev Device for checking the irradiation dose measuring circuits used to measure the irradiation doses delivered by a radiotherapy apparatus
WO1980001420A1 (en) * 1978-12-27 1980-07-10 Boeing Co Radiographic apparatus and method for monitoring film exposure time
US4284889A (en) * 1978-10-05 1981-08-18 Fuji Photo Film Co., Ltd. Method for recording radiation image using stimulable phosphor
US4313055A (en) * 1978-06-09 1982-01-26 U.S. Philips Corporation Automatic exposure control device for an X-ray generator
US4333011A (en) * 1979-05-02 1982-06-01 U.S. Philips Corporation X-Ray generator for fast dose rate control
US4595949A (en) * 1983-07-26 1986-06-17 Paul Fenster Systems and methods for translating radiation intensity into pixel values
US5084911A (en) * 1989-01-10 1992-01-28 Eastman Kodak Company X-ray phototimer
US5966425A (en) * 1989-12-07 1999-10-12 Electromed International Apparatus and method for automatic X-ray control
US6192105B1 (en) 1998-11-25 2001-02-20 Communications & Power Industries Canada Inc. Method and device to calibrate an automatic exposure control device in an x-ray imaging system
US20030058989A1 (en) * 2001-07-25 2003-03-27 Giuseppe Rotondo Real-time digital x-ray imaging apparatus
US6553095B2 (en) 1999-10-08 2003-04-22 Dentsply Research & Development Corp Automatic exposure control for dental panoramic and cephalographic x-ray equipment
US6775351B2 (en) 2000-02-02 2004-08-10 Gerardo Rinaldi Automatic X-ray detection for intra-oral dental x-ray imaging apparatus
US20040190678A1 (en) * 2002-07-25 2004-09-30 Giuseppe Rotondo Real-time digital x-ray imaging apparatus
US11369332B2 (en) * 2019-06-26 2022-06-28 Canon Kabushiki Kaisha Radiation imaging apparatus and method of controlling the same, and radiation imaging system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4453263A (en) * 1979-10-04 1984-06-05 Picker Corporation Constant potential H-V generator
CA1149076A (en) * 1979-10-04 1983-06-28 Theodore A. Resnick Constant potential high voltage generator
DE3011966A1 (en) * 1980-03-27 1981-10-01 Siemens AG, 1000 Berlin und 8000 München X-RAY DIAGNOSTIC GENERATOR WITH A CONTROL CIRCUIT FOR DOSING PERFORMANCE
DE3043632A1 (en) * 1980-11-19 1982-07-08 Philips Patentverwaltung Gmbh, 2000 Hamburg X-RAY GENERATOR FOR SUPPLYING A X-RAY TUBE WITH A MEDIUM CONNECTED TO ITEM BETWEEN ITS ANODE AND CATHODE
FR2516338A1 (en) * 1981-11-09 1983-05-13 Tardivet Marc Exposure control appts. for X=ray generator - has three separate photomultipliers for image amplification and compensated charging capacitor in signal monitoring circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985761A (en) * 1954-04-09 1961-05-23 Ohmart Corp Method and apparatus for regulating X-ray exposures
US3546461A (en) * 1968-09-13 1970-12-08 Litton Medical Products Automatic control of a nonsynchronous cine fluororadiographic apparatus
US3548208A (en) * 1968-07-16 1970-12-15 Litton Medical Products Fluoroscopic intensity control wherein the brightness of the image is maintained at a predetermined level
US3585391A (en) * 1969-09-24 1971-06-15 Westinghouse Electric Corp Brightness stabilizer with improved image quality
US3792267A (en) * 1970-12-18 1974-02-12 Philips Corp Automatic x-ray exposure device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985761A (en) * 1954-04-09 1961-05-23 Ohmart Corp Method and apparatus for regulating X-ray exposures
US3548208A (en) * 1968-07-16 1970-12-15 Litton Medical Products Fluoroscopic intensity control wherein the brightness of the image is maintained at a predetermined level
US3546461A (en) * 1968-09-13 1970-12-08 Litton Medical Products Automatic control of a nonsynchronous cine fluororadiographic apparatus
US3585391A (en) * 1969-09-24 1971-06-15 Westinghouse Electric Corp Brightness stabilizer with improved image quality
US3792267A (en) * 1970-12-18 1974-02-12 Philips Corp Automatic x-ray exposure device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035649A (en) * 1973-10-08 1977-07-12 U.S. Philips Corporation X-ray generator for a tomography apparatus
US4047043A (en) * 1975-06-12 1977-09-06 Siemens Aktiengesellschaft Irradiation installation for ionizing radiation
US4092538A (en) * 1975-06-20 1978-05-30 C.G.R. Mev Device for checking the irradiation dose measuring circuits used to measure the irradiation doses delivered by a radiotherapy apparatus
US4087686A (en) * 1975-11-10 1978-05-02 Siemens Aktiengesellschaft X-ray diagnostic apparatus for X-ray film photographs with an automatic exposure timer
US4313055A (en) * 1978-06-09 1982-01-26 U.S. Philips Corporation Automatic exposure control device for an X-ray generator
US4284889A (en) * 1978-10-05 1981-08-18 Fuji Photo Film Co., Ltd. Method for recording radiation image using stimulable phosphor
WO1980001420A1 (en) * 1978-12-27 1980-07-10 Boeing Co Radiographic apparatus and method for monitoring film exposure time
US4250103A (en) * 1978-12-27 1981-02-10 The Boeing Company Radiographic apparatus and method for monitoring film exposure time
US4333011A (en) * 1979-05-02 1982-06-01 U.S. Philips Corporation X-Ray generator for fast dose rate control
US4595949A (en) * 1983-07-26 1986-06-17 Paul Fenster Systems and methods for translating radiation intensity into pixel values
US5084911A (en) * 1989-01-10 1992-01-28 Eastman Kodak Company X-ray phototimer
US5966425A (en) * 1989-12-07 1999-10-12 Electromed International Apparatus and method for automatic X-ray control
US6192105B1 (en) 1998-11-25 2001-02-20 Communications & Power Industries Canada Inc. Method and device to calibrate an automatic exposure control device in an x-ray imaging system
US6553095B2 (en) 1999-10-08 2003-04-22 Dentsply Research & Development Corp Automatic exposure control for dental panoramic and cephalographic x-ray equipment
US6775351B2 (en) 2000-02-02 2004-08-10 Gerardo Rinaldi Automatic X-ray detection for intra-oral dental x-ray imaging apparatus
US20040228452A1 (en) * 2000-02-02 2004-11-18 Gerardo Rinaldi Automatic x-ray detection for intra-oral dental x-ray imaging apparatus
US7016466B2 (en) 2000-02-02 2006-03-21 Gendex Corporation Automatic x-ray detection for intra-oral dental x-ray imaging apparatus
US20030058989A1 (en) * 2001-07-25 2003-03-27 Giuseppe Rotondo Real-time digital x-ray imaging apparatus
US7016461B2 (en) 2001-07-25 2006-03-21 Gendex Corporation Real-time digital x-ray imaging apparatus
US20060126780A1 (en) * 2001-07-25 2006-06-15 Gendex Corporation Real-time digital x-ray imaging apparatus
US7319736B2 (en) 2001-07-25 2008-01-15 Gendex Corporation Real-time digital x-ray imaging apparatus
US20040190678A1 (en) * 2002-07-25 2004-09-30 Giuseppe Rotondo Real-time digital x-ray imaging apparatus
US7197109B2 (en) 2002-07-25 2007-03-27 Gendex Corporation Real-time digital x-ray imaging apparatus
US7672425B2 (en) 2002-07-25 2010-03-02 Gendex Corp. Real-time digital X-ray imaging apparatus
US11369332B2 (en) * 2019-06-26 2022-06-28 Canon Kabushiki Kaisha Radiation imaging apparatus and method of controlling the same, and radiation imaging system

Also Published As

Publication number Publication date
JPS5016489A (en) 1975-02-21
JPS5751720B2 (en) 1982-11-04
FR2226971B1 (en) 1978-07-07
DE2321448A1 (en) 1974-11-14
FR2226971A1 (en) 1974-11-22

Similar Documents

Publication Publication Date Title
US3911273A (en) X-ray diagnostic apparatus for preparing x-ray exposures including an automatic illuminating device and automatic adjustment of the exposure voltage
US4454606A (en) Reconfigurable x-ray AEC compensation
US3894235A (en) X-ray diagnostic apparatus for the preparation of x-ray exposures including a timer switch for determining the exposure time
EP0432119A1 (en) Method relating to automatic exposure in x-ray diagnostics, in particular in mammography
US3974385A (en) X-ray diagnostic apparatus
US4333011A (en) X-Ray generator for fast dose rate control
CA1180810A (en) X-ray system tester
US4486896A (en) X-Ray generator incorporating automatic correction of a dose-determining exposure parameter
US4313055A (en) Automatic exposure control device for an X-ray generator
US5371777A (en) Automatic x-ray exposure unit for mammography
US3356847A (en) X-ray film exposure measuring system having means for terminating the exposure
US4119856A (en) X-ray diagnostic apparatus for producing series exposures
US2502269A (en) X-ray control apparatus
US5267295A (en) Methods and device related to automatic exposure in X-ray diagnostics in particular in mammography
US2377969A (en) Apparatus for determining the duration of a transient effect
US2561085A (en) Automatic exposure timer
US3846633A (en) High voltage generator for x-ray diagnosis apparatus
US3027460A (en) X-ray device
US2123018A (en) X-ray system
US2486089A (en) Time delay control
US2748292A (en) Simplified X-ray apparatus
US4035645A (en) Radiation monitor for an irradiation installation
GB2095007A (en) X-ray generator including an X- ray tube provided with an intermediate electrode
GB1328843A (en) X-ray apparatus
GB1476416A (en) Control apparatus for an x-ray machine