US3913537A - Electromechanically controlled fuel injection valve for internal combustion engines - Google Patents

Electromechanically controlled fuel injection valve for internal combustion engines Download PDF

Info

Publication number
US3913537A
US3913537A US499055A US49905574A US3913537A US 3913537 A US3913537 A US 3913537A US 499055 A US499055 A US 499055A US 49905574 A US49905574 A US 49905574A US 3913537 A US3913537 A US 3913537A
Authority
US
United States
Prior art keywords
valve
fuel
force
valve seat
valve needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US499055A
Inventor
Kurt Ziesche
Gunter Kulke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Application granted granted Critical
Publication of US3913537A publication Critical patent/US3913537A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/005Arrangement of electrical wires and connections, e.g. wire harness, sockets, plugs; Arrangement of electronic control circuits in or on fuel injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0073Pressure balanced valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/50Arrangements of springs for valves used in fuel injectors or fuel injection pumps
    • F02M2200/507Adjusting spring tension by screwing spring seats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • a fuel injection valve for use with internal combustion engines, especially Diesel engines, includes a valve needle cooperating with a valve seat to control the flow of fuel out of the valve injection orifice.
  • the valve needle can be loaded in the closing direction of the valve by a main pressure spring exerting its force via a plunger which may be lifted by pressurized fuel, It is also loaded in the closing direction by a valve spring.
  • a coaxial force equalizer piston opposes the hydraulic force tending to lift the valve needle from its seat.
  • An electromagnet when energized, exerts a valve-opening force on the force equalizer piston. The force of the main pressure spring is so great that, when pressurization of fuel ceases, it can overcome the force of the electromagnet and close the valve.
  • An electric switch actuated by the plunger, can control the energization of the electromagnet, alone or in combination with an electronic controller.
  • the invention relates to an electro-mechanically controlled fuel injection valve for internal combustion engines, especially for Diesel engines, of the type including an electro-mechanical converter, especially an electromagnet, controlling the onset of injection and further including a valve needle influenced by a valve spring and sealingly guided in a bore of a housing for the fuel injection valve.
  • the closure element of the valve needle obturates a valve seat which controls the fluid flow through at least one nozzle orifice.
  • the fuel injection valve further includes a fuel accumulation system whose accumulation space is connected through a pressure line to a pressure chamber located adjacent to the valve seat and it is also connected, through a check valve, to a fuel supply line through which a metering pump delivers the correct amount of fuel required for each operating cycle into the accumulation space.
  • electromechanical converter used and described in the present invention for the control of the onset of injection is an electromagnet (solenoid), although other electromechanical converters may be used, e.g. piezoelectric or magnetostrictive converters.
  • Fuel injection valves of the type of construction described above are especially suitable for fuel injection processes employing very high injection pressures because they permit the control of the onset of injection within a wide rpm domain without necessitating expensive and mechanically highly stressed parts.
  • the electromagnet which controls the onset of injection operates a valve slide disposed-in the pressure line between the fuel accumulation system and the pressure chamber of the injection nozzle.
  • the fuel pressure acts on the shoulder of the valve needle against the force of the valve spring to open the nozzle orifice but the opening is delayed with respect to the opening control pulse because of the response delay of the electromagnet, the time taken by the valve slide to traverse its control path and because of the throttling effect at the control apertures.
  • this delay is very dependent on manufacturing tolerances, so that the simultaneous adjustment of all the injection valves in a multicylinder, fuel-injected engine to the same setting is very difficult.
  • This object is achieved, according to the invention, by equipping the fuel injection valve with a force equalizer piston, disposed coaxially with the valve needle within the valve housing and in sealing connection with a coaxial bore thereof.
  • the electromechanical converter is provided with an actuating member which is in operative connection with the valve needle via the 7 force equalizer piston.
  • One end of the force equalizer piston is pressurerelieved and the other end is acted upon by the fuel pressure prevailing in the accumulation space of the fuel accumulation system.
  • the effective cross-sectional area of the force equalizer piston is so dimensioned that, when the valve seat is closed, the hydraulic forces acting on the valve needle in the opening and closing directions, respectively, are equal or at least approximately equal.
  • the forces acting on the valve needle in the closing direction can be increased by a supplemental force which is at least mediately exerted by a control plunger when it arrives in its starting position at the termination of the injection cycle.
  • the electromechanical converter requires only a very simple control circuit for the opening actuation of the valve needle.
  • the hydraulic pressure acting on the valve needle is fully, or at least partially, compensated by the force equalizing piston and the termination of injection is triggered, independently of the opening control pulse, by the arrival of the control plunger in its starting position. This results in a very reliable and rapid operation even at very high injection pressures such as are required for the directinjection of fuel into Diesel engines.
  • control plunger is coaxial with the valve needle, the force equalizing piston and the actuating member of the electro-mechanical converter, and that it is operatively coupled to the valve needle, at the very latest when it reaches its starting position, and presses the valve needle onto its valve seat. This disposition insures rapid closure of the valve because the elements of the fuel accumulation system are in mechanical contact with the valve needle at the termination of injection and since, due to the high injection pressures, they are loaded by a very great spring force.
  • a particularly advantageous further development of the invention provides a throttle, located in the pressure line, between the accumulation space and the pressure chamber.
  • the restrictive effect of this throttle can change the pressure in the pressure chamber when 3 the valve seat is. open and this effect is exploited to make the force then acting on the valve needle in the openingdirection at least approximately equal to the force.
  • acting on the valvefrom within the same pressure chamber when the valve seat is closed-Fuel flowing through this throttle during the injection process results in a pressure drop which opposes a supplementary hydraulic force that is present when the valve is open and that acts in the opening'direction of the valve.
  • Thissupplementary force ' is due to a larger effective cross-.
  • FIG. 1 is an axial cross-section of a first exemplary embodiment of theelectromechanically controlledfuel injection valve according to the invention.
  • FIG. 2 is a section through the upper portion of a second exemplary embodiment of the fuel injectionvalve according to the invention, showing-the region of the fuel accumulation system.
  • FIG. 3 is a schematic block'diagram of afuel injection system equipped with'the fuel injection valve according to the invention.
  • FIG. 4 is; a circuit diagram of an electronic control system for the electromagnet of the second exemplary embodiment of the fuel injection valve according to the invention and shown in FIG. 2.
  • the fuel injection valve illustratedtherein has a'hou sing 11 which contains a fuel accumulation system 15 consisting substantially of an accumulation space 12, a control plunger 13 henceforth called plunger 13), and a compressed pressure spring 14.
  • the accumulation space 12 communicates, through a pressure line 16, consisting substantially of regions 16a and 16b, with apressure chamber 18, located adjacent to a .valve seat 17.
  • the accumulation space 12 also communicates, through a fuel supply line 21 and a check valve 19 with a fuel metering pump (see also below in reference to FIG. 3) which delivers the quantity of fuel required for .each injection cycle to the accumulation space 12.
  • accumulation space 12 is used to refer specifically to the space formed by a graduatedbore 22 in the, center of ,a multipartitehousing- '23 of an electromagnet 24, because this space changes its volume, depending on the fuel quantity admittedand to the degree that the plunger 13 moves upwardly against the force of spring 14. Precisely state, the accumulation space is formed by. the entire interior volumeof the fuel injection valve 10 lying between the check valve 19 and the valve seat 17.
  • the electromagnet24 serves as an electromechanical converter and, .without going/beyond the essential charac-' teristics of the invention, the electromechanical converter could be replaced by a piezoelectric or magnetostrictive actuating mechanism.- I
  • the housing 23 of the electromagnet 24 is inserted into a bore 26 within the housing l '1 and is made pres-" sure-tight therewith by means of a threaded bushing 27.
  • the threaded bushing 27 also serves to fasten an intermediate plate 28, a guide block 29, an intermediate ring 31 and a nozzle body 32 to the'housing 11 in a presSure tight manner.
  • the winding 33 of the electromagnet 24 is electrically connected through plug connections 34 with two connector vane's'35 cast in the housing 11 to which a connector cable, suggested by the line 36, may be electrically coupled
  • the nozzle body 32 which includes the valve seat17 and the pressure chamber 18 has a nozzle orifice 37, located beneath the valve seat 17 and facing: the combustion chamber (not further shown) of the internal combustion engine.
  • the nozzle body has a guide bore 38 above serving as the closure member when cooperating with the valve seat 17.
  • the effective diameter of the valve needle in the region of the guide bore 38 is designated .by' Dv.
  • valve needle 39 remote from valve seat 17 extends beyond the guide bore 38 and forms an abutment shoulder for a spring support ring 42, supporting a valve spring 43 whose other end rests on the guide block 29.
  • closure member 41 of the valve needle 39 is pressed against the valve seat 17 and closes it.
  • a main spring chamber 44 which surrounds the valve spring 43 and the spring support ring 42 is pressure-relieved and communicates with a space 51 containing the pressure spring 14. This communication is established by a bore 45 within the guide block 29, a connecting bore 46 in the intermediate plate 28,
  • FIG. 1 shows the plunger 13, the equalizer piston 59 and the valve needle 39 in a position in which the force of the pressure spring 14 holds them in positive operational contact.
  • the plunger 13 is lifted off from the end face of the equalizer piston 59, against the force of the pressure spring 14 to an extent which corresponds to the volume .of the predelivered fuel quantity.
  • the equalizer piston 59 and the valve needle 39 are still held in mutually positive operational contact due to the fuel pressure acting upon them.
  • a downward force acts on the equalizer piston 59, i.e., a force directed toward the valve seat 17 and an opposite force acts on the valve needle 39, i.e., a force directed away from the valve seat 17.
  • the effective cross-sectional area of the equalizer piston 59 corresponding to its diameter DK, is made equal to the effective annular area of the valve needle which is acted upon by fuel pressure in the direction of opening. This annular area is equal to the difference between the cross-sectional area of valve needle 39, corresponding to the diameter DV and the cross-sectional area of the valve seat 17.
  • a throttle 62 is disposed between the two sections 16a and 16b of the fuel pressure channel 16.
  • the throttle reduces the pressure in pressure chamber 18 when the valve seat 17 is open so that the force then acting within pressure chamber 18 on the valve needle 39 in the direction of opening is made at least approximately equal to the force acting in the same direction and in the same location when the valve seat 17 is closed.
  • the throttle 62 is a restricted bore within the intermediate ring 31 and forms the only communication between the accumulation space 12 and the pressure chamber 18.
  • the throttle 62 is so dimensioned that the pressure drop at the throttle 62 compensates for the additional force acting on the valve needle 39 in the opening direction of the valve when the valve seat 17 is open, so that the same hydraulic forces act on the valve needle 39 whether the valve is open or closed.
  • the disposition of throttle location 62 has made possible a so-called dynamic force equalization in addition to the static force equalization performed by the equalizer piston 59.
  • the great supplementary force exerted by the plunger 13 after it has returned to its starting position at the termination of the injection cycle as shown in FIG. 1, is capable of pressing the valve nnedle 39 and its closure member 41 onto the valve seat 17 even when the electromagnet 24 is energized.
  • the special advantage of this design is that the electromagnet 24 may be controlled by a controller which produces control pulses of fixed duration. Such a controller is substantially simpler and cheaper to manufacture than one which produces pulses of a particular, precisely determined duration which are required for Diesel fuel injection due to the very short injection times of the order of l millisecond.
  • FIG. 2 is an illustration of a second exemplary embodiment of the fuel injection valve according to the invention in a partial section showing those parts which are different from those shown in FIG. 1. Identical parts retain the same reference numerals and the sectional plane of the right half of the Figure is rotated by 120 with respect to that shown in FIG. 1.
  • the plunger 13 is shown here also in its starting position which it occupies at the termination of the injection cycle.
  • a spring support plate 55' touches a contact pin 71 belonging to an electrical switch 72 located in the valve housing 1 1' of the fuel injection valve 10.
  • the contact pin 71 is guided in an insulating sleeve 73 and is in electrical connection with a contact vane 74 to which a line 75 is connected.
  • the contact pin 71 is spring-loaded and its length determines when the spring support plate 55' touches it.
  • the spring support plate 55' is connected to ground through the pressure spring 14 and, when the spring support 55' makes contact with pin 71, the current supply to the electromagnet 24 is indirectly interrupted. The mechanism for current interruption will be described below with reference to FIG. 4.
  • the winding 33 of the electromagnet 24, shown in FIG. 1 but not further shown in FIG. 2, is connected via contact vances 35' with connecting lines 36', of which only one is shown here.
  • Thw switch 72 shown in FIG. 2 represents only one of many possible types.
  • the block diagram of FIG. 3 shows the fuel injection valve and a fuel injection pump 81 serving as a fuel metering pump.
  • the fuel injection pump 81 is a known four-cylinder serial injection pump having a mechanical centrifugal rpm governor 82 whose operating lever 83 predetermines the fuel quantity to be delivered by the injection pump 81 if it is a feed governor or whose operating lever 83 presets an rpm to be maintained.
  • the fuel supply line 21 leading to the fuel injection valve 10' is at the same time the so-called pressure line of the injection pump 81.
  • the excess leakage'fuel is returned from the fuel injection valve 10' through the fuel return line 54 to a fuel reservoir 84.
  • the fuel required by the fuel injection pump 81 is delivered in a known manner by a predelivery pump 85 and a delivery line 86 to the suction chamber of the fuel injection pump 81 and excess fuel is returned through a line 87 and the fuel return line 54 to the fuel reservoir 84.
  • An electronic controller 88 is coupled to the fuel injection valve 10' by the connector line 36 and is further described with reference to FIG. 4.
  • the electronic controller 88 is also connected to the fuel injection valve 10 through the control line 75.
  • the controller 88 generates control pulses 89 which, in the case of controlling the fuel injection valve 10 according to FIG. 1, have a constant duration ti.
  • the pulse duration is adapted .to the injected fuel quantity by the switching pulse triggered by switch 72 (see FIG. 2) which is fed through line 75 to the controller 88.
  • the onset of fuel injection is initiated by. an angle-ofrotation sensor 91 which is preferably mounted on the shaft of the fuel injection pump 81 and which connects through line 92 with the electronic controller 88.
  • an angle-ofrotation sensor 91 which is preferably mounted on the shaft of the fuel injection pump 81 and which connects through line 92 with the electronic controller 88.
  • FIG. 4 is a schematic diagram of the electronic controller 88 which obtains its operating voltage from a starter battery 101 through a positive conductor 102 and a negative conductor 103.
  • the controller 88 is triggered by a signal generator embodied as an angle-ofrotation sensor 91 and coupled to the cam shaft of the injection pump 81 (see FIG. 3).
  • the sensor 91 is represented in FIG. 4 by a switch contact 104 and a switching element 105.
  • the switching element 105 is connected through a resistor 106 to the negative conductor 103 and is also connected with one of the electrodes of a differentiating capacitor 107.
  • the control pulses 89 are generated in the controller 88, here embodied as a transistorized switching system, by a monostable control multivibrator 108, which includes a normally conducting input transistor 109 whose collector 109 is connected through a resistor 110 to the base of a normally non-conducting output transistor 111, and further includes a timing circuit which determines the appropriate pulse duration ti.
  • a monostable control multivibrator 108 which includes a normally conducting input transistor 109 whose collector 109 is connected through a resistor 110 to the base of a normally non-conducting output transistor 111, and further includes a timing circuit which determines the appropriate pulse duration ti.
  • this timing circuit consists of a resistor 112 and a capacitor 113 which are connected in series between the base of transistor 109 and the collector of transistor 1 1 1.
  • the collector of the output transistor 111 is connected through a resistor 114 V with the negative conductor 103 and also, through a control line 115, to the base of a power transistor 116 which is the essential element of a power stage 117.
  • the power stage 117 is preceded in a known manner, not further described, by an intermediate amplifier inserted in the control circuit 115.
  • One side of the winding 33 of the electromagnet 24 is connected through a resistor 118 and a diode 119 to the common positive conductor 102 and the other side of the winding is connected to the collector'of the power transistor 1 16.
  • the emitter of the power transistor 116 is connected to the negative conductor 103 although other conducting elements connected to ground could replace the negative conductor.
  • the timing capacitor 113, the resistor 112, which is preferably adjustable for setting the pulse duration ti and the base of the input transistor 109 of the multivibrator 108 are all connected to the junction P of two resistors 121 and 122 which are disposed as voltage dividers between the negative conductor 103, connected to ground, and the common positive conductor 102. Both transistors 109 and 11 are of the pnp type and their emitters are connected to the positive conductor 102.
  • the multivibrator 88 is switched into its unstable state whose duration corresponds to the pulse width ti which, in turn, depends on the timing elements 112, 113.
  • the capacitor 107 is connected through a diode 123 to the base of the input transistor 109 and also, through a load resistor 124, to the positive conductor 102. As long as the switch 104, 105 is open, the differentiating capacitor 107 can charge up, and when switch 104, 105 closes, it can deliver its charge for the purpose of blocking the input transistor 109.
  • the output transistor 111 goes over into itsconducting state.
  • the exponentially increasing collector current within transistor 111 produces a feedback voltage in the timing elements 112, l l 3, which keeps the input transistor 109 blocked beyond the closing time of switch 104, 105 until the feedback voltage falls below a value determined by the potential at point P of the voltage divider 121, 122.
  • the input transistor 109 returns to its initial, conducting state.
  • the pulse ti for opening the injection valves is indicated by the numeral 89 and is generated during the conducting state of the output transistor 111.
  • the electromagnetically controlled fuel injection valve shown in FIG. 1 requires only a fixed pulse duration ti to determine the energization time of the electromagnet 24 and this time is always larger than or at least as large as the longest possible injection time.
  • the second exemplary embodiment of the invention, shown in FIG. 2 contains the switch 72 which, when closed, as indicated by broken lines .in FIG. 4', connects point P of the voltage divider circuit and, hence, the base of the input transistor 109 through control line to the negative conductor 103. This shortens the pulse duration ti and adapts it to the duration of injection which not only reduces the current consumption, but it also reduces the force required to close the injection valve 10.
  • switch 72 Another possible circuit for the switch 72 is indicated in broken lines by the numeral 72', where it is shown connected, through a control line 75, to the control circuit 115 and to the base of the power transistor 116 and thus, when closed, it connects the base of this transistor to the negative conductor 103.
  • FIG. 3 which is intended to be used with the secondary exemplary embodiment can also be used with the first exemplary embodiment according to FIG. 1 if the injection valve 10' is replaced by the injection valve 10 according to FIG. 1, and the connecting line 36' is replaced by the connecting line 36.
  • the first exemplary embodiment according to FIG. 1 contains no control line 75.
  • the fuel injection valve according. to FIG. 1 is supplied with fuel by the fuel injection pump 81 which delivers a quantity of fuel that is precisely adapted to the operational state of the engine and is set by the centrifugal rpm-governor 82 (see FIG. 3).
  • the fuel is predelivered to the accumulationspace 12 below the plunger 13.
  • the plunger 13 is displaced upwardly and compressesthe pressure spring 14 serving as a storage spring.
  • the fuel pressure prevailing in the accumulation space 12, andhence also in the pressure chamber 18, is determined by the degree of compression of the pressure spring 14 and this pressure acts on the valve needle 39, in both the opening and the closing directions.
  • the diameter DK of the force equalizer piston 59 is so dimensioned that the effective cross section of that piston 59 is equal to the annular cross section of the valve needle 39 which is subjected to the fuel pressure in the pressure chamber 18.
  • This annular cross section is defined, on the one hand, by the diameter Dv of the valve needle 39 and, on the other hand, by the diameter of the valve seat 17.
  • pressure spring 14 determines the injection pressure, it is very highly precompressed and its closing force is so great that the closing motion is very rapid and is not impeded by the still-energized electromagnet 24. This results advantageously in a very rapid closure process and makes aprecise, timed control of the energization time of the electromagnet unnecessary. This latter advantage is especially significant because it is extremely difficult to produce the required switching times which, for Diesel engine injection, lie in the region from 1 to 3 milliseconds, by means of electronic control. Furthermore, the predelivery of fuel by the injection pump guarantees that, even during malfunctions of the control electronics, the injected fuel quantity will never be a complete equalization of forces is achieved, i.e., the
  • valve needle 39 which might result in dribbling of fuel into the combustion chamber of the engine. Since the greater than that which has been predelivered. The force of the pressure spring 14 is so great that it is able to return the valve onto its seat 17 in spite of the additional hydraulic force acting in the opening direction which occurs due to the additional effective surface of the valve needle 39 which is subjected to fuel pressure when the valve is open.
  • the injection process is changed only in that, at the termination of the injection cycle, the plunger 13, when returning to its starting position shown in FIG. 2, actuates the switch 72 via the spring support plate 55'.
  • the switch 72 then delivers a control pulse through line 75 to the electronic controller 88, shortening the pulse duration ti of the control pulse 89, i.e., more exactly, it terminates the energization time of the electromagent 24.
  • the interaction of the control pulse with the electronic controller can occur in many different ways and two examples thereof have already been described with reference to FIG. 4.
  • an electromechanically controlled fuel injection valve for internal combustion engines, especially Diesel engines, including a valve housing, an electromechanical converter, especially an electromagnet, mounted within said housing for controlling the onset of fuel injection, means forming part of the housing and defining a valve seat communicating with at least one nozzle orifice and a fuel pressure chamber located near the valve seat, a valve spring, a valve needle sealingly guided within the valve housing and loaded by the valve spring for closing off the valve seat, and a fuel accumulation system, the fuel accumulation system including means defining an accumulation space, a displaceably mounted accumulation plunger, elastically yielding means for controlling the displacement of the accumulation plunger, and a fuel supply line connected to a fuel metering pumpand to the fuel pressure chamberwherein the accumulation'space communicates with the improvement comprising: a force equalizer piston,
  • valve needle and said force equalizer piston are so dimensioned that, when said valve seat is obturated, the hydraulic force acting on said valve needle tending to open said valve seat is at least approximately equal to the force acting on said valve needle tending toobturate said valve seat and whereby the force acting on said valve needle tending to obturate said valve may be augmented by a force exerted mediately by said accumulation plunger n saidvalve needle.
  • An improved ,fuel injection valve as defined in claim 1, wherein said accumulation plunger is disposed so that its axis is;an extension of and parallel with the axes of said valve needle, said force equalizer piston, said actuating member, and is so disposed that it can establish a positive operational connectionwith said valve needle to urge said valve needle onto said valve seat.

Abstract

A fuel injection valve for use with internal combustion engines, especially Diesel engines, includes a valve needle cooperating with a valve seat to control the flow of fuel out of the valve injection orifice. The valve needle can be loaded in the closing direction of the valve by a main pressure spring exerting its force via a plunger which may be lifted by pressurized fuel. It is also loaded in the closing direction by a valve spring. A coaxial force equalizer piston opposes the hydraulic force tending to lift the valve needle from its seat. An electromagnet, when energized, exerts a valve-opening force on the force equalizer piston. The force of the main pressure spring is so great that, when pressurization of fuel ceases, it can overcome the force of the electromagnet and close the valve. An electric switch, actuated by the plunger, can control the energization of the electromagnet, alone or in combination with an electronic controller.

Description

United States Patent 1191 Ziesche et al.
[ 1 Oct. 21, 1975 [75] Inventors: Kurt Ziesche, Neckarrems; Giinter Kulke, Esslingen, both of Germany [73] Assignee: Robert Bosch GmbII, Stuttgart,
Germany 221 Filed: Aug. 20, 1974 211 App]. No.: 499,055
[30] Foreign Application Priority Data Aug. 21, 1973 Germany 2342109 [52] U.S. Cl 123/32 AE; 123/139 E; 239/96; 239/585 [51] Int. CL B05B 1/30; FO2M 41/16; F228 1/02 [58] Field of Search 123/32 AE, 32 V, 139 AT, 123/139 E; 239/585, 96
[56] References Cited 7 UNITED STATES PATENTS 1,758,105 5/1930 French 123/32 AE 3,779,225 12/1973 Watson et a1, 123/139 E 3,797,756 3/1974 Voit et a1. 239/585 3,802,626 4/1974 Regneault et al 239/585 FOREIGN PATENTS OR APPLICATIONS 1,101,859 3/1961 Germany 123/32 AE Primary Examiner-Charles J. Myhre Assistant ExaminerPaul Devinsky Attorney, Agent, or Firm-Edwin E. Greigg [57] ABSTRACT A fuel injection valve for use with internal combustion engines, especially Diesel engines, includes a valve needle cooperating with a valve seat to control the flow of fuel out of the valve injection orifice. The valve needle can be loaded in the closing direction of the valve by a main pressure spring exerting its force via a plunger which may be lifted by pressurized fuel, It is also loaded in the closing direction by a valve spring. A coaxial force equalizer piston opposes the hydraulic force tending to lift the valve needle from its seat. An electromagnet, when energized, exerts a valve-opening force on the force equalizer piston. The force of the main pressure spring is so great that, when pressurization of fuel ceases, it can overcome the force of the electromagnet and close the valve. An electric switch, actuated by the plunger, can control the energization of the electromagnet, alone or in combination with an electronic controller.
7 Claims, 4 Drawing Figures US. Patent Oct.21,1975 SheetlofZ 3,913,537
Fig.7
ELECTROMECI-IANICALLY CONTROLLED FUEL INJECTION VALVE FOR INTERNAL COMBUSTION ENGINES BACKGROUND OF THE INVENTION The invention relates to an electro-mechanically controlled fuel injection valve for internal combustion engines, especially for Diesel engines, of the type including an electro-mechanical converter, especially an electromagnet, controlling the onset of injection and further including a valve needle influenced by a valve spring and sealingly guided in a bore of a housing for the fuel injection valve. The closure element of the valve needle obturates a valve seat which controls the fluid flow through at least one nozzle orifice. The fuel injection valve further includes a fuel accumulation system whose accumulation space is connected through a pressure line to a pressure chamber located adjacent to the valve seat and it is also connected, through a check valve, to a fuel supply line through which a metering pump delivers the correct amount of fuel required for each operating cycle into the accumulation space.
The electromechanical converter used and described in the present invention for the control of the onset of injection is an electromagnet (solenoid), although other electromechanical converters may be used, e.g. piezoelectric or magnetostrictive converters.
Fuel injection valves of the type of construction described above are especially suitable for fuel injection processes employing very high injection pressures because they permit the control of the onset of injection within a wide rpm domain without necessitating expensive and mechanically highly stressed parts. In these known fuel injection valves, the electromagnet which controls the onset of injection operates a valve slide disposed-in the pressure line between the fuel accumulation system and the pressure chamber of the injection nozzle. The fuel pressure acts on the shoulder of the valve needle against the force of the valve spring to open the nozzle orifice but the opening is delayed with respect to the opening control pulse because of the response delay of the electromagnet, the time taken by the valve slide to traverse its control path and because of the throttling effect at the control apertures. In addition, this delay is very dependent on manufacturing tolerances, so that the simultaneous adjustment of all the injection valves in a multicylinder, fuel-injected engine to the same setting is very difficult.
The disadvantages of indirect, i.e. hydraulic actuation of the valve needle could be obviated by direct at:- tuation of the valve needle by the electromagnet. Such injection valves have already found use in very large numbers in gasoline injection systems. But they are not suitable for fuel injection at very high injection pressures (up to 1000 bars), because, in these known valves, actuation of the valve needle requires the electromagnet to overcome a closing force which depends both on the area of the valve seat and on the fuel pressure and may necessitate very powerful electromagnets. Such magnets would require a large space and to improving the exhaust gas characteristics in Diesel engines has shown that the characteristic time behavior of the injection process, i.e. the time of occurrence of the onset and the termination of fuel injection, greatly influences the combustion process and hence also the formation of toxic components in the exhaust gases.
OBJECT AND SUMMARY OF THE INVENTION It is an object of the invention to provide an electromechanically controlled fuel injection valve which does not suffer from the above described disadvantages and which opens the nozzle orifices with the least possible delay and permits a rapid termination of the closing stroke. It is a further object of the invention to provide for external influence on the time behavior of the injection process.
This object is achieved, according to the invention, by equipping the fuel injection valve with a force equalizer piston, disposed coaxially with the valve needle within the valve housing and in sealing connection with a coaxial bore thereof. The electromechanical converter is provided with an actuating member which is in operative connection with the valve needle via the 7 force equalizer piston.
One end of the force equalizer piston is pressurerelieved and the other end is acted upon by the fuel pressure prevailing in the accumulation space of the fuel accumulation system. The effective cross-sectional area of the force equalizer piston is so dimensioned that, when the valve seat is closed, the hydraulic forces acting on the valve needle in the opening and closing directions, respectively, are equal or at least approximately equal.
Finally, the forces acting on the valve needle in the closing direction can be increased by a supplemental force which is at least mediately exerted by a control plunger when it arrives in its starting position at the termination of the injection cycle.
Due to the above described combination of characteristics, the electromechanical converter requires only a very simple control circuit for the opening actuation of the valve needle. When the injection valve is closed, the hydraulic pressure acting on the valve needle is fully, or at least partially, compensated by the force equalizing piston and the termination of injection is triggered, independently of the opening control pulse, by the arrival of the control plunger in its starting position. This results in a very reliable and rapid operation even at very high injection pressures such as are required for the directinjection of fuel into Diesel engines. A particularly advantageous, characteristic of the invention provides that the control plunger is coaxial with the valve needle, the force equalizing piston and the actuating member of the electro-mechanical converter, and that it is operatively coupled to the valve needle, at the very latest when it reaches its starting position, and presses the valve needle onto its valve seat. This disposition insures rapid closure of the valve because the elements of the fuel accumulation system are in mechanical contact with the valve needle at the termination of injection and since, due to the high injection pressures, they are loaded by a very great spring force.
A particularly advantageous further development of the invention provides a throttle, located in the pressure line, between the accumulation space and the pressure chamber. The restrictive effect of this throttle can change the pressure in the pressure chamber when 3 the valve seat is. open and this effect is exploited to make the force then acting on the valve needle in the openingdirection at least approximately equal to the force. acting on the valvefrom within the same pressure chamber when the valve seat is closed-Fuel flowing through this throttle during the injection process results in a pressure drop which opposes a supplementary hydraulic force that is present when the valve is open and that acts in the opening'direction of the valve. Thissupplementary force 'is due to a larger effective cross-.
section of the valve needlewhen the valve seat is open. Thus, the effective forces are compensated both dynamically as well as statically.
. A-still further advantageous development of the object of the invention provides that, when the control- -the electromagnet as a function of .the injected fuel' quantity. The invention will be better understood, as
well as, further objects and advantages will become more apparent, from the ensuing detailed specification of two exemplary embodiments taken in conjunction With the drawing,
BRIEF DESCRIPTIONOF THE DRAWING The drawing consists of four figures of whichFIG. 1 is an axial cross-section of a first exemplary embodiment of theelectromechanically controlledfuel injection valve according to the invention. I
FIG. 2 is a section through the upper portion of a second exemplary embodiment of the fuel injectionvalve according to the invention, showing-the region of the fuel accumulation system.
FIG. 3 is a schematic block'diagram of afuel injection system equipped with'the fuel injection valve according to the invention. v v
FIG. 4 is; a circuit diagram of an electronic control system for the electromagnet of the second exemplary embodiment of the fuel injection valve according to the invention and shown in FIG. 2.
DESCRIPTION OF THE PREFERRED EMBODIMENTS I Turning now to FIG. 1 relating to the first preferred embodiment of the object of the invention, the fuel injection valve illustratedtherein has a'hou sing 11 which contains a fuel accumulation system 15 consisting substantially of an accumulation space 12, a control plunger 13 henceforth called plunger 13), and a compressed pressure spring 14. The accumulation space 12 communicates, through a pressure line 16, consisting substantially of regions 16a and 16b, with apressure chamber 18, located adjacent to a .valve seat 17. The accumulation space 12 also communicates, through a fuel supply line 21 and a check valve 19 with a fuel metering pump (see also below in reference to FIG. 3) which delivers the quantity of fuel required for .each injection cycle to the accumulation space 12.
The term accumulation space 12 is used to refer specifically to the space formed by a graduatedbore 22 in the, center of ,a multipartitehousing- '23 of an electromagnet 24, because this space changes its volume, depending on the fuel quantity admittedand to the degree that the plunger 13 moves upwardly against the force of spring 14. Precisely state, the accumulation space is formed by. the entire interior volumeof the fuel injection valve 10 lying between the check valve 19 and the valve seat 17. In both exemplary embodiments, the electromagnet24 serves as an electromechanical converter and, .without going/beyond the essential charac-' teristics of the invention, the electromechanical converter could be replaced by a piezoelectric or magnetostrictive actuating mechanism.- I
, The check valve .-19,is inserted in a threaded boss 25 which is screwed intothe housing 11. The part of the .fuel supply line containedwithinthe threaded boss 25 -,is designated 21a and the partof the fuel supply line located within the housing 11 is designated21b.
The housing 23 of the electromagnet 24 is inserted into a bore 26 within the housing l '1 and is made pres-" sure-tight therewith by means of a threaded bushing 27. The threaded bushing 27 also serves to fasten an intermediate plate 28, a guide block 29, an intermediate ring 31 and a nozzle body 32 to the'housing 11 in a presSure tight manner. The winding 33 of the electromagnet 24 is electrically connected through plug connections 34 with two connector vane's'35 cast in the housing 11 to whicha connector cable, suggested by the line 36, may be electrically coupled The nozzle body 32, which includes the valve seat17 and the pressure chamber 18 has a nozzle orifice 37, located beneath the valve seat 17 and facing: the combustion chamber (not further shown) of the internal combustion engine. The nozzle body has a guide bore 38 above serving as the closure member when cooperating with the valve seat 17. The effective diameter of the valve needle in the region of the guide bore 38 is designated .by' Dv. The end 39a, of valve needle 39 remote from valve seat 17 extends beyond the guide bore 38 and forms an abutment shoulder for a spring support ring 42, supporting a valve spring 43 whose other end rests on the guide block 29. Thus, the closure member 41 of the valve needle 39 is pressed against the valve seat 17 and closes it. A main spring chamber 44 which surrounds the valve spring 43 and the spring support ring 42 is pressure-relieved and communicates with a space 51 containing the pressure spring 14. This communication is established by a bore 45 within the guide block 29, a connecting bore 46 in the intermediate plate 28,
[a bore 47 within the housing 23 of the electromagnet 24, an annular groove 48 and an axial bore 49 (shown in broken lines within the housing 11.]The space '51 containing the pressure spring 14 is closed by a threaded plug 52 which also serves as a counter bearing for the pressure spring 14. The wall of the housing 11 is penetrated by a fuel return bore 53 to which a fuel return'line 54, may be connected. The mechanical connection' between the plunger 13' and the pressure spring ample, an excess fuel quantity, exceeding the maximum permissible amount, might be delivered into the accumulation space 12. when the predelivered fuel quantity is not actually injected because of malfunctions in the electrical circuits or at the valve needle. The end of the plunger 13 remote from the pressure spring 14 is a cylindrical stud S7. Adjacent thereto, a force equalizer piston 59, henceforth called equalizer piston 59, is disposed within the bore 58 of the guide block 29 which is part of the valve housing 11. FIG. 1 shows the plunger 13, the equalizer piston 59 and the valve needle 39 in a position in which the force of the pressure spring 14 holds them in positive operational contact. When fuel is predelivered to the accumulation space 12, the plunger 13 is lifted off from the end face of the equalizer piston 59, against the force of the pressure spring 14 to an extent which corresponds to the volume .of the predelivered fuel quantity. However, during this motion, the equalizer piston 59 and the valve needle 39 are still held in mutually positive operational contact due to the fuel pressure acting upon them. A downward force acts on the equalizer piston 59, i.e., a force directed toward the valve seat 17 and an opposite force acts on the valve needle 39, i.e., a force directed away from the valve seat 17. These forces keep both elements in positive operational contact because the spring chamber 44 is pressure-relieved, as has already been described. The effective cross-sectional area of the equalizer piston 59, corresponding to its diameter DK, is made equal to the effective annular area of the valve needle which is acted upon by fuel pressure in the direction of opening. This annular area is equal to the difference between the cross-sectional area of valve needle 39, corresponding to the diameter DV and the cross-sectional area of the valve seat 17.
Thus, the hydraulic forces acting upon the valve needle 39 in the opening and in the closing direction are equal and, after the predelivery of fuel, when the plunger 13 no longer makes contact with the equalizer 59, the only force urging the valve needle 39 with its valve cone 41 onto the valve seat 17 is the force exerted by the valve spring 43. Thus, an armature 61, acting as the operating member of the electromagnet 24, is able to attract the equalizer piston 59 and hence also the valve needle 39 when the electromagnet 24 is energized, opening the valve seat 17 and creating a communication between the pressure chamber 18 and the nozzle orifice 37. The end 59a of the equalizer piston 59 adjacent to the valve needle 39 is pressure-relieved since it extends into the spring chamber 44 which, as
has already been described, communicates with the fuel return line 54. The other end 59b of the equalizer piston 59 is acted upon by the fuel pressure prevailing in the accumulation space 12 of the fuel accumulation system 15. This end 59b carries the armature 61 of the electromagnet 24.
A throttle 62 is disposed between the two sections 16a and 16b of the fuel pressure channel 16. The throttle reduces the pressure in pressure chamber 18 when the valve seat 17 is open so that the force then acting within pressure chamber 18 on the valve needle 39 in the direction of opening is made at least approximately equal to the force acting in the same direction and in the same location when the valve seat 17 is closed. The throttle 62 is a restricted bore within the intermediate ring 31 and forms the only communication between the accumulation space 12 and the pressure chamber 18.
As previously described, the throttle 62 is so dimensioned that the pressure drop at the throttle 62 compensates for the additional force acting on the valve needle 39 in the opening direction of the valve when the valve seat 17 is open, so that the same hydraulic forces act on the valve needle 39 whether the valve is open or closed. In order to achieve a more rapid opening or closing of the valve needle 39, it may be desirable to provide a small excess force either in the direction of opening or closing. Thus, the disposition of throttle location 62 has made possible a so-called dynamic force equalization in addition to the static force equalization performed by the equalizer piston 59. This dynamic force equalization is not always neces sary in the present construction because the plunger 13, loaded by the very great closing force of pressure spring 14, mechanically presses the valve needle 39 onto its valve seat 17 via the equalizer piston 59 when the predelivered fuel quantity has been injected, so that the throttle 62 could be dispensed with. However, the throttle is necessary in a different embodiment of the invention (not shown) in which the plunger 13 does not have a mechanical connection with the valve needle 39. Such a design would have the advantage, among others, that the fuel accumulation system 15 would not have to be disposed coaxially with the valve needle 39 and the equalizer piston 59, but, instead, could be installed in any suitable manner. The great supplementary force exerted by the plunger 13 after it has returned to its starting position at the termination of the injection cycle as shown in FIG. 1, is capable of pressing the valve nnedle 39 and its closure member 41 onto the valve seat 17 even when the electromagnet 24 is energized. The special advantage of this design is that the electromagnet 24 may be controlled by a controller which produces control pulses of fixed duration. Such a controller is substantially simpler and cheaper to manufacture than one which produces pulses of a particular, precisely determined duration which are required for Diesel fuel injection due to the very short injection times of the order of l millisecond.
FIG. 2 is an illustration of a second exemplary embodiment of the fuel injection valve according to the invention in a partial section showing those parts which are different from those shown in FIG. 1. Identical parts retain the same reference numerals and the sectional plane of the right half of the Figure is rotated by 120 with respect to that shown in FIG. 1. The plunger 13 is shown here also in its starting position which it occupies at the termination of the injection cycle. A spring support plate 55' touches a contact pin 71 belonging to an electrical switch 72 located in the valve housing 1 1' of the fuel injection valve 10. The contact pin 71 is guided in an insulating sleeve 73 and is in electrical connection with a contact vane 74 to which a line 75 is connected. The contact pin 71 is spring-loaded and its length determines when the spring support plate 55' touches it. The spring support plate 55' is connected to ground through the pressure spring 14 and, when the spring support 55' makes contact with pin 71, the current supply to the electromagnet 24 is indirectly interrupted. The mechanism for current interruption will be described below with reference to FIG. 4. The winding 33 of the electromagnet 24, shown in FIG. 1 but not further shown in FIG. 2, is connected via contact vances 35' with connecting lines 36', of which only one is shown here. Thw switch 72 shown in FIG. 2 represents only one of many possible types.
The block diagram of FIG. 3 shows the fuel injection valve and a fuel injection pump 81 serving as a fuel metering pump. The fuel injection pump 81 is a known four-cylinder serial injection pump having a mechanical centrifugal rpm governor 82 whose operating lever 83 predetermines the fuel quantity to be delivered by the injection pump 81 if it is a feed governor or whose operating lever 83 presets an rpm to be maintained. The fuel supply line 21 leading to the fuel injection valve 10' is at the same time the so-called pressure line of the injection pump 81. The excess leakage'fuel is returned from the fuel injection valve 10' through the fuel return line 54 to a fuel reservoir 84. The fuel required by the fuel injection pump 81 is delivered in a known manner by a predelivery pump 85 and a delivery line 86 to the suction chamber of the fuel injection pump 81 and excess fuel is returned through a line 87 and the fuel return line 54 to the fuel reservoir 84. An electronic controller 88 is coupled to the fuel injection valve 10' by the connector line 36 and is further described with reference to FIG. 4. The electronic controller 88 is also connected to the fuel injection valve 10 through the control line 75. The controller 88 generates control pulses 89 which, in the case of controlling the fuel injection valve 10 according to FIG. 1, have a constant duration ti.
In the embodiment represented in FIG. 3, the pulse duration is adapted .to the injected fuel quantity by the switching pulse triggered by switch 72 (see FIG. 2) which is fed through line 75 to the controller 88. The onset of fuel injection is initiated by. an angle-ofrotation sensor 91 which is preferably mounted on the shaft of the fuel injection pump 81 and which connects through line 92 with the electronic controller 88. In order to permit an rpm-dependent shift of the onset of injection, it is advantageous if the angle-of-rotation sensor 91 is combined with an rpm-sensor and if both respective signals are fed to the electronic controller 88.
FIG. 4 is a schematic diagram of the electronic controller 88 which obtains its operating voltage from a starter battery 101 through a positive conductor 102 and a negative conductor 103. The controller 88 is triggered by a signal generator embodied as an angle-ofrotation sensor 91 and coupled to the cam shaft of the injection pump 81 (see FIG. 3). The sensor 91 is represented in FIG. 4 by a switch contact 104 and a switching element 105. The switching element 105 is connected through a resistor 106 to the negative conductor 103 and is also connected with one of the electrodes of a differentiating capacitor 107.
The control pulses 89 are generated in the controller 88, here embodied as a transistorized switching system, by a monostable control multivibrator 108, which includes a normally conducting input transistor 109 whose collector 109 is connected through a resistor 110 to the base of a normally non-conducting output transistor 111, and further includes a timing circuit which determines the appropriate pulse duration ti. In
the multivibrator 108, which isto be regarded merely as an exemplary embodiment, this timing circuit consists of a resistor 112 and a capacitor 113 which are connected in series between the base of transistor 109 and the collector of transistor 1 1 1. In addition to being coupled to the capacitor 113, the collector of the output transistor 111 is connected through a resistor 114 V with the negative conductor 103 and also, through a control line 115, to the base of a power transistor 116 which is the essential element of a power stage 117. The power stage 117 is preceded in a known manner, not further described, by an intermediate amplifier inserted in the control circuit 115. One side of the winding 33 of the electromagnet 24 is connected through a resistor 118 and a diode 119 to the common positive conductor 102 and the other side of the winding is connected to the collector'of the power transistor 1 16. The emitter of the power transistor 116 is connected to the negative conductor 103 although other conducting elements connected to ground could replace the negative conductor.
The timing capacitor 113, the resistor 112, which is preferably adjustable for setting the pulse duration ti and the base of the input transistor 109 of the multivibrator 108 are all connected to the junction P of two resistors 121 and 122 which are disposed as voltage dividers between the negative conductor 103, connected to ground, and the common positive conductor 102. Both transistors 109 and 11 are of the pnp type and their emitters are connected to the positive conductor 102. Whenever the angle-of-rotation sensor 91 generates a switching pulse, which, in the present example, corresponds to closing the switch 104, 105, the multivibrator 88 is switched into its unstable state whose duration corresponds to the pulse width ti which, in turn, depends on the timing elements 112, 113. In order to permit blocking the input transistor 109 at triggering time, the capacitor 107 is connected through a diode 123 to the base of the input transistor 109 and also, through a load resistor 124, to the positive conductor 102. As long as the switch 104, 105 is open, the differentiating capacitor 107 can charge up, and when switch 104, 105 closes, it can deliver its charge for the purpose of blocking the input transistor 109. As soon as the input transistor 109 blocks, the output transistor 111 goes over into itsconducting state. The exponentially increasing collector current within transistor 111 produces a feedback voltage in the timing elements 112, l l 3, which keeps the input transistor 109 blocked beyond the closing time of switch 104, 105 until the feedback voltage falls below a value determined by the potential at point P of the voltage divider 121, 122. When this voltage is reached, the input transistor 109 returns to its initial, conducting state. The pulse ti for opening the injection valves is indicated by the numeral 89 and is generated during the conducting state of the output transistor 111. v
The electromagnetically controlled fuel injection valve shown in FIG. 1 requires only a fixed pulse duration ti to determine the energization time of the electromagnet 24 and this time is always larger than or at least as large as the longest possible injection time. The second exemplary embodiment of the invention, shown in FIG. 2, contains the switch 72 which, when closed, as indicated by broken lines .in FIG. 4', connects point P of the voltage divider circuit and, hence, the base of the input transistor 109 through control line to the negative conductor 103. This shortens the pulse duration ti and adapts it to the duration of injection which not only reduces the current consumption, but it also reduces the force required to close the injection valve 10.
Another possible circuit for the switch 72 is indicated in broken lines by the numeral 72', where it is shown connected, through a control line 75, to the control circuit 115 and to the base of the power transistor 116 and thus, when closed, it connects the base of this transistor to the negative conductor 103.
The method of operation of the fuel injection pump according to the invention will now be described with the aid of the drawing. The block diagram of FIG. 3, which is intended to be used with the secondary exemplary embodiment can also be used with the first exemplary embodiment according to FIG. 1 if the injection valve 10' is replaced by the injection valve 10 according to FIG. 1, and the connecting line 36' is replaced by the connecting line 36. The first exemplary embodiment according to FIG. 1 contains no control line 75.
The fuel injection valve according. to FIG. 1 is supplied with fuel by the fuel injection pump 81 which delivers a quantity of fuel that is precisely adapted to the operational state of the engine and is set by the centrifugal rpm-governor 82 (see FIG. 3). The fuel is predelivered to the accumulationspace 12 below the plunger 13. During this predelivery, the plunger 13 is displaced upwardly and compressesthe pressure spring 14 serving as a storage spring. The fuel pressure prevailing in the accumulation space 12, andhence also in the pressure chamber 18, is determined by the degree of compression of the pressure spring 14 and this pressure acts on the valve needle 39, in both the opening and the closing directions. Now, the diameter DK of the force equalizer piston 59 is so dimensioned that the effective cross section of that piston 59 is equal to the annular cross section of the valve needle 39 which is subjected to the fuel pressure in the pressure chamber 18. This annular cross section is defined, on the one hand, by the diameter Dv of the valve needle 39 and, on the other hand, by the diameter of the valve seat 17. Thus,
pressure spring 14 determines the injection pressure, it is very highly precompressed and its closing force is so great that the closing motion is very rapid and is not impeded by the still-energized electromagnet 24. This results advantageously in a very rapid closure process and makes aprecise, timed control of the energization time of the electromagnet unnecessary. This latter advantage is especially significant because it is extremely difficult to produce the required switching times which, for Diesel engine injection, lie in the region from 1 to 3 milliseconds, by means of electronic control. Furthermore, the predelivery of fuel by the injection pump guarantees that, even during malfunctions of the control electronics, the injected fuel quantity will never be a complete equalization of forces is achieved, i.e., the
forces, due to the fuel pressure, which act on the valve needle 39 in the opening and closing directions, respec tively, are equal. Intentional, small deviations from these fixed diameters can serve to produce a supple- .mentary force for acceleration the opening or closing motion of the valve member. The electromagnet 24 needs to overcome only the force of the valve spring 43 and, since the hydraulic forces are equalized, the force of this spring 43 is relatively small. Thus, the electromagnet 24 may also be relatively small and still able to effect a rapid opening of the valve. When the controller 88 (see FIG. 4) produces a control pulse 89, the elec-' tromagnet 24 acts via its armature 61 and the force equalizer piston 59 to attract the valve needle 39 which is held in operative connection with the force equalizer piston 59 by fuel pressure. This motion opens the valve seat 17 and the fuel which was predelivered to the accumulation space 12 and the pressure chamber 18 can be injected through the nozzle orifice 37 into the compression chamber of the engine which is not further 9 shown. At the termination of the injection cycle, the
ing it back onto the valve seat 17, which is thereby closed. This closure process prevents a slow closing of valve needle 39 which might result in dribbling of fuel into the combustion chamber of the engine. Since the greater than that which has been predelivered. The force of the pressure spring 14 is so great that it is able to return the valve onto its seat 17 in spite of the additional hydraulic force acting in the opening direction which occurs due to the additional effective surface of the valve needle 39 which is subjected to fuel pressure when the valve is open. I
This above-mentioned additional force acting in the opening direction is not effective, however, in the exemplary embodiment of the fuel'injection valve according to FIG. 1, because a throttle 62 is inserted between the sections 16a and 16b of the pressure line 16, i.e. between the accumulation space 12 and the pressure chamber 18. When the injection valve is' open, this throttle reduces the fuel pressure in the pressure chamber 18 with respect to the pressure prevailing in storage space 12 so that the hydraulic force which now acts upon the entire cross-sectional area of the valve needle 39, corresponding to thediameter Dv, is equal to the force which had acted on the previously described annular cross section which is effective when the valve is closed. This results in a dynamic equalization of forces so that the closure of the valve needle 39 does not require additional force. In the second exemplary embodiment of FIG. 2, the injection process is changed only in that, at the termination of the injection cycle, the plunger 13, when returning to its starting position shown in FIG. 2, actuates the switch 72 via the spring support plate 55'. The switch 72 then delivers a control pulse through line 75 to the electronic controller 88, shortening the pulse duration ti of the control pulse 89, i.e., more exactly, it terminates the energization time of the electromagent 24. The interaction of the control pulse with the electronic controller can occur in many different ways and two examples thereof have already been described with reference to FIG. 4.
What is claim is:
1. In an electromechanically controlled fuel injection valve for internal combustion engines, especially Diesel engines, including a valve housing, an electromechanical converter, especially an electromagnet, mounted within said housing for controlling the onset of fuel injection, means forming part of the housing and defining a valve seat communicating with at least one nozzle orifice and a fuel pressure chamber located near the valve seat, a valve spring, a valve needle sealingly guided within the valve housing and loaded by the valve spring for closing off the valve seat, and a fuel accumulation system, the fuel accumulation system including means defining an accumulation space, a displaceably mounted accumulation plunger, elastically yielding means for controlling the displacement of the accumulation plunger, and a fuel supply line connected to a fuel metering pumpand to the fuel pressure chamberwherein the accumulation'space communicates with the improvement comprising: a force equalizer piston,
means defining a bore within the valve housing within I which said equalizer piston is sealingly and displaceably disposed coaxially with said valve needle, and in positive operational connectiontherewith;
and l I v v v an actuating member responsive to the energization of the electromagnet and in positiveoperational connection with said force equalizer piston;
whereby the accumulation plunger and. the elastically yielding means are disposed with the valve housing;
whereby said valve needle and said force equalizer piston are so dimensioned that, when said valve seat is obturated, the hydraulic force acting on said valve needle tending to open said valve seat is at least approximately equal to the force acting on said valve needle tending toobturate said valve seat and whereby the force acting on said valve needle tending to obturate said valve may be augmented by a force exerted mediately by said accumulation plunger n saidvalve needle.
2. An improved ,fuel injection valve, as defined in claim 1, wherein said accumulation plunger is disposed so that its axis is;an extension of and parallel with the axes of said valve needle, said force equalizer piston, said actuating member, and is so disposed that it can establish a positive operational connectionwith said valve needle to urge said valve needle onto said valve seat.
3. An improved fuel injection valve as defined in claim 2, further comprising a throttle, located between said accumulation space and said fuel pressure chamber, whereby the force acting on the valve needle tend; ing to open said valve seat when said valve seat is obturated is rendered approximately equal to the force acting on the valve needle tending to open said valve seat when said valve seat is open.
4; An improved fuel injection valve as defined in claim 1, further comprising a throttle, located between said accumulation space and said fuel pressure chamber, whereby the force acting'on the valve needle tending to open said valve seat when said valve seatis obturatedis rendered approximately equal to the force acting on the valve needle tending toopen said valve seat when said valve seat is open. I
' 5. An improved fuel injection valve as defined in claim 1, further comprising an electric switch, disposed within the valve housing, whereby said accumulation plunger actuates said electrical switch and interrupts the current to said electromechanical converter.
6. An improved fuel'injection valve as defined in claim 5, further comprising, in combination, a controller containing at least one switching transistor for-controlling the timing of the'energization of said electromagnet, wherein said electric switch is connected to the base of said at least one switching transistor in said controller.
7. An improved fuel injection valve as defined in claim 5, further comprising, in combination, a controller containingat least one power transistor connected in series with said energizing winding of said electromagnet, wherein said electric switch is connected to the base of said at least one power transistor.

Claims (7)

1. In an electromechanically controlled fuel injection valve for internal combustion engines, especially Diesel engines, including a valve housing, an electromechanical converter, especially an electromagnet, mounted within said housing for controlling the onset of fuel injection, means forming part of the housing and defining a valve seat communicating with at least one nozzle orifice and a fuel pressure chamber located near the valve seat, a valve spring, a valve needle sealingly guided within the valve housing and loaded by the valve spring for closing off the valve seat, and a fuel accumulation system, the fuel accumulation system including means defining an accumulation space, a displaceably mounted accumulation plunger, elastically yielding means for controlling the displacement of the accumulation plunger, and a fuel supply line connected to a fuel metering pump and to the fuel pressure chamber wherein the accumulation space communicates with the fuel supply line and with the fuel pressure chamber, the improvement comprising: a force equalizer piston; means defining a bore within the valve housing within which said equalizer piston is sealingly and displaceably disposed coaxially with said valve needle, and in positive operational connection therewith; and an actuating member responsive to the energization of the electromagnet and in positive operational connection with said force equalizer piston; whereby the accumulation plunger and the elastically yielding means are disposed with the valve housing; whereby said valve needle and said force equalizer piston are so dimensioned that, when said valve seat is obturated, the hydraulic force acting on said valve needle tending to open said valve seat is at least approximately equal to the force acting on said valve needle tending to obturate said valve seat and whereby the force acting on said valve needle tending to obturate said valve may be augmented by a force exerted mediately by said accumulation plunger on said valve needle.
2. An improved fuel injection valve as defined in claim 1, wherein said accumulation plunger is disposed so that its axis is an extension of and parallel with the axes of said valve needle, said force equalizer piston, said actuating member, and is so disposed that it can establish a positive operational connection with said valve needle to urge said valve needle onto said valve seat.
3. An improved fuel injection valve as defined in claim 2, further comprising a throttle, located between said accumulation space and said fuel pressure chamber, whereby the force acting on the valve needle tending to open said valve seat when said valve seat is obturated is rendered approximately equal to the force acting on the valve needle tending to open said valve seat when said valve seat is open.
4. An improved fuel injection valve as defined in claim 1, further comprising a throttle, located between said accumulation space and said fuel pressure chamber, whereby the force acting on the valve needle tending to open said valve seat when said valve seat is obturated is rendered approximately equal to the force acting on the valve needle tending to open said valve seat when said valve seat is open.
5. An improved fuel injection valve as defined in claim 1, further comprising an electric switch, disposed within the valve housing, whereby said accumulation plunger actuates said electrical switch and interrupts the current to said electromechanical converter.
6. An improved fuel injection valve as defined in claim 5, further comprising, in combination, a controller containing at least one switching transistor for controlling the timing of the energization of said electromagnet, wherein said electric switch is connected to the bAse of said at least one switching transistor in said controller.
7. An improved fuel injection valve as defined in claim 5, further comprising, in combination, a controller containing at least one power transistor connected in series with said energizing winding of said electromagnet, wherein said electric switch is connected to the base of said at least one power transistor.
US499055A 1973-08-21 1974-08-20 Electromechanically controlled fuel injection valve for internal combustion engines Expired - Lifetime US3913537A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2342109A DE2342109C2 (en) 1973-08-21 1973-08-21 Electromechanically controlled fuel injection valve for internal combustion engines

Publications (1)

Publication Number Publication Date
US3913537A true US3913537A (en) 1975-10-21

Family

ID=5890270

Family Applications (1)

Application Number Title Priority Date Filing Date
US499055A Expired - Lifetime US3913537A (en) 1973-08-21 1974-08-20 Electromechanically controlled fuel injection valve for internal combustion engines

Country Status (5)

Country Link
US (1) US3913537A (en)
JP (1) JPS5743735B2 (en)
DE (1) DE2342109C2 (en)
FR (1) FR2241697B1 (en)
GB (1) GB1481061A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030668A (en) * 1976-06-17 1977-06-21 The Bendix Corporation Electromagnetically operated fuel injection valve
US4057190A (en) * 1976-06-17 1977-11-08 Bendix Corporation Fuel break-up disc for injection valve
US4088247A (en) * 1975-11-24 1978-05-09 Stewart-Warner Corporation Engine starting aid
US4096841A (en) * 1976-06-10 1978-06-27 General Motors Corporation Ignition system for use with fuel injected-spark ignited internal combustion engines
US4116591A (en) * 1976-03-20 1978-09-26 Lucas Industries Limited Fuel injection pumps
US4180022A (en) * 1977-10-31 1979-12-25 Chrysler Corporation Fuel injection system and control valve for multi-cylinder engines
US4217862A (en) * 1977-03-28 1980-08-19 Combustion Research & Technology, Inc. High constant pressure, electronically controlled diesel fuel injection system
US4258674A (en) * 1979-03-28 1981-03-31 Wolff George D Engine fuel injection system
US4269361A (en) * 1978-12-09 1981-05-26 Lucas Industries Limited Fuel injection nozzles
US4275693A (en) * 1977-12-21 1981-06-30 Leckie William H Fuel injection timing and control apparatus
US4295453A (en) * 1979-02-09 1981-10-20 Lucas Industries Limited Fuel system for an internal combustion engine
US4349152A (en) * 1979-10-05 1982-09-14 Kabushiki Kaisha Komatsu Seisakusho Accumulator type fuel injection apparatus
WO1982003108A1 (en) * 1981-03-06 1982-09-16 George D Wolff Engine fuel injection system
US4475690A (en) * 1981-10-06 1984-10-09 Robert Bosch Gmbh Magnetic valve, in particular a fuel injection valve
US4544096A (en) * 1983-07-28 1985-10-01 Energy Conservation Innovations, Inc. Electronically controlled fuel injection system for diesel engine
US4848658A (en) * 1986-06-06 1989-07-18 Kubota Ltd. Pressure accumulation type of fuel injection device for an internal combustion engine
US4971291A (en) * 1988-06-23 1990-11-20 Weber S.R.L. Electromagnetic fuel metering and atomizing valve
US5088647A (en) * 1989-11-09 1992-02-18 Yamaha Hatsudoki Kabushiki Kaisha Feeder wire structure for high pressure fuel injection unit
US5094215A (en) * 1990-10-03 1992-03-10 Cummins Engine Company, Inc. Solenoid controlled variable pressure injector
US5832899A (en) * 1995-10-04 1998-11-10 Lucas Industries Plc Injector
US5979803A (en) * 1997-05-09 1999-11-09 Cummins Engine Company Fuel injector with pressure balanced needle valve
WO1999066195A1 (en) * 1998-06-18 1999-12-23 Robert Bosch Gmbh Fuel injector
US6056214A (en) * 1997-11-21 2000-05-02 Siemens Automotive Corporation Fuel injector
US6220528B1 (en) * 1998-06-24 2001-04-24 Lucas Industries Fuel injector including an outer valve needle, and inner valve needle slidable within a bore formed in the outer valve needle
US6520154B2 (en) * 1998-02-20 2003-02-18 Delphi Technologies, Inc. Side feed fuel injector and integrated fuel rail/intake manifold
US20050145221A1 (en) * 2003-12-29 2005-07-07 Bernd Niethammer Fuel injector with piezoelectric actuator and method of use
US20050211801A1 (en) * 2002-03-26 2005-09-29 Theodor Tovar Fuel injection device having hydraulic nozzle needle control
US20070228185A1 (en) * 2006-04-03 2007-10-04 Denso Corporation Fuel injection valve
US7407120B1 (en) * 2002-11-21 2008-08-05 Jack French Adjustable racing injector
US20080277505A1 (en) * 2004-05-18 2008-11-13 Anh-Tuan Hoang Fuel Injector
US20090145404A1 (en) * 2004-12-22 2009-06-11 Rudolf Heinz Injector of a fuel injection system of an internal combustion engine
US8316825B1 (en) 2008-08-04 2012-11-27 French Iii Jack M Adjustable racing injector
CN105863912A (en) * 2015-02-10 2016-08-17 罗伯特·博世工程和商业方案私人有限公司 Fuel injection valve for an internal combustion engine
US20170008031A1 (en) * 2014-03-31 2017-01-12 Obshchestvo S Ogranichennoy Otvetstvennostyu "Renk" Device for generating mechanical vibrations
US20180010564A1 (en) * 2015-01-30 2018-01-11 Hitachi Automotive Systems, Ltd. Fuel injection valve
CN111405945A (en) * 2018-02-07 2020-07-10 贝恩德·里佩 Spray device and method for adjusting the spray device
CN112594106A (en) * 2021-01-27 2021-04-02 广东津宇新能源技术有限公司 Electric metering hole structure
US11788496B2 (en) 2020-10-20 2023-10-17 Mrb Machining & Ferramentaria Ltda. Fuel dosing valve
US11939940B2 (en) 2021-10-04 2024-03-26 Billet Machine And Fabrication, Inc. Fuel injector

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2735448A1 (en) * 1977-08-05 1979-02-08 Maschf Augsburg Nuernberg Ag FUEL INJECTION SYSTEM FOR DIESEL ENGINES
US4709679A (en) * 1985-03-25 1987-12-01 Stanadyne, Inc. Modular accumulator injector
JPS62107265A (en) * 1985-11-02 1987-05-18 Nippon Soken Inc Electrostriction type oil pressure control valve
IT1211626B (en) * 1987-12-24 1989-11-03 Weber Srl ELECTROMAGNETIC FUEL INJECTOR OF THE PERFECT TYPE
DE3841010A1 (en) * 1988-12-06 1990-06-07 Bosch Gmbh Robert ELECTROMAGNETICALLY ACTUABLE VALVE
JP2005344622A (en) * 2004-06-03 2005-12-15 Bosch Corp Fuel injection valve
DE102004028131A1 (en) * 2004-06-09 2006-01-05 Motorenfabrik Hatz Gmbh & Co. Kg Fuel injection device for diesel engines comprises an intermediate plate having an axial channel with a blocking valve for blocking the channel in the direction toward a nozzle holder
US8899263B2 (en) 2006-07-24 2014-12-02 Robert Bosch Gmbh Return line connector
DE102006034114A1 (en) * 2006-07-24 2008-01-31 Robert Bosch Gmbh Return line connecting device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1758105A (en) * 1928-03-29 1930-05-13 Louis O French Electromagnetic valve
US2598528A (en) * 1948-12-20 1952-05-27 Louis O French Fuel injection apparatus
US3450353A (en) * 1966-10-20 1969-06-17 Bosch Gmbh Robert Electromagnetically actuated fuel injection valve for internal combustion engines
US3470854A (en) * 1966-11-05 1969-10-07 Bosch Gmbh Robert Fuel injection system for internal combustion engines
US3592392A (en) * 1968-06-11 1971-07-13 Sopromi Soc Proc Modern Inject Electromagnetic fuel injection spray valve
US3680782A (en) * 1969-10-24 1972-08-01 Sopromi Soc Proc Modern Inject Electromagnetic injectors
US3779225A (en) * 1972-06-08 1973-12-18 Bendix Corp Reciprocating plunger type fuel injection pump having electromagnetically operated control port
US3797756A (en) * 1972-03-03 1974-03-19 Bosch Gmbh Robert Electromagnetically actuated fuel injection valve for internal combustion engines
US3802626A (en) * 1971-07-08 1974-04-09 Peugeot Device for actuating an electromagnetically controlled injector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1025693B (en) * 1953-04-02 1958-03-06 Erich Herion Electromagnetically controlled three-way valve with relief means
DE1942610A1 (en) * 1969-08-21 1971-03-11 Bosch Gmbh Robert Fuel injection system for internal combustion engines

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1758105A (en) * 1928-03-29 1930-05-13 Louis O French Electromagnetic valve
US2598528A (en) * 1948-12-20 1952-05-27 Louis O French Fuel injection apparatus
US3450353A (en) * 1966-10-20 1969-06-17 Bosch Gmbh Robert Electromagnetically actuated fuel injection valve for internal combustion engines
US3470854A (en) * 1966-11-05 1969-10-07 Bosch Gmbh Robert Fuel injection system for internal combustion engines
US3592392A (en) * 1968-06-11 1971-07-13 Sopromi Soc Proc Modern Inject Electromagnetic fuel injection spray valve
US3680782A (en) * 1969-10-24 1972-08-01 Sopromi Soc Proc Modern Inject Electromagnetic injectors
US3802626A (en) * 1971-07-08 1974-04-09 Peugeot Device for actuating an electromagnetically controlled injector
US3797756A (en) * 1972-03-03 1974-03-19 Bosch Gmbh Robert Electromagnetically actuated fuel injection valve for internal combustion engines
US3779225A (en) * 1972-06-08 1973-12-18 Bendix Corp Reciprocating plunger type fuel injection pump having electromagnetically operated control port

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088247A (en) * 1975-11-24 1978-05-09 Stewart-Warner Corporation Engine starting aid
US4116591A (en) * 1976-03-20 1978-09-26 Lucas Industries Limited Fuel injection pumps
US4096841A (en) * 1976-06-10 1978-06-27 General Motors Corporation Ignition system for use with fuel injected-spark ignited internal combustion engines
US4030668A (en) * 1976-06-17 1977-06-21 The Bendix Corporation Electromagnetically operated fuel injection valve
US4057190A (en) * 1976-06-17 1977-11-08 Bendix Corporation Fuel break-up disc for injection valve
US4217862A (en) * 1977-03-28 1980-08-19 Combustion Research & Technology, Inc. High constant pressure, electronically controlled diesel fuel injection system
US4180022A (en) * 1977-10-31 1979-12-25 Chrysler Corporation Fuel injection system and control valve for multi-cylinder engines
US4275693A (en) * 1977-12-21 1981-06-30 Leckie William H Fuel injection timing and control apparatus
US4269361A (en) * 1978-12-09 1981-05-26 Lucas Industries Limited Fuel injection nozzles
US4295453A (en) * 1979-02-09 1981-10-20 Lucas Industries Limited Fuel system for an internal combustion engine
US4258674A (en) * 1979-03-28 1981-03-31 Wolff George D Engine fuel injection system
US4349152A (en) * 1979-10-05 1982-09-14 Kabushiki Kaisha Komatsu Seisakusho Accumulator type fuel injection apparatus
WO1982003108A1 (en) * 1981-03-06 1982-09-16 George D Wolff Engine fuel injection system
US4475690A (en) * 1981-10-06 1984-10-09 Robert Bosch Gmbh Magnetic valve, in particular a fuel injection valve
US4544096A (en) * 1983-07-28 1985-10-01 Energy Conservation Innovations, Inc. Electronically controlled fuel injection system for diesel engine
US4848658A (en) * 1986-06-06 1989-07-18 Kubota Ltd. Pressure accumulation type of fuel injection device for an internal combustion engine
US4971291A (en) * 1988-06-23 1990-11-20 Weber S.R.L. Electromagnetic fuel metering and atomizing valve
USRE34527E (en) * 1989-11-09 1994-02-01 Yamaha Hatsudoki Kabushiki Kaisha Feeder wire structure for high pressure fuel injection unit
US5088647A (en) * 1989-11-09 1992-02-18 Yamaha Hatsudoki Kabushiki Kaisha Feeder wire structure for high pressure fuel injection unit
US5094215A (en) * 1990-10-03 1992-03-10 Cummins Engine Company, Inc. Solenoid controlled variable pressure injector
USRE37241E1 (en) 1990-10-03 2001-06-26 Cummins Engine Company, Inc. Solenoid controlled variable pressure injector
US5832899A (en) * 1995-10-04 1998-11-10 Lucas Industries Plc Injector
US5979803A (en) * 1997-05-09 1999-11-09 Cummins Engine Company Fuel injector with pressure balanced needle valve
US6056214A (en) * 1997-11-21 2000-05-02 Siemens Automotive Corporation Fuel injector
US6520154B2 (en) * 1998-02-20 2003-02-18 Delphi Technologies, Inc. Side feed fuel injector and integrated fuel rail/intake manifold
WO1999066195A1 (en) * 1998-06-18 1999-12-23 Robert Bosch Gmbh Fuel injector
US6257509B1 (en) 1998-06-18 2001-07-10 Robert Bosch Gmbh Fuel injector
US6220528B1 (en) * 1998-06-24 2001-04-24 Lucas Industries Fuel injector including an outer valve needle, and inner valve needle slidable within a bore formed in the outer valve needle
US20050211801A1 (en) * 2002-03-26 2005-09-29 Theodor Tovar Fuel injection device having hydraulic nozzle needle control
US7407120B1 (en) * 2002-11-21 2008-08-05 Jack French Adjustable racing injector
US6928986B2 (en) 2003-12-29 2005-08-16 Siemens Diesel Systems Technology Vdo Fuel injector with piezoelectric actuator and method of use
US20050145221A1 (en) * 2003-12-29 2005-07-07 Bernd Niethammer Fuel injector with piezoelectric actuator and method of use
US8528842B2 (en) * 2004-05-18 2013-09-10 Robert Bosch Gmbh Fuel injector
US20080277505A1 (en) * 2004-05-18 2008-11-13 Anh-Tuan Hoang Fuel Injector
US20090145404A1 (en) * 2004-12-22 2009-06-11 Rudolf Heinz Injector of a fuel injection system of an internal combustion engine
US7621258B2 (en) * 2004-12-22 2009-11-24 Robert Bosch Gmbh Injector of a fuel injection system of an internal combustion engine
US7703708B2 (en) * 2006-04-03 2010-04-27 Denso Corporation Fuel injection valve
US20070228185A1 (en) * 2006-04-03 2007-10-04 Denso Corporation Fuel injection valve
US8316825B1 (en) 2008-08-04 2012-11-27 French Iii Jack M Adjustable racing injector
US10335829B2 (en) * 2014-03-31 2019-07-02 Obshchestvo S Ogranichennoy Otvetstvennostyu “Renk” Device for generating mechanical vibrations
US20170008031A1 (en) * 2014-03-31 2017-01-12 Obshchestvo S Ogranichennoy Otvetstvennostyu "Renk" Device for generating mechanical vibrations
US20180010564A1 (en) * 2015-01-30 2018-01-11 Hitachi Automotive Systems, Ltd. Fuel injection valve
US10415527B2 (en) * 2015-01-30 2019-09-17 Hitachi Automotive Systems, Ltd. Fuel injection valve
CN105863912A (en) * 2015-02-10 2016-08-17 罗伯特·博世工程和商业方案私人有限公司 Fuel injection valve for an internal combustion engine
CN111405945A (en) * 2018-02-07 2020-07-10 贝恩德·里佩 Spray device and method for adjusting the spray device
US11788496B2 (en) 2020-10-20 2023-10-17 Mrb Machining & Ferramentaria Ltda. Fuel dosing valve
CN112594106A (en) * 2021-01-27 2021-04-02 广东津宇新能源技术有限公司 Electric metering hole structure
US11939940B2 (en) 2021-10-04 2024-03-26 Billet Machine And Fabrication, Inc. Fuel injector

Also Published As

Publication number Publication date
FR2241697B1 (en) 1980-03-07
JPS5743735B2 (en) 1982-09-17
DE2342109A1 (en) 1975-02-27
JPS5072020A (en) 1975-06-14
DE2342109C2 (en) 1983-10-27
GB1481061A (en) 1977-07-27
FR2241697A1 (en) 1975-03-21

Similar Documents

Publication Publication Date Title
US3913537A (en) Electromechanically controlled fuel injection valve for internal combustion engines
US6021760A (en) Fuel injection device for internal combustion engines
JP3742669B2 (en) Fuel injection device for internal combustion engine
US5810255A (en) Clamping device for a piesoelectric actuator of a fuel injection valve for internal combustion engines
US5775301A (en) Fuel injection valve for internal combustion engines
US5232167A (en) Electromagnetically actuatable injection valve
US4545352A (en) Electromagnetic control injection systems for diesel engines of the pressure-time type where the injector needle is controlled by the charging and discharging of a chamber
US4568021A (en) Electromagnetic unit fuel injector
US4385614A (en) Fuel injection pump for internal combustion engines
US5720318A (en) Solenoid actuated miniservo spool valve
US4545353A (en) Fuel injection system
KR20040054601A (en) Common-Rail-Injector
US5524826A (en) Fuel injection device for internal combustion engines
GB2282184A (en) I.c.engine fuel injector control
US4899935A (en) Valve support for accumulator type fuel injection nozzle
US5004154A (en) High pressure fuel injection device for engine
US6783086B1 (en) Two-stage magnet valve of compact design for an injector of an injection system for internal combustion engines
US6810857B2 (en) Fuel injection system for an internal combustion engine
US4300509A (en) Fuel injection and control systems
EP0957261A2 (en) Fuel system and pump suitable for use therein
US6796290B2 (en) Fuel injection system for an internal combustion engine
US20030102386A1 (en) Fuel injection valve
US4690374A (en) Magnetic valve for fluid control
EP0333097A2 (en) Relief valve assembly for accumulator type fuel injection nozzle
US5150684A (en) High pressure fuel injection unit for engine