US3915301A - Covered tubular package of glass roving and method of making - Google Patents

Covered tubular package of glass roving and method of making Download PDF

Info

Publication number
US3915301A
US3915301A US376080A US37608073A US3915301A US 3915301 A US3915301 A US 3915301A US 376080 A US376080 A US 376080A US 37608073 A US37608073 A US 37608073A US 3915301 A US3915301 A US 3915301A
Authority
US
United States
Prior art keywords
roving
package
covering
tube
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US376080A
Inventor
Richard A Gray
Allan B Isham
John A Rolston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning Fiberglas Technology Inc
Original Assignee
Owens Corning Fiberglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Corning Fiberglas Corp filed Critical Owens Corning Fiberglas Corp
Priority to US376080A priority Critical patent/US3915301A/en
Application granted granted Critical
Publication of US3915301A publication Critical patent/US3915301A/en
Assigned to WILMINGTON TRUST COMPANY, WADE, WILLIAM, J. reassignment WILMINGTON TRUST COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OWENS-CORNING FIBERGLAS CORPORATION
Assigned to OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE. reassignment OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE. TERMINATION OF SECURITY AGREEMENT RECORDED NOV. 13, 1986. REEL 4652 FRAMES 351-420 Assignors: WADE, WILLIAM J. (TRUSTEES), WILMINGTON TRUST COMPANY, A DE. BANKING CORPORATION
Assigned to OWENS-CORNING FIBERGLAS TECHNOLOGY INC. reassignment OWENS-CORNING FIBERGLAS TECHNOLOGY INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/002Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers in shrink films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B53/00Shrinking wrappers, containers, or container covers during or after packaging
    • B65B53/02Shrinking wrappers, containers, or container covers during or after packaging by heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H49/00Unwinding or paying-out filamentary material; Supporting, storing or transporting packages from which filamentary material is to be withdrawn or paid-out
    • B65H49/02Methods or apparatus in which packages do not rotate
    • B65H49/04Package-supporting devices
    • B65H49/06Package-supporting devices for a single operative package
    • B65H49/08Package-supporting devices for a single operative package enclosing the package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H55/00Wound packages of filamentary material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/312Fibreglass strands

Definitions

  • the heat shrunk film also 58 Field of Search 206/389, 392, 410, 497, g 23:2 gfig f g gfjiifi gf 206/45.33, 409; 229/DIG. 12; 242/170, 171, withdrawn from k b th 168 159 pac age ere y preven mg e (30118 from slumping together and becomlng entangled.
  • the plastic covering is provided with an opening at [56] References Cited one end thereof which acts as a guide for the filaments UNITED STATES PATENTS as they are withdrawn from the package. 2,035,930 3/1936 Strong 242/171 2,720,309 10 1955 KimbaIL... 3 Claims, S DraWmg Figures 2,878,628 3/1959 Curry 229/DIG. 12
  • This invention relates generally to the packaging of filamentary material, particularly strands or rovings of continuous glass fibers, for shipping, handling, and further processing.
  • Continuous glass filaments are made by flowing molten glass through small orifices in a bushing to form streams of molten glass, attenuating the glass streams into filaments, gathering a plurality of these filaments into a strand or roving, and winding the strand or roving onto a revolving drum.
  • the attenuating force is provided by the revolving drum which also serves to coil the filaments into a transportable package.
  • a traverse mechanism is used to move the strand or roving back and forth along the length of the pulling drum to produce a generally tubularly shaped body of coiled filaments in which the coiled filaments are superimposed over each other in layers.
  • a sizing is usually applied to the filaments as they are formed to give integrity to the strand or roving, and to prevent abrasion of the filaments as they are coiled on the drum.
  • the tubular body of filaments reaches a generally predetermined diameter it is removed from the drum and prepared for shipment to processors.
  • the tension that is built up between the layers of filaments during the winding is sufficient to make the package self-supporting.
  • Free ends of the rov- 7 ing are provided both within the interior of the tubular package and on the exterior surface. Either free end can be pulled to remove roving from the package.
  • the processor prefers to withdraw the roving by pulling on the interior free end. This method of withdrawal does not require removal of the package from its container, does not result in ballooning of the strand as it unwinds, and does not result in abrasion of the roving such as occurs when the exterior end is pulled over the edge of the package.
  • a further feature of the invention results because the heat shrunk plastic film supports the outer coils of filaments as the package is unwound.
  • the coils in the outer layers are held in their coiled relationship as the roving or strand is withdrawn thereby preventing them from slumping or collapsing to the supporting surface and becoming entangled.
  • this invention enables the processor of the roving or strand to completely unwind the package, or to transfer from one package to another, without disrupting his operation or scrapping any of the filaments.
  • a still further feature of the invention results when the shrinkage of the resinous film is controlled to produce a substantially circular opening in the film at one end of the package.
  • This opening serves as a guide for the roving or strand as it is withdrawn from the package. Under the proper conditions the opening is located concentric with the tubular textile package, and causes the roving to be pulled at least partially radially inward as it is being withdrawn. When the roving is withdrawn in at least a partially radial direction it does not rub or abrade adjacent coils of filaments on the interior surface of the package.
  • This opening or guide also cooperates in improving the runout and transfer characteristics of the package.
  • FIG. 1 is an isometric view of a cylindrical package of coiled continuous glass filaments
  • FIG. 2 is an isometric view of the package of filaments of FIG. 1 encased in a heat shrunk plastic sheet material;
  • FIG. 3 is a sectional view taken along the line 3-3 of FIG. 2 with a portion of the film broken away to show both ends of the filaments more clearly;
  • FIG. 4 is a schematic view of apparatus used for encasing a package of coiled filaments in a heat shrunk plastic film in accordance with the present invention.
  • FIG. 5 is an elevational view of a heat shrinkable plastic bag which is used to encase the package of FIG. 1; the bag has been flattened along a diameter to more clearly show the curvature of its base.
  • the package of glass filaments shown in FIG. 1 consists of a continuous glass roving wound in successive layers of coils to form a generally cylindrical tubular shape.
  • the continous roving has a free end 12 on the exterior of the wound package 10, and an internally exposed free end 14 which can be pulled to unwind the package from the inside.
  • the package 10 has generally parallel inner l6 and outer l8 cylindrical surfaces.
  • the roving can be wound in successive layers of equal length, with the roving in each layer being in side-by-side relationship, to provide a package having generally flat annular end surfaces perpendicular to the inner and outer surfaces.
  • This square ended cylindrical package is a particularly economical and otherwise suitable configuration for the packaging of continuous glass fibers, especially glass rovings used in the reinforcement of plastics.
  • some coiled packages have an outer surface having a gradual taper in one or both axial directions.
  • the inner surface may also have a slight draft to facilitate removal from the winding drum, etc.
  • the ends are tapered to reduce sloughing of the outer coils in the package end. It is understood that the present invention is applicable to those additional package configurations, and the term generally cylindircal, as hereinafter used, is meant to include these slightly tapered surfaces.
  • FIGS. 2 and 3 the roving package 10 is shown encased in a protective covering 20 of a heat shrunk plastic sheet or film.
  • the covering consists of a cylindrical trunk portion 22 and end portions 24 and 26.
  • One end portion 26 of the covering 20 is continuous across the end of the roving package; the other end portion 24 extends radially inward from the trunk 22 and terminates in a circular opening or aperature 30.
  • the opening 30 is smaller in diameter than the inner cylindrical surface 16 of the package. Therefore, the covering 20 fully protects the package ends while the opening 30 serves as a guide for the roving as it is withdrawn; a feature to be discussed later.
  • the covering 20 is formed from a heat shrinkable plastic material.
  • Heat shrinkable films are stretched during their manufacture to produce a strained orientation of the molecules. When cooled the film retains its strained condition; but upon reheating the molecules revert to their natural orientation causing the film to shrink.
  • Such films find wide use in packaging, and include polyethylene, polypropolene, polybutylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyacrylates, linear polyester, and polyarnides.
  • This film is a bi-axially oriented, cross linked polyolefin marketed by the Cryovac Division of W. R. Grace Company under the designation of L900 film. It was found that this film does not stick to itself as it is being shrunk. Consequently, this film does not result in wrinkles in the covering. Such wrinkles, which may result if care is not exercised in using other films, bite into the glass filaments in the package and may cause abrasion of the filaments. Furthermore this film provides a more uniform shrinkage and facilitates forming a smooth, snag free opening 30 in the covering.
  • FIG. 4 is shown schematically a method for applying the covering 20 to the wound package 10.
  • a seamless bag 40 of the shrinkable film is placed over the end of the roving package.
  • the package is then placed on a coveyor 50, either in the horizontal position, as shown, or in an upright position, and passed through'an oven 52.
  • the package 10 is conveyed horizontally as shown in FIG. 4, it is rotated slowly to insure a uniform shrinkage of the film.
  • Heat for shrinking the film can be provided by any suitable means such as the electrical resistance heaters 54 shown.
  • the package cooled and placed in a carton or on a pallet for shipping.
  • the film is shown in FIG. 4 in the form of a bag 40, the film can be provided in the form of a tubular sleeve open at both ends.
  • the bag form is preferred because it is more readily aligned on the package, and also because it produces a package with a closed end 26 as shown in FIG. 3. It is foreseen that there may be situations in which the processor prefers a package with an opening 30 in both ends. In those cases, a tubular form of plastic material could be used.
  • the bag or sleeve' will largelybe determined by the type of film and the particular application for which it is us'e d.
  • the roving package of FIG. 1 maybe approximately 32 inches in circumference and inches in length.
  • the diameter of the inner surface 16 of the package may be approximately6% inches.
  • Successful trials have been conducted by encasing such a package in a heat shrinkable polyolefin film which was 2.2 to 2.6 mils thick before shrinkage.
  • the film was supplied in the form of a bag having a circumference of 34 inches and an overall length of approximately 22 inches.
  • the bag 40 When flattened along one diameter, as shown in FIG. 5, the bag 40 has a curved base'with a radius r of approximately 11% inches.
  • the film has been assured to be in the range of 4 to 5 mils thick along the trunk portion 22 and as high as 15 to mils thick in the open end region 24.
  • the shrinkage was controlled to produce an opening'30 having a diameter between 3 and 5% inches. It has been observed that exposure of the film to 400 F. for about 20 seconds will produce the desired shrinkage.
  • the heat shrunk covering 20 protects the glass filaments from becoming abraded when the roving package comes in contact with another object or is otherwise subjected to external forces.
  • the tightness of the covering 20, after it has been shrunk around the package 10, minimizes movement of the film relative to the glass roving when the film is acted upon by an external force. Consequently, the filaments are not abraded by movement of the film. Furthermore, it has been observed, even when the external force is sufficient to cause some movement of the film, the filaments on the outer and end surfaces of the package are not moved. Therefore, the tight covering 20 also protects the glass roving from self-abrasion due to relative movement of the filaments.
  • a feature of the present invention is that additional protection for the package ends is provided. As was discussed previously, when the film has been shrunk it becomes substantially thicker in the end portions 24 and 26. Thus the end portions 24 and 26 become more rigid or taut and provide greater resistance to movement relative to the filaments.
  • FIG. 2 Another significant feature of the covered roving package of FIG. 2 is its improved runout and transfer characteristics. It has been found that the roving from the package can be completely unwound by pulling the free end 14 without the coils of roving on the outer surface 18 slumping together and becoming entangled. Consequently, the processor can use all the roving without any scrap. Furthermore, the processor can tie the trailing end 12 to the leading end of another package for an uninterrupted operation. When shrinking the covering 20 onto the roving package 10, roving end 12 is made accessible through the opening 30.
  • the opening 30 in the end 24 is also believed to contribute to the improved runout and transfer properties of the invention.
  • the opening 30 is smaller in diameter than the inner cylindrical surface 16 of the textile package. Under the proper process conditions a smooth round, concentric opening is formed during the heat shrinking operation. It is preferred that the opening 30 be con-- centric with the inner surface 16, but it has been observed that eccentrically located openings occasionally result. However, the packages having eccentric openings are still operable as long as the opening 30 falls with the area of the inner surface 16 so that the end portion 24 of the covering 20 fully protects all the glass roving on the package end.
  • the opening 30 serves as a guide eye for the roving as it is withdrawn as shown in FIG. 3.
  • the roving is pulled through the opening 30 it is pulled at least partially radially inward from the surface 16. This radial movement prevents the roving from rubbing adjacent coils on the surface 16 and thereby reduce selfabrasion of the glass filaments. Furthermore, when only the last few coils or layers of coils remain in the package, the radial movement of the roving prevents it from disturbing adjacent coils and causing them to slump or collapse.
  • the opening 30 In order for the opening 30 to serve as a guide, it must be smooth and free of snags or wrinkles in the material.
  • the opening 30 could of course be manually cut into the end portion 24 of the covering.
  • the opening is naturally formed with a smooth edge.
  • a covered tubular package of glass roving from the interior of which roving can be completely withdrawn without interruption comprising a roving of glass filaments, the roving being wound in successive annular layers of equal axial length to form a cylindrical tube having a pair of generally flat, annular, opposite end surfaces, and a tubular covering longer than the tube of roving, open at one end, and formed of heat-shrinkable resinous film, the tube of roving being disposed endwise in the tubular covering, a first generally cylindrical portion of the covering being shrunk by heat into a tubular sleeve in intimate contact with an outer layer of the roving, a second generally cylindrical open end portion of the covering being shrunk by heat into a flat, annular, wrinkle-free, taut end portion in contact with the adjacent end surface of the tube of roving and having a smooth, generally circular opening substantially con-' centric with the tube of roving and of smaller diameter than an inner diameter of the tube, an inner peripheral portion of the flat, annular
  • a method of making a covered tubular package of glass roving from the interior of which roving can be completely withdrawn without interruption comprising providing a roving of glass filaments, winding the roving in successive annular layers of equal axial length to form a cylindrical tube having a pair of generally flat, annular, opposite end surfaces, providing a tubular covering longer than the tube of roving, open at one end, and formed of heat-shrinkable resinous film, inserting the tube of roving endwise into the tubular covering through the one open end thereof, shrinking a first generally cylindrical portion of the covering by heat into a tubular sleeve in intimate contact with an outer layer inner diameter of the tube.

Abstract

A package of continuous glass filaments coiled into a generally cylindrical tubular shape is provided with a heat shrunk plastic film covering the peripheral and end surfaces of the tubular package. The heat shrunk plastic film protects the filaments from abrasion during shipment and handling. The heat shrunk film also co-operates with the outer layer of the package to support the coils in the outer layer as the filaments are withdrawn from the package thereby preventing the coils from slumping together and becoming entangled. The plastic covering is provided with an opening at one end thereof which acts as a guide for the filaments as they are withdrawn from the package.

Description

United States Patent 1191 1111 3,915,301 Gray et al. Oct. 28, 1975 [54] COVERED TUBULAR PACKAGE OF 3,022,543 2/1962 Baird, Jr. et al. 229/DIG. 12 GLASS ROVING AND METHOD OF 3,092,439 6/1963 Harrison 229/DlG. l2 MAKING 3,371,877 3/1968 Klink et al. 242/168 2 97 Richard 991, Anderson, $33532 311323 35212? 2821292 Allan Isham; John Rolston, 3,700,185 10/1972 Hubbard et al 242 159 both of Newark, Ohio [73] Assignee: Owens-Corning Fiberglas Primary Examiner-William T. Dixson, Jr.
Corporation, Toledo, Ohio Attorney, Agent, or Firm-Carl G. Staelin; John W. [22] Filed: July 2, 1973 Overman; Paul J. Rose [21] Appl. No.: 376,080 ABSTRACT Related US. Application Data A k f t l H t ,1 d t pac age 0 con lnuous g ass lamen s cor e 1n 0 a [63] Commuanon of 113219 1971' generally cylindrical tubular shape is provided with a heat shrunk plastic film covering the peripheral and [52] 7 end surfaces of the tubular package. The heat shrunk 2 plastic film protects the filaments from abrasion dur- 1] B65H 55/02; ing shipment and handling. The heat shrunk film also 58 Field of Search 206/389, 392, 410, 497, g 23:2 gfig f g gfjiifi gf 206/45.33, 409; 229/DIG. 12; 242/170, 171, withdrawn from k b th 168 159 pac age ere y preven mg e (30118 from slumping together and becomlng entangled. The plastic covering is provided with an opening at [56] References Cited one end thereof which acts as a guide for the filaments UNITED STATES PATENTS as they are withdrawn from the package. 2,035,930 3/1936 Strong 242/171 2,720,309 10 1955 KimbaIL... 3 Claims, S DraWmg Figures 2,878,628 3/1959 Curry 229/DIG. 12
L -47 7, z 7 :5 %E 2 I 4, 55 f 5 2 2 1 z x 1 1 x- 1 7 T L 5 s i I a 7 7 US. Patent Oct. 28, 1975 3,915,301
COVERED TUBULAR PACKAGE OF GLASS ROVING AND METHOD OF MAKING This is a continuation of application Ser. No. 113,219, filed Feb. 8, 1971.
This invention relates generally to the packaging of filamentary material, particularly strands or rovings of continuous glass fibers, for shipping, handling, and further processing.
Continuous glass filaments are made by flowing molten glass through small orifices in a bushing to form streams of molten glass, attenuating the glass streams into filaments, gathering a plurality of these filaments into a strand or roving, and winding the strand or roving onto a revolving drum. The attenuating force is provided by the revolving drum which also serves to coil the filaments into a transportable package. A traverse mechanism is used to move the strand or roving back and forth along the length of the pulling drum to produce a generally tubularly shaped body of coiled filaments in which the coiled filaments are superimposed over each other in layers. A sizing is usually applied to the filaments as they are formed to give integrity to the strand or roving, and to prevent abrasion of the filaments as they are coiled on the drum. When the tubular body of filaments reaches a generally predetermined diameter it is removed from the drum and prepared for shipment to processors.
When the strand or roving is coiled into a package in this manner, the tension that is built up between the layers of filaments during the winding is sufficient to make the package self-supporting. Free ends of the rov- 7 ing are provided both within the interior of the tubular package and on the exterior surface. Either free end can be pulled to remove roving from the package.
However, it is generally found that the processor prefers to withdraw the roving by pulling on the interior free end. This method of withdrawal does not require removal of the package from its container, does not result in ballooning of the strand as it unwinds, and does not result in abrasion of the roving such as occurs when the exterior end is pulled over the edge of the package.
It is also a common practice for the processor to tie the trailing end of roving from one package to the leading end of the next package. This arrangement facilitates transfer from one package to another without interrupting the processors operation.
I Heretofore it has been the practice to ship roving packages of the type described in loose fitting polyethylene bags, or cardboard cartons or boxes. However, in such containers the roving package is free to move relative to its container during shipment. This movement of the package with respect to the plastic bag or cardboard box may result in abrasion of the filaments on the outer and end surfaces of the package. Consequently, before using such a package the processor must remove the abraded material in the outer layers of the package. The abraded filaments on the package ends cannot be removed except as the roving is being uncoiled. As it is pulled from the package the roving will contain intermittent sections of broken filaments which, if not removed, may cause a continual build-up of fuzz in the processors operation.
Another serious problem occurs when the selfsupporting roving package is uncoiled to a degree where most of the filaments have been removed. No longer held in a self-supporting cylinder, the outermost layers of filaments slip down into an entwined heap. The coils of filaments become entangled and are withdrawn together. Consequently the processor must interrupt his operation to remove the snarled portion of the rovings. In many instances the coils of filaments are so entangled that it is not economical to untangle them; with the result that a sizeable portion of the package must be scrapped.
In the past various attempts have been made to improve the runout of wound textile packages. One technique consisted of wrapping a moistened, regenerated cellulose sheet around a ball of string. The cellulose wrapper was subsequently dried causing it to shrink tightly around the package. Moistened cardboard was also used in a similar manner. Among other disadvantages, this techniquerequired handling a wetted sheet and the removal of moisture to effect shrinkage.
In another technique, a sheet material such as paper or film was coated with an adhesive and applied to the outer surface of the package. However, in addition to the difficulty in selecting an adhesive which would provide the desired bond under varying environmental conditions, the adhesive bond provided additional resistance to the withdrawal of the textile material. For these and other reasons the prior art practices do not achieve the objectives of the present invention as set forth below.
With these practices and their difficulties in mind, it is an object of the present invention to provide a novel wound package of filamentary material which prevents abrasion of the end and outermost coils of filaments during handling and shipment.
It is a further object of this invention to provide a self-supporting textile package in which the roving or strand can be completely withdrawn without the outermost coils of filaments slumping together and becoming entangled.
It is still a further object of this invention to provide a textile package having a unitary covering provided with an opening at one end which acts as a guide for the filaments as they are withdrawn.
BRIEF SUMMARY OF INVENTION The above and other objectives are achieved in the present invention by encasing a coiled textile package in a heat shrunk plastic film. The wound package of filaments is inserted into a plastic bag or sleeve and the plastic material is heated. The material is uniformly shrunk until in intimate contact with the outer peripheral surface of the package and taut across the end surfaces of the package.
The intimate contact between the plastic material and the surface of the package is sufficient to prevent the movement of the filaments relative to each other. Similarly abrasion of the filaments in the ends of the package is prevented by tautness of the film protecting that region.
A further feature of the invention results because the heat shrunk plastic film supports the outer coils of filaments as the package is unwound. The coils in the outer layers are held in their coiled relationship as the roving or strand is withdrawn thereby preventing them from slumping or collapsing to the supporting surface and becoming entangled. Thus the use of this invention enables the processor of the roving or strand to completely unwind the package, or to transfer from one package to another, without disrupting his operation or scrapping any of the filaments.
A still further feature of the invention results when the shrinkage of the resinous film is controlled to produce a substantially circular opening in the film at one end of the package. This opening serves as a guide for the roving or strand as it is withdrawn from the package. Under the proper conditions the opening is located concentric with the tubular textile package, and causes the roving to be pulled at least partially radially inward as it is being withdrawn. When the roving is withdrawn in at least a partially radial direction it does not rub or abrade adjacent coils of filaments on the interior surface of the package. This opening or guide also cooperates in improving the runout and transfer characteristics of the package. When the package has been depleted down to the last few layers, the inward radial movement of the strand or roving prevents a lateral rubbing or adjacent coils which rubbing could cause them to slump or fall to the bottom of the package and become entangled.
DESCRIPTION OF DRAWINGS Having thus briefly described the invention, a more detailed description follows with reference to the accompanying drawings forming a part of this specification, of which:
FIG. 1 is an isometric view of a cylindrical package of coiled continuous glass filaments;
FIG. 2 is an isometric view of the package of filaments of FIG. 1 encased in a heat shrunk plastic sheet material;
FIG. 3 is a sectional view taken along the line 3-3 of FIG. 2 with a portion of the film broken away to show both ends of the filaments more clearly;
FIG. 4 is a schematic view of apparatus used for encasing a package of coiled filaments in a heat shrunk plastic film in accordance with the present invention; and
FIG. 5 is an elevational view of a heat shrinkable plastic bag which is used to encase the package of FIG. 1; the bag has been flattened along a diameter to more clearly show the curvature of its base.
For the purposes of clarity, the following discussion of the invention is limited to its application to glass fibers, and especially continuous glass rovings. However, it will be understood that the inventive concept so exemplified is sufficiently broad to be applicable to other forms of textiles, including filaments, strands, and yarns, as well as both organic and inorganic materials.
The package of glass filaments shown in FIG. 1 consists of a continuous glass roving wound in successive layers of coils to form a generally cylindrical tubular shape. The continous roving has a free end 12 on the exterior of the wound package 10, and an internally exposed free end 14 which can be pulled to unwind the package from the inside. The package 10 has generally parallel inner l6 and outer l8 cylindrical surfaces.
As shown in FIG. 1, the roving can be wound in successive layers of equal length, with the roving in each layer being in side-by-side relationship, to provide a package having generally flat annular end surfaces perpendicular to the inner and outer surfaces. This square ended cylindrical package is a particularly economical and otherwise suitable configuration for the packaging of continuous glass fibers, especially glass rovings used in the reinforcement of plastics. However, some coiled packages have an outer surface having a gradual taper in one or both axial directions. The inner surface may also have a slight draft to facilitate removal from the winding drum, etc. Similarly in some packages the ends are tapered to reduce sloughing of the outer coils in the package end. It is understood that the present invention is applicable to those additional package configurations, and the term generally cylindircal, as hereinafter used, is meant to include these slightly tapered surfaces.
In FIGS. 2 and 3 the roving package 10 is shown encased in a protective covering 20 of a heat shrunk plastic sheet or film. The covering consists of a cylindrical trunk portion 22 and end portions 24 and 26. One end portion 26 of the covering 20 is continuous across the end of the roving package; the other end portion 24 extends radially inward from the trunk 22 and terminates in a circular opening or aperature 30. The opening 30 is smaller in diameter than the inner cylindrical surface 16 of the package. Therefore, the covering 20 fully protects the package ends while the opening 30 serves as a guide for the roving as it is withdrawn; a feature to be discussed later.
The covering 20 is formed from a heat shrinkable plastic material. Heat shrinkable films are stretched during their manufacture to produce a strained orientation of the molecules. When cooled the film retains its strained condition; but upon reheating the molecules revert to their natural orientation causing the film to shrink. Such films find wide use in packaging, and include polyethylene, polypropolene, polybutylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyacrylates, linear polyester, and polyarnides.
One such heat shrinkable film has been found to be particularly satisfactory for use on glass roving packages of the type described. This film is a bi-axially oriented, cross linked polyolefin marketed by the Cryovac Division of W. R. Grace Company under the designation of L900 film. It was found that this film does not stick to itself as it is being shrunk. Consequently, this film does not result in wrinkles in the covering. Such wrinkles, which may result if care is not exercised in using other films, bite into the glass filaments in the package and may cause abrasion of the filaments. Furthermore this film provides a more uniform shrinkage and facilitates forming a smooth, snag free opening 30 in the covering.
In FIG. 4 is shown schematically a method for applying the covering 20 to the wound package 10. A seamless bag 40 of the shrinkable film is placed over the end of the roving package. The package is then placed on a coveyor 50, either in the horizontal position, as shown, or in an upright position, and passed through'an oven 52. When the package 10 is conveyed horizontally as shown in FIG. 4, it is rotated slowly to insure a uniform shrinkage of the film. Heat for shrinking the film can be provided by any suitable means such as the electrical resistance heaters 54 shown. Upon emerging from the oven 52, the package is cooled and placed in a carton or on a pallet for shipping.
Although the film is shown in FIG. 4 in the form of a bag 40, the film can be provided in the form of a tubular sleeve open at both ends. The bag form is preferred because it is more readily aligned on the package, and also because it produces a package with a closed end 26 as shown in FIG. 3. It is foreseen that there may be situations in which the processor prefers a package with an opening 30 in both ends. In those cases, a tubular form of plastic material could be used.
bag or sleeve'will largelybe determined by the type of film and the particular application for which it is us'e d. For example, the roving package of FIG. 1 maybe approximately 32 inches in circumference and inches in length. The diameter of the inner surface 16 of the package may be approximately6% inches. Successful trials have been conducted by encasing such a package in a heat shrinkable polyolefin film which was 2.2 to 2.6 mils thick before shrinkage. The film was supplied in the form of a bag having a circumference of 34 inches and an overall length of approximately 22 inches. When flattened along one diameter, as shown in FIG. 5, the bag 40 has a curved base'with a radius r of approximately 11% inches.
After shrinking the bag 40 to form the covering '20,
the film has been assured to be in the range of 4 to 5 mils thick along the trunk portion 22 and as high as 15 to mils thick in the open end region 24. The shrinkage was controlled to produce an opening'30 having a diameter between 3 and 5% inches. It has been observed that exposure of the film to 400 F. for about 20 seconds will produce the desired shrinkage.
Referring again to FIGS. 2 and 3, the heat shrunk covering 20 protects the glass filaments from becoming abraded when the roving package comes in contact with another object or is otherwise subjected to external forces. The tightness of the covering 20, after it has been shrunk around the package 10, minimizes movement of the film relative to the glass roving when the film is acted upon by an external force. Consequently, the filaments are not abraded by movement of the film. Furthermore, it has been observed, even when the external force is sufficient to cause some movement of the film, the filaments on the outer and end surfaces of the package are not moved. Therefore, the tight covering 20 also protects the glass roving from self-abrasion due to relative movement of the filaments.
As was mentioned earlier, abrasion of the filaments in the ends of the pacakge is particularly undesirable since the damaged portions cannot be removed except as the roving is being unwound. A feature of the present invention is that additional protection for the package ends is provided. As was discussed previously, when the film has been shrunk it becomes substantially thicker in the end portions 24 and 26. Thus the end portions 24 and 26 become more rigid or taut and provide greater resistance to movement relative to the filaments.
Another significant feature of the covered roving package of FIG. 2 is its improved runout and transfer characteristics. It has been found that the roving from the package can be completely unwound by pulling the free end 14 without the coils of roving on the outer surface 18 slumping together and becoming entangled. Consequently, the processor can use all the roving without any scrap. Furthermore, the processor can tie the trailing end 12 to the leading end of another package for an uninterrupted operation. When shrinking the covering 20 onto the roving package 10, roving end 12 is made accessible through the opening 30.
The mechanism by which the heat shrunk covering 20 works to facilitate the complete runout of the roving is not fully understood. It has been observed that the trunk portion of the film 22 in combination with the outer layer of roving coils maintains the coils of the outer layer in their respective positions until the coils are withdrawn from the package. This result is produced without the necessity of using an adhesive between the covering 20 and the roving package 10. Therefore it is not necessary to overcome an adhesive bond in withdrawing the roving from the covering 20. It has been observed, when using the polyolefin film described earlier, that the covering 20 is capable of standing'independently, after all the roving had, been withdrawn, unless distrubed by someexternal force. It
has been observed in some cases that the cylindrical trunk portion 22 of the covering could stand alone without the end portions 24 and 26. However, it is believed that the end portions 24 and 26, which as previously discussed are thicker than the trunk portion 22, contribute ,to the structural self-support of the covermg.
In addition to the support furnished by the trunk portion 22 of the covering 20, the opening 30 in the end 24 is also believed to contribute to the improved runout and transfer properties of the invention. As discussed earlier, the opening 30 is smaller in diameter than the inner cylindrical surface 16 of the textile package. Under the proper process conditions a smooth round, concentric opening is formed during the heat shrinking operation. It is preferred that the opening 30 be con-- centric with the inner surface 16, but it has been observed that eccentrically located openings occasionally result. However, the packages having eccentric openings are still operable as long as the opening 30 falls with the area of the inner surface 16 so that the end portion 24 of the covering 20 fully protects all the glass roving on the package end.
The opening 30 serves as a guide eye for the roving as it is withdrawn as shown in FIG. 3. As the roving is pulled through the opening 30 it is pulled at least partially radially inward from the surface 16. This radial movement prevents the roving from rubbing adjacent coils on the surface 16 and thereby reduce selfabrasion of the glass filaments. Furthermore, when only the last few coils or layers of coils remain in the package, the radial movement of the roving prevents it from disturbing adjacent coils and causing them to slump or collapse.
In order for the opening 30 to serve as a guide, it must be smooth and free of snags or wrinkles in the material. The opening 30 could of course be manually cut into the end portion 24 of the covering. However, when the plastic film is properly sized and care is used in the shrinking operating, the opening is naturally formed with a smooth edge.
Having thus briefly described one embodiment, numerous other modifications and embodiments of the invention will be apparent to those skilled in the art. It is to be understood that such modifications and embodiments are within the scope of the invention as defined in the accompanying claims.
We claim:
1. A covered tubular package of glass roving from the interior of which roving can be completely withdrawn without interruption, comprising a roving of glass filaments, the roving being wound in successive annular layers of equal axial length to form a cylindrical tube having a pair of generally flat, annular, opposite end surfaces, and a tubular covering longer than the tube of roving, open at one end, and formed of heat-shrinkable resinous film, the tube of roving being disposed endwise in the tubular covering, a first generally cylindrical portion of the covering being shrunk by heat into a tubular sleeve in intimate contact with an outer layer of the roving, a second generally cylindrical open end portion of the covering being shrunk by heat into a flat, annular, wrinkle-free, taut end portion in contact with the adjacent end surface of the tube of roving and having a smooth, generally circular opening substantially con-' centric with the tube of roving and of smaller diameter than an inner diameter of the tube, an inner peripheral portion of the flat, annular end portion defining the opening forming a generally planar guiding means for guiding the roving radially inwardly of the tube as the roving is withdrawn from the heat-shrunk covering through the opening, and the heat-shrunk tubular sleeve and the outer layer of the roving forming a structure sufficiently self-supporting, after withdrawal of the inner layers of the roving through the opening, to permit complete withdrawal of the roving of the outer layer through the opening from within the heat-shrunk covering without interruption.
2. A package as claimed in claim 1 wherein the heatshrunk covering is thicker and more rigid around the opening in the end portion-than in the tubular sleeve.
3. A method of making a covered tubular package of glass roving from the interior of which roving can be completely withdrawn without interruption, comprising providing a roving of glass filaments, winding the roving in successive annular layers of equal axial length to form a cylindrical tube having a pair of generally flat, annular, opposite end surfaces, providing a tubular covering longer than the tube of roving, open at one end, and formed of heat-shrinkable resinous film, inserting the tube of roving endwise into the tubular covering through the one open end thereof, shrinking a first generally cylindrical portion of the covering by heat into a tubular sleeve in intimate contact with an outer layer inner diameter of the tube.

Claims (3)

1. A cover tubular package of glass roving from the interior of which roving can be completely withdrawn without interruption, comprising a roving of glass filaments, the roving being wound in successive annular layers of equal axial length to form a cylindrical tube having a pair of generally flat, annular, opposite end surfaces, and a tubular covering longer than the tube of roving, open at one end, and formed of heat-shrinkable resinous film, the tube of roving being disposed endwise in the tubular covering, a first generally cylindrical portion of the covering being shrunk by heat into a tubular sleeve in intimate contact with an outer layer of the roving, a second generally cylindrical open end portion of the covering being shrunk by heat into a flat, annular, wrinkle-free, taut end portion in contact with the adjacent end surface of the tube of roving and having a smooth, generally circular opening substantially concentric with the tube of roving and of smaller diameter than an inner diameter of the tube, an inner peripheral portion of the flat, annular end portion defining the opening forming a generally planar guiding means for guiding the roving radially inwardly of the tube as the roving is withdrawn from the heat-shrunk covering through the opening, and the heat-shrunk tubular sleeve and the outer layer of the roving forming a structure sufficiently self-supporting, after withdrawal of the inner layers of the roving through the opening, to permit complete withdrawal of the roving of the outer layer through the opening from within the heat-shrunk covering without interruption.
2. A package as claimed in claim 1, wherein the heat-shrunk covering is thicker and more rigid around the opening in the end portion than in the tubular sleeve.
3. A method of making a covered tubular package of glass roving from the interior of which roving can be completely withdrawn without interruption, comprising providing a roving of glass filaments, winding the roving in successive annular layers of equal axial length to form a cylindrical tube having a pair of generally flat, annular, opposite end surfaces, providing a tubular covering longeR than the tube of roving, open at one end, and formed of heat-shrinkable resinous film, inserting the tube of roving endwise into the tubular covering through the one open end thereof, shrinking a first generally cylindrical portion of the covering by heat into a tubular sleeve in intimate contact with an outer layer of the roving thereby forming a structure sufficiently self-supporting, after withdrawal of the inner layers of the roving, to permit complete withdrawal of the outer layer of the roving without interruption, and shrinking a second generally cylindrical open end portion of the covering by heat into a flat, annular, wrinkle-free, taut end portion in contact with the adjacent end surface of the tube of roving and having a smooth, generally circular opening through which the roving may be withdrawn, the opening being substantially concentric with the tube of roving and of smaller diameter than an inner diameter of the tube.
US376080A 1971-02-08 1973-07-02 Covered tubular package of glass roving and method of making Expired - Lifetime US3915301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US376080A US3915301A (en) 1971-02-08 1973-07-02 Covered tubular package of glass roving and method of making

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11321971A 1971-02-08 1971-02-08
US376080A US3915301A (en) 1971-02-08 1973-07-02 Covered tubular package of glass roving and method of making

Publications (1)

Publication Number Publication Date
US3915301A true US3915301A (en) 1975-10-28

Family

ID=26810815

Family Applications (1)

Application Number Title Priority Date Filing Date
US376080A Expired - Lifetime US3915301A (en) 1971-02-08 1973-07-02 Covered tubular package of glass roving and method of making

Country Status (1)

Country Link
US (1) US3915301A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1978000016A1 (en) * 1977-06-09 1978-12-21 R Brook Supply package for wet-impregnated multifilament roving
US4220295A (en) * 1979-02-21 1980-09-02 Owens-Corning Fiberglas Corporation Packaged strand
US4264010A (en) * 1978-10-04 1981-04-28 Mitsubishi Plastics Industries, Ltd. Heat shrinkable polyvinyl chloride film
FR2485490A1 (en) * 1980-06-24 1981-12-31 Oda Gosen Kogyo Kk PACKAGING OF ENVELOPED FILES HAVING EFFICIENT ENDS AND A PROCESS OF MANUFACTURING THE SAME
US4348439A (en) * 1981-02-18 1982-09-07 Certain-Teed Corporation Package of wound strand material
US4460086A (en) * 1979-10-01 1984-07-17 Ppg Industries, Inc. Tubular glass fiber package and method
US4467916A (en) * 1982-04-26 1984-08-28 Ppg Industries, Inc. Tubular glass fiber package and method
US4475651A (en) * 1981-11-05 1984-10-09 Elsner Engineering Works, Inc. Roll-wrapping apparatus, method and intermediate product
US4493464A (en) * 1983-09-19 1985-01-15 Owens-Corning Fiberglas Corporation Packaged strand
US4546880A (en) * 1983-06-02 1985-10-15 Ppg Industries, Inc. Shippable package of glass fiber strands and process for making the package and continuous strand mat
EP0300976A1 (en) * 1987-04-02 1989-01-25 SANTEX S.p.A. Automatic system for making fabric layers to be packaged in a parcel shape
FR2662431A1 (en) * 1990-05-23 1991-11-29 Bihr Freres Filature Ficelleri Reel of wire, string, rope or the like, which unwinds from the inside
US5147040A (en) * 1989-10-06 1992-09-15 Nitto Boseki Co., Ltd. Roving package wrapper
US5238114A (en) * 1992-04-10 1993-08-24 Owens-Corning Fiberglas Technology, Inc. Strand packages
US5551563A (en) * 1994-12-21 1996-09-03 Ppg Industries, Inc. Packaging units for packaging a plurality of generally cylindrical objects
US5867969A (en) * 1995-10-10 1999-02-09 Quinones; Victor Manuel Method for wrapping steel
US6012587A (en) * 1998-07-20 2000-01-11 Tenneco Packaging Inc. Pallet load corner protector with locking tabs
US6047523A (en) * 1998-03-18 2000-04-11 Tenneco Packaging Inc. Vertical packaging of webbing rolls
US6576305B2 (en) * 1996-06-07 2003-06-10 Saint-Gobain Vetrotex America, Inc. Package having a multilayer film disposed around a layered coil of filament strands
US20050263640A1 (en) * 2004-06-01 2005-12-01 David Vanderslice Storage spool
WO2008025084A1 (en) * 2006-08-30 2008-03-06 Merctech Pty Ltd An external cover for a spool of thread to prevent thread from freely coming off as the spool is being used
ITMI20121252A1 (en) * 2012-07-18 2014-01-19 Trafilerie Galli Bruno & C S N C COIL STRUCTURE, PARTICULARLY FOR THE WINDING UP OF PRE-STRENGTH STEEL WIRES.
US20140230375A1 (en) * 2008-08-08 2014-08-21 Furukawa Electric Co., Ltd. Method for packing cable
EP2835332A1 (en) * 2013-08-08 2015-02-11 Grupo General Cable Sistemas S.A. Procedure for the manufacture of a cable roll with individual packaging and cable roll with individual packaging obtained by this procedure
USD761637S1 (en) 2014-05-07 2016-07-19 Lincoln Global, Inc. Wire coil package
US9950895B2 (en) 2014-07-03 2018-04-24 Lincoln Global, Inc. Welding wire coil packaging system
US10292545B2 (en) 2016-11-18 2019-05-21 RD Textiles, LLC Center-pull dispenser system
US10538379B2 (en) 2014-03-11 2020-01-21 Lincoln Global, Inc. Welding wire coil package
US10919727B2 (en) * 2017-02-14 2021-02-16 Jushi Group Co., Ltd. Process for knotting roving packages
US11820538B2 (en) 2020-09-29 2023-11-21 Gpcp Ip Holdings Llc Hole punching and spindle stuffing after bagger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2035930A (en) * 1935-01-30 1936-03-31 Columbian Rope Co Twine package
US2720309A (en) * 1953-06-19 1955-10-11 Goodyear Tire & Rubber Twine package
US2878628A (en) * 1956-03-14 1959-03-24 American Thread Co Method of and machine for wrapping articles, and wrapped articles
US3022543A (en) * 1958-02-07 1962-02-27 Grace W R & Co Method of producing film having improved shrink energy
US3092439A (en) * 1961-03-21 1963-06-04 Grace W R & Co Method for producing a reinforced edge aperture in heat shrinkable material
US3371877A (en) * 1965-05-14 1968-03-05 Owens Corning Fiberglass Corp Method for packaging multistrand roving
US3382971A (en) * 1964-10-16 1968-05-14 Eastman Kodak Co Packaging twine
US3399761A (en) * 1966-07-04 1968-09-03 Asahi Chemical Ind Yarn package
US3700185A (en) * 1970-02-17 1972-10-24 Anaconda Wire & Cable Co Dispensable coil package

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2035930A (en) * 1935-01-30 1936-03-31 Columbian Rope Co Twine package
US2720309A (en) * 1953-06-19 1955-10-11 Goodyear Tire & Rubber Twine package
US2878628A (en) * 1956-03-14 1959-03-24 American Thread Co Method of and machine for wrapping articles, and wrapped articles
US3022543A (en) * 1958-02-07 1962-02-27 Grace W R & Co Method of producing film having improved shrink energy
US3092439A (en) * 1961-03-21 1963-06-04 Grace W R & Co Method for producing a reinforced edge aperture in heat shrinkable material
US3382971A (en) * 1964-10-16 1968-05-14 Eastman Kodak Co Packaging twine
US3371877A (en) * 1965-05-14 1968-03-05 Owens Corning Fiberglass Corp Method for packaging multistrand roving
US3399761A (en) * 1966-07-04 1968-09-03 Asahi Chemical Ind Yarn package
US3700185A (en) * 1970-02-17 1972-10-24 Anaconda Wire & Cable Co Dispensable coil package

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4147253A (en) * 1977-06-09 1979-04-03 Desoto, Inc. Supply package for wet-impregnated multifilament roving
WO1978000016A1 (en) * 1977-06-09 1978-12-21 R Brook Supply package for wet-impregnated multifilament roving
US4264010A (en) * 1978-10-04 1981-04-28 Mitsubishi Plastics Industries, Ltd. Heat shrinkable polyvinyl chloride film
DE2953552C1 (en) * 1979-02-21 1984-09-27 Owens-Corning Fiberglas Corp., Toledo, Ohio Diaper pack and method of making the same
WO1980001792A1 (en) * 1979-02-21 1980-09-04 Owens Corning Fiberglass Corp Packaged strand
US4220295A (en) * 1979-02-21 1980-09-02 Owens-Corning Fiberglas Corporation Packaged strand
FR2449615A1 (en) * 1979-02-21 1980-09-19 Owens Corning Fiberglass Corp COIL OF THREAD SURROUNDED BY AN ENVELOPE AND METHOD FOR OBTAINING SUCH A COIL
US4460086A (en) * 1979-10-01 1984-07-17 Ppg Industries, Inc. Tubular glass fiber package and method
FR2485490A1 (en) * 1980-06-24 1981-12-31 Oda Gosen Kogyo Kk PACKAGING OF ENVELOPED FILES HAVING EFFICIENT ENDS AND A PROCESS OF MANUFACTURING THE SAME
US4348439A (en) * 1981-02-18 1982-09-07 Certain-Teed Corporation Package of wound strand material
US4475651A (en) * 1981-11-05 1984-10-09 Elsner Engineering Works, Inc. Roll-wrapping apparatus, method and intermediate product
US4467916A (en) * 1982-04-26 1984-08-28 Ppg Industries, Inc. Tubular glass fiber package and method
US4546880A (en) * 1983-06-02 1985-10-15 Ppg Industries, Inc. Shippable package of glass fiber strands and process for making the package and continuous strand mat
US4493464A (en) * 1983-09-19 1985-01-15 Owens-Corning Fiberglas Corporation Packaged strand
EP0300976A1 (en) * 1987-04-02 1989-01-25 SANTEX S.p.A. Automatic system for making fabric layers to be packaged in a parcel shape
US5147040A (en) * 1989-10-06 1992-09-15 Nitto Boseki Co., Ltd. Roving package wrapper
FR2662431A1 (en) * 1990-05-23 1991-11-29 Bihr Freres Filature Ficelleri Reel of wire, string, rope or the like, which unwinds from the inside
US5238114A (en) * 1992-04-10 1993-08-24 Owens-Corning Fiberglas Technology, Inc. Strand packages
US5551563A (en) * 1994-12-21 1996-09-03 Ppg Industries, Inc. Packaging units for packaging a plurality of generally cylindrical objects
US5867969A (en) * 1995-10-10 1999-02-09 Quinones; Victor Manuel Method for wrapping steel
US20030207055A1 (en) * 1996-06-07 2003-11-06 Williams Allen C. Package having a multilayer film disposed around a layered coil of filament strands
US6576305B2 (en) * 1996-06-07 2003-06-10 Saint-Gobain Vetrotex America, Inc. Package having a multilayer film disposed around a layered coil of filament strands
US6047523A (en) * 1998-03-18 2000-04-11 Tenneco Packaging Inc. Vertical packaging of webbing rolls
US6012587A (en) * 1998-07-20 2000-01-11 Tenneco Packaging Inc. Pallet load corner protector with locking tabs
US20050263640A1 (en) * 2004-06-01 2005-12-01 David Vanderslice Storage spool
WO2008025084A1 (en) * 2006-08-30 2008-03-06 Merctech Pty Ltd An external cover for a spool of thread to prevent thread from freely coming off as the spool is being used
US20100108795A1 (en) * 2006-08-30 2010-05-06 Merctech Pty Ltd External cover for a spool of thread to prevent thread from freely coming off as the spool is being used
US8302894B2 (en) 2006-08-30 2012-11-06 Merctech Pty Ltd External cover for a spool of thread to prevent thread from freely coming off as the spool is being used
AU2007291955B2 (en) * 2006-08-30 2014-01-23 Merctech Pty Ltd An external cover for a spool of thread to prevent thread from freely coming off as the spool is being used
US9604742B2 (en) * 2008-08-08 2017-03-28 Furukawa Electric Co., Ltd. Method for packing cable
US20140230375A1 (en) * 2008-08-08 2014-08-21 Furukawa Electric Co., Ltd. Method for packing cable
ITMI20121252A1 (en) * 2012-07-18 2014-01-19 Trafilerie Galli Bruno & C S N C COIL STRUCTURE, PARTICULARLY FOR THE WINDING UP OF PRE-STRENGTH STEEL WIRES.
EP2835332A1 (en) * 2013-08-08 2015-02-11 Grupo General Cable Sistemas S.A. Procedure for the manufacture of a cable roll with individual packaging and cable roll with individual packaging obtained by this procedure
US10538379B2 (en) 2014-03-11 2020-01-21 Lincoln Global, Inc. Welding wire coil package
USD761637S1 (en) 2014-05-07 2016-07-19 Lincoln Global, Inc. Wire coil package
US9950895B2 (en) 2014-07-03 2018-04-24 Lincoln Global, Inc. Welding wire coil packaging system
US10858213B2 (en) 2014-07-03 2020-12-08 Lincoln Global, Inc. Welding wire coil packaging system
US10292545B2 (en) 2016-11-18 2019-05-21 RD Textiles, LLC Center-pull dispenser system
US10919727B2 (en) * 2017-02-14 2021-02-16 Jushi Group Co., Ltd. Process for knotting roving packages
US11820538B2 (en) 2020-09-29 2023-11-21 Gpcp Ip Holdings Llc Hole punching and spindle stuffing after bagger

Similar Documents

Publication Publication Date Title
US3915301A (en) Covered tubular package of glass roving and method of making
US5147040A (en) Roving package wrapper
US3983997A (en) Yarn package and method for mixing and dispensing
US4671043A (en) Process and device for overwrapping containers and the like
US3700185A (en) Dispensable coil package
EP0636098A1 (en) Container for packaging and unwinding a coil of wire
US4553707A (en) Process for winding wire upon a reel
US4763785A (en) Center-pull fiber package and method for producing the package
US3747746A (en) Method of enclosing a package of flexible material and package produced thereby
US3410394A (en) Packaging articles with heat shrinkable tubing
CA1167014A (en) Package of wound strand material
US3109540A (en) Textile shipping package
US4300734A (en) Packaged strand
US3373540A (en) Method of bundling
US5238114A (en) Strand packages
US5306371A (en) Apparatus and method to release a filament wound tube from a mandrel
US3934767A (en) Textile package of a cellular plastic core with wound yarn
US3732974A (en) Fiber package comprising overlying wraps of a fibrous tape
US4493464A (en) Packaged strand
US5794775A (en) Packaging container for elastic filar material
JPH0684188B2 (en) Method for manufacturing roving package package
JPS6160570A (en) Carbon fiber package
US11708201B2 (en) Bundle of tubular and/or rod shaped glass articles, method for its fabrication as well as for unpacking said bundle
US2573816A (en) Rayon cake package
JP5381835B2 (en) Glass fiber bundle package and method for producing glass fiber bundle package

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, ONE RODNEY SQUARE NORTH,

Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351

Effective date: 19861103

Owner name: WADE, WILLIAM, J., ONE RODNEY SQUARE NORTH, WILMIN

Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351

Effective date: 19861103

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351

Effective date: 19861103

Owner name: WADE, WILLIAM, J., DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351

Effective date: 19861103

AS Assignment

Owner name: OWENS-CORNING FIBERGLAS CORPORATION, FIBERGLAS TOW

Free format text: TERMINATION OF SECURITY AGREEMENT RECORDED NOV. 13, 1986. REEL 4652 FRAMES 351-420;ASSIGNORS:WILMINGTON TRUST COMPANY, A DE. BANKING CORPORATION;WADE, WILLIAM J. (TRUSTEES);REEL/FRAME:004903/0501

Effective date: 19870730

Owner name: OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE

Free format text: TERMINATION OF SECURITY AGREEMENT RECORDED NOV. 13, 1986. REEL 4652 FRAMES 351-420;ASSIGNORS:WILMINGTON TRUST COMPANY, A DE. BANKING CORPORATION;WADE, WILLIAM J. (TRUSTEES);REEL/FRAME:004903/0501

Effective date: 19870730

AS Assignment

Owner name: OWENS-CORNING FIBERGLAS TECHNOLOGY INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE;REEL/FRAME:006041/0175

Effective date: 19911205