US3919074A - Process for the conversion of hydrocarbonaceous black oil - Google Patents

Process for the conversion of hydrocarbonaceous black oil Download PDF

Info

Publication number
US3919074A
US3919074A US499741A US49974174A US3919074A US 3919074 A US3919074 A US 3919074A US 499741 A US499741 A US 499741A US 49974174 A US49974174 A US 49974174A US 3919074 A US3919074 A US 3919074A
Authority
US
United States
Prior art keywords
conversion
heater
black oil
percent
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US499741A
Inventor
John G Gatsis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell UOP LLC
Universal Oil Products Co
Original Assignee
Universal Oil Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Oil Products Co filed Critical Universal Oil Products Co
Priority to US499741A priority Critical patent/US3919074A/en
Application granted granted Critical
Publication of US3919074A publication Critical patent/US3919074A/en
Assigned to UOP, DES PLAINES, IL, A NY GENERAL PARTNERSHIP reassignment UOP, DES PLAINES, IL, A NY GENERAL PARTNERSHIP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KATALISTIKS INTERNATIONAL, INC., A CORP. OF MD
Assigned to UOP, A GENERAL PARTNERSHIP OF NY reassignment UOP, A GENERAL PARTNERSHIP OF NY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: UOP INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions

Definitions

  • ABSTRACT A pmeess for the conversion of u h Lll'OCLlfbUflllCCttllS hlttek oil. wherein a heated portion of the charge stuck is rec ⁇ e
  • Petroleum crude oils particularly the heavy oils extracted from tar sands, topped or reduced crudes, and vaccum residuum, etc., contain high molecular weight sulfurous compounds in exceedingly large quantities.
  • such crude, or black oils contain excessive quantities of nitrogenous compounds, high molecular weight organo-metallic complexes principally comprising nickel and vanadium, and asphaltic material.
  • nitrogenous compounds high molecular weight organo-metallic complexes principally comprising nickel and vanadium, and asphaltic material.
  • an abundant supply of such hydrocarbonaceous material exists, most of which has a gravity less than 20.0 AP] at 60F, and a significant proportion of which has a gravity less than 10.0.
  • This material is generally further characterized by a boiling range indicating that percent or more, by volume boils above a temperature of about 1,050F.
  • the present invention is particularly adaptable to the catalytic conversion of black oils into distillable hydrocarbons.
  • specific examples of the black oils to which the present scheme in uniquely applicable include a vacuum tower bottoms product having a gravity of 7.1 API at 60F. containing 4.05 percent by weight of sulfur and 23.7 percent by weight of asphaltics; a topped" Middle East Kuwait crude oil, having a gravity of 110 AP] at 60F., containing 10.1 percent by weight of asphaltenes and 5.20 percent by weight of sulfur; and a vacuum residuum having a gravity of 8.8 APl at 60F, containing 3.0 percent by weight of sulfur and 3,400 ppm. of nitrogen and having a 20.0 percent volumetric distillation point of 1,055F.
  • This asphaltic material consists primarily of high molecular weight, non-distillable coke precursors, insoluble in light hydrocarbons such as pentane or heptane, and which are often found to be complexed with nitrogen, metals and especially sulfur.
  • the asphaltic material is found to be colloidally dispersed within the crude oil, and, when subjected to elevated temperatures, has the tendency to flocculate and polymerize whereby the conversion thereof to more valuable oilsoluble products becomes extremely difficult.
  • a principal object of the present invention is to retard and inhibit the formation of undesirable coke and polymers on the heat transfer surfaces of the primary heater in a process for the conversion of hydrocarbonaceous black oil.
  • Another object is to promote better initial heat transfer rates in such a heater which will permit a lower temperature for the heat transfer surfaces which. in turn, will minimize coke-producing high temperatures.
  • Yet another object is to extend the length of time between maintenance of the heat exchange surfaces for the removal of accumulated coke and polymers.
  • the present invention relates to a process for the conversion of a hydrocarbonaceous black oil, which process comprises the steps of: (a) admixing said black oil with hydrogen and heating the resulting mixture in a heater to a temperature above about 600F.; (b) recycling at least a portion of the heated mixture to the inlet of said heater; (c) contacting at least a portion of the heated mixture with a catalytic composite in a conversion zone maintained at hydrocarbon conversion conditions; and, (d) recovering a converted hydrocarbon product.
  • a black oil is intended to connote a hydrocarbonaceous mixture of which at least about 10 percent boils above a temperature of about l,050F., and which has a gravity, API at 60F., of about 20 or less.
  • the conversion conditions hereinafter enumerated are well known and commercially employed.
  • the conversion conditions include temperatures above about 600F., with an upper limit of about 800F., measured at the inlet to the catalytic reaction zone. Since the bulk of the reactions are exothermic, the reaction zone effluent will be at a higher temperature. In order to preserve catalyst stability, it is preferred to control the inlet temperature such that the effluent temperature does not exceed about 900F.
  • Hydrogen is admixed with the black oil charge stock by compressive means in an amount generally less than about 20,000 SCFB, at the selected pressure and preferably in an amount of from about 1,000 to about 10,000 SCFB.
  • the operating pressure will be greater than 500 psig. and generally in the range of about 1,500 psig. to about 5,000 psig. [t is not essential to my invention to employ a particular type of reaction zone. Upflow, downflow or radial flow reaction zones may suitably be employed within the reaction zone in a fixed bed, moving bed, ebullating bed or a slurry system.
  • the type, form or composition of the catalyst is not essential to my invention and any suitable black oil hydrocarbon conversion catalyst may be selected.
  • the catalyst disposed within a fixed bed or moving bed reaction zone can be characterized as comprising a metallic component having hydrogenation activity. which component is composited with a refractory inorganic oxide carrier material of either synthetic or natural origin.
  • a refractory inorganic oxide carrier material of either synthetic or natural origin.
  • the precise composition and method of manufacturing the carrier material is not considered essential to the present process, although a siliceous carrier, such as 88 percent alumina and 12 percent silica, or 63 percent alumina and 37 percent silica, or an all alumina carrier. are generally preferred.
  • Suitable metallic components having hydrogenation activity are those selected from the group consisting of the metals of Group VI'B and VIII of the Periodic Table, as indicated in the Periodic Chart of the Elements, Fisher Scientific Company (1953).
  • the catalytic composite may comprise one or more metallic components from the group of molybdenum, tungsten, chromium, iron, cobalt, nickel, platinum, palladium, iridium, osmium, rhodium, ruthenium and mixtures thereof.
  • concentration of the catalytically active metallic component, or components. is primarily dependent upon the particular metal as well as the characteristics of the charge stock.
  • the metallic components of Group Vl-B are preferably present in an amount within the range of about l.0 percent to about 20.0 percent by weight, the iron-group metals in an amount within the range of about 0.2 percent to about 10.0 percent by weight, whereas the platinum-group metals are preferably present in an amount within the range of about 0.l percent to about 5.0 percent by weight, all of which are calculated as if the components existed within the finished catalytic composite as the elemental metal.
  • the refractory inorganic oxide carrier material may comprise alumina, silica, zirconia, magnesia, titania, boria, strontia, hafnia, and mixtures of the two or more including silica-alumina, alumina-silica-boron phosphate, silica-zirconia, silica-magnesia, silica-titania, alumina zirconia, alumina-magnesia, alumina-titania, magnesia-zirconia, titania-zirconia, magnesia-titania, silica-alumina-zirconia, silica-alumina-magnesia, silicaalumina-titania, silica-magnesia-zirconia, silicaalumina-boria, etc.
  • a carrier material containing at least a portion of silica, and preferably a composite of alumina and silica with alumina being in the greater proportion.
  • the catalysts utilized in a slurry system preferably contain at least one metal selected from the metals of Group VLB, V-B and VIII. Slurry system catalysts usually are colloidally dispersed in the hydrocarbonaceous charge stock and may be supported or unsupported.
  • EXAMPLE I A topped Middle-East Kuwait crude containing 5.2 percent by weight sulfur and to percent by weight oilinsoluble asphaltenic material and having a gravity of l l A?” at 60 "F. is selected for desulfurization in a catalytic reaction zone containing a desulfurization catalyst which contains 2 percent by weight nickel and I6 percent by weight molybdenum composited with a carrier material of 88 percent alumina and 12 percent silica.
  • the desulfurization catalyst is loaded into fixed beds in a downflow catalytic reaction zone.
  • the topped crude is admixed with sufficient hydrogen to achieve a hydrogen circulation rate of 6,000 SCFB.
  • the admixture of topped crude and hydrogen is passed over the heat exchange surfaces of a primary heater and then into the catalytic reaction zone.
  • a desulfurized hydrocarbonaceous black oil is recovered from the reaction zone effluent.
  • a target 1 percent residual sulfur (the equivalent of percent desulfurization) in the hydrocarbon product is maintained by periodically adjusting the outlet temperature of the primary heater. With a liquid hourly space velocity of 0.9 hr. the initial catalyst inlet temperature required to reach the l percent target is 725F.
  • the hereinabove processing scheme is continuously operated for 90 days and then is shut down. Inspection of the heat exchange surfaces shows that the carbon and polymer buildup on these surfaces amounts to 40 grams per square meter.
  • Example ll The processing scheme in Example I is modified to permit a slipstream of heated black oil to be taken from the effluent of the primary heater and recycled to the inlet of said primary heater.
  • the heat exchange surfaces are thoroughly cleaned to remove the accumulated carbon and polymers.
  • a fresh batch of catalyst which is identical to that used in Example I is loaded into the catalytic reaction zone and fresh topped crude is desulfurized at the same operating conditions utilized in Example 1 except that 10 percent of the liquid effluent from the primary heater is recycled to the inlet of the primary heater.
  • the processing scheme is also continuously operated for 90 days and is then shut down. Inspection of the heat exchange surfaces shows that the carbon and polymer buildup on these surfaces amounts to 30 grams per square meter which is considerably less than that produced in Example I.
  • a process for the conversion of a hydrocarbonaceous black oil which process comprises the steps of:

Abstract

A process for the conversion of a hydrocarbonaceous black oil, wherein a heated portion of the charge stock is recycled to the inlet of the charge heater, is disclosed.

Description

United States Patent m1 Gatsis l l PROCESS FOR THE CONVERSION OF HYDROCARBONACEOUS BLACK OIL [75] Inventor: John G. Gatsis, Des Pl'ttincs. Ill.
[73] Assignce: Universal Oil Products Company, Des Pluines, Ill.
[32} Filed: Aug. 22 1974 [ll Appl. No.: 499,741
l.H-lI.754 NW3] Herthel INK/4R X I Nov. 11, 1975 li'llhhl NW4) Muth Imus R l'l lblh' 731957 Burr et (ll... IIISSRGI 1.953.514 4/1960 Wilkins............. INS/Q5 lllifilfi llwllhi Watkins... BUSH-l3 .mZlhHZ-l ll. W65 MeKinne et all. H JUN/I43 1124A) llrl lffi Schlinger et ul. ZUh'lHI? 122N701 ll/IIhh D(l\\d et ul... INN/4H R $496,005 I/l F/tl l.u\\i H JUN/57 [57] ABSTRACT A pmeess for the conversion of u h Lll'OCLlfbUflllCCttllS hlttek oil. wherein a heated portion of the charge stuck is rec \e|ed to the inlet of the charge heater. is disclused.
4 Claims. No Drawings PROCESS FOR THE CONVERSION OF I-IYDROCARBONACEOUS BLACK OIL DISCLOSURE The invention described herein is adaptable to a process for the conversion of petroleum crude oil into boiling hydrocarbon products. More specifically. the present invention is directed toward a process for converting atmospheric tower bottoms products, vacuum tower bottoms products, crude oil residuum, topped crude oils, crude oils extracted from tar sands, etc.. which are sometimes referred to as black oils," and which contain a significant quantity of asphaltic material.
Petroleum crude oils, particularly the heavy oils extracted from tar sands, topped or reduced crudes, and vaccum residuum, etc., contain high molecular weight sulfurous compounds in exceedingly large quantities. In addition, such crude, or black oils contain excessive quantities of nitrogenous compounds, high molecular weight organo-metallic complexes principally comprising nickel and vanadium, and asphaltic material. Currently, an abundant supply of such hydrocarbonaceous material exists, most of which has a gravity less than 20.0 AP] at 60F, and a significant proportion of which has a gravity less than 10.0. This material is generally further characterized by a boiling range indicating that percent or more, by volume boils above a temperature of about 1,050F. The conversion of at least a portion of the material into distillable hydrocarbons--i.e., those boiling below about l,050F.has hitherto been considered nonfeasible from an economic standpoint. Yet, the abundant supply thereof virtually demands such conversion, especially for the purpose of satisfying the ever-increasing need for greater volumes of the lower boiling distillables.
The present invention is particularly adaptable to the catalytic conversion of black oils into distillable hydrocarbons. Specific examples of the black oils to which the present scheme in uniquely applicable, include a vacuum tower bottoms product having a gravity of 7.1 API at 60F. containing 4.05 percent by weight of sulfur and 23.7 percent by weight of asphaltics; a topped" Middle East Kuwait crude oil, having a gravity of 110 AP] at 60F., containing 10.1 percent by weight of asphaltenes and 5.20 percent by weight of sulfur; and a vacuum residuum having a gravity of 8.8 APl at 60F, containing 3.0 percent by weight of sulfur and 3,400 ppm. of nitrogen and having a 20.0 percent volumetric distillation point of 1,055F. The principal difficulties, attendant the conversion of black oils, stem from the presence of the asphaltic material. This asphaltic material consists primarily of high molecular weight, non-distillable coke precursors, insoluble in light hydrocarbons such as pentane or heptane, and which are often found to be complexed with nitrogen, metals and especially sulfur. Generally, the asphaltic material is found to be colloidally dispersed within the crude oil, and, when subjected to elevated temperatures, has the tendency to flocculate and polymerize whereby the conversion thereof to more valuable oilsoluble products becomes extremely difficult.
Not only does the flocculation and polymerization of the asphaltic material decrease the yield of valuable hydrocarbon products but when these coke precursors form coke during heating and prior to entering the catalytic reaction zone, the internal surfaces of the heaters 2 which contact the oil become coated with coke. Such coking or fouling of the heaters heat transfer surface causes less favorable heat transfer rates and in order to compensate for this lower heat transfer rate, the heater temperatures must be increased which only further aggravates the coking problem.
I have discovered that this problem can be alleviated by providing a recycle of previously heated black oil to the inlet of the heater to ensure adequate turbulence and ample mixing of the black oil being heated. This recycle will lessen the temperature gradient across the heat transfer area of the heater, and provide a more uniform oil temperature in the entire cross-section of the flowing black oil. Furthermore, this recycle will promote better heat transfer, thereby lowering the temperature of the heat transfer surface which, in turn, lessens the propensity of the black oil along with the asphaltenes contained therein to form coke and heavy polymers.
A principal object of the present invention is to retard and inhibit the formation of undesirable coke and polymers on the heat transfer surfaces of the primary heater in a process for the conversion of hydrocarbonaceous black oil.
Another object is to promote better initial heat transfer rates in such a heater which will permit a lower temperature for the heat transfer surfaces which. in turn, will minimize coke-producing high temperatures.
Yet another object is to extend the length of time between maintenance of the heat exchange surfaces for the removal of accumulated coke and polymers.
In one embodiment, therefore, the present invention relates to a process for the conversion of a hydrocarbonaceous black oil, which process comprises the steps of: (a) admixing said black oil with hydrogen and heating the resulting mixture in a heater to a temperature above about 600F.; (b) recycling at least a portion of the heated mixture to the inlet of said heater; (c) contacting at least a portion of the heated mixture with a catalytic composite in a conversion zone maintained at hydrocarbon conversion conditions; and, (d) recovering a converted hydrocarbon product.
A black oil is intended to connote a hydrocarbonaceous mixture of which at least about 10 percent boils above a temperature of about l,050F., and which has a gravity, API at 60F., of about 20 or less. As will be readily noted by those skilled in the art of petroleum refining techniques, the conversion conditions hereinafter enumerated are well known and commercially employed. The conversion conditions include temperatures above about 600F., with an upper limit of about 800F., measured at the inlet to the catalytic reaction zone. Since the bulk of the reactions are exothermic, the reaction zone effluent will be at a higher temperature. In order to preserve catalyst stability, it is preferred to control the inlet temperature such that the effluent temperature does not exceed about 900F. Hydrogen is admixed with the black oil charge stock by compressive means in an amount generally less than about 20,000 SCFB, at the selected pressure and preferably in an amount of from about 1,000 to about 10,000 SCFB. The operating pressure will be greater than 500 psig. and generally in the range of about 1,500 psig. to about 5,000 psig. [t is not essential to my invention to employ a particular type of reaction zone. Upflow, downflow or radial flow reaction zones may suitably be employed within the reaction zone in a fixed bed, moving bed, ebullating bed or a slurry system.
Likewise. the type, form or composition of the catalyst is not essential to my invention and any suitable black oil hydrocarbon conversion catalyst may be selected. The catalyst disposed within a fixed bed or moving bed reaction zone can be characterized as comprising a metallic component having hydrogenation activity. which component is composited with a refractory inorganic oxide carrier material of either synthetic or natural origin. The precise composition and method of manufacturing the carrier material is not considered essential to the present process, although a siliceous carrier, such as 88 percent alumina and 12 percent silica, or 63 percent alumina and 37 percent silica, or an all alumina carrier. are generally preferred. Suitable metallic components having hydrogenation activity are those selected from the group consisting of the metals of Group VI'B and VIII of the Periodic Table, as indicated in the Periodic Chart of the Elements, Fisher Scientific Company (1953). Thus the catalytic composite may comprise one or more metallic components from the group of molybdenum, tungsten, chromium, iron, cobalt, nickel, platinum, palladium, iridium, osmium, rhodium, ruthenium and mixtures thereof. The concentration of the catalytically active metallic component, or components. is primarily dependent upon the particular metal as well as the characteristics of the charge stock. For example, the metallic components of Group Vl-B are preferably present in an amount within the range of about l.0 percent to about 20.0 percent by weight, the iron-group metals in an amount within the range of about 0.2 percent to about 10.0 percent by weight, whereas the platinum-group metals are preferably present in an amount within the range of about 0.l percent to about 5.0 percent by weight, all of which are calculated as if the components existed within the finished catalytic composite as the elemental metal.
The refractory inorganic oxide carrier material may comprise alumina, silica, zirconia, magnesia, titania, boria, strontia, hafnia, and mixtures of the two or more including silica-alumina, alumina-silica-boron phosphate, silica-zirconia, silica-magnesia, silica-titania, alumina zirconia, alumina-magnesia, alumina-titania, magnesia-zirconia, titania-zirconia, magnesia-titania, silica-alumina-zirconia, silica-alumina-magnesia, silicaalumina-titania, silica-magnesia-zirconia, silicaalumina-boria, etc. It is preferred to utilize a carrier material containing at least a portion of silica, and preferably a composite of alumina and silica with alumina being in the greater proportion. The catalysts utilized in a slurry system preferably contain at least one metal selected from the metals of Group VLB, V-B and VIII. Slurry system catalysts usually are colloidally dispersed in the hydrocarbonaceous charge stock and may be supported or unsupported.
The following examples are given to illustrate the process of the present invention and the effectiveness thereof in inhibiting and retarding the formation of undesirable coke and polymers of the heat transfer surfaces of the primary heater in a process for the conversion of hydrocarbonaceous black oil. In presenting these examples, it is not intended that the invention be limited to the specific illustrations, nor is it intended that the process be limited to particular operating conditions, catalytic composite, processing techniques, charge stocks, etc. It is understood, therefore, that the present invention is merely illustrated by the specifics hereinafter set forth.
EXAMPLE I A topped Middle-East Kuwait crude containing 5.2 percent by weight sulfur and to percent by weight oilinsoluble asphaltenic material and having a gravity of l l A?! at 60 "F. is selected for desulfurization in a catalytic reaction zone containing a desulfurization catalyst which contains 2 percent by weight nickel and I6 percent by weight molybdenum composited with a carrier material of 88 percent alumina and 12 percent silica. The desulfurization catalyst is loaded into fixed beds in a downflow catalytic reaction zone. The topped crude is admixed with sufficient hydrogen to achieve a hydrogen circulation rate of 6,000 SCFB. The admixture of topped crude and hydrogen is passed over the heat exchange surfaces of a primary heater and then into the catalytic reaction zone. A desulfurized hydrocarbonaceous black oil is recovered from the reaction zone effluent. A target 1 percent residual sulfur (the equivalent of percent desulfurization) in the hydrocarbon product is maintained by periodically adjusting the outlet temperature of the primary heater. With a liquid hourly space velocity of 0.9 hr. the initial catalyst inlet temperature required to reach the l percent target is 725F. The hereinabove processing scheme is continuously operated for 90 days and then is shut down. Inspection of the heat exchange surfaces shows that the carbon and polymer buildup on these surfaces amounts to 40 grams per square meter.
EXAMPLE ll The processing scheme in Example I is modified to permit a slipstream of heated black oil to be taken from the effluent of the primary heater and recycled to the inlet of said primary heater. The heat exchange surfaces are thoroughly cleaned to remove the accumulated carbon and polymers. A fresh batch of catalyst which is identical to that used in Example I is loaded into the catalytic reaction zone and fresh topped crude is desulfurized at the same operating conditions utilized in Example 1 except that 10 percent of the liquid effluent from the primary heater is recycled to the inlet of the primary heater. The processing scheme is also continuously operated for 90 days and is then shut down. Inspection of the heat exchange surfaces shows that the carbon and polymer buildup on these surfaces amounts to 30 grams per square meter which is considerably less than that produced in Example I.
The foregoing specification and illustrative examples clearly indicate the means by which the present invention is effected, and the benefits afforded through the utilization thereof.
1 claim as my invention:
1. A process for the conversion of a hydrocarbonaceous black oil, which process comprises the steps of:
a. admixing said black oil with hydrogen and heating the resulting mixture in a heater to a temperature above about 600F.;
b. recycling at least a portion of the heated mixture to the inlet of said heater;
c. contacting at least a portion of the heated mixture with a catalytic composite in a conversion zone maintained at hydrocarbon conversion conditions; and,
d. recovering a converted hydrocarbon product.
2. The process of claim 1 further characterized in that said heater is a direct fired heater.
3,919,074 6 3. The process of claim I further characterized in a pressure of from about 500 psig. to about 5,000 psig.. that said black oil is derived from tar sand. shale or any a temperature of from about 600F. to about 900F.. a other inorganic oil-bearing substance. hydrogen gas circulation rate from about 1.000 SCFB 4. The process of claim I further characterized in 5 to about 20,000 SCFB. that said hydrocarbon conversion conditions comprise

Claims (4)

1. A PROCESS FOR THE CONVERSION OF A HYDROCARBONACEOUS BLACK OIL, WHICH PROCESS COMPRISES THE STEPS ODF: A. ADMIXING SAID BLACK OIL WITH HYDROGEN AND HEATING THE RESULTING MIXTURE IN A HEATER TO A TEMPERATURE ABOVE ABOUT 600*F., B. RECYCLING AT LEAST A PORTION OF THE HEATED MIXTURE TO THE INLET OF SAID HEATER, C. CONTACTING AT LEAST A PORTION OF THE HEATED MIXTURE WITH A CATALYTIC COMPOSITE IN A CONVERSION ZONE MAINTAINED AT HYDROCARBON CONVERSION CONDTIONS, AND, D. RECOVERING A CONVERTED HYDROCARBON PRODUCT.
2. The process of claim 1 further characterized in that said heater is a direct fired heater.
3. The process of claim 1 further characterized in that said black oil is derived from tar sand, shale or any other inorganic oil-bearing substance.
4. The process of claim 1 further characterized in that said hydrocarbon conversion conditions comprise a pressure of from about 500 psig. to about 5,000 psig., a temperature of from about 600*F. to about 900*F., a hydrogen gas circulation rate from about 1,000 SCFB to about 20,000 SCFB.
US499741A 1974-08-22 1974-08-22 Process for the conversion of hydrocarbonaceous black oil Expired - Lifetime US3919074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US499741A US3919074A (en) 1974-08-22 1974-08-22 Process for the conversion of hydrocarbonaceous black oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US499741A US3919074A (en) 1974-08-22 1974-08-22 Process for the conversion of hydrocarbonaceous black oil

Publications (1)

Publication Number Publication Date
US3919074A true US3919074A (en) 1975-11-11

Family

ID=23986503

Family Applications (1)

Application Number Title Priority Date Filing Date
US499741A Expired - Lifetime US3919074A (en) 1974-08-22 1974-08-22 Process for the conversion of hydrocarbonaceous black oil

Country Status (1)

Country Link
US (1) US3919074A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271007A (en) * 1979-11-20 1981-06-02 Gulf Canada Limited Method and apparatus for the prevention of solids deposits in a tubular reactor by pulsed flow
US4293402A (en) * 1980-03-10 1981-10-06 Phillips Petroleum Company Hydrocarbon heating
US5039396A (en) * 1990-07-30 1991-08-13 Texaco Inc. Hydrotreater feed/effluent heat exchange
US5110447A (en) * 1988-09-12 1992-05-05 Kasten, Eadie Technology Ltd. Process and apparatus for partial upgrading of a heavy oil feedstock
US5470458A (en) * 1989-02-01 1995-11-28 Ripley; Ian Method for the recovery of black oil residues
US5578197A (en) * 1989-05-09 1996-11-26 Alberta Oil Sands Technology & Research Authority Hydrocracking process involving colloidal catalyst formed in situ
US20030159758A1 (en) * 2002-02-26 2003-08-28 Smith Leslie G. Tenon maker
US20050241992A1 (en) * 2004-04-28 2005-11-03 Lott Roger K Fixed bed hydroprocessing methods and systems and methods for upgrading an existing fixed bed system
US7578928B2 (en) 2004-04-28 2009-08-25 Headwaters Heavy Oil, Llc Hydroprocessing method and system for upgrading heavy oil using a colloidal or molecular catalyst
US7815870B2 (en) 2004-04-28 2010-10-19 Headwaters Heavy Oil, Llc Ebullated bed hydroprocessing systems
US8034232B2 (en) 2007-10-31 2011-10-11 Headwaters Technology Innovation, Llc Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US8142645B2 (en) 2008-01-03 2012-03-27 Headwaters Technology Innovation, Llc Process for increasing the mono-aromatic content of polynuclear-aromatic-containing feedstocks
US9169449B2 (en) 2010-12-20 2015-10-27 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9644157B2 (en) 2012-07-30 2017-05-09 Headwaters Heavy Oil, Llc Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking
US9790440B2 (en) 2011-09-23 2017-10-17 Headwaters Technology Innovation Group, Inc. Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US10822553B2 (en) 2004-04-28 2020-11-03 Hydrocarbon Technology & Innovation, Llc Mixing systems for introducing a catalyst precursor into a heavy oil feedstock
US11091707B2 (en) 2018-10-17 2021-08-17 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with no recycle buildup of asphaltenes in vacuum bottoms
US11118119B2 (en) 2017-03-02 2021-09-14 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with less fouling sediment
US11414608B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor used with opportunity feedstocks
US11414607B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with increased production rate of converted products
US11421164B2 (en) 2016-06-08 2022-08-23 Hydrocarbon Technology & Innovation, Llc Dual catalyst system for ebullated bed upgrading to produce improved quality vacuum residue product
US11732203B2 (en) 2017-03-02 2023-08-22 Hydrocarbon Technology & Innovation, Llc Ebullated bed reactor upgraded to produce sediment that causes less equipment fouling

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1688855A (en) * 1923-02-14 1928-10-23 Universal Oil Prod Co Process for converting petroleum oils
US1842754A (en) * 1926-08-18 1932-01-26 Sinclair Refining Co Process of cracking hydrocarbons
US2472669A (en) * 1945-11-02 1949-06-07 Phillips Petroleum Co Preventing coke formation in preheater tubes
US2799628A (en) * 1953-04-24 1957-07-16 Phillips Petroleum Co Method for obtaining increased depth of flash vaporization
US2953514A (en) * 1957-10-07 1960-09-20 Socony Mobil Oil Co Inc Method of reducing heat exchanger fouling
US3215618A (en) * 1963-09-09 1965-11-02 Universal Oil Prod Co Hydrorefining of coke-forming hydrocarbon distillates
US3216924A (en) * 1963-01-31 1965-11-09 Gulf Research Development Co Process for the hydrogenation of an unsaturated hydrocarbon
US3224959A (en) * 1962-08-07 1965-12-21 Texaco Inc Hydroconversion of hydrocarbons with the use of a tubular reactor in the presence of hydrogen and the recycling of a portion of the tar-like viscous residue
US3228702A (en) * 1961-11-02 1966-01-11 Union Tank Car Co Inflatable seal for floating roof
US3496095A (en) * 1968-03-04 1970-02-17 Exxon Research Engineering Co Process for upgrading steam cracked fractions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1688855A (en) * 1923-02-14 1928-10-23 Universal Oil Prod Co Process for converting petroleum oils
US1842754A (en) * 1926-08-18 1932-01-26 Sinclair Refining Co Process of cracking hydrocarbons
US2472669A (en) * 1945-11-02 1949-06-07 Phillips Petroleum Co Preventing coke formation in preheater tubes
US2799628A (en) * 1953-04-24 1957-07-16 Phillips Petroleum Co Method for obtaining increased depth of flash vaporization
US2953514A (en) * 1957-10-07 1960-09-20 Socony Mobil Oil Co Inc Method of reducing heat exchanger fouling
US3228702A (en) * 1961-11-02 1966-01-11 Union Tank Car Co Inflatable seal for floating roof
US3224959A (en) * 1962-08-07 1965-12-21 Texaco Inc Hydroconversion of hydrocarbons with the use of a tubular reactor in the presence of hydrogen and the recycling of a portion of the tar-like viscous residue
US3216924A (en) * 1963-01-31 1965-11-09 Gulf Research Development Co Process for the hydrogenation of an unsaturated hydrocarbon
US3215618A (en) * 1963-09-09 1965-11-02 Universal Oil Prod Co Hydrorefining of coke-forming hydrocarbon distillates
US3496095A (en) * 1968-03-04 1970-02-17 Exxon Research Engineering Co Process for upgrading steam cracked fractions

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271007A (en) * 1979-11-20 1981-06-02 Gulf Canada Limited Method and apparatus for the prevention of solids deposits in a tubular reactor by pulsed flow
EP0029701A1 (en) * 1979-11-20 1981-06-03 Gulf Canada Limited Process and apparatus for the prevention of solids deposits in a tubular reactor
US4293402A (en) * 1980-03-10 1981-10-06 Phillips Petroleum Company Hydrocarbon heating
US5110447A (en) * 1988-09-12 1992-05-05 Kasten, Eadie Technology Ltd. Process and apparatus for partial upgrading of a heavy oil feedstock
US5470458A (en) * 1989-02-01 1995-11-28 Ripley; Ian Method for the recovery of black oil residues
US5578197A (en) * 1989-05-09 1996-11-26 Alberta Oil Sands Technology & Research Authority Hydrocracking process involving colloidal catalyst formed in situ
US5039396A (en) * 1990-07-30 1991-08-13 Texaco Inc. Hydrotreater feed/effluent heat exchange
US20030159758A1 (en) * 2002-02-26 2003-08-28 Smith Leslie G. Tenon maker
US8440071B2 (en) 2004-04-28 2013-05-14 Headwaters Technology Innovation, Llc Methods and systems for hydrocracking a heavy oil feedstock using an in situ colloidal or molecular catalyst
US9605215B2 (en) 2004-04-28 2017-03-28 Headwaters Heavy Oil, Llc Systems for hydroprocessing heavy oil
US7578928B2 (en) 2004-04-28 2009-08-25 Headwaters Heavy Oil, Llc Hydroprocessing method and system for upgrading heavy oil using a colloidal or molecular catalyst
US7815870B2 (en) 2004-04-28 2010-10-19 Headwaters Heavy Oil, Llc Ebullated bed hydroprocessing systems
US10941353B2 (en) 2004-04-28 2021-03-09 Hydrocarbon Technology & Innovation, Llc Methods and mixing systems for introducing catalyst precursor into heavy oil feedstock
US10822553B2 (en) 2004-04-28 2020-11-03 Hydrocarbon Technology & Innovation, Llc Mixing systems for introducing a catalyst precursor into a heavy oil feedstock
US8303802B2 (en) 2004-04-28 2012-11-06 Headwaters Heavy Oil, Llc Methods for hydrocracking a heavy oil feedstock using an in situ colloidal or molecular catalyst and recycling the colloidal or molecular catalyst
US8431016B2 (en) 2004-04-28 2013-04-30 Headwaters Heavy Oil, Llc Methods for hydrocracking a heavy oil feedstock using an in situ colloidal or molecular catalyst and recycling the colloidal or molecular catalyst
US20050241992A1 (en) * 2004-04-28 2005-11-03 Lott Roger K Fixed bed hydroprocessing methods and systems and methods for upgrading an existing fixed bed system
US10118146B2 (en) 2004-04-28 2018-11-06 Hydrocarbon Technology & Innovation, Llc Systems and methods for hydroprocessing heavy oil
US8673130B2 (en) 2004-04-28 2014-03-18 Headwaters Heavy Oil, Llc Method for efficiently operating an ebbulated bed reactor and an efficient ebbulated bed reactor
US9920261B2 (en) 2004-04-28 2018-03-20 Headwaters Heavy Oil, Llc Method for upgrading ebullated bed reactor and upgraded ebullated bed reactor
US7517446B2 (en) 2004-04-28 2009-04-14 Headwaters Heavy Oil, Llc Fixed bed hydroprocessing methods and systems and methods for upgrading an existing fixed bed system
US8557105B2 (en) 2007-10-31 2013-10-15 Headwaters Technology Innovation, Llc Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US8034232B2 (en) 2007-10-31 2011-10-11 Headwaters Technology Innovation, Llc Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US8142645B2 (en) 2008-01-03 2012-03-27 Headwaters Technology Innovation, Llc Process for increasing the mono-aromatic content of polynuclear-aromatic-containing feedstocks
US9169449B2 (en) 2010-12-20 2015-10-27 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9206361B2 (en) 2010-12-20 2015-12-08 Chevron U.S.A. .Inc. Hydroprocessing catalysts and methods for making thereof
US9790440B2 (en) 2011-09-23 2017-10-17 Headwaters Technology Innovation Group, Inc. Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US9969946B2 (en) 2012-07-30 2018-05-15 Headwaters Heavy Oil, Llc Apparatus and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking
US9644157B2 (en) 2012-07-30 2017-05-09 Headwaters Heavy Oil, Llc Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking
US11414608B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor used with opportunity feedstocks
US11414607B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with increased production rate of converted products
US11421164B2 (en) 2016-06-08 2022-08-23 Hydrocarbon Technology & Innovation, Llc Dual catalyst system for ebullated bed upgrading to produce improved quality vacuum residue product
US11118119B2 (en) 2017-03-02 2021-09-14 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with less fouling sediment
US11732203B2 (en) 2017-03-02 2023-08-22 Hydrocarbon Technology & Innovation, Llc Ebullated bed reactor upgraded to produce sediment that causes less equipment fouling
US11091707B2 (en) 2018-10-17 2021-08-17 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with no recycle buildup of asphaltenes in vacuum bottoms

Similar Documents

Publication Publication Date Title
US3919074A (en) Process for the conversion of hydrocarbonaceous black oil
US3992285A (en) Process for the conversion of hydrocarbonaceous black oil
US4729826A (en) Temperature controlled catalytic demetallization of hydrocarbons
US3501396A (en) Hydrodesulfurization of asphaltene-containing black oil
US5403469A (en) Process for producing FCC feed and middle distillate
US5178749A (en) Catalytic process for treating heavy oils
EP2272938B9 (en) Hydroprocessing method for upgrading heavy hydrocarbon feedstock using a colloidal catalyst
US4952306A (en) Slurry hydroprocessing process
US3558474A (en) Slurry process for hydrorefining petroleum crude oil
EP1753845B1 (en) Fixed bed hydroprocessing methods and systems and methods for upgrading an existing fixed bed system
US3859199A (en) Hydrodesulfurization of asphaltene-containing black oil
US4176048A (en) Process for conversion of heavy hydrocarbons
US3262874A (en) Hydrorefining of petroleum crude oil and catalyst therefor
US3231488A (en) Process for hydrorefining heavy hydrocarbon charge stocks and catalyst therefor
US3278421A (en) Hydrorefining of petroleum crude oil and catalyst therefor
US3472759A (en) Process for removal of sulfur and metals from petroleum materials
US2987468A (en) Oil cracking and hydrotreating process
US3849292A (en) Process for the conversion of heavy hydrocarbon charge stocks
US4062757A (en) Residue thermal cracking process in a packed bed reactor
US3836452A (en) Conversion of black oil with metal boride or borohydride catalyst
US4659452A (en) Multi-stage hydrofining process
US3215618A (en) Hydrorefining of coke-forming hydrocarbon distillates
US3494855A (en) Desulfurization of high metal black oils
US3796671A (en) Black oil conversion catalyst
US3551323A (en) Black oil conversion for maximum gasoline production

Legal Events

Date Code Title Description
AS Assignment

Owner name: UOP, DES PLAINES, IL, A NY GENERAL PARTNERSHIP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KATALISTIKS INTERNATIONAL, INC., A CORP. OF MD;REEL/FRAME:005006/0782

Effective date: 19880916

AS Assignment

Owner name: UOP, A GENERAL PARTNERSHIP OF NY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UOP INC.;REEL/FRAME:005077/0005

Effective date: 19880822