US3919387A - Process for producing high mesophase content pitch fibers - Google Patents

Process for producing high mesophase content pitch fibers Download PDF

Info

Publication number
US3919387A
US3919387A US318483A US31848372A US3919387A US 3919387 A US3919387 A US 3919387A US 318483 A US318483 A US 318483A US 31848372 A US31848372 A US 31848372A US 3919387 A US3919387 A US 3919387A
Authority
US
United States
Prior art keywords
solvent
mesophase
fibers
pitch
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US318483A
Inventor
Leonard S Singer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BP Corp North America Inc
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Priority to US318483A priority Critical patent/US3919387A/en
Application granted granted Critical
Publication of US3919387A publication Critical patent/US3919387A/en
Assigned to AMOCO CORPORATION, A CORP. OF INDIANA reassignment AMOCO CORPORATION, A CORP. OF INDIANA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: UNION CARBIDE CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/19Inorganic fiber

Definitions

  • ABSTRACT An improved process for producing carbon fibers from pitch which has been transformed. in part. to at liquid crystal or so-culled mes0phase state. According to the process. the mesophase content of fibers spun from such pitch is increased before the fibers are thermoset and carbonized by solvent extraction of the non-mesophase content of the fibers.
  • This invention relates to an improved process for producing carbon fibers from pitch which has been transformed, in part, to a liquid crystal or so-called mesophase" state. More particularly, this invention relates to an improved process for producing carbon fibers from pitch of this type wherein the mesophase content of fibers spun from such pitch is increased before the fibers are thermoset and carbonized by solvent extraction of the non-mesophase content of the fibers.
  • the carbon fibers produced in this manner have a highly oriented structure characterized by the presence of carbon crystallites preferentially aligned parallel to the fiber axis, and are graphitizable materials which when heated to graphitizing temperatues develop the three-dimensional order characteristic of polycrystalline graphite and graphitic-like properties associated therewith, such as high density and low electrical resistivity.
  • pitches having a high mesophase content can be thermoset in less time than carbonaceous fibers drawn from pitches having a lower mesophase content, it is desirable to employ pitches of high mesophase content in such process.
  • the fibers are usually prepared from pitches having a mesophase content of only from about 40 percent by weight to about percent by weight.
  • pitch fibers having a high meso phase content can be prepared from pitch fibers of lower mesophase content which have been spun from pitches of the type described in aforementioned co pending application Ser. No. 239,490, i.e., carbonaceous pitches which have been transformed, in part, to a liquid crystal or so-called mesophase" state, by treating the fibers with a solvent capable of dissolving the non-mesophase portion of the fiber but in which the mesophase portion is insoluble; and that the so-treated fibers can be converted by heat treatment into carbon fibers having a high Youngs modulus of elasticity and high tensile strength.
  • the invention takes advantage of the differences in solubility between the mesophase portion of the fiber and the non-mesophase portion to effect removal of the non-mesophase portion and produce a fibrous residue of higher mesophase content.
  • the nonmesophase portion of the spun fibers is readily soluble in organic solvents, such as quinoline and pyridine, while the mesophase portion is insoluble.
  • organic solvents such as quinoline and pyridine
  • This non-mesophase material can be substantially completely removed by the extraction or only partially, depending upon the relative amounts of mesophase and nonmesophase material present in the fibers, the diameter of the fibers, the particular solvent and the amount of solvent employed, the temperature of the solvent, and the extraction time.
  • the fibers produced in this manner have a high degree of preferred orientation of their molecules parallel to the fiber axis and can be converted by heat treatment into carbon fibers having a high Youngs modulus of elasticity and high tensile strength.
  • the carbon fibers so-produced have a highly oriented structure characterized by the presence of carbon crystallities preferentially aligned parallel to the fiber axis, and when heated to graphitizing temperatures develop the three-dimensional order characteristic of polycrystalline graphite and graphitic-like properties associated therewith, such as high density and low electrical resistance.
  • the fibers are characterized by the presence of large oriented graphitizable domains preferentially aligned parallel to the fiber axis, with the fibers after extraction, however, containing a lesser amount of non-mesophase material than before extraction.
  • substantially the entire pitch coalesces and takes on the superficial appearance of a mosaic structure where, however, the transition from one oriented region to another occurs smoothly and continuously through gradual curving lamellar regions rather than through sharp boundaries between uniform areas of orineted lamellae.
  • pitches containing such material are known as mesophase pitches.
  • Such pitches when heated above their softening points, are mixtures of two immiscible liquids, one the optically anisotropic, oriented mesophase portion in either spherulite or coalesced form, and the other the isotropic nonmesophase portion.
  • mesophase is derived from the Greek mesos" or intermediate" and indicates the pseudo-crystalline nature of this highly-oriented, optically anisotropic material.
  • pitches having a mesophase content of from about 40 percent by weight to about 70 percent by weight can easily be spun into fibers which can subsequently be converted by heat treatment into carbon fibers having a high Young's modulus of elasticity and high tensile strength.
  • fibers can also be spun from pitches having a mesophase content in excess of about 70 percent by weight, e.g., up to about 90 per cent by weight, these pitches are exceedingly difficult to work with because of their high softening temperatures, and fibers can only be spun from such pitches at elevated temperatures where the pitches readily undergo polymerization and/or coking.
  • the pitch be nonthixotropic under the conditions employed in the spinning of the pitch into fibers, i.e., it must exhibit a Newtonian or plastic flow behavior so that the viscosity coefficient is independent of the shear rate of the pitch during the spinning process.
  • pitches are heated to a temperature where they exhibit a viscosity of from about 10 poises to about 200 poises, uniform fibers may be readily spun therefrom.
  • Thixotropic pitches on the other hand, which do not exhibit Newtonian or plastic flow behavior when attempts are made to spin fibers therefrom, but rather undergo changes in apparent viscosity, do not permit uniform fibers to be spun therefrom which can be converted by further heat treatment into fibers capable of developing the threedimensional order characteristic of polycrystalline graphite.
  • carbonaceous pitches having a mesophase content of from about 40 per cent by weight to about percent by weight can be produced in accordance with known techniques, as disclosed in aforementioned copending application Ser. No. 239,490, by heating a carbonaceous pitch in an inert atmosphere at a temperature above about 350C. for a time sufficient to produce the desired quantity of mesophase.
  • an inert atmosphere is meant an atmosphere which does not react with the pitch under the heating conditions employed, such as nitrogen, argon, xenon, helium and the like.
  • the heating period required to produce the desired mesophase content varies with the particular pitch and temmperature employed, with longer heating periods required at lower temperature than at higher temperatures.
  • the minimum temperature generally required to produce mesophase at least one week of heating is usually necessary to produce a mesophase content of about 40 percent.
  • temperatures of from about 400C. to 450C conversion to mesophase proceeds more rapidly, and a 50 percent mesophase content can usually be produced at such temperatures within about 1-40 hours. Such temperatures are preferred for this reason.
  • Temperatures above about 500C. are undesirable, and heating at this temperature should not be employed for more than about 5 minutes to avoid conversion of the pitch to coke.
  • the degree to which the pitch has been converted to mesophase can readily be determined by polarized light microscopy and solubility examinations. Except for certain non-mesophase insolubles present in the original pitch or which, in some instances, develop on heating, the non-mesophase portion of the pitch is readily soluble in organic solvents such as quinoline and pyridine, while the mesophase portion is insoluble. (1) In the case of pitches which do not develop non-mesophase insolubles when heated, the insoluble content of the heat treated pitch over and above the insoluble content of the pitch before it has been heat treated is due to conversion of the pitch to mesophase.
  • the percent of quinoline insolubles (0.1.) of a given pitch is determined by quinoline extraction at 75C.
  • the percent of pyridine insolubIesS SCPJ.) is determined by Soxhlet extraction in boiling pyridine.
  • the insoluble content of the untreated pitch is generally less than I percent (except for certain coal tar pitches) and consists largely of coke and carbon black found in the original pitch.
  • Aromatic base carbonaceous pitches having a carbon content of from about 92 percent by weight to about 96 percent by weight and a hydrogen content of from about 4 percent by weight to about 8 percent by weight are generally suitable for producing mesophase pitches which can be employed to produce fibers capable of being heat treated to produce fibers having the threedimensional order characteristic of polycrystalline graphite.
  • Elements other than carbon and hydrogen, such as oxygen, sulfur and nitrogen, are undesirable and should not be present in excess of about 4 percent by weight. The presence of more than such amount of extraneous elements may disrupt the formation of carbon crystallites during subsequent heat treatment and prevent the development of a graphitic-like structure within the fibers produced from these materials.
  • the presence of extraneous elements reduces the carbon content of the pitch and hence the ultimate yield of carbon fiber.
  • the pitches generally have a carbon content of from about 92-95 percent by weight, the balance being hydrogen.
  • Petroleum pitch, coal tarpitch and acenaphthylene pitch which are well-graphitizing pitches, are preferred starting materials for producing the mesophase pitches which are employed to produce the fibers of the instant invention.
  • Petroleum pitch is the residum carbonaceous material obtained from the distillation of crude oils or the catalytic cracking of petroleum distillates.
  • Coal tar pitch is similarly obtained by the distillation of coal. Both of these materials are commercially available natural pitches in which mesophase can easily be produced, and are preferred for this reason.
  • Acenaphthylene pitch is a synthetic pitch which is preferred because of its ability to produce excellent fibers.
  • Acenaphthylene pitch can be produced by the pyrolysis of polymers of acenaphthylene as described by Edstrom, et al. in US. Pat. No. 3,574,653.
  • pitches such as fluoroanthene pitch
  • Some pitches polymerize very rapidly when heated and fail to develop large coalesced regions of mesophase, and are, therefore, not suitable precursor materials.
  • pitches having a high non-mesophase insoluble content in organic solvents such as quinoline or pyridine, or those which develop a high non-mesophase insoluble content when heated should not be employed as starting materials, as explained above, because these pitches are incapable of developing the homogeneous regions of coalesced mesophase which are necessary to produce highly oriented carbonaceous fibers capable of developing the three-dimensional order characteristic of polycrystalline graphite.
  • pitches having a quinoline-insoluble or pyridine-insoluble content of more than about 2 percent by weight should not be employed, or should be filtered to remove this material before being heated to produce mesophase.
  • pitches are filtered when they contain more than about I peprcent by weight of such insoluble material.
  • Most petroleum pitches and synthetic pitches have a low insoluble content and can be used directly without such filtration.
  • Most coal tar pitches have a high insoluble content and require filtration before they can be employed.
  • the pitch As the pitch is heated at a temperature between 350C. and 500C. to produce mesophase, the pitch will, of course, pyrolyze to a certain extent and the composition of the pitch will be altered, depending upon the temperature, the heating time, and the composition and structure of the starting material. Generally, however, after heating a carbonaceous pitch for a time sufficient to produce a mesophase content of from about 40 percent by weight to about percent by weight, the resulting pitch will contain a carbon content of from about 94-96 percent by weight and a hydrogen content of from about 4-6 percent by weight. When such pitches contain elements other than carbon and hydrogen in amounts of from about 0.5 percent by weight to about 4 percent by weight, the mesophase pitch will generally have a carbon content of from aobut 92-95 percent by weight, the balance being hydrogen.
  • the desired mesophase pitch After the desired mesophase pitch has been prepared, it is spun into fibers by conventional techniques, e.g., by melt spinning, centrifugal spinning, blow spinning, or in any other known manner.
  • the pitch in order to obtain highly oriented carbonaceous fibers capable of developing the three-dimensional order characteristic of polycrystalline graphite the pitch must contain large homogeneous regions of coalesced mesophase and be nonthixotropic under the conditions employed in the spinning.
  • the temperature at which the pitch is spun depends, of course, upon the temperature at which the pitch exhibits a suitable viscosity. Since the softening temperature of the pitch, and its viscosity at a given temperature, increases as the mesophase content of the pitch increases, the mesophase content should not be permitted to rise to a point which raises the softening point of the pitch to excessive levels. For this reason, pitches having a mesophase content of more than about 70 percent are usually not employed. Pitches containing a mesophase content of about 40 percent by weight usually have a viscosity of about 200 poises at about 250C.
  • pitches containing a mesophase content of about 70 percent by weight exhibit similar viscosities at about 390C. and 440C, respectively.
  • fibers may be conveniently spun from such pitches at a rate of from about 20 feet per minute to about feet per minute and even up to about 3000 feet per minute.
  • the pitch employed has a mesophase content of from about 50 percent by weight to aobut 65 percent by weight and exhibits a viscosity of from about 30 poises to about 60 poises at temperatures of from about 340C. to about 380C.
  • uniform fibers having diameters of from about 10 microns to about microns can be easily spun.
  • the carbonaceous fibers produced in this manner are highly oriented graphitizable materials having a high degree of preferred orientation of their molecules parallel to the fiber axis.
  • graphitizable is meant that these fibers are capable of being converted thermally (usually by heating to a temperature in excess of about 2500C., e.g., from about 2500C. to about 3000C.) to a structure having the three-dimensoional order characteristic of polycrystalline graphite.
  • the fibers produced in this manner have the same chemical composition as the pitch from which they were drawn, and like such pitch contain from about 40 percent by weight to about 90 percent by weight mesophase.
  • mesophase When examined under magnification by polarized light and scanning electron microscopy techniques, large fibrillarshaped domains of mesophase interspersed with large elongated nonmesophase regions can be seen distributed throughout the fiber, giving the fibers the appearance of a minicomposite". These fibrillar mesophase domains are highly oriented and preferentially aligned parallel to the fiber axis.
  • these domains have diametes in excess of 5,000 A, generally from about 10,000 A to about 40,000 A, and because of their large size are easily observed when examined by conventional polarized light microscopy techniques at a magnification of 1000.
  • the maximum resolving power of a standard polarized light microscope having a mangification factor of 1000 is only a few tenths of a micron [1 micron 10,000 A] and anisotropic domains having dimensions of I000 A or less cannot be detected by this technique.
  • the fibers After the fibers have been spun, as hereinbefore described, they are treated with a solvent capable of dissolving the non-mesophase portion of the fiber but in which the mesophase portion is insoluble.
  • the invention takes advantage of the differences in solubility between the mesophase portion of the fiber and the non-mesophase portion to effect removal of the non-mesophase portion and produce a fibrous residue of higher mesophase content.
  • the non-mesophase portion of the spun fibers is readily soluble in organic solvents, such as quinoline and pyridine, while the mesophase portion is insoluble.
  • non-mesophase material can be substantially completely removed by the extraction or only partially, depending upon the relative amounts of mesophase and non-mesophase present in the fibers, the diameter of the fibers, the particular solvent and the amount of solvent employed, the temperature of the solvent, and the extraction time. The extent to which non-mesophase has been removed can readily be determined by the 8 loss in weight which the fibers undergo during extraction.
  • Removal of the non-mesophase portion of the fibers can be effected, for example, by Soxhlet extraction, or simply by immersing the fibers, in a solvent capable of dissolving the non-mesophase portion of the fiber but in which the mesophase portion is insoluble.
  • the fibers may be wrapped around a spool or similar object and immersed in the solvent. The fibers should be allowed to soak in the solvent for a time sufficient to remove as much of the non mesophase material from the fibers as desired.
  • the time required to effect such removal will, of course, vary with such factors as the relative amounts of mesophase and non-mesophase material present in the fibers, the diameter of the fi bers, the nature and amount of the solvent, and the temperature of the solvent.
  • Relatively thick fibers and- /or fibers having a relatively high nonmesophase content require longer extraction times as well as the use of larger amounts of solvent and/or higher temperatures to effect this removal than do thinner fibers or fibers having a lower non-mesophase content.
  • Removal of at least 10 percent by weight of the non-mesophase content of the fibers can usually be effected with the use of a an appropriate amount of an appropriate solvent and temperature within from about 15 minutes to about I hour extraction time.
  • Removal of from about 40 percent by weight to about 60 percent by weight of the non-mesophase content may require more protracted extraction times, e.g., from about 1 to about 4 hours, while removal of in excess of percent by weight of the non-mesophase content may require 10 or more hours of extraction.
  • the volume of solvent and the temperature employed should be chosen so as to effect the desired degree of extraction. Increased quantities of solvent and higher temperatures permit more complete extraction in shorter periods of time. By employing sufficient amounts of an appropriate solvent and sufficiently high temperatures for an appropriate time it is possible to substantially completely remove the entire non-mesophase content of the fibers.
  • the amount of solvent and temperature employed are such as will dissolve at least 10 percent by weight of the non-mesophase content of the fibers to in excess of 70 percent by weight of said non-mesophase content within from about l5 minutes to about 10 hours.
  • the temperature employed can vary from a temperature just above the freezing point of the solvent to just below the softening point of the fibers, but is preferably maintained at from ambient room temperature up to the refluxing temperature of the solvent. From 200 milliliters of 2000 milliliters of solvent per gram of fibers are usually sufficient to effect the desired extraction at such temperatures. After extraction of the fibers, the solvent may be recovered from the extract by distillation.
  • Removal of the non-mesophase content of the fibers may similarly be effected by extraction with a suitable solvent in a Soxhlet extractor. Extraction in this manner allows continuous use of the same solvent, so that lesser amounts of solvent are required per gram of fiber than when extraction is effected by immersion of the fibers in the solvent, e.g., amounts about 10 percent as large as those necessary in the immersion technique are sufficient.
  • removal of at least 10 percent by weight of the non-mesophase content of the fibers to in excess of 70 percent by weight of said non-mesophase content can generally be effected within from about minutes to about l0 hours, while removal of from about 40 percent by weight to about 60 percent by weight of the non-mesophase content can generally be effected in from about I to about 4 hours.
  • pyridine and quinoline are preferred.
  • the fibers After the fibers have been extracted for a time sufficient to remove the desired amount of non-mesophase material, they are removed from the presence of the solvent and dried, e.g., by heating for a short time to volatilize any remaining solvent.
  • the fibers produced in this manner like their precursors, are characterized by the presence of large oriented graphitizable domains preferentially aligned parallel to the fiber axis, with the fibers after extraction, however, containing a lesser amount of non-mesophase material than before extraction. By heat treatment, these fibers can be converted into carbon fibers having a high Youngs modulus of elasticity and high tensile strength.
  • Thermosetting of the fibers is readily effected b heating the fibers in an oxygen-containing atmosphere for a time sufficient to render them totally infusible.
  • the oxygen-containing atmosphere employed may be pure oxygen or an oxygen-rich atmosphere. Most conveniently, air is employed as the oxidizing atmosphere.
  • - bers will, of course, vary with such factors as the particular oxidizing atmosphere, the temperature employed, the diameter of the fibers, the particular pitch from which the fibers are prepared, and the mesophase content of the fibers. Generally, however, thermosetting of the fibers can be effected in relatively short periods of time, usually in from about 4 minutes to about 50 minutes.
  • the temperature employed to effect thermosetting of the fibers must, of course, not exceed the temperature at which the fibers will soften or distort.
  • the maximum temperature which can be employed will thus depend upon the particular pitch from which the fibers were spun, and the mesophase content of the fibers. The higher the mesophase content of the fiber, the higher will be its softening temperature, and the higher the temperature which can be employed to effect thermosetting.
  • fibers of a given diameter can be thermoset in less time than is I 10 possible at lower temperatures. Fibers having a lower mesophase content, on the other hand, require relatively longer heat treatment at somewhat lower temperatures to render them infusible.
  • a minimum temperature of at least 250C. is generally necessary to effectively thermoset the extracted fi bers produced in accordance with the invention. Temperatures in excess of 400C. may cause melting and/0r excessive burn-off of the fibers and should be avoided. Preferably, temperatures of from about 325C. to about 390C. are employed. At such temperatures, thermosetting can generally be effected within from about 4 minutes to about 50 minutes. Since it is undesirable to oxidize the fibers more than necessary to render them totally infusible, the fibers are generally not heated for longer than about 50 minutes, or at temperatures in excess of 400C.
  • the infusible fibers are carbonized by heating in an inert atmosphere, such as that described above, to a temperature sufficiently elevated to remove hydrogen and other volatiles and produce a substantially all-carbon fiber.
  • Fibers having a carbon content greater than about 98 percent by weight can generally be produced by heating to a temperature in excess of about l000C., and at temperatures in excess of about l500C., the fibers are completely carbonized.
  • carbonization is effected at a temperature of from about l000C. to about 2000C., preferably from about l500C. to about l900C.
  • residence times of from about 0.5 minute to about 25 minutes, preferably from about I minute to about 5 minutes, are employed. While more extended heating times can be employed with good results, such residence times are uneconomical and, as a practical matter, there is no advantage in employing such long periods.
  • the fibers In order to ensure that the rate of weight loss of the fibers does not become so excessive as to disrupt the fiber structure, it is preferred to heat the fibers for a brief period at a temperature from about 700C. to about 900C. before they are heated to their final carbonization temperature. Residence times at these temperatures of from about 30 seconds to about 5 minutes are usually sufficient.
  • the fibers are heated at a temperature of about 700C. for about one-half minute and then at a temperature of about 900C. for like time. In any event, the heating rate must be controlled so that the volatilization does not proceed at an excessive rate.
  • continuous filaments of the fibers are passed through a series of heating zones which are held at successively higher temperatures.
  • Several arrangements of apparatus can be utilized in providing the series of heating zones.
  • one furnace can be used with the fibers being passed through the furnace several times and with the temperature being increased each time.
  • the fibers may be given a single pass through several furnaces, with each successive furance being maintained at a higher temperature than that of the previous furnace.
  • a single furnace with several heating zones maintained at successively higher temperatures in the direction of travel of the fibers can be used.
  • the carbon fibers produced in this manner have a highly oriented structure characterized by the presence of carbon crystallites preferentially aligned parallel to the fiber axis, and are graphitizable materials which when heated to graphitizing temperatures develop the 1 l threedimensional order characteristic of polycrystalline graphite and graphitic-like properties associated therewith, such as high density and low electrical resistivity.
  • the carbonized fibers may be further heated in an inert atmosphere, as described hereinbefore, to a still higher temperature in a range of from about 2500C. to about 3300C., preferably from about 2800C. to about 3000C., to produce fibers having not only a high degree of preferred orientation of their car bon crystallites parallel to the fiber axis, but also by a structure characteristic of polycrystalline graphite.
  • a residence time of about 1 minute is satisfactory, although both shorter and longer times may be employed, e.g., from about 10 seconds to about 5 minutes, or longer. Residence times longer than 5 minutes are uneconomical and unnecessary, but may be employed if desired.
  • the fibers produced by heating at a temperature above about 2500C., preferably above about 2800C., are characterized as having the three-dimensional order of polycrystalline graphite. This three-dimensional order is established by the X-ray diffraction pattern of the fibers, specifically by the presence of the 1 l2 cross-lattice line and the resolution of the band into two distinct lines, 100 and I0].
  • the short arcs which constitute the 00!) bands of the pattern show the carbon crystallites of the fibers to be preferentially aligned parallel to the fiber axis.
  • Microdensitometer scanning of the 002 band of the exposed X-ray film indicate this preferred orientation to be no more than about 10, usually from about 5 to about l0 (expressed as the full width at half maximum of the azimuthal intensity distribution).
  • Apparent layer size L and apparent stack height L, of the crystallites are in excess of i000 A and are thus too large to be measured by X-ray techniques.
  • the interlayer spacing d of the crystallites, calculated from the distance between the corresponding 00!) diffraction arcs, is no more than 3.37 A, usually from 3.36 A to 3.37 A.
  • EXAMPLE 1 A commercial petroleum pitch was employed to produce a pitch having a mesophase content of about 73 percent by weight.
  • the precursor pitch had a density of 1.23 grams/cc., a softening temperature of 120C. and contained 0.5 percent by weight quinoline insolubles (Q. l. was determined by quinoline extraction at 75C.).
  • Chemical analysis showed a carbon content of 93.3%, a hydrogen content of 5.6%, a sulfur content of 0.9% and 0.04% ash.
  • the mesophase pitch was produced by heating the precusor petroleum pitch at a temperature of about 400C. for about hours under a nitrogen atmosphere. After heating, the pitch contained 73 percent by weight pyridine insolubles, indicating that the pitch had a mesophase content of close to 73 percent.
  • a portion of the as-drawn fiber was extracted with boiling pyridine (ll5C) for 18 hours in a Soxhlet extractor.
  • the resulting fibers after drying in a vacuum oven at 110C, showed a loss in weight of about 20 percent as a result of the extraction.
  • These fibers essentially fully retained the integrity of the as-drawn fiber after the extraction, and did not melt when further heated in an argon atmosphere to 700c. at a rate of 5C. per minute.
  • the resulting fibers appeared shiny and showed no serious disruptions in the fiber surface.
  • EXAMPLE 2 A commercial petroleum pitch was employed to produce a pitch having a mesophase content of about 52 percent by weight.
  • the prescursor pitch had a density of 1.23 grams/cc, a softening temperature of l20C. and contained 0.5 percent by weight quinoline insolubles (Q. l. was determined by quinoline extraction at C.).
  • Chemical analysis showed a carbon content of 93.3%, a hydrogen content of 5.6%, a sulfur content of 0.9% and 0.04% ash.
  • the mesophase pitch was produced by heating the precursor petroleum pitch at a temperature of about 400C. for about [4 hours under a nitrogen atmosphere. After heating, the pitch contained 52 percent by weight pyridine insolubles, indicating that the pitch had a mesophase content of close to 52 percent.
  • a portion of the as-drawn fiber was extracted with boiling pyridine (l 15C). for 18 hours in a Soxhlet extractor.
  • the resulting fibers after drying in a vacuum oven at 110C, showed a loss in weight of about 48 percent as a result of the extraction, indicating that these fibers had a mesophase content of about percent.
  • the fibers essentially fully retained the integrity of the as-drawn fiber after the extraction and showed no serious disruptions in the fiber surface.
  • a process for producing a pitch fiber having a high mesophase content which comprises spinning a carbonaceous fiber from a nonthixotropic carbonaceous pitch containing from 40 percent by weight to 70 percent by weight mesophase, said mesophase being present in the form of large, homogeneous, coalesced regions, and extracting the non-mesophase content of the spun fiber with a solvent capable of dissolving the nonmesophase portion of the fiber but in which the mesophase portion is insoluble, so as to dissolve at least l0 percent by weight of the nonmesophase content of the fiber and produce a fiber of higher mesophase content.
  • pitch contains from 50 per cent by weight to 65 percent by weight mesophase.

Abstract

An improved process for producing carbon fibers from pitch which has been transformed, in part, to a liquid crystal or so-called ''''mesophase'''' state. According to the process, the mesophase content of fibers spun from such pitch is increased before the fibers are thermoset and carbonized by solvent extraction of the non-mesophase content of the fibers.

Description

United States Patent [1 Singer PROCESS FOR PRODUCING HIGH MESOPHASE CONTENT PITCH FIBERS [75] inventor: Leonard S. Singer. Berea. Ohio [73] Assignee: Union Carbide Corporation. New
York. NY.
[22] Filed: Dec. 26, 1972 [21] Appl. No.: 318,483
[52] US. Cl. 264/344; 264/29; 264/D1G. 19; 423/447 [51] Int. Cl. 82% 25/00 [58] Field of Search 423/447; 264/29. DIG. 19. 264/87. 233, 164. 344; 106/273 R; 208/8, 45
[56] References Cited UNITED STATES PATENTS 3.552.922 1/1971 lshikzm'u et 211. 264/29 3.558.276 1/1971 Ofani H 264/29 1 Nov. 11, 1975 3.595.946 7/1971 J00 et :11. 264/29 3.629.379 12/1971 Ofzlni 264/29 3.660.140 5/1972 Scolal et a1. 264/29 3.668.110 6/1972 Shen et 111...... 264/29 3.718.493 2/1973 Joo et a1. 106/27] R 3.767.741 10/1973 TO}'OgUChl ct 111 264/29 3.787.541 1/1974 Grindstuff 264/29 Primary E.\'aminer.lay H. Woo Attorney, Agent, or Firm.l. S. Piscitello [57] ABSTRACT An improved process for producing carbon fibers from pitch which has been transformed. in part. to at liquid crystal or so-culled mes0phase state. According to the process. the mesophase content of fibers spun from such pitch is increased before the fibers are thermoset and carbonized by solvent extraction of the non-mesophase content of the fibers.
30 Claims, No Drawings PROCESS FOR PRODUCING HIGH MESOPI-IASE CONTENT PITCH FIBERS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an improved process for producing carbon fibers from pitch which has been transformed, in part, to a liquid crystal or so-called mesophase" state. More particularly, this invention relates to an improved process for producing carbon fibers from pitch of this type wherein the mesophase content of fibers spun from such pitch is increased before the fibers are thermoset and carbonized by solvent extraction of the non-mesophase content of the fibers.
2. Description of the Prior Art As a result of the rapidly expanding growth of the aircraft, space and missile industries in recent years, a need was created for materials exhibiting a unique and extraordinary combination of physical properties. Thus, materials characterized by high strength and stiffness, and at the same time of light weight, were required for use in such applications as the fabrication of aircraft structures, re-entry vehicles, and space vehicles, as well as in the preparation of marine deep-submergence pressure vessels and like structures. Existing technology was incapable of supplying such materials and the search to satisfy this need centered about the fabrication of composite articles.
One of the most promising materials suggested for use in composite form was high strength, high modulus carbon textiles, which were introduced into the market place at the very time this rapid growth in the aircraft, space and missile industries was occurring. Such textiles have been incorporated in both plastic and metal matrices to produce composites having extraordinary high-strengthand high-modulus-to-weight ratios and other exceptional properties. However, the high cost of producing the high strength, high modulus carbon textiles employed in such composites has been a major deterrent to their widespread use, in spite of the remarkable properties exhibited by such composites.
One recently proposed method of providing high modulus, high strength carbon fibers at low cost is described in copending application Ser. No. 239,490, entitled High Modulus, High Strength Carbon Fibers Produced From Mesophase Pitch". Such method comprises first spinning a carbonaceous fiber from a carbonaceous pitch which has been transformed, in part, to a liquid crystal or socalled mesophase state, then thermosetting the fiber soproduced by heating the fiber in an oxygen-containing atmosphere for a time sufficient to render it totally infusible, and finally carbonizing the thermoset fiber by heating in an inert atmosphere to a temperature sufficiently elevated to remove hydrogen and other volatiles and produce a substantially all-carbon fiber. The carbon fibers produced in this manner have a highly oriented structure characterized by the presence of carbon crystallites preferentially aligned parallel to the fiber axis, and are graphitizable materials which when heated to graphitizing temperatues develop the three-dimensional order characteristic of polycrystalline graphite and graphitic-like properties associated therewith, such as high density and low electrical resistivity.
Since carbonaceous fibers drawn from pitches having a high mesophase content can be thermoset in less time than carbonaceous fibers drawn from pitches having a lower mesophase content, it is desirable to employ pitches of high mesophase content in such process. However, because the spinning of mesophasecontaining pitches becomes increasingly difficult as the mesophase content of the pitch increases, and must be done at higher and higher temperatures, the fibers are usually prepared from pitches having a mesophase content of only from about 40 percent by weight to about percent by weight.
SUMMARY OF THE INVENTION In accordance with the present invention, it has now been discovered that pitch fibers having a high meso phase content can be prepared from pitch fibers of lower mesophase content which have been spun from pitches of the type described in aforementioned co pending application Ser. No. 239,490, i.e., carbonaceous pitches which have been transformed, in part, to a liquid crystal or so-called mesophase" state, by treating the fibers with a solvent capable of dissolving the non-mesophase portion of the fiber but in which the mesophase portion is insoluble; and that the so-treated fibers can be converted by heat treatment into carbon fibers having a high Youngs modulus of elasticity and high tensile strength. The invention takes advantage of the differences in solubility between the mesophase portion of the fiber and the non-mesophase portion to effect removal of the non-mesophase portion and produce a fibrous residue of higher mesophase content. Except for certain non-mesophase insolubles present in the original pitch or which, in some instances, are produced during development of the mesophase, the nonmesophase portion of the spun fibers is readily soluble in organic solvents, such as quinoline and pyridine, while the mesophase portion is insoluble. Thus, by employing such solvents to extract the non-mesophase portion of the spun fibers, fibers having a high mesophase content can be easily produced. This non-mesophase material can be substantially completely removed by the extraction or only partially, depending upon the relative amounts of mesophase and nonmesophase material present in the fibers, the diameter of the fibers, the particular solvent and the amount of solvent employed, the temperature of the solvent, and the extraction time.
The fibers produced in this manner have a high degree of preferred orientation of their molecules parallel to the fiber axis and can be converted by heat treatment into carbon fibers having a high Youngs modulus of elasticity and high tensile strength. The carbon fibers so-produced have a highly oriented structure characterized by the presence of carbon crystallities preferentially aligned parallel to the fiber axis, and when heated to graphitizing temperatures develop the three-dimensional order characteristic of polycrystalline graphite and graphitic-like properties associated therewith, such as high density and low electrical resistance. At all stages of their development from the as-drawn condition to the graphitized state, the fibers are characterized by the presence of large oriented graphitizable domains preferentially aligned parallel to the fiber axis, with the fibers after extraction, however, containing a lesser amount of non-mesophase material than before extraction.
DESCRIPTION OF THE PREFERRED EMBODIMENTS When natural or synthetic pitches having an aromatic base are heated at a temperature of about 350C. 4S0C., either at constant temperature or with gradually increasing temperature, small insoluble liquid spheres begin to appear in the pitch and gradually increase in size as heating is continued. When examined by electron diffraction and polarized light techniques, these spheres are shown to consist of layers of oriented molecules aligned in the same direction. As these spheres continue to grow in size as heating is continued, they come in contact with one another and gradu ally coalesce with each other to produce larger masses of continuous aligned layers. Eventually, substantially the entire pitch coalesces and takes on the superficial appearance of a mosaic structure where, however, the transition from one oriented region to another occurs smoothly and continuously through gradual curving lamellar regions rather than through sharp boundaries between uniform areas of orineted lamellae.
The highly oriented, optically anisotropic, insoluble material produced by treating pitches in this manner has been given the term mesophase, and pitches containing such material are known as mesophase pitches". Such pitches, when heated above their softening points, are mixtures of two immiscible liquids, one the optically anisotropic, oriented mesophase portion in either spherulite or coalesced form, and the other the isotropic nonmesophase portion. The term mesophase" is derived from the Greek mesos" or intermediate" and indicates the pseudo-crystalline nature of this highly-oriented, optically anisotropic material.
carbonaceous pitches having a mesophase content of from about 40 percent by weight to about 70 percent by weight can easily be spun into fibers which can subsequently be converted by heat treatment into carbon fibers having a high Young's modulus of elasticity and high tensile strength. Althoughfibers can also be spun from pitches having a mesophase content in excess of about 70 percent by weight, e.g., up to about 90 per cent by weight, these pitches are exceedingly difficult to work with because of their high softening temperatures, and fibers can only be spun from such pitches at elevated temperatures where the pitches readily undergo polymerization and/or coking.
In order to obtain highly oriented carbonaceous fibers capable of being heat treated to produce fibers having the three-dimensional order characteristic of polycrystalline graphite from carbonaceous pitches having a mesophase content of from about 40 per cent by weight to about 90 percent by weight, however, it is not only necessary that such amount of mesophase be present, but also that it be present in the form of large, homogeneous, coalesced regions. Pitched which polymerize very rapidly develop small or stringy mesophase regions rather than large coalesced regions and are unsuitable. Likewise, pitches which do not form homogeneous coalesced regions of mesophase are unsuitable. The latter phenomenon is caused by the presence of non-mesophase insolubles (which are either present in the original pitch or which develop on heating) which are enveloped by the coalescing mesophase and serve to interrupt the homogeneity and uniformity of the coalesced domains.
Another requirement is that the pitch be nonthixotropic under the conditions employed in the spinning of the pitch into fibers, i.e., it must exhibit a Newtonian or plastic flow behavior so that the viscosity coefficient is independent of the shear rate of the pitch during the spinning process. When such pitches are heated to a temperature where they exhibit a viscosity of from about 10 poises to about 200 poises, uniform fibers may be readily spun therefrom. Thixotropic pitches, on the other hand, which do not exhibit Newtonian or plastic flow behavior when attempts are made to spin fibers therefrom, but rather undergo changes in apparent viscosity, do not permit uniform fibers to be spun therefrom which can be converted by further heat treatment into fibers capable of developing the threedimensional order characteristic of polycrystalline graphite.
carbonaceous pitches having a mesophase content of from about 40 per cent by weight to about percent by weight can be produced in accordance with known techniques, as disclosed in aforementioned copending application Ser. No. 239,490, by heating a carbonaceous pitch in an inert atmosphere at a temperature above about 350C. for a time sufficient to produce the desired quantity of mesophase. By an inert atmosphere is meant an atmosphere which does not react with the pitch under the heating conditions employed, such as nitrogen, argon, xenon, helium and the like. The heating period required to produce the desired mesophase content varies with the particular pitch and temmperature employed, with longer heating periods required at lower temperature than at higher temperatures. At 350C, the minimum temperature generally required to produce mesophase, at least one week of heating is usually necessary to produce a mesophase content of about 40 percent. At temperatures of from about 400C. to 450C, conversion to mesophase proceeds more rapidly, and a 50 percent mesophase content can usually be produced at such temperatures within about 1-40 hours. Such temperatures are preferred for this reason. Temperatures above about 500C. are undesirable, and heating at this temperature should not be employed for more than about 5 minutes to avoid conversion of the pitch to coke.
The degree to which the pitch has been converted to mesophase can readily be determined by polarized light microscopy and solubility examinations. Except for certain non-mesophase insolubles present in the original pitch or which, in some instances, develop on heating, the non-mesophase portion of the pitch is readily soluble in organic solvents such as quinoline and pyridine, while the mesophase portion is insoluble. (1) In the case of pitches which do not develop non-mesophase insolubles when heated, the insoluble content of the heat treated pitch over and above the insoluble content of the pitch before it has been heat treated is due to conversion of the pitch to mesophase. (2) In the case of pitches which do develop non-mesophase insolubles when heated, the insoluble content of the heat treated pitch over and above the insoluble content of the pitch before it has been heat treated is not solely due to the conversion of the pitch to mesophase, but also represents non-mesophase insolubles which are produced along with the mesophase during the heat treatment. Pitches which contain such nonmesophase insolubles (either present in the original pitch or developed by heating) in amounts sufficient to prevent the development of homogeneous coalesced mesophase regions are unsuitable for use in the present invention, as noted above. Generally, pitches which contain in excess of about 2 percent by weight of such materials are unsuitable. The presence or absence of such homogeneous coalesced mesophase regions, as well as the presence or absence of non-mesophase insolubles, can be visually observed by polarized light microscopy examination of the pitch (see, e.g., Brooks, J. D., and Taylor, G. H., The Formation of Some Graphitizing Carbons, Chemistry and Physics ofCarbon, Vol. 4, Marcel Dekker, Inc., New York, 1968, pp. 243-268; and Dubois, 1., Agache, C., and White, J. L., The Carbonaceous Mesophase Formed in the Pyrolysis of Graphitizable Organic Materials," Metallography 3, 337-369, i970). The amounts of each of these materials may also be visually estimated in this manner.
The percent of quinoline insolubles (0.1.) of a given pitch is determined by quinoline extraction at 75C. The percent of pyridine insolubIesS SCPJ.) is determined by Soxhlet extraction in boiling pyridine. l I
The insoluble content of the untreated pitch is generally less than I percent (except for certain coal tar pitches) and consists largely of coke and carbon black found in the original pitch.
Aromatic base carbonaceous pitches having a carbon content of from about 92 percent by weight to about 96 percent by weight and a hydrogen content of from about 4 percent by weight to about 8 percent by weight are generally suitable for producing mesophase pitches which can be employed to produce fibers capable of being heat treated to produce fibers having the threedimensional order characteristic of polycrystalline graphite. Elements other than carbon and hydrogen, such as oxygen, sulfur and nitrogen, are undesirable and should not be present in excess of about 4 percent by weight. The presence of more than such amount of extraneous elements may disrupt the formation of carbon crystallites during subsequent heat treatment and prevent the development of a graphitic-like structure within the fibers produced from these materials. In addition, the presence of extraneous elements reduces the carbon content of the pitch and hence the ultimate yield of carbon fiber. When such extraneous elements are present in amounts of from about 0.5 percent by weight to about 4 percent by weight, the pitches generally have a carbon content of from about 92-95 percent by weight, the balance being hydrogen.
Petroleum pitch, coal tarpitch and acenaphthylene pitch, which are well-graphitizing pitches, are preferred starting materials for producing the mesophase pitches which are employed to produce the fibers of the instant invention. Petroleum pitch, of course, is the residum carbonaceous material obtained from the distillation of crude oils or the catalytic cracking of petroleum distillates. Coal tar pitch is similarly obtained by the distillation of coal. Both of these materials are commercially available natural pitches in which mesophase can easily be produced, and are preferred for this reason. Acenaphthylene pitch, on the other hand, is a synthetic pitch which is preferred because of its ability to produce excellent fibers. Acenaphthylene pitch can be produced by the pyrolysis of polymers of acenaphthylene as described by Edstrom, et al. in US. Pat. No. 3,574,653.
Some pitches, such as fluoroanthene pitch, polymerize very rapidly when heated and fail to develop large coalesced regions of mesophase, and are, therefore, not suitable precursor materials. Likewise, pitches having a high non-mesophase insoluble content in organic solvents such as quinoline or pyridine, or those which develop a high non-mesophase insoluble content when heated, should not be employed as starting materials, as explained above, because these pitches are incapable of developing the homogeneous regions of coalesced mesophase which are necessary to produce highly oriented carbonaceous fibers capable of developing the three-dimensional order characteristic of polycrystalline graphite. For this reason, pitches having a quinoline-insoluble or pyridine-insoluble content of more than about 2 percent by weight (determined as described above) should not be employed, or should be filtered to remove this material before being heated to produce mesophase. Preferably, such pitches are filtered when they contain more than about I peprcent by weight of such insoluble material. Most petroleum pitches and synthetic pitches have a low insoluble content and can be used directly without such filtration. Most coal tar pitches, on the other hand, have a high insoluble content and require filtration before they can be employed.
As the pitch is heated at a temperature between 350C. and 500C. to produce mesophase, the pitch will, of course, pyrolyze to a certain extent and the composition of the pitch will be altered, depending upon the temperature, the heating time, and the composition and structure of the starting material. Generally, however, after heating a carbonaceous pitch for a time sufficient to produce a mesophase content of from about 40 percent by weight to about percent by weight, the resulting pitch will contain a carbon content of from about 94-96 percent by weight and a hydrogen content of from about 4-6 percent by weight. When such pitches contain elements other than carbon and hydrogen in amounts of from about 0.5 percent by weight to about 4 percent by weight, the mesophase pitch will generally have a carbon content of from aobut 92-95 percent by weight, the balance being hydrogen.
After the desired mesophase pitch has been prepared, it is spun into fibers by conventional techniques, e.g., by melt spinning, centrifugal spinning, blow spinning, or in any other known manner. As noted above, in order to obtain highly oriented carbonaceous fibers capable of developing the three-dimensional order characteristic of polycrystalline graphite the pitch must contain large homogeneous regions of coalesced mesophase and be nonthixotropic under the conditions employed in the spinning.
The temperature at which the pitch is spun depends, of course, upon the temperature at which the pitch exhibits a suitable viscosity. Since the softening temperature of the pitch, and its viscosity at a given temperature, increases as the mesophase content of the pitch increases, the mesophase content should not be permitted to rise to a point which raises the softening point of the pitch to excessive levels. For this reason, pitches having a mesophase content of more than about 70 percent are usually not employed. Pitches containing a mesophase content of about 40 percent by weight usually have a viscosity of about 200 poises at about 250C. and about 10 poises at about 300C, while pitches containing a mesophase content of about 70 percent by weight exhibit similar viscosities at about 390C. and 440C, respectively. Within this viscosity range, fibers may be conveniently spun from such pitches at a rate of from about 20 feet per minute to about feet per minute and even up to about 3000 feet per minute. Preferably, the pitch employed has a mesophase content of from about 50 percent by weight to aobut 65 percent by weight and exhibits a viscosity of from about 30 poises to about 60 poises at temperatures of from about 340C. to about 380C. At such viscosity and temperature, uniform fibers having diameters of from about 10 microns to about microns can be easily spun. As previously mentioned, however, in order to obtain the desired fibers, it is important that the pitch be nonthixotropic and exhibit Newtonian or plastic flow behavior so that the viscosity coefficient is independent of the shear rate of the pitch during the spinning of the fibers.
The carbonaceous fibers produced in this manner are highly oriented graphitizable materials having a high degree of preferred orientation of their molecules parallel to the fiber axis. By graphitizable" is meant that these fibers are capable of being converted thermally (usually by heating to a temperature in excess of about 2500C., e.g., from about 2500C. to about 3000C.) to a structure having the three-dimensoional order characteristic of polycrystalline graphite.
The fibers produced in this manner, of course, have the same chemical composition as the pitch from which they were drawn, and like such pitch contain from about 40 percent by weight to about 90 percent by weight mesophase. When examined under magnification by polarized light and scanning electron microscopy techniques, large fibrillarshaped domains of mesophase interspersed with large elongated nonmesophase regions can be seen distributed throughout the fiber, giving the fibers the appearance of a minicomposite". These fibrillar mesophase domains are highly oriented and preferentially aligned parallel to the fiber axis. Characteristically, these domains have diametes in excess of 5,000 A, generally from about 10,000 A to about 40,000 A, and because of their large size are easily observed when examined by conventional polarized light microscopy techniques at a magnification of 1000. (The maximum resolving power of a standard polarized light microscope having a mangification factor of 1000 is only a few tenths of a micron [1 micron 10,000 A] and anisotropic domains having dimensions of I000 A or less cannot be detected by this technique.)
After the fibers have been spun, as hereinbefore described, they are treated with a solvent capable of dissolving the non-mesophase portion of the fiber but in which the mesophase portion is insoluble. As previously stated, the invention takes advantage of the differences in solubility between the mesophase portion of the fiber and the non-mesophase portion to effect removal of the non-mesophase portion and produce a fibrous residue of higher mesophase content. As has been noted, except for certain nonmesophase insolubles present in the original pitch or which, in some instances, are produced during development of the mesophase, the non-mesophase portion of the spun fibers is readily soluble in organic solvents, such as quinoline and pyridine, while the mesophase portion is insoluble. Thus, by employing such solvents to extract the nonmesophase portion of the spun fibers, fibers having a high mesophase content can be easily produced. This non-mesophase material can be substantially completely removed by the extraction or only partially, depending upon the relative amounts of mesophase and non-mesophase present in the fibers, the diameter of the fibers, the particular solvent and the amount of solvent employed, the temperature of the solvent, and the extraction time. The extent to which non-mesophase has been removed can readily be determined by the 8 loss in weight which the fibers undergo during extraction.
Removal of the non-mesophase portion of the fibers can be effected, for example, by Soxhlet extraction, or simply by immersing the fibers, in a solvent capable of dissolving the non-mesophase portion of the fiber but in which the mesophase portion is insoluble. For conve nience, when continuous filaments are being extracted, the fibers may be wrapped around a spool or similar object and immersed in the solvent. The fibers should be allowed to soak in the solvent for a time sufficient to remove as much of the non mesophase material from the fibers as desired. The time required to effect such removal will, of course, vary with such factors as the relative amounts of mesophase and non-mesophase material present in the fibers, the diameter of the fi bers, the nature and amount of the solvent, and the temperature of the solvent. Relatively thick fibers and- /or fibers having a relatively high nonmesophase content require longer extraction times as well as the use of larger amounts of solvent and/or higher temperatures to effect this removal than do thinner fibers or fibers having a lower non-mesophase content. Removal of at least 10 percent by weight of the non-mesophase content of the fibers can usually be effected with the use of a an appropriate amount of an appropriate solvent and temperature within from about 15 minutes to about I hour extraction time. Removal of from about 40 percent by weight to about 60 percent by weight of the non-mesophase content may require more protracted extraction times, e.g., from about 1 to about 4 hours, while removal of in excess of percent by weight of the non-mesophase content may require 10 or more hours of extraction.
The volume of solvent and the temperature employed should be chosen so as to effect the desired degree of extraction. Increased quantities of solvent and higher temperatures permit more complete extraction in shorter periods of time. By employing sufficient amounts of an appropriate solvent and sufficiently high temperatures for an appropriate time it is possible to substantially completely remove the entire non-mesophase content of the fibers. Generally, the amount of solvent and temperature employed are such as will dissolve at least 10 percent by weight of the non-mesophase content of the fibers to in excess of 70 percent by weight of said non-mesophase content within from about l5 minutes to about 10 hours. The temperature employed can vary from a temperature just above the freezing point of the solvent to just below the softening point of the fibers, but is preferably maintained at from ambient room temperature up to the refluxing temperature of the solvent. From 200 milliliters of 2000 milliliters of solvent per gram of fibers are usually sufficient to effect the desired extraction at such temperatures. After extraction of the fibers, the solvent may be recovered from the extract by distillation.
Removal of the non-mesophase content of the fibers may similarly be effected by extraction with a suitable solvent in a Soxhlet extractor. Extraction in this manner allows continuous use of the same solvent, so that lesser amounts of solvent are required per gram of fiber than when extraction is effected by immersion of the fibers in the solvent, e.g., amounts about 10 percent as large as those necessary in the immersion technique are sufficient. As in the case when the fibers are immersed in the solvent, removal of at least 10 percent by weight of the non-mesophase content of the fibers to in excess of 70 percent by weight of said non-mesophase content can generally be effected within from about minutes to about l0 hours, while removal of from about 40 percent by weight to about 60 percent by weight of the non-mesophase content can generally be effected in from about I to about 4 hours.
Among the solvents which can be employed to effect removal of non-mesophase material from the fibers are acetone, benzene, toluene, xylene, methyl ethyl ketone, quinoline, isoquinoline, indole, pyridine, quinoxaline, pyrazine, dimethyl formamide, dimethyl acetam ide, dimethylsulfoxide, dimethylsulfone, and the like, and mixtures thereof. Among these solvents, pyridine and quinoline are preferred.
After the fibers have been extracted for a time sufficient to remove the desired amount of non-mesophase material, they are removed from the presence of the solvent and dried, e.g., by heating for a short time to volatilize any remaining solvent. The fibers produced in this manner, like their precursors, are characterized by the presence of large oriented graphitizable domains preferentially aligned parallel to the fiber axis, with the fibers after extraction, however, containing a lesser amount of non-mesophase material than before extraction. By heat treatment, these fibers can be converted into carbon fibers having a high Youngs modulus of elasticity and high tensile strength.
While extracted fibers containing in excess of about 85 percent by weight mesophase are, at times, sufficiently infusible to permit them to be carbonized without any prior thermosetting treatment, fibers containing less than about 85 percent by weight mesophase require some thermosetting before they can be carbonized. (Evidently, the fibers containing more than 85 per cent by weight mesophase are sufficiently reinforced by their fibrillar structure to allow them to be carbonized directly without any prior thermosetting treatment). In any event, because of the higher ratio of mesophase to non-mesophase of the extracted fibers compared to their precursors, they can be thermoset, at any given temperature, in shorter periods of time than said precursors.
Thermosetting of the fibers is readily effected b heating the fibers in an oxygen-containing atmosphere for a time sufficient to render them totally infusible. The oxygen-containing atmosphere employed may be pure oxygen or an oxygen-rich atmosphere. Most conveniently, air is employed as the oxidizing atmosphere.
The time required to effect thermosetting of the f|- bers will, of course, vary with such factors as the particular oxidizing atmosphere, the temperature employed, the diameter of the fibers, the particular pitch from which the fibers are prepared, and the mesophase content of the fibers. Generally, however, thermosetting of the fibers can be effected in relatively short periods of time, usually in from about 4 minutes to about 50 minutes.
The temperature employed to effect thermosetting of the fibers must, of course, not exceed the temperature at which the fibers will soften or distort. The maximum temperature which can be employed will thus depend upon the particular pitch from which the fibers were spun, and the mesophase content of the fibers. The higher the mesophase content of the fiber, the higher will be its softening temperature, and the higher the temperature which can be employed to effect thermosetting. At higher temperatures, of course, fibers of a given diameter can be thermoset in less time than is I 10 possible at lower temperatures. Fibers having a lower mesophase content, on the other hand, require relatively longer heat treatment at somewhat lower temperatures to render them infusible.
A minimum temperature of at least 250C. is generally necessary to effectively thermoset the extracted fi bers produced in accordance with the invention. Temperatures in excess of 400C. may cause melting and/0r excessive burn-off of the fibers and should be avoided. Preferably, temperatures of from about 325C. to about 390C. are employed. At such temperatures, thermosetting can generally be effected within from about 4 minutes to about 50 minutes. Since it is undesirable to oxidize the fibers more than necessary to render them totally infusible, the fibers are generally not heated for longer than about 50 minutes, or at temperatures in excess of 400C.
After the fibers have been thermoset, the infusible fibers are carbonized by heating in an inert atmosphere, such as that described above, to a temperature sufficiently elevated to remove hydrogen and other volatiles and produce a substantially all-carbon fiber. Fibers having a carbon content greater than about 98 percent by weight can generally be produced by heating to a temperature in excess of about l000C., and at temperatures in excess of about l500C., the fibers are completely carbonized.
Usually, carbonization is effected at a temperature of from about l000C. to about 2000C., preferably from about l500C. to about l900C. Generally, residence times of from about 0.5 minute to about 25 minutes, preferably from about I minute to about 5 minutes, are employed. While more extended heating times can be employed with good results, such residence times are uneconomical and, as a practical matter, there is no advantage in employing such long periods.
In order to ensure that the rate of weight loss of the fibers does not become so excessive as to disrupt the fiber structure, it is preferred to heat the fibers for a brief period at a temperature from about 700C. to about 900C. before they are heated to their final carbonization temperature. Residence times at these temperatures of from about 30 seconds to about 5 minutes are usually sufficient. Preferably, the fibers are heated at a temperature of about 700C. for about one-half minute and then at a temperature of about 900C. for like time. In any event, the heating rate must be controlled so that the volatilization does not proceed at an excessive rate.
In a preferred method of heat treatment, continuous filaments of the fibers are passed through a series of heating zones which are held at successively higher temperatures. Several arrangements of apparatus can be utilized in providing the series of heating zones. Thus, one furnace can be used with the fibers being passed through the furnace several times and with the temperature being increased each time. Alternatively, the fibers may be given a single pass through several furnaces, with each successive furance being maintained at a higher temperature than that of the previous furnace. Also, a single furnace with several heating zones maintained at successively higher temperatures in the direction of travel of the fibers, can be used.
The carbon fibers produced in this manner have a highly oriented structure characterized by the presence of carbon crystallites preferentially aligned parallel to the fiber axis, and are graphitizable materials which when heated to graphitizing temperatures develop the 1 l threedimensional order characteristic of polycrystalline graphite and graphitic-like properties associated therewith, such as high density and low electrical resistivity.
If desired, the carbonized fibers may be further heated in an inert atmosphere, as described hereinbefore, to a still higher temperature in a range of from about 2500C. to about 3300C., preferably from about 2800C. to about 3000C., to produce fibers having not only a high degree of preferred orientation of their car bon crystallites parallel to the fiber axis, but also by a structure characteristic of polycrystalline graphite. A residence time of about 1 minute is satisfactory, although both shorter and longer times may be employed, e.g., from about 10 seconds to about 5 minutes, or longer. Residence times longer than 5 minutes are uneconomical and unnecessary, but may be employed if desired.
The fibers produced by heating at a temperature above about 2500C., preferably above about 2800C., are characterized as having the three-dimensional order of polycrystalline graphite. This three-dimensional order is established by the X-ray diffraction pattern of the fibers, specifically by the presence of the 1 l2 cross-lattice line and the resolution of the band into two distinct lines, 100 and I0]. The short arcs which constitute the 00!) bands of the pattern show the carbon crystallites of the fibers to be preferentially aligned parallel to the fiber axis. Microdensitometer scanning of the 002 band of the exposed X-ray film indicate this preferred orientation to be no more than about 10, usually from about 5 to about l0 (expressed as the full width at half maximum of the azimuthal intensity distribution). Apparent layer size L and apparent stack height L, of the crystallites are in excess of i000 A and are thus too large to be measured by X-ray techniques. The interlayer spacing d of the crystallites, calculated from the distance between the corresponding 00!) diffraction arcs, is no more than 3.37 A, usually from 3.36 A to 3.37 A.
EXAMPLE 1 A commercial petroleum pitch was employed to produce a pitch having a mesophase content of about 73 percent by weight. The precursor pitch had a density of 1.23 grams/cc., a softening temperature of 120C. and contained 0.5 percent by weight quinoline insolubles (Q. l. was determined by quinoline extraction at 75C.). Chemical analysis showed a carbon content of 93.3%, a hydrogen content of 5.6%, a sulfur content of 0.9% and 0.04% ash.
The mesophase pitch was produced by heating the precusor petroleum pitch at a temperature of about 400C. for about hours under a nitrogen atmosphere. After heating, the pitch contained 73 percent by weight pyridine insolubles, indicating that the pitch had a mesophase content of close to 73 percent.
A portion of this pitch was transferred to an extrusion cylinder and spun into fiber by applying pressure to the pitch with an argur while the molten pitch was extruded through a pin-hole orifice (diameter 0.015 inch) at the bottom of the extruder at a rate of between 200 to 400 feet/minute. The filament passed through a nitrogen atmosphere as it left the extruder orifice and was then taken up by a reel. A considerable quantity of fiber 50l00 microns in diameter was produced in this man ner at a temperature of 400C.
A portion of the as-drawn fiber was extracted with boiling pyridine (ll5C) for 18 hours in a Soxhlet extractor. The resulting fibers, after drying in a vacuum oven at 110C, showed a loss in weight of about 20 percent as a result of the extraction. These fibers essentially fully retained the integrity of the as-drawn fiber after the extraction, and did not melt when further heated in an argon atmosphere to 700c. at a rate of 5C. per minute. The resulting fibers appeared shiny and showed no serious disruptions in the fiber surface.
EXAMPLE 2 A commercial petroleum pitch was employed to produce a pitch having a mesophase content of about 52 percent by weight. The prescursor pitch had a density of 1.23 grams/cc, a softening temperature of l20C. and contained 0.5 percent by weight quinoline insolubles (Q. l. was determined by quinoline extraction at C.). Chemical analysis showed a carbon content of 93.3%, a hydrogen content of 5.6%, a sulfur content of 0.9% and 0.04% ash.
The mesophase pitch was produced by heating the precursor petroleum pitch at a temperature of about 400C. for about [4 hours under a nitrogen atmosphere. After heating, the pitch contained 52 percent by weight pyridine insolubles, indicating that the pitch had a mesophase content of close to 52 percent.
A portion of this pitch was transferred to an extrusion cylinder and spun into fiber by applying pressure to the pitch with an argur while the molten pitch was extruded through a pin-hole orifice (diameter 0.015 inch) at the bottom of the extruder at a rate of between 200 to 400 feet/minute. The filament passed through a nitrogen atmosphere as it left the extruder orifice and was then taken up by a reel. A considerable quantity of fiber 30-50 microns in diameter was produced in this manner at a temperature of 380C.
A portion of the as-drawn fiber was extracted with boiling pyridine (l 15C). for 18 hours in a Soxhlet extractor. The resulting fibers, after drying in a vacuum oven at 110C, showed a loss in weight of about 48 percent as a result of the extraction, indicating that these fibers had a mesophase content of about percent. The fibers essentially fully retained the integrity of the as-drawn fiber after the extraction and showed no serious disruptions in the fiber surface.
What is claimed is:
l. A process for producing a pitch fiber having a high mesophase content which comprises spinning a carbonaceous fiber from a nonthixotropic carbonaceous pitch containing from 40 percent by weight to 70 percent by weight mesophase, said mesophase being present in the form of large, homogeneous, coalesced regions, and extracting the non-mesophase content of the spun fiber with a solvent capable of dissolving the nonmesophase portion of the fiber but in which the mesophase portion is insoluble, so as to dissolve at least l0 percent by weight of the nonmesophase content of the fiber and produce a fiber of higher mesophase content.
2. A process as in claim 1 wherein the solvent is pyridine.
3. A process as in claim 1 wherein the solvent is quinoline.
4. A process as in claim I wherein extraction is effected at the refluxing temperature of the solvent.
5. A process as in claim 4 wherein the solvent is pyridine.
6. A process as in claim 4 wherein the solvent is quinoline.
7. A process as in claim 4 wherein extraction is effected in a Soxhlet extractor.
8. A process as in claim 7 wherein the solvent is pyridine.
9. A process as in claim 7 wherein the solvent is quinoline.
10. A process as in claim 1 wherein extraction is effected by immersing the fibers in the solvent.
11. A process as in claim 10 wherein the solvent is pyridine.
12. A process as in claim 10 wherein the solvent is quinoline.
13. A process as in claim 10 wherein extraction is effected at the refluxing temperature of the solvent.
14. A process as in claim 13 wherein the solvent is pyridine.
15. A process as in claim 13 wherein the solvent is quinoline.
16. A process as in claim 1 wherein the pitch contains from 50 per cent by weight to 65 percent by weight mesophase.
17. A process as in claim 16 wherein the solvent is pyridine.
18. A process as in claim 16 wherein thc solvent is quinoline.
19. A process as in claim 16 wherein extraction is effected at the refluxing temperature of the solvent.
20. A process as in claim 19 wherein the solvent is pyridine.
21. A process as in claim 19 wherein the solvent is quinoline.
22. A process as in claim 19 wherein extraction is ef fected in a Soxhlet extractor.
23. A process as in claim 22 wherein the solvent is pyridine.
24. A process as in claim 22 wherein the solvent is quinoline.
25. A process as in claim 16 wherein extraction is effected by immersing the fibers in the solvent.
26. A process as in claim 25 wherein the solvent is pyridine.
27. A process as in claim 25 wherein the solvent is quinoline.
28. A process as in claim 25 wherein extraction is effected at the refluxing temperature of the solvent.
29. A process as in claim 28 wherein the solvent is pyridine.
30. A process as in claim 28 wherein the solvent is quinoline.

Claims (30)

1. A PROCESS FOR PRODUCING A PITCH FIBER HAVING A HIGH MESOOPHASE CONTENT WHICH COMPRISES SPINNING A CARBONACEOUS FIBER FROM A NONTHIXOTROPIC CARBACEOUS PITCH CONTAINING FROM 40 PERCENT BY WEIGHT TO 70 PERCENT BY WEIGHT MESOPHASE, SAID MESOPHASE BEING PRESENT IN THE FORM OF LARGE, HOMOGENEOUS, COALESCED REGIONS, AND EXTRACTING THE NON-MESOPHASE CONTENT OF THE PUN FIBER WITH A SOLVENT CAPABLE OF DISSOLVING THE NON-MESOPHASE PORTION OF THE FIBER BUT IN WHICH THE MESOPHASE PORTION IS INSOLUBLE, SO AS TO DISSOLVE AT LEAST 10 PERCEN T BY WEIGHT OF THE NONMESOPHASE CONTENT OF THE FIBER AND PRODUCE A FIBER OF HIGHER MESOPHASE CONTENT.
2. A process as in claim 1 wherein the solvent is pyridine.
3. A process as in claim 1 wherein the solvent is quinoline.
4. A process as in claim 1 wherein extraction is effected at the refluxing temperature of the solvent.
5. A process as in claim 4 wherein the solvent is pyridine.
6. A process as in claim 4 wherein the solvent is quinoline.
7. A process as in claim 4 wherein extraction is effected in a Soxhlet extractor.
8. A process as in claim 7 wherein the solvent is pyridine.
9. A process as in claim 7 wherein the solvent is quinoline.
10. A process as in claim 1 wherein extraction is effected by immersing the fibers in the solvent.
11. A process as in claim 10 wherein the solvent is pyridine.
12. A process as in claim 10 wherein the solvent is quinoline.
13. A process as in claim 10 wherein extraction is effected at the refluxing temperature of the solvent.
14. A process as in claim 13 wherein the solvent is pyridine.
15. A process as in claim 13 wherein the solvent is quinoline.
16. A process as in claim 1 wherein the pitch contains from 50 per cent by weight to 65 percent by weight mesophase.
17. A process as in claim 16 wherein the solvent is pyridine.
18. A process as in claim 16 wherein the solvent is quinoline.
19. A process as in claim 16 wherein extraction is effected at the refluxing temperature of the solvent.
20. A process as in claim 19 wherein the solvent is pyridine.
21. A process as in claim 19 wherein the solvent is quinoline.
22. A process as in claim 19 wherein extraction is effected in a Soxhlet extractor.
23. A process as in claim 22 wherein the solvent is pyridine.
24. A process as in claim 22 wherein the solvent is quinoline.
25. A process as in claim 16 wherein extraction is effected by immersing the fibers in the solvent.
26. A process as in claim 25 wherein the solvent is pyridine.
27. A process as in claim 25 wherein the solvent is quinoline.
28. A process as in claim 25 wherein extraction is effected at the refluxing temperature of the solvent.
29. A process as in claim 28 wherein the solvent is pyridine.
30. A process as in claim 28 wherein the solvent is quinoline.
US318483A 1972-12-26 1972-12-26 Process for producing high mesophase content pitch fibers Expired - Lifetime US3919387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US318483A US3919387A (en) 1972-12-26 1972-12-26 Process for producing high mesophase content pitch fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US318483A US3919387A (en) 1972-12-26 1972-12-26 Process for producing high mesophase content pitch fibers

Publications (1)

Publication Number Publication Date
US3919387A true US3919387A (en) 1975-11-11

Family

ID=23238364

Family Applications (1)

Application Number Title Priority Date Filing Date
US318483A Expired - Lifetime US3919387A (en) 1972-12-26 1972-12-26 Process for producing high mesophase content pitch fibers

Country Status (1)

Country Link
US (1) US3919387A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974264A (en) * 1973-12-11 1976-08-10 Union Carbide Corporation Process for producing carbon fibers from mesophase pitch
US4014725A (en) * 1975-03-27 1977-03-29 Union Carbide Corporation Method of making carbon cloth from pitch based fiber
DE2829288A1 (en) * 1977-07-08 1979-01-25 Exxon Research Engineering Co OPTICALLY ANISOTROPIC DEFORMABLE PECHE, METHOD OF PRODUCTION AND USE
US4138525A (en) * 1976-02-11 1979-02-06 Union Carbide Corporation Highly-handleable pitch-based fibers
FR2424954A1 (en) * 1978-05-05 1979-11-30 Exxon Research Engineering Co PROCESS FOR PREPARING BRAIS WITH OPTICAL ANISOTROPY
US4219404A (en) * 1979-06-14 1980-08-26 Exxon Research & Engineering Co. Vacuum or steam stripping aromatic oils from petroleum pitch
DE3012627A1 (en) * 1979-04-13 1980-11-27 Exxon Research Engineering Co METHOD FOR PROCESSING GRAPHITABLE PECHE TO A BASE MATERIAL FOR CARBON FIBERS
EP0026647A1 (en) * 1979-09-28 1981-04-08 Union Carbide Corporation Mesophase pitch, processes for its production and fibers produced therefrom
US4277325A (en) * 1979-04-13 1981-07-07 Exxon Research & Engineering Co. Treatment of pitches in carbon artifact manufacture
EP0034410A2 (en) * 1980-01-25 1981-08-26 Exxon Research And Engineering Company Process for the preparation of a feedstock for carbon artifact manufacture
US4301135A (en) * 1979-12-26 1981-11-17 Union Carbide Corporation Process for spinning pitch fiber into a hot gaseous environment
US4303631A (en) * 1980-06-26 1981-12-01 Union Carbide Corporation Process for producing carbon fibers
DE3220608A1 (en) * 1981-06-01 1982-12-23 Koa Oil Co, Ltd., Tokyo METHOD FOR PRODUCING A CRYSTALLIZABLE CARBON MATERIAL IN THE FORM OF MICROBULES FROM THE MESO PHASE OF THE CARBON, AND DEVICE FOR CARRYING OUT THIS METHOD
EP0097048A2 (en) * 1982-06-14 1983-12-28 E.I. Du Pont De Nemours And Company Production of optically anisotropic pitches
EP0099425A1 (en) * 1982-07-22 1984-02-01 Amoco Corporation Method for producing a mesophase pitch derived carbon yarn and fiber
US4650920A (en) * 1985-07-26 1987-03-17 Redick Hugh E Graphite fiber thermocouple device and method
US4902492A (en) * 1987-10-28 1990-02-20 Rutgerswerke Ag Novel spinning method
US4913889A (en) * 1983-03-09 1990-04-03 Kashima Oil Company High strength high modulus carbon fibers
US4983457A (en) * 1987-05-31 1991-01-08 Toa Nenryo Kogyo Kabushiki Kaisha High strength, ultra high modulus carbon fiber
USH907H (en) 1987-06-19 1991-04-02 Mitsubishi Oil Co., Ltd. Process for producing conductive graphite fiber
US5114697A (en) * 1988-03-28 1992-05-19 Toa Nenryo Kogyo Kabushiki Kaisha High strength, high modulus pitch-based carbon fiber
US20120097579A1 (en) * 2007-05-24 2012-04-26 Quantex Research Corporation Method of Forming a Mesophase Pitch from a Coal Extract Suitable for Processing to a High Value Coke
US8597382B2 (en) 2007-05-24 2013-12-03 West Virginia University Rubber material in coal liquefaction
US9184323B2 (en) 2010-10-15 2015-11-10 Cyprian Emeka Uzoh Method and substrates for making photovoltaic cells
CN107488876A (en) * 2017-09-25 2017-12-19 上海高强高模新材料科技有限公司 A kind of method that high-quality mesophase pitch precursor is prepared using low interphase content asphalt stock continuous spinning

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3552922A (en) * 1966-08-03 1971-01-05 Nippon Carbon Co Ltd Method for the manufacture of carbon fiber
US3558276A (en) * 1967-02-03 1971-01-26 Kureha Chemical Ind Co Ltd Process for producing formed carbon articles
US3595946A (en) * 1968-06-04 1971-07-27 Great Lakes Carbon Corp Process for the production of carbon filaments from coal tar pitch
US3629379A (en) * 1969-11-06 1971-12-21 Kureha Chemical Ind Co Ltd Production of carbon filaments from low-priced pitches
US3660140A (en) * 1970-06-18 1972-05-02 United Aircraft Corp Treatment of carbon fibers
US3668110A (en) * 1970-10-28 1972-06-06 Frederick L Shea Pitch treatment means
US3718493A (en) * 1968-06-04 1973-02-27 Great Lakes Carbon Corp Process for the production of carbon filaments from coal tar pitch
US3767741A (en) * 1970-02-20 1973-10-23 Mitsubishi Oil Co Making carbon fibers from solvent extracted and airblown vacuum distillation residues of petroleum
US3787541A (en) * 1971-10-26 1974-01-22 L Grindstaff Graphitization of mesophase pitch fibers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3552922A (en) * 1966-08-03 1971-01-05 Nippon Carbon Co Ltd Method for the manufacture of carbon fiber
US3558276A (en) * 1967-02-03 1971-01-26 Kureha Chemical Ind Co Ltd Process for producing formed carbon articles
US3595946A (en) * 1968-06-04 1971-07-27 Great Lakes Carbon Corp Process for the production of carbon filaments from coal tar pitch
US3718493A (en) * 1968-06-04 1973-02-27 Great Lakes Carbon Corp Process for the production of carbon filaments from coal tar pitch
US3629379A (en) * 1969-11-06 1971-12-21 Kureha Chemical Ind Co Ltd Production of carbon filaments from low-priced pitches
US3767741A (en) * 1970-02-20 1973-10-23 Mitsubishi Oil Co Making carbon fibers from solvent extracted and airblown vacuum distillation residues of petroleum
US3660140A (en) * 1970-06-18 1972-05-02 United Aircraft Corp Treatment of carbon fibers
US3668110A (en) * 1970-10-28 1972-06-06 Frederick L Shea Pitch treatment means
US3787541A (en) * 1971-10-26 1974-01-22 L Grindstaff Graphitization of mesophase pitch fibers

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974264A (en) * 1973-12-11 1976-08-10 Union Carbide Corporation Process for producing carbon fibers from mesophase pitch
US4014725A (en) * 1975-03-27 1977-03-29 Union Carbide Corporation Method of making carbon cloth from pitch based fiber
US4138525A (en) * 1976-02-11 1979-02-06 Union Carbide Corporation Highly-handleable pitch-based fibers
DE2829288A1 (en) * 1977-07-08 1979-01-25 Exxon Research Engineering Co OPTICALLY ANISOTROPIC DEFORMABLE PECHE, METHOD OF PRODUCTION AND USE
US4208267A (en) * 1977-07-08 1980-06-17 Exxon Research & Engineering Co. Forming optically anisotropic pitches
FR2424954A1 (en) * 1978-05-05 1979-11-30 Exxon Research Engineering Co PROCESS FOR PREPARING BRAIS WITH OPTICAL ANISOTROPY
US4184942A (en) * 1978-05-05 1980-01-22 Exxon Research & Engineering Co. Neomesophase formation
DE3012627A1 (en) * 1979-04-13 1980-11-27 Exxon Research Engineering Co METHOD FOR PROCESSING GRAPHITABLE PECHE TO A BASE MATERIAL FOR CARBON FIBERS
US4277325A (en) * 1979-04-13 1981-07-07 Exxon Research & Engineering Co. Treatment of pitches in carbon artifact manufacture
US4219404A (en) * 1979-06-14 1980-08-26 Exxon Research & Engineering Co. Vacuum or steam stripping aromatic oils from petroleum pitch
EP0021708A1 (en) * 1979-06-14 1981-01-07 E.I. Du Pont De Nemours And Company Preparation of an optically anisotropic pitch precursor material
EP0026647A1 (en) * 1979-09-28 1981-04-08 Union Carbide Corporation Mesophase pitch, processes for its production and fibers produced therefrom
US4301135A (en) * 1979-12-26 1981-11-17 Union Carbide Corporation Process for spinning pitch fiber into a hot gaseous environment
EP0034410A2 (en) * 1980-01-25 1981-08-26 Exxon Research And Engineering Company Process for the preparation of a feedstock for carbon artifact manufacture
EP0034410B1 (en) * 1980-01-25 1983-06-01 Exxon Research And Engineering Company Process for the preparation of a feedstock for carbon artifact manufacture
DE3116606A1 (en) * 1980-05-02 1982-02-18 Exxon Research and Engineering Co., 07932 Florham Park, N.J. "METHOD FOR PRODUCING A PECHES SUITABLE FOR PRODUCING COAL USED ITEMS"
US4303631A (en) * 1980-06-26 1981-12-01 Union Carbide Corporation Process for producing carbon fibers
DE3220608A1 (en) * 1981-06-01 1982-12-23 Koa Oil Co, Ltd., Tokyo METHOD FOR PRODUCING A CRYSTALLIZABLE CARBON MATERIAL IN THE FORM OF MICROBULES FROM THE MESO PHASE OF THE CARBON, AND DEVICE FOR CARRYING OUT THIS METHOD
EP0097048A2 (en) * 1982-06-14 1983-12-28 E.I. Du Pont De Nemours And Company Production of optically anisotropic pitches
EP0097048A3 (en) * 1982-06-14 1984-02-22 Exxon Research And Engineering Company Production of optically anisotropic pitches
US4465586A (en) * 1982-06-14 1984-08-14 Exxon Research & Engineering Co. Formation of optically anisotropic pitches
EP0099425A1 (en) * 1982-07-22 1984-02-01 Amoco Corporation Method for producing a mesophase pitch derived carbon yarn and fiber
US4913889A (en) * 1983-03-09 1990-04-03 Kashima Oil Company High strength high modulus carbon fibers
US4650920A (en) * 1985-07-26 1987-03-17 Redick Hugh E Graphite fiber thermocouple device and method
US4983457A (en) * 1987-05-31 1991-01-08 Toa Nenryo Kogyo Kabushiki Kaisha High strength, ultra high modulus carbon fiber
USH907H (en) 1987-06-19 1991-04-02 Mitsubishi Oil Co., Ltd. Process for producing conductive graphite fiber
US4902492A (en) * 1987-10-28 1990-02-20 Rutgerswerke Ag Novel spinning method
US5114697A (en) * 1988-03-28 1992-05-19 Toa Nenryo Kogyo Kabushiki Kaisha High strength, high modulus pitch-based carbon fiber
US20120097579A1 (en) * 2007-05-24 2012-04-26 Quantex Research Corporation Method of Forming a Mesophase Pitch from a Coal Extract Suitable for Processing to a High Value Coke
US8591727B2 (en) 2007-05-24 2013-11-26 West Virginia University Pipeline crude oil in coal liquefaction
US8597382B2 (en) 2007-05-24 2013-12-03 West Virginia University Rubber material in coal liquefaction
US8597503B2 (en) 2007-05-24 2013-12-03 West Virginia University Coal liquefaction system
US8882862B2 (en) * 2007-05-24 2014-11-11 West Virginia University Method of forming a mesophase pitch from a coal extract suitable for processing to a high value coke
US9184323B2 (en) 2010-10-15 2015-11-10 Cyprian Emeka Uzoh Method and substrates for making photovoltaic cells
US9905713B2 (en) 2010-10-15 2018-02-27 Cyprian Emeka Uzoh Method and substrates for material application
US10333014B2 (en) 2010-10-15 2019-06-25 Cyprian Emeka Uzoh Method and substrates for making photovoltaic cells
CN107488876A (en) * 2017-09-25 2017-12-19 上海高强高模新材料科技有限公司 A kind of method that high-quality mesophase pitch precursor is prepared using low interphase content asphalt stock continuous spinning
CN107488876B (en) * 2017-09-25 2019-11-26 上海高强高模新材料科技有限公司 A method of high-quality mesophase pitch precursor is prepared using low interphase content asphalt stock continuous spinning

Similar Documents

Publication Publication Date Title
US3919387A (en) Process for producing high mesophase content pitch fibers
US3919376A (en) Process for producing high mesophase content pitch fibers
US4005183A (en) High modulus, high strength carbon fibers produced from mesophase pitch
US4014725A (en) Method of making carbon cloth from pitch based fiber
CA1055662A (en) Process for producing carbon fibers from mesophase pitch
US3974264A (en) Process for producing carbon fibers from mesophase pitch
US3629379A (en) Production of carbon filaments from low-priced pitches
US4032430A (en) Process for producing carbon fibers from mesophase pitch
US4017327A (en) Process for producing mesophase pitch
US4016247A (en) Production of carbon shaped articles having high anisotropy
US5356574A (en) Process for producing pitch based activated carbon fibers and carbon fibers
US4138525A (en) Highly-handleable pitch-based fibers
US3767741A (en) Making carbon fibers from solvent extracted and airblown vacuum distillation residues of petroleum
US3995014A (en) Process for producing carbon fibers from mesophase pitch
US4115527A (en) Production of carbon fibers having high anisotropy
EP0338212B1 (en) Ultra-high modulus and high tensile strength carbon fibre
US4460557A (en) Starting pitches for carbon fibers
US4575411A (en) Process for preparing precursor pitch for carbon fibers
US4431623A (en) Process for the production of carbon fibres from petroleum pitch
KR910005574B1 (en) Process for producing pitch for carbon
US5556608A (en) Carbon thread and process for producing it
CA1055664A (en) Rapid thermosetting of carbonaceous fibers produced from mesophase pitch
JPH0150275B2 (en)
JP2780231B2 (en) Carbon fiber production method
JP2849156B2 (en) Method for producing hollow carbon fiber

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMOCO CORPORATION, A CORP. OF INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:004634/0001

Effective date: 19860620

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)